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Predictive chemistry: Machine learning for reaction deployment, re-
action development, and reaction discovery

Zhengkai Tua†, Thijs Stuyverb†, Connor W. Coleya,b∗

The field of predictive chemistry relates to the development of models able to describe how molecules
interact and react. It encompasses the long-standing task of computer-aided retrosynthesis, but is far
more reaching and ambitious in its goals. In this review, we summarize several areas where predictive
chemistry models hold the potential to accelerate the deployment, development, and discovery of
organic reactions and advance synthetic chemistry.

Introduction
Advances in the high-throughput generation and availability of
chemical reaction data have spurred a rapidly growing interest in
the intersection of machine learning and chemical synthesis1–4.
Deep learning approaches have achieved unprecedented accuracy
and performance in a wide variety of predictive tasks; their po-
tential to accelerate scientific discovery is therefore of immense
interest5–7. Here, we discuss recent advances in the application
of machine learning to synthetic chemistry, divided in three cate-
gories (Figure 1):

1. Reaction deployment—learning from reaction corpora to
identify trends and predict when known reactions apply to
novel substrates or combinations thereof.

2. Reaction development—accelerating the improvement or op-
timization of an existing chemical process, often in an itera-
tive setting incorporating experimental feedback.

3. Reaction discovery—creating new knowledge through the
elucidation of reaction mechanisms or the discovery of un-
precedented synthetic methods.

Progress in these areas has benefited from a “virtuous cycle” be-
tween chemistry and computer science experts, where the former
identify pressing domain challenges and the latter design new
computational tools to tackle them. As new algorithmic meth-
ods are developed, intended either for chemical problems or for
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the more widespread applications of image and language process-
ing, the scope of synthetic problems able to be addressed by com-
putational assistance expands. We encourage all synthetic and
computational chemists to familiarize themselves with these ap-
plications and methods to identify (a) tools that can be directly
incorporated into their R&D workflows, (b) additional applica-
tions where similar tools may be impactful, and (c) opportunities
for developing novel algorithms.

This review will highlight progress towards building machine
learning models that support synthetic chemistry in each of the
areas of reaction deployment, development, and discovery. The
progression through these three topics is meant to reflect an in-
creasing degree of extrapolation from known reactivity to new
reactivity. Throughout, we emphasize the major questions that
models have been built to address, the myriad of approaches that
have been developed to help address them, and some goals where
further development is still needed. At times, we will go into
some technical depth to describe and distinguish different mod-
els built for the same task, but these details may not be relevant
for every reader.

Preliminaries on machine learning and molecular rep-
resentation

There are numerous reviews for machine learning in chemistry
that provide an introduction to the field. Rather than explaining
the basics of statistical learning, we instead redirect the reader to
work by Strieth-Kalthoff et al. 3 , Butler et al. 8 , and Janet and Ku-
lik 9 . Here, we will only briefly mention a few key considerations
in molecular representation and algorithm design.

Supervised learning problems are typically divided into regres-
sion and classification tasks, which seek to predict either a contin-
uous scalar value or a discrete category. Both types of problems
are ubiquitous in molecular machine learning and drug discovery
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Fig. 1 Overview of the three main categories of predictive chemistry tasks discussed throughout this review: reaction deployment, development, and
discovery. It is useful to consider the extent to which each task represents an extrapolation from known reactivity to new reactivity.

applications (e.g., in the form of quantitative structure-property
relationship models), but cannot describe every task we discuss
below. While the learning objective may be to predict reaction
yield, rate, enantiomeric excess, etc., some tasks require the pre-
diction/generation of a molecular structure; for example, when
predicting the product of a chemical reaction. Nevertheless, the
types of tasks we will review are predominantly supervised learn-
ing problems wherein we try to recapitulate the relationship be-
tween input-output pairs derived from experiments or computa-
tional chemistry. When describing a supervised learning problem,
it is essential to be precise about which factors should be consid-
ered part of the input, which factors are held constant, and which
confounding factors are omitted due to missing data.

Molecular representation is perhaps the most fundamental as-
pect of molecular machine learning. In order for a model to learn
the relationship between an input and an output, we must be
able to describe the input in some objective, mathematical way.
When working with reactions, we must choose how to represent
the constituent molecules and other aspects of the reaction condi-
tions. There has been a substantial amount of work on the former
from cheminformatics and adjacent fields.10 The first considera-
tion one makes is whether a molecular structure should be con-
sidered a rigid 3D object or a more flexible structure defined as
a 4D conformer ensemble or a 2D/2.5D molecular graph. This
choice is influenced by the learning problem, i.e., whether the
goal is to predict properties of an ensemble of 3D conformers, a
specific 3D conformer, or the molecular identity. For most learn-
ing problems involving experimental reaction data, representing
the molecular identity without restricting it to any individual con-
formation should be appropriate. However, computing properties
of 3D conformers has proven to be an effective way to featur-
ize catalysts and ligands for various learning problems, and 4D
conformer ensemble inputs have been demonstrated to yield ex-
cellent results for, among others, solvation properties.11,12

Broadly speaking, molecular representations include structure-
based fingerprints, SMILES strings13, 2D graphs, and 3D confor-
mations as well as descriptor-based vector representations using
computed properties often inspired by physical organic chemistry.
Descriptors may be directly derived from molecular structure and

the two are by no means mutually exclusive.14 Each of these rep-
resentations is compatible with a different set of machine learn-
ing model architectures (see Figure 1 of Pattanaik and Coley 15

for an illustration). What is considered “machine learning” is am-
biguous; multivariate regression and PCA arguably count, but the
implicit emphasis in this article will be on neural networks (e.g.,
feedforward neural networks, graph neural networks (GNNs)16,
the Transformer17) and random forest (RF)18 models. Some
components of reactions may be challenging to represent if they
do not have a well-defined structure (e.g., “air” as a reagent) or
if they involve non-covalent bonds that are poorly described by
SMILES strings or molecular graphs (e.g., many organometallic
complexes, including metallocenes). There is little standardiza-
tion in, i.e., no uniformly applied approach toward, how cate-
gorical reaction conditions are represented as inputs to machine
learning models.

Reaction Deployment Goals

Reaction deployment involves the widespread task of retrosyn-
thetic planning wherein new synthetic routes are proposed based
on an algorithmic or statistical analysis of reaction data. These
techniques do not aim to develop what a synthetic chemist would
consider a “new reaction” (i.e., a new method), but nevertheless
may make predictions on new substrates via interpolation within
reaction space. In addition to retrosynthetic planning, here we
intend for it to also include the forward task of reaction outcome
prediction, as well as other tasks to support information retrieval
like classification and mapping (Figure 2). Retrosynthesis and re-
action prediction are both molecule-to-molecule transformations,
but their approaches and evaluation diverge due to the one-to-
many nature of retrosynthetic prediction and the lack of a single
correct answer for model training and evaluation. Reaction pre-
diction, generally simplified as major product prediction by recent
works, is also arguably easier as we typically have all the heavy
atoms in the reactant input, in contrast to retrosynthesis where
atoms in the leaving groups have to be inferred.
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Fig. 2 Overview of five key reaction deployment tasks. Reaction outcome prediction aims to predict the major product given the reactants. One-step
retrosynthesis is the reverse task of proposing reaction precursors for new targets. The one-step models are called at each step of multi-step planning,
which aims to propose synthesis routes that end in commercially/experimentally accessible building blocks. Atom mapping aligns the atoms on both
sides of a reaction, and reaction classification maps reactions into distinct (human-interpretable) classes, both of which are complementary to the core
synthesis planning workflow.

One-step Retrosynthetic Prediction

Models for one-step retrosynthesis aim to predict the “correct” re-
action precursor(s) given the product molecule. Because there
are many starting materials that could produce the target of in-
terest, evaluation has focused on models’ abilities to recapitulate
experimentally-reported reactants within the highest ranked k op-
tions. The top-k accuracy (%) on the USPTO-50k dataset19, a
subset with approximately 50 thousand atom-mapped reactions
mined from the US Patent and Trademark Office20 has emerged
as a common (small) benchmark for comparison despite this un-
derspecification; larger datasets of ca. 1M from the USPTO have
also been used (several versions of “USPTO-full”). Alternate met-
rics to top-k accuracy such as accuracy for the largest fragment21

and round-trip accuracy evaluated by a separate forward predic-
tor22 have been proposed, and have since been used occasionally
in parallel to top-k accuracy. The field has sometimes reported
results when the reaction type–or class–is known and provided as
part of the input, but this artificial setting has been decreasing in
popularity. Some approaches have been evaluated on commer-
cial (e.g., Reaxys23, CAS24, Pistachio25) or in-house data (e.g.,
electric laboratory notebook (ELN) data from AstraZeneca26 or
Pfizer27), but results are also reproduced on USPTO-50k for most
approaches.

Depending on whether these one-step models make use of reac-
tion templates, which are reaction rules most commonly encoded
using SMARTS patterns28, they can be broadly categorized into
template-based and template-free approaches; the latter can be
further divided into graph-edit based and translation-based for-
mulations.

Template-based Approaches

Each template defines substructural patterns of reactants and
products that codify, at least in a crude manner, a “rule of chem-
istry”. Reaction templates can be applied to product molecules
to generate the corresponding reactants with the help of chem-
informatics software such as RDKit29. These templates can ei-

ther be defined by expert chemists or algorithmically extracted
from atom-mapped reactions23,30, possibly using extraction tools
such as RDChiral31. Expert-defined templates have had use in
retrosynthetic programs for decades and still form the knowl-
edge bases of expert programs like Synthia32; typically, in expert
programs, templates are applied exhaustively and do not rely on
models to downselect the most strategic templates.

The most basic data-driven template-based methods adopt a
multi-way classification formulation to select the template that
was extracted for the experimentally-recorded reaction given the
product molecule structure. For example, NeuralSym23 uses ex-
tended connectivity (EC) fingerprints33 of product molecules as
the input into a neural network which is trained to maximize
the probability of the extracted template. Performance gains
have been made possible with additional techniques like pretrain-
ing34, refining template definition35–37, clustering35, or using
additional features38. Most notably, the state-of-the-art template-
based method LocalRetro36 divides generic reaction templates
into atom-change, bond-change and multiple-change templates,
and trains three different classifiers accordingly.

Apart from the classification formulation, it is also possible to
model one-step retrosynthesis as a retrieval or ranking problem.
RetroSim39 retrieves the existing molecules that are most simi-
lar to given targets, and returns the associated templates as the
results. MHNreact40, on the other hand, encodes the template
as well and trains a neural model to retrieve the most applicable
templates for new molecules directly.

Template-free Graph-edit Based Approaches

Despite attempts to refine template definition for retrosynthesis,
there is always an intrinsic tradeoff between the generalizability
and the specificity of templates. If the templates are defined too
generally, they may not be able to capture sufficient information
about chemical environments surrounding the reaction centers,
and so the template may be used to propose disconnections that
are not chemically feasible; if they are too specific, we may end
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up with an excessive number of templates each with few occur-
rences, making it harder to learn when its application would be
synthetically strategic. Template-free approaches help mitigate
this limitation. The first class of template-free methods are based
on graph edits, modelling one-step retrosynthesis as a sequence of
graph modifications that convert the target molecular graph into
the reactant graphs. As most representative of such a formula-
tion for retrosynthesis, MEGAN41 first determines a ground-truth
order of actions (addition, deletion or modification of atoms and
bonds) using some heuristic priority rules, after which a graph
encoder-decoder is trained to predict the actions given the molec-
ular graphs of the target or of the intermediates.

As variants of graph-edit based approaches, semi-template
based methods that mimic the synthon approach to retrosynthe-
sis have recently gained popularity. They first break the target
into synthons (i.e., hypothetical reaction intermediates), followed
by a second stage to recover the reactants from predicted syn-
thons. The reactant recovery process have been modelled as leav-
ing group selection42, graph generation43 and sequence genera-
tion44,45 conditioned on predicted synthons. In a similar way to
template-based LocalRetro, G2Retro46 later refines the reaction
centers to be bond-forming, bond-changing and atom-changing
centers to enhance performance.

Template-free Translation-based Approaches

Graph-edit based approaches generally require atom-mapping to
compute ground-truth graph edit(s), which complicates their ap-
plication to large, potentially messy datasets (e.g., ones missing
some reagents or with ambiguous stoichiometry). This makes
translation-based methods, the other category of template-free
approaches, more attractive in certain scenarios. By modeling
one-step retrosynthesis as a SMILES-to-SMILES machine transla-
tion problem, they normally do not need atom-mapping. The
single-stage, end-to-end formulation also makes these models
practically easier to train, even more so because they leverage
sophisticated techniques from the domain of Natural Language
Processing (NLP).

Translation-based baselines47–51 typically make use of se-
quence models including Recurrent Neural Networks (RNN) and
the Transformers17. The product SMILES string is first tokenized
either character-by-character or with a regex tokenizer52 to, for
example, keep four characters defining a chlorine atom “[Cl]”
together as a single token. The sequence encoder learns to
encode the tokens into some intermediate embeddings so that
the decoder can autoregressively decode the reactant SMILES
strings. Alternate molecular representations53–55 have been ex-
plored, and so have model architectures that use chemistry-
relevant information of the target molecular graph24,56,57. A
number of translation-based approaches also directly borrow ex-
isting techniques from the NLP domain for performance improve-
ment21,55,57–63. Among the many performance engineering tech-
niques is SMILES augmentation, which takes advantage of the
fact that many different SMILES strings may describe the same
molecular graph.64,65

Reranking, Transfer Learning and Retrieval-based Methods

Regardless of the one-step model used, the highest-ranked pro-
posed precursors can always be corrected and/or reranked to
yield better suggestions. Correction can be as simple as filter-
ing out invalid SMILES21,24, or with a separately trained neural
syntax corrector to convert invalid SMILES into valid ones66. As
a more universal approach, Sun et al. 60 and Lin et al. 67 both
train reranking models via contrastive learning, using the primary
model predictions as hard negatives (decoys) that must be distin-
guish from the recorded ground-truth reactants.

There are also transfer learning approaches and retrieval-based
approaches that are unfair to be compared with other approaches,
but may nevertheless be relevant in some cases. For transfer
learning, supervised pretraining with larger reaction databases
may boost the model performance when transferred onto smaller
datasets68,69, although the performance gain when the model
is given more reaction data is largely unsurprising. Similarly,
some retrieval-based approaches to retrosynthesis make the pre-
diction task easier by only retrieving from a predetermined set of
molecules70,71. This may, however, significantly limit the gener-
alizability of the model since it assumes that a small collection of
molecules includes every structure that could be used as a reac-
tant.

Multi-step Retrosynthetic Planning

Retrosynthetic planning for new targets of interest aims to pro-
pose full synthetic pathways, rather than merely the single-step
transformations discussed so far. Single-step models can be ap-
plied recursively to the target product until we find the route(s)
in which all building blocks are available (e.g., present in some
buyable database) or some termination criteria are satisfied (e.g.,
maximal path length or search time). The extremely large search
spaces of molecules and of reactions, however, render exhaustive
search inefficient if at all possible. The number of candidate pre-
cursors to consider grows exponentially with increasing number
of reaction steps as one proposes disconnection after disconnec-
tion. It is preferable and necessary to actively guide the search in
the most promising directions.

The multi-step planning problem fits well into a general search
framework with three phases, namely, selection, expansion, and
update (Figure 3). A synthesis pathway is first represented as
a tree (or more generally a graph), with molecules and/or reac-
tions being the nodes. In each search iteration, a selection policy is
employed to find the most promising node(s) to expand (i.e., the
most promising molecule(s) to propose reactants for), which can
either be based on heuristics or some value function of the node.
This selection process is not too different from that in latest ex-
pert systems such as Synthia, which makes use of heuristically
defined cost functions, possibly based on the structural complex-
ity of a molecule32. An expansion policy is then used to expand
the selected node, for example, by applying a pretrained one-step
retrosynthesis model. Relevant values along the path are then up-
dated for use in future iterations. Multi-step planning has some-
times been viewed as a single-player or two-player game, which
may have inspired the applications of Monte Carlo Tree Search
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Fig. 3 A sample iteration of multi-step planning, which takes a partially-expanded synthetic tree and chooses one chemical node to expand further.

(MCTS)72 and Proof Number Search (PNS)73, both of which have
been used for solving games in other contexts.

One fundamental challenge of multi-step planning is with the
evaluation of proposed pathways. Assessing whether a synthetic
route is “good ” is highly subjective even for expert chemists74.
Unlike in one-step retrosynthesis where the top-k accuracy has
been widely adopted as a standard metric (with known limita-
tions), multi-step planning has few objective measures. Human
evaluation with double-blind comparison between proposed and
reported routes75 can be valuable, but is laborious and not scal-
able to large numbers of pathways. Some computable metrics
that have been used include the success rate of finding viable
pathways at different iteration limits, the average number of it-
erations for finding them, and the number of node visits, all on
benchmark datasets again curated from USPTO (e.g., on a test
set of 190 target molecules76). While these metrics serve as ba-
sis for comparison, they are heavily oriented towards search ef-
ficiency rather than the quality and chemical feasibility of pro-
posed routes. Various metrics have been proposed for quantify-
ing route quality, including route length76,77, average complexity
of molecules in the route78, and tree edit distance (TED)79 to a
reference route80. They are still far from perfect, and a consen-
sus on evaluation has yet to be reached for the field. Because
it is not possible to assess whether a proposed reaction would
succeed with perfect accuracy (see later discussions of product
prediction), we do not expect that compelling quantitative evalu-
ations will arise in the foreseeable future.

Monte Carlo Tree Search (MCTS) for Multi-Step Planning

As one of the most well-known approaches, Segler et al. 75 were
the first to combine a neural one-step model with MCTS. Every
search step selects the best unexpanded node, expands the node
with a template-based one-step model, and updates the scores
along the synthesis pathway. The selection policy is formulated
to achieve a balance between exploitation (i.e., highest scoring
nodes) and exploration (i.e., unvisited nodes), with a variant of
the Upper Confidence bound applied to Trees (UCT)81 used in Al-
phaGO82. The selected node is then expanded with the one-step

model, and only probable transformations are kept after filter-
ing with a separately trained in-scope filter—a binary classifica-
tion model meant to quickly check whether a reaction looks rea-
sonable or not. As a distinct phase of MCTS, any new molecule
generated during expansion will immediately be evaluated with
a rollout, where a similar but more lightweight one-step model is
iteratively applied to the new molecules. Depending on whether
solutions (i.e., pathways with buyable building blocks) are found,
reward values will be assigned to the molecules, which are subse-
quently used for the update phase.

The MCTS approach and variants thereof have been imple-
mented by ASKCOS83 and AiZynthFinder84. Most notably,
ASKCOS parallelizes the tree search in the original release, and
augments the in-scope filter with a condition recommender and a
forward predictor (discussed later); AiZynthFinder uses the same
one-step model for expansion and rollout, trading efficiency dur-
ing rollout for better quality of reward estimation.

Improvement of the Search Algorithm and Structure

Other multi-step planning works can generally be viewed as
replacing or improving various components under the general
search framework. Some explore alternative search structures
and/or algorithms such as AND-OR search and PNS, whereas oth-
ers focus on improving the selection policy and rarely, the expan-
sion policy85. We will first review different search algorithms
and/or structures, which are somewhat agnostic to the selection
policy.

While the search tree can be easily modified to allow for node
sharing (thereby turning it into a multi-tree as in ASKCOS or a
hyper-graph as in Schwaller et al. 22), quite a few recent works
use AND-OR trees76,77,85,86 instead, whose early application to
synthesis planning dates back to the pre deep-learning era87.
The AND-OR formulation enables alternative search algorithms
to MCTS, such as Proof Number Search (PNS) to be used. We re-
fer the reader to Heifets and Jurisica 87 for details on how the
proof/disproof numbers are defined for reactions (AND nodes)
and molecules (OR nodes). Briefly, each reaction is represented
as an AND node, whose state is true only if all of its successor
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nodes (which can only possibly be molecule nodes) are true. Each
molecule is represented as an OR node, whose state is true if any
of its successor nodes (which can only be reaction nodes) is true.
The selection phase in PNS picks the OR node with the smallest
proof number, or the AND node with the smallest disproof num-
ber. The expansion phase applies a one-step model similarly as
in MCTS, and the update phase then updates proof and disproof
numbers along the pathways, which in some cases may be gener-
alized to depend on the value functions76.

Kishimoto et al. 77 were the first to combine a template-based
single-step model with PNS, which outperforms MCTS after in-
corporating heuristic scores based on reaction probabilities into
the proof numbers of OR nodes. The performance was signifi-
cantly improved later in Retro*76, which reformulates the search
as a single-player game by combining proof and disproof num-
bers into a redefined reaction number using an additional neural
network value function estimator.

Improvement of the Selection Policy

The selection policy is a crucial component of the overall search,
as it determines which precursors to pursue further. The UCT
formula in MCTS can be easily modified, for example, by includ-
ing a "dynamic c" parameter to dynamically force the exploration
of nodes ranked low by the one-step model88. Another common
strategy is to better estimate the value function for any node with-
out the expensive rollout. Injection of chemical heuristics in selec-
tion can be as simple as using a combination of reaction likelihood
and complexity assessment score like SCScore89, as was done in
Schwaller et al. 22 . Similarly, ReTReK90 defines four heuristic
scores to guide MCTS towards convergent synthesis, ring-forming
reactions, and reactants with fewer reaction centers, harkening
back to the early days of formalizing retrosynthesis where “x-
oriented” (starting material-, stereochemistry-, topology-, etc.)
strategies were proposed91,92.

While heuristic scores are generally cheap to compute, they do
not take advantage of any data on known synthetic routes ex-
tracted from the literature. Retro*76 is among the first to utilize a
learning-based value function estimator with a surrogate model.
It starts by constructing routes for targets in the training set using
existing reaction data in USPTO, after which the value (i.e., the
best entire route cost) for any target can be computed. A sim-
ple neural model is then trained to predict this value from struc-
ture, while maintaining preference for reactions within the routes
over other reactions proposed by the one-step model. The abil-
ity of a model to navigate the search can be further refined with
online learning, possibly in an iterative manner, with new train-
ing data generated from running the search88,93,94. In this way,
the model will get better at recognizing which intermediates are
“most promising” and likely to connect back to buyable starting
materials. Most recently, RetroGraph95 proposed to use a GNN
on the search tree itself to parameterize the value function and
learn which molecules to expand further, bringing its results to
the state-of-the-art in terms of search efficiency on USPTO bench-
marks with a few hundred test molecules.

Enumeration, Ranking and Clustering of Pathways

The work we have reviewed so far mostly focus on improving
the search efficiency, i.e., increasing the success rate of finding
a pathway with buyable building blocks while being faster and
requiring fewer node visits. For practical use, however, it may
be desirable to recommend more than a single viable pathway,
which makes enumeration algorithms of multiple pathways rele-
vant. CompRet78 ranks its enumerated pathways with heuristic
scores that combine the longest path length, mean complexity
(i.e., mean SCScore89) of molecules in the route, and molecular
similarities to reference routes. One can envision many differ-
ent scoring metrics that can prioritize/deprioritize different pro-
posals, such as ones estimating the cost of execution in a semi-
automated lab96. Ranking pathways by learned scores is also pos-
sible, for example, by training a tree-LSTM model to distinguish
pathways with published reactions from artificial ones generated
by a synthetic planner97. Depending on the use case, pathways
similar to patent-derived ones may either be preferred (e.g., since
they are safer to perform, arguably) or discouraged (e.g., when
patented routes are to be evaded98). While Mo et al. 97 briefly ex-
perimented with clustering the routes based on their tree-LSTM
embeddings and compares routes from the same or different clus-
ters, Genheden et al. formally showed that some routes can be
used as representatives of the cluster they are in (using a “tree
edit distance”79 or a trained tree-LSTM model99), thereby reduc-
ing the total number of routes to be considered.

Retrosynthesis-Derived Models for Synthetic Complexity

To conclude the retrosynthetic planning section, we will briefly
discuss a special use case of these planners as a filter during vir-
tual screening. In the broader context of molecule or drug discov-
ery, it is generally more preferable to fail early; we do not want to
screen and/or optimize thousands or millions of molecules, only
to discover that they are impractical to synthesize. Using ret-
rosynthetic planners as filters are intuitively more advantageous
than structure-based heuristic scores such as SAscore100 and SC-
Score89, which may be inaccurate without considering any in-
formation of starting materials. However, running the pathway
search for numerous compounds may be computationally pro-
hibitive as each search can take a few minutes to run.

As one of the earliest attempts, RASA101 first implemented a
retrosynthetic planner as formulated in Corey and Cheng 102 with
hundreds of transformations. They then regressed a linear model
(on expert-labelled synthetic complexity scores for 100 medicinal
compounds, using heuristic and route-derived features, some of
which were also manually labelled), which can give correlation
coefficients of as high as 0.8 when evaluated with unseen com-
pounds. Several works fit route-derived scores in other ways, in-
cluding expected path length103, probability of successfully find-
ing a viable path by a specific planner104, or a pathway length
score resulting from the retrosynthetic search itself105. While
these surrogate models speed up score computation by many
folds and are agnostic to the choice of the planner, they are inher-
ently limited by the planner from which the training data were
generated.
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Reaction Outcome Prediction

Forward prediction is the task of predicting the product(s) of a
reaction given reactants, and optionally, the conditions as well.
The task is typically not fully specified in a quantitative way (e.g.,
there is no consideration of reactant concentrations, among other
aspects of the conditions), and is often simplified as predicting
the single major product. In the context of reaction deployment,
reaction outcome prediction mainly serves to check the plausibil-
ity of reactions proposed by the retrosynthetic planner, as well as
to give an idea about patterns of selectivity and potential impu-
rities or side products. While we focus our discussion on qualita-
tive prediction tasks, it is worth noting that the broader scope of
reaction outcome prediction may also include quantitative prop-
erties such as rate constants, yields, and equilibrium constants.
These quantities are generally dependent on quantitative condi-
tions, so they are used within reaction family-specific pipelines
rather than general synthesis planning pipelines. We refer read-
ers to Madzhidov et al. 106 for a detailed review on quantitative
prediction. Most notably, hybrid DFT/ML models have been de-
veloped to model the activation energies of nucleophilic aromatic
substitution107,108, one of the most well-studied reactions in or-
ganic synthesis109,110.

Template-based and Template-free Major Product Prediction

We can model forward prediction as reaction type classifica-
tion111 or template classification23, similar to the template-based
approaches for one-step retrosynthesis. Given a set of reactants,
the goal is to predict the type of reaction, which implicitly defines
one or more products. A two-stage variant was later proposed by
Coley et al. 112 to predict the product molecules themselves, in
which a pre-extracted set of around 1,700 templates are exhaus-
tively applied onto any reactants to generate a list of candidate
products, which are then reranked by a learned reaction likeli-
hood estimator to yield the final suggestions. In contrast to ret-
rosynthesis, later developments for forward prediction have been
dominated by template-free approaches: either graph-edit based
or translation-based, with the only template-based competitor be-
ing LocalTransform113 which adapts a more general definition of
reaction templates. Most notably, translation-based models such
as the Molecular Transformer114 and follow-ups21,24,55,63,115

have shown clear advantages over the other methods on bench-
mark datasets such as USPTO_480k116 in terms of their accuracy
in recapiulating experimentally-observed reaction products.

Graph-edit based approaches for reaction prediction were gen-
erally devised in a similar manner to those for retrosynthesis.
Both two-stage pipelines116–118 and sequential graph-edit formu-
lations41,119 are common. The two-stage formulations used for
reaction prediction are similar to those for retrosynthesis, and ac-
tually predate them by multiple years. The major difference with
retrosynthesis is that here the reaction centers are often atom
pairs spanning multiple reactant molecules, rather than from a
single target product. The sequential graph-edit formulation pro-
posed in MEGAN41, as we have discussed in the retrosynthesis
section, works well for reaction outcome prediction too – by re-
versing the graph-edit sequence. An alternative to the sequen-
tial edit formulation is to consider it as a sequence of electron

flow as in ELECTRO120 or a global redistribution of electrons as
in NERF121, where each step essentially predicts simultaneous
graph edits (e.g., bond breaking and bond forming), adding some
chemical intuition to the models. Last but not least, The use of
QM-augmented graph neural networks may serve as one form
of chemical intuition, as the combination of structure-based and
descriptor-based representations have achieved promising results
on out-of-sample predictions in similar contexts122,123.

Adapting translation-based approaches for use in reaction pre-
diction, on the other hand, is rather straightforward; it is still a
SMILES-to-SMILES translation, except that now the inputs and
the outputs are swapped. Indeed, the development of these ap-
proaches has almost followed the exact same trend as their coun-
terpart for retrosynthesis, evolving from RNN-based sequence
model52,124 into Transformer-based Molecular Transformer114,
and then to the use of graph-aware encoders including GRAT125

and Graph2SMILES24. Some of the model architectures and tech-
niques discussed in the retrosynthesis section have also been ap-
plied directly to forward direction21,55,63,115, confirming the ef-
fectiveness of techniques such as pretraining63 for forward pre-
diction too.

Selectivity Prediction for Specific Reaction Types

Next to models targeting general (organic) reactivity, a variety
of tools have been developed to target subtle reactivity questions
for specific reaction classes. A major limitation that needs to be
addressed when building a model for specific reactivity types is
the relative scarcity of relevant training data. Several strategies
have been explored to circumvent this issue. Pesciullesi et al. 126

used transfer learning to build a data efficient Transformer-based
model capable of predicting regio- and stereoselective reactions
on carbohydrates. Litsa et al. 127 applied a similar approach to
metabolic fate predictions, i.e., prediction of drug metabolites.
Zhang et al. 128 in their turn combined transfer learning and data
augmentation to train a transformer model on only a couple thou-
sand of Baeyer-Villiger reactions. Tomberg et al. 129 and Beker
et al. 130 made use of computed/physically-meaningful descrip-
tors to improve the data efficiency/generalizability of their mod-
els, aimed at prediction of the regioselectivity of electrophilic aro-
matic substitution and Diels-Alder reactions, respectively. Finally,
Struble et al. 131 addressed the issue of limited data availability
in their study of site selectivity in aromatic C-H functionaliza-
tion reactions by designing their convolutional neural network
as a multitask model, simultaneously learning across 123 types
of functionalization with the goal of learning common patterns in
the data between individual tasks.

Reaction Classification and Mapping

Reaction classification and atom mapping are potential prereq-
uisites for downstream use in machine learning, information re-
trieval when searching for similar reactions, the annotation of
predictions, or the creation of labeled datasets for model train-
ing. In particular, atom mapped reactions are essential for many
models for retrosynthesis and reaction prediction. They are re-
quired by template-based methods for template extraction, and
by graph-based models to identify which subset of atoms are in-
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volved in the reaction, and which bonds are formed or lost. For
these models, atom mapping is a crucial component of the data
processing pipeline. Classification serves a less essential role in
most workflows as its use is primarily in the analysis of histor-
ical trends in reaction popularity132, the organization (cluster-
ing) and presentation of model predictions to users, or perhaps
in evaluation to examine performance as a function of reaction
type. Reaction classification also allows for type-conditioned pre-
diction such as aforementioned selectivity prediction, as well as
type-specific condition recommendation as will be discussed in
the Reaction Development section.

The predominant strategies for both involve the use of expert
rules and heuristics. NameRxn exemplifies the expert strategy
and is a widely used tool for reaction classification, naming, and
atom mapping simultaneously133. Each of several thousand re-
action types is essentially defined by a reaction template (similar
to those used for retrosynthesis, described above, even if not rep-
resented identically) in a 3-tier hierarchy; if a reaction template
is able to recover the product when applied to the reactants and
reagents, then the reaction type is assigned from the metadata of
the template and the atom mapping is obtained from the newly
generated product. NameRxn assignments are routinely used as
ground truth labels for data-driven models, as discussed below.

Traditionally, atom mapping assignments have been obtained
not through expert template application but through heuristic
methods that pose the mapping process as an optimization134.
Many methods first find the minimum common substructure
(MCS) between reactants and products, then identify the map
that minimizes a graph edit distance135 subject to constraints
about not changing atom types, penalties for breaking bonds that
are not labile, et cetera136. However, MCS alone may be insuf-
ficient for realistic reaction data that can require inferring stoi-
chometric ratios and missing reactant/reagent species. Jaworski
et al. 137 report a procedure to complement MCS with carefully-
chosen expert rules, using a small collection of human-annotated
reactions to demonstrate the comprehensiveness of their rule set.
Comparison to some ground truth data is important given the
lack of consensus across methods138, despite the fact that there
might be legitimate ambiguity in the “true” atom mapping due
to mechanistic complexity. While there are relatively few data-
driven approaches to atom mapping, a recent strategy of note is
the extraction of attention weights in the Transformer model for
reaction prediction, a subset of which do seem to learn the prin-
ciples of atom mapping139. This is a logical yet clever use of the
need for Transformers to “remember” which atoms in the reac-
tants have or have not been generated or copied to the products.

In contrast, there are many data-driven approaches to reac-
tion classification given its direct connection to representation
learning and the ease of formulating it as a supervised learning
task: reaction → category. One benefit of ML-based classifica-
tion/mapping algorithms is that they are more tolerant to “novel”
chemistries; anecdotally, a large fraction of ELN reactions cannot
be classified using rigid ontologies defined by reaction SMARTS.
Assigning integer codes or identifiers to reactions has a long his-
tory in information retrieval (i.e., by identifying reactions that
undergo a similar structural transformation). But here, at some

level, the goal is to contextualize a reaction in terms of human
interpretable categories so there must be a manual component
of defining these categories and labels. Schneider et al. 19 use
NameRxn assignments as the ground truth to train a classifier us-
ing a reaction fingerprint representation. This concept was later
applied to a different reaction ontology, SHERC, still using re-
action vectors from fingerprints of constituent components140.
Other representations of query reactions suffice, such as a con-
tinuous embedding learned from language models operating on
SMILES strings that can be combined with a simple nearest neigh-
bor model141. Extensions of single-step classification include
clustering of full synthetic routes as discussed above as a post-
processing step in retrosynthetic planning.

Reaction Development Goals

Reaction development has more to do with applying predictive
models to accelerate the identification of a new and/or improved
synthetic process (Figure 4). It refines the general suggestion of
what kind of transformation to use into a more actionable rec-
ommendation: What specific reaction conditions should be used?
Does this type of reaction actually work for the substrate of in-
terest? And if it does not seem to, what new catalyst or ligand
combination might work? These questions do all affect the “de-
ployment” of synthetic strategies, but require a greater level of
precision and understanding of chemical nuance than most ret-
rosynthetic and reaction prediction tools offer. For this reason,
machine learning models may not be able to make a correct or
complete prediction based on their training data and may instead
be applied in an iterative workflow including experimental test-
ing.

Reaction Condition Recommendation and Optimization

Relative to retrosynthetic planning, there has been little work
done for the a priori prediction of reaction conditions. What has
been done varies in terms of the level at which recommendations
are made, e.g., qualitative vs quantitative, reaction family-level vs
substrate specific. It is easiest to envision an expert system mak-
ing qualitative recommendations at the level of reaction families,
as it is only necessary to recommend an example of “typical condi-
tions” for that family. What is more useful in terms of actionabil-
ity, however, is a substrate-specific recommendation that under-
stands how the conditions should be tailored to the actual reac-
tants to be used. A handful of data-driven models have been built
for specific reaction types using previously acquired data from the
literature or electronic lab notebooks, including solvent/catalyst
classes for Michael additions142 and ligands for Pd-catalyzed C-N
coupling143. Once again, the quality of the training data is es-
sential to build truly effective models. Beker et al. 144 recently
argued that in some cases, the level of noise and bias in literature
data can impede the design of models that outperform literature
popularity trends.

Global models, in contrast to these local (reaction family spe-
cific) models, are intended to predict suitable reaction conditions
for “any” organic reaction of interest. Maser et al. demonstrated
that a single model architecture based on a relational graph con-
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Fig. 4 Overview of key reaction development tasks. Condition recommendation and optimization models can be built based on existing literature and
electronic lab notebook data. Substrate scope assessment models have so far mainly been designed based on high-throughput experimentation results,
where combinations of two or more reactant types are tested exhaustively. Catalyst/ligand design has been approached either through exhaustive
screening campaigns, where ligand combinations are exhaustively enumerated from a library, or through generative modelling in recent years.

volutional neural network could recover literature-reported con-
ditions for Suzuki couplings, C-N couplings, Negishi couplings,
and the Paal-Knorr reaction with an accuracy far exceeding a
baseline approach that merely predicts the most popular condi-
tions145. This demonstration used data compiled from Reaxys
that was further curated with more detailed reaction role assign-
ments, e.g., distinguishing categories such as metal, ligand, base,
solvent, and additive. Just a few years prior, Gao et al. 146 re-
ported a broader model similarly based on the Reaxys dataset
that, without filtering by reaction type, also showed a predic-
tive accuracy significantly above the same popularity baseline. In
principle, the domain of applicability of the model covers any hy-
pothetical organic reaction that resembles a reaction type present
in Reaxys.

One caveat is that all of these models discussed so far do not
fully specify the reaction conditions; they omit details of concen-
trations, orders of addition, vessel setup, etc. and only specify
the identity of the chemical species to use, primarily because this
information is absent from their training data. There are at least
two strategies to circumvent this limitation. The first is to curate
or generate datasets where quantitative details are present, either
for global models using richer data standards like the Open Reac-
tion Database147 or for local models using focused experimenta-
tion where most aspects of the conditions are held constant148.
The second is to treat model predictions as initial guesses for sub-
sequent optimization campaigns.

Empirical reaction condition optimization driven by algorith-
mic experimental design has existed for at least four decades149.
Briefly, model-based or model-free optimization techniques are
used to propose reaction conditions in an iterative manner. One
or more reactions are performed, the results are analyzed, and
an algorithm proposes a new set of conditions to try next. While
the problem formulation has not changed in years, recent trends
include new treatments of discrete variables and a shift from sta-
tistical optimization methods, e.g., using response surface mod-
els150, to Bayesian Optimization (BO)151,152, with ML surrogate
models153 or even deep reinforcement learning154. Optimizing
reaction yield with respect to continuous parameters like concen-
tration, temperature, and time is the simplest setting as any num-
ber of continuous optimization algorithms (e.g., BO, SNOBFIT)

can facilitate experimental design; fortunately, this is perfectly
complementary to the categorical reaction condition predictions
that current data-driven models are able to make.

Substrate Scope Assessment

A quintessential part of a synthetic methodology paper is the sub-
strate scope table, which demonstrates the breadth of reactants
with which the transformation is known to be compatible. This
information is useful to chemists to understand when the trans-
formation might be applicable to new substrates; it is similarly
useful for computational algorithms, e.g., retrosynthetic planners,
to understand whether a proposed reaction step is likely to be suc-
cessful. High-throughput experimentation can provide us with
rich information about if (or quantitatively, how well) a reaction
works for a given substrate. The role of machine learning in this
setting can be to generalize to new substrates to predict their be-
havior a priori. The question of substrate scope is intimately re-
lated to reaction prediction, but in practice tries to be more quan-
titative in its prediction of yield/performance rather than merely
providing a binary measure.

The retrospective analysis of HTE data and the use of non-
random splits can probe a model’s ability to generalize to new
substrates. For example, Ahneman et al. 155 ’s prediction of yields
for C-N coupling reactions included an evaluation of generaliza-
tion to unseen isoxazole additives. Unlike in a random split,
the choice of molecular representation may have a large effect
on performance. Simple one-hot representations of chemical
species156,157 are inherently unable to generalize to new com-
pounds. For this reason, testing “extrapolative” splits has become
popular in these yield prediction tasks to gauge the value of dif-
ferent molecular or reaction representations158,159. An impor-
tant caveat of these studies is that data from HTE is qualitatively
different from data that is typically published. In particular, a
single paper might include only a dozen substrates; combining
datasets from multiple papers describing the same reaction type
will lead to confounding variables like the precise choice of con-
ditions. That is, it can no longer be assumed that every aspect of
the reaction is held constant besides the single substrate. When
these confounding variables are present in a dataset, performance
is unsurprisingly much worse160. It is not fair to say that one set-
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ting is more or less realistic than the other, but the reality is that
the majority of methods being developed for predicting reaction
performance are validated on HTE data and cannot make use of
the enormous diversity of reactions available throughout the lit-
erature.

There is an additional use case for machine learning in sub-
strate scope assessment that is prospective in nature. Rather
than taking acquired data and trying to generalize to new sub-
strates, surrogate models could be used to inform the selec-
tion of the most informative substrates to test: given a small
number of known substrates and their yields, which new sub-
strates/conditions should be tested in order to build the most ac-
curate model? This is precisely an active learning formulation161.
Eyke et al. 162 examined this question using existing HTE data by
masking labeled data and allowing a model to choose which data
points to unmask, demonstrating a significant improvement over
random data acquisition (later simplified as a classification task
by Viet Johansson et al. 163); admittedly, more than just substrate
identity are varied in these data. Kariofillis et al. 164 describe a
non-iterative approach tailored to substrate scope design wherein
data science was used to inform the selection of reactants to test
(Figure 5). Starting from an initial pool of over 730,000 aryl bro-
mides reported in Reaxys, those predicted to be compatible with
Ni/photoredox catalysis were kept, featurized using 168 DFT de-
scriptors, and clustered into 15 groupings from which the 15 cen-
troids were selected for testing. Selecting these 15 molecules to
be maximally diverse and representative of the overall chemical
space of aryl bromides led to a wide distribution in performance,
likely more varied than if 15 substrates had been hand-selected
based on what an expert chemist assumed would succeed. We
expect that a diversity-promoting method of selecting an initial
screening set, followed by active learning where experiments are
selected for maximal information gain, will gain traction as a sys-
tematic (and arguably less biased) approach to explore chemical
reactivity.

Catalyst/Ligand Design

Various excellent reviews have been written on the topic of
computational design and optimization of (novel) catalysts and
ligands in recent years165–169. Hence, a detailed/exhaustive
overview of this field will not be provided here. Instead, we
will focus our discussion below on a selection of recent stud-
ies in which ML surrogate models (of varying complexity) have
been used to predict and/or optimize the performance of novel
catalysts. The supervised learning problem that is relevant for
model-guided catalyst design resembles the ubiquitous quantita-
tive structure-property relationship (QSPR) formulation where a
molecular structure is mapped to a scalar property, and therefore
benefits from extensive work in this area.

The least complex types of surrogate models are those based
on multivariate regression and expert-curated descriptors. These
models not only enable fast screening of extensive design spaces
of potential catalysts, but can also facilitate insights in the under-
lying mechanism, through consideration of the respective correla-
tion coefficients between individual descriptors and the selected

target quantity. The best examples of this approach can be found
among others in the work by Sigman and co-workers170,171.
Once a model is trained, hypothetical catalysts can be evaluated
to downselect ones worthy of experimental validation.

Whenever non-linearity enters the picture, more advanced sur-
rogate models are needed, and this inevitably comes at the ex-
pense of the aforementioned interpretability. For example, Den-
mark and co-workers used support-vector machines to anticipate
the selectivity of chiral phosphoric acid-based catalysts and in-
form catalyst selection172,173. Corminboeuf and co-workers have
applied kernel ridge regression models to screen for suitable tran-
sition metal complexes for homogeneous catalysis, e.g., for C-C
cross-coupling174 and aryl ether cleavage reactions175. Since
computation of full reaction profiles for such multi-step reac-
tions can be prohibitively expensive, a heuristic probe can help
assess the suitability of screened complexes. Specifically, sur-
rogate models predict the relative position of specific catalyst
along a so-called "molecular volcano plot": catalysts located close
to the plateau of the volcano can be expected to exhibit ideal
substrate-catalyst binding characteristics, and thus optimal ther-
modynamic/kinetic profiles176. In its simplest form, ML surro-
gates can therefore help prioritize which calculations to run by
recapitulating the results of first-principles simulations, as has
also been extensively demonstrated and reviewed by Kulik and
coworkers177.

Beyond surrogate models that enable the exhaustive screening
of hypothetical catalyst/ligand structures, generative ML models
have also been developed to propose new structures. Genera-
tive design itself is a decades-old technique178, but deep genera-
tive design employing modern ML techniques has led to renewed
interest. In one of the earliest examples of applying deep gen-
erative models to molecular design, Gómez-Bombarelli et al. 179

proposed a variational autoencoder architecture in which dis-
crete molecule representations are converted to and from multi-
dimensional continuous representations. Within the latent vector
space, gradient-based optimization can be performed, enabling a
directed search for optimal functional compounds, without the
need to evaluate/determine properties for the entire chemical
design space (which, as the dimensions of the space grow can
quickly become extremely time- and resource intensive). Genera-
tive molecular design has rapidly matured and now encompasses
dozens of methods. An overview of more recent work on this
topic can be found in the review by Elton et al. 180 .

The utility of generative models for the design of novel cata-
lysts has not necessarily been established, however. When candi-
date catalysts or ligands belong to combinatorial design spaces,
genetic algorithms (GAs) provide an effective way to identify
the most promising ones181. Chu et al. 182 , and more recently
Laplaza et al. 183 , have described the application of GAs to homo-
geneous catalyst optimization using computational models to as-
sess performance. The use of GAs is in contrast to deep generative
models that generate new structures atom-by-atom, fragment-by-
fragment, SMILES token-by-token, etc., which are arguably capa-
ble of making more “creative” ideas and exploring an even larger
design space. The excitement around generative models (particu-
larly in drug discovery applications, though the techniques trans-
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Fig. 5 Systematic design of a substrate scope promoting diversity in descriptor space. Reproduced with permission from Kariofillis et al. 164 . Copyright
2022 American Chemical Society.

late well to catalyst and ligand design) should not overshadow
the reality that generation or sampling is rarely the bottleneck
in molecular discovery. We posit that the true bottleneck is eval-
uation, i.e., having a good computational oracle function or an
efficient experimental pipeline that lets one test the performance
of new designs. Evaluation is commonly approximated by sur-
rogate ML models as described above, but one cannot avoid the
need for a well-defined evaluation protocol that ideally correlates
with experimental performance.

To end this section, we want to highlight the importance of ex-
tensive datasets to accelerate these optimization tasks. In order
to set up data-driven workflows to screen vast areas of chem-
ical space for novel catalysts, vast libraries are needed to ef-
fectively exploit statistically derived structure-property relation-
ships. Open-sourcing relevant datasets can facilitate – and de-
mocratize – the design and application of these workflows. Some
catalyst/ligand datasets have been published in recent years such
as Kraken184, OSCAR185, and the Open Catalyst Dataset186, and
we expect many more to be released in the near future.

Reaction Discovery Goals
Up to this point, the focus of this review has been on ML ap-
plications involving known chemistry, i.e., interpolation based on

existing data, which inherently implies that the prediction is con-
strained by precedents. It should be underscored however that
machine learning approaches can also be employed to acceler-
ate actual discovery of new chemistry. Under the term ’discov-
ery’, we understand here the creation of truly new knowledge,
the invention of novel synthetic methods and/or the making of
extrapolative leaps which transcend the current body of chem-
ical knowledge5. Before the advent of machine learning al-
gorithms, such discoveries usually resulted from serendipity187,
or they were the result of (algorithm-based) exhaustive screen-
ing campaigns188. Various aspects of algorithm/automation-
accelerated chemical discovery have been reviewed as part of
Gromski et al. 189 ’s recent perspective. Here, we will limit our-
selves to two challenging (sub)domains of chemical discovery
which hold a lot of promise, yet have only received limited at-
tention so far: ML-facilitated elucidation of unknown reaction
mechanisms and novel method/reaction development (Figure 6).

Elucidation of unknown mechanisms

Most machine learning algorithms applied to chemical reactivity
are mechanism agnostic, i.e., they provide predicted outcomes
given a set of inputs, but provide no information about how the
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Fig. 6 Overview of key reaction discovery tasks. Mechanism elucidation involves the explicit mapping of elementary reaction steps, and intermediates
formed along the way, to achieve atomistic understanding of the chemical process under study. New method development involves the proposal of
unprecedented reactivity by machine learning models that transcends trivial modifications of known templates.

chemical transformation actually transpires. The typical explana-
tion of a reaction mechanism takes the form of an arrow pushing
diagram and/or catalytic cycle. Nevertheless, it is sometimes pos-
sible to obtain mechanistic clues from a machine learning analysis
indirectly. For example, in their study of Pd-catalyzed C-N cross-
coupling reactions, Ahneman et al. 155 identified a novel cata-
lyst inhibition mechanism based on mechanistic clues obtained
from a descriptor importance analysis within their constructed
random forest models. In a similar vein, Sigman and co-workers
have demonstrated on multiple occasions that mechanistic insight
can be derived from descriptor based multivariate linear mod-
els190,191. In certain cases, complex reactivity cliffs (analogous
to activity cliffs in QSAR/QSPR) can be explained by simple uni-
variate relationships, as in the case of a percent buried volume
parameter for phosphine ligands192. The distillation of predic-
tive models into interpretable decision trees, even if the model
itself is not inherently interpretable, can also provide insight as
done by Raccuglia et al. 193 , who derived a decision tree based on
a support vector model (SVM) trained to predict the crystal for-
mation of templated vanadium selenites. The resulting human-
interpretable ’model of a model’ was used to extract chemical hy-
potheses to guide future experimentation.

While these examples demonstrate that machine learning
and the acquisition of mechanistic insights are not necessar-
ily mutually exclusive, they can hardly be considered foolproof
transferable strategies that can readily be deployed to any do-
main/application. After all, this type of approach implicitly re-
quires the model featurization to have a direct connection to the
’discovered’ mechanism, i.e., there has to be a direct, human-
interpretable connection between molecules’ features and the
phenomenon of interest. In the absence of prior knowledge (fol-
lowed by careful feature engineering), this is not necessarily guar-
anteed and hence the success of these approaches at generating
mechanistic understanding in part rests on serendipity (though
the odds of success can be increased by casting a wide/diverse
net of input descriptors/features of the model).

A more systematic approach toward the elucidation of unknown
mechanisms may be an enumeration – followed by an evaluation
– of all the different reaction pathways which might hypotheti-
cally connect reactants to products. Such a collection of many
competing reaction pathways is generally denoted as a reaction
network. Over the past decade, a wide range of computational

codes have been developed for the analysis of such networks194.
One promising exploration strategy consists of reactive molecu-
lar dynamics (MD) simulations to sample accessible configura-
tions according to a pre-defined thermodynamic ensemble, cf. the
’ab initio nanoreactor’ developed by Martinez and co-workers195.
Limiting the appeal of this approach somewhat is the exuberant
computational cost of this type of simulation – particularly when
complex mechanisms involving many different compounds are
analyzed – and the need for enhanced sampling techniques. It
should be noted however that a lot of progress has recently been
made on speeding up/reducing the computational demand of ab
initio MD simulations with the help of machine learning, e.g.,
through the development of neural network potentials196–198 and
delta-learning approaches,199 though the extent of generalization
of these techniques is not always clear, and extensive validation
will be needed before these techniques can be applied in a true
exploration mode.

Other exploration approaches employ static quantum chemi-
cal calculations to estimate transition state structures and barrier
heights associated with elementary reaction steps. For example,
Maeda et al. 200,201 explored Born-Oppenheimer PESs based on
local curvature information, starting from an initial configura-
tion. Graph-based rules originating from the concepts of bond
order and valence have also been applied to identify such ele-
mentary reaction steps, cf. the work by Zimmerman on organic
and organometallic reactions (Figure 7)202, the reaction mecha-
nism generator (RMG) code developed by Gao et al. 203 for gas-
phase (combustion) processes, and additional work on prebiotic
reactions204 as well as by others205,206. Finally, the CHEMOTON
project by Reiher and co-workers represents a general, system-
independent exploration approach based on heuristic rules de-
rived directly from (static) electronic structure to explore complex
reaction networks in an efficient and unbiased way207–209.

An inevitable issue that needs to be confronted during (com-
plex) mechanism exploration is the combinatorial explosion of
reaction possibilities: since the true mechanism of the reaction
is unknown, pathways involving each and every combination of
reactants/intermediates/products need to be probed in principle.
As the number of identified stable compounds increases through-
out the analysis, the systematic enumeration effort quickly be-
comes intractable. Machine learning offers a strategy to quell
this combinatorial explosion by discriminating between combina-
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Fig. 7 Computed mechanisms for the previously unknown chain-transfer to monomer pathway, competing with the regular chain-growth catalytic
cycle, identified through reaction discovery computations. Reproduced with permission from Smith et al. 210 . Copyright 2016 American Chemical
Society.

tions/pathways with respectively a high and low propensity to
transpire. Provided enough training data, graph neural networks
can both predict activation energies with almost chemical accu-
racy211 as well as propose viable transition state geometries212,
while Gaussian Process based surrogate models have been used
to elucidate heterogeneous catalysis mechanisms on the fly213.

Recently, several groups have started to employ reinforcement
learning techniques to discover mechanisms in an automated and
efficient manner214,215. Instead of exhaustively screening all po-
tential elementary reaction steps with a trained surrogate model,
reinforcement learning involves an agent which is tasked with
finding the most efficient pathway connecting reactants and prod-
ucts. Such pathways are constructed through the selection of
sequences of actions, i.e., elementary reaction steps, eliciting a
varying ’reward’ by the environment215. By optimizing the re-
ceived reward, the agent learns to select the most plausible reac-
tion pathways on-the-fly. Reinforcement learning holds particular
promise within the context of reaction network exploration since
it bypasses the need to explicitly enumerate and evaluate all the
combinations of elementary reaction steps and hence, it could be
considered as the ultimate epitome of efficiency when it comes to
reaction network exploration algorithms if sufficiently accurate.
Its use does not mitigate the need to evaluate elementary reac-
tion steps through first-principles or semi-empirical calculations.

Unfortunately, it is not realistic to avoid these calculations
by directly training mechanistic predictors on experimental data
(starting materials and final products), though the previously
mentioned ELECTRO model—an autoregressive model that pre-
dicts reaction products by predicting linear electron paths—
generates a “pseudo-mechanism” of sorts120. Guided by elec-
tronegativity heuristics, ELECTRO generates arrow pushing di-
agrams that may describe certain polar reactions. The model

is however incapable of understanding the role of catalysts or
reagents which we may know to be essential for reactivity with-
out additional supervision. Making use of expert annotations, cf.
Baldi’s ReactionPredictor216,217, may be promising in this regard.

New Method Development

In principle, conventional retrosynthetic and reaction prediction
models are able to propose transformations that could be con-
sidered novel. In the simplest case, template-free retrosynthetic
models can propose reactions that match a template not present
in the training set58. In practice however, the degree of extrap-
olation tends to be limited. “New” reactions proposed by reac-
tion prediction models may involve trivial modifications of known
templates with only slightly altered substrates. For example, Bort
et al.’s work on GANs for the generation of Suzuki coupling re-
actions relies on filters to sift through many uninteresting reac-
tions and flag those that exhibit novel reaction centers or unseen
templates218. Unambiguously novel mechanisms are exceedingly
rare, and when they are in fact proposed by the model, the con-
fidence by which these predictions are made is unclear. We have
previously argued that the rate of false positives (mispredicted
discoveries) is an important factor when trying to attribute a dis-
covery to an algorithm or autonomous platform5; reaction dis-
covery is no different.

The lack of novelty exhibited by reaction prediction mod-
els developed so far is reasonable, as none of them were ex-
plicitly designed to generate novel reactions, though some first
steps in this direction have been taken. For example, Segler
and Waller 219 model chemical reaction space as a graph, where
molecules are represented by nodes and reactions by edges, and
apply techniques from network analysis to predict new plausible
links within the graph. Through more detailed analysis of the net-

Journal Name, [year], [vol.],1–19 | 13



work edges that connect similar molecules, they were even able to
suggest promising starting points for a high-throughput reaction
discovery campaign. It should be noted here that the definition of
a novel reaction as an unprecedented combination of known half
reactions may not be agreeable to all chemists.

Very recently, Su et al. 220 considered the accuracy of the Trans-
former model architecture on “zero-shot” reaction predictions.
The goal of zero-shot learning consists of extracting accurate pre-
dictions for an unseen class of data points from a trained model,
solely based on auxiliary information learned during training.
With their experiments, Su et al. aimed to simulate the creative
process behind the invention of the Chan-Lam coupling, which
was inspired by the related Suzuki and Barton reaction classes.
As such, the authors set up three different Transformer mod-
els: one trained on the USPTO dataset without any Chan-Lam,
Suzuki and Barton reactions, another one in which only the Chan-
Lam reactions were removed from the USPTO dataset, and finally
the USPTO dataset without Chan-Lam reactions but augmented
with a set of additional Suzuki and Barton reactions. As one
would expect, the first model performed poorly when evaluated
on Chan-Lam reactions, reaching a top-1 accuracy below 5%, and
the second model performed only moderately better (top-1 ac-
curacy of almost 25%). With the fine-tuning of the additional
Suzuki and Barton reactions however, the accuracy of the model
shot up remarkably (top-1 accuracy > 55%), indicating that the
Transformer can indeed be made to extrapolate well from Suzuki
and Barton reactions to the distinct, yet related Chan-Lam ones.

Despite this proof of concept that extrapolation to related re-
action classes is possible in principle, it is unclear whether this
approach can be applied in a more general/active manner due to
the need to augment the training data with specific examples to
reach a reasonable accuracy. Little is understood about how these
models are generalizing, so little is known about what degree of
extrapolation is reasonable to expect or what the rates of false
positives or false negatives might be. There is still the issue, to
reiterate, of how to generate hypotheses of new interesting reac-
tions in the first place even if one has access to a “virtual flask”
to anticipate the outcome; brute-force screening of reactant and
condition combinations would at least be a baseline approach.

Outlook
Many useful demonstrations of machine learning in predictive
chemistry have emerged in recent years. Some tasks are well
explored with many compelling solutions, such as retrosynthetic
analysis, while others warrant new approaches and method devel-
opment, such as mechanism elucidation. Throughout this review,
we have focused on the progression of tasks from deployment,
to development, to discovery, reflecting a scale of extrapolation
ranging from "known" up to entirely "new" reactivity.

Despite their well-publicized successes, most machine learning
tools are still not deployed routinely. Given the current level of in-
terest in these techniques however, one can expect that they will
become increasingly common and ubiquitous in modern chem-
ical laboratories in the near future, especially as their perfor-
mance is bound to continue improving as more relevant datasets
and advanced algorithms become available. Already, retrosyn-

thetic software is seeing increased adoption in industry whether
using expert-defined transformations or data-driven programs as
we have highlighted in this manuscript. In time, the mere idea of
manually selecting reaction conditions for a Buchwald-Hartwig
coupling or an amide bond formation reaction could very well
be considered old-fashioned. A model that has learned substrate-
optimal conditions from the collective work of thousands of ex-
perimentalists will be better equipped to choose a ligand than
most synthetic chemists.

That being said, we should always keep in mind that the power
of many neural models ultimately comes from their ability as uni-
versal function approximators, and is highly dependent on the
data they are trained on. A few recent studies have argued that
a model may show overly optimistic performance if train and
test sets are not split by scaffold221 or by source document24,
and that its predictive power may be limited by a lack of neg-
ative data points in literature3. The black-box nature of many
models renders interpretability challenging, and our confidence
in neural models mainly relies on empirical verification (e.g., by
cross validation) with little theoretical guarantee. The ability to
truly extrapolate is still the frontier. Few (if any) machine learn-
ing models have actually helped us to discover new insights and
methods. Current models aren’t designed to propose new, action-
able information. A new generation of machine learning mod-
els should aim to operate at a more fundamental level, taking
mechanistic considerations into account and/or being grounded
in physics, so that more meaningful extrapolation may become
possible. These models would complement descriptor importance
strategies, where the bulk of the activity in machine learning as-
sisted mechanism elucidation has been situated so far. We would
like these models to yield new insights without being steered by
human experts and eventually be capable of open-ended hypoth-
esis generation and discovery. To work toward this goal, our
own ongoing work in predictive chemistry is characterized by two
transitions: from qualitative to quantitative, and from retrospec-
tive to prospective.

We would like to end this review by calling upon synthetic
chemists and physical organic chemists to enter this burgeoning
field of predictive chemistry. By defining new relevant tasks, as
well as identifying failure modes of existing techniques, we can
all help push predictive chemistry beyond the frontiers outlined
above.
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