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a r t i c l e i n f o 
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Perennial ryegrass staggers 

a b s t r a c t 

Perennial ryegrass staggers (staggers) is a neurotoxic condition in livestock that is caused by consumption of 

ryegrass ( Lolium perenne ) infected with specific strains of Epichloë fungal endophytes. These grass-endophyte 

associations produce toxins that can adversely affect animals and can in some cases lead to death. In sheep, 

symptoms typically include head shaking, changes in gait, stiffness and falling. Affected sheep can recover after 

removing them from pastures containing toxic strains of endophyte. A pilot case study was conducted in Lincoln, 

New Zealand to determine if ryegrass staggers could be identified with data collected through GPS tracking 

and accelerometers. Fourteen sheep per treatment grazed in either a toxic endophyte-infected ryegrass paddock 

or an endophyte-free control paddock for 17 days in late March and early April 2017. Randomly selected sheep 

were fitted with collars containing a 3-axis accelerometer recording movements at 12 Hz (10 collars in endophyte 

infected paddock and 6 in the control paddock). Three sheep per treatment were also tracked at 3-minute intervals 

with GPS receivers. Sheep were scored by an experienced observer for symptoms of staggers weekly and at the 

end of the study using a 0 to 5 scale. Control sheep did not display any symptoms of staggers and 10 sheep in the 

infected pasture displayed little or no symptoms (0 or 1 score). The other 4 sheep in infected pasture had scores 

from 2 to 4 at the end of the study. Sheep grazing in the infected pasture (2.91 m/min ± 0.04 SE) moved slower 
(P = 0.04) than sheep in the control pasture (3.12 m/min ± 0.05 SE). Distance travelled varied among days, but 
there did not appear to be any temporal trends. Machine learning analyses of accelerometer data showed that 

the behavior of affected sheep changed during the study. Activity of sheep displaying symptoms (scores ≥ 2) 

increased more in the morning and midday during the latter part of the study than control sheep and sheep with 

few or no symptoms (score < 2). However, behavior of individual sheep at night remained relatively consistent 

during the study. Accelerometers may be useful for remotely detecting perennial ryegrass staggers. 
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. Introduction 

Sheep raised on perennial ryegrass ( Lolium perenne L) pastures can

uffer from perennial ryegrass staggers [10] . It is a neurotoxic condition

hat afflicts several species of grazing livestock that is the result of toxins

roduced when specific strains of an asexual, mutualistic Epichloë fungal

ndophyte infect the host ryegrass. When animals consume forage with

hese toxins and become ill, symptoms develop gradually over time. In

ost cases, animals recover when moved to pastures with no endophyte

r to pastures infected with selected, non-toxic endophytes. 

It is crucial to monitor sheep, and other livestock, grazing endo-

hyte infected pastures to ensure animal welfare. In addition, on-animal
∗ Corresponding author. Derek W. Bailey, Animal and Range Sciences, New Mexico
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ensing may be useful for understanding the complex interactions of

razing and prescribed fire on toxin levels and livestock responses in

angelands invaded by or dominated by endophyte infected forages

29–31] such as tall fescue (Schedonorus arundinaceus [Schreb.] Dumort.

om. cons.). Visual monitoring or periodic testing for staggers is time

onsuming and labor intensive, especially when sheep are kept in large

roups or in extensively farmed pastures. On-animal sensors have po-

ential to remotely monitor and identify changes in animal behavior

2] . The behaviors expressed by the animal can be utilized to detect

hen livestock are becoming ill. In this paper, we explore this con-

ept via sensors applied to sheep grazing endophyte infected perennial

yegrass. 
 State University, PO Box 30003 MSC 3-I, Las Cruces, NM 88003, USA. 
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B  

e  
Remote monitoring of livestock well-being using GPS tracking and

ccelerometers have been evaluated in different environments and ap-

lications. Lambing can be identified using GPS tracking [ 12 , 15 ] and ac-

elerometers [16] . Machine learning (ML) can be used to classify sheep

ehavior from accelerometer data [16] . Accelerometers can be used to

etect diseases such as bovine ephemeral fever in cattle [34] . Recent

evelopments have promised to provide GPS tracking and accelerom-

ter data in real time or near real time such as the internet of things,

oRaWAN [ 32 , 35 ] and satellite technologies. Real time monitoring of

ivestock may allow farmers and ranchers to respond more rapidly when

nimals become ill. 

The objective of this paper is to provide a “proof of concept study ” to

valuate the potential of detecting perennial ryegrass staggers through

emote monitoring of sheep with GPS tracking and accelerometers. We

pply classification ML algorithms to accelerometer data from moni-

ored sheep. The study hypothesizes that accelerometer and GPS track-

ng data will be able to identify the changes of behavior that occur when

heep are affected by perennial ryegrass staggers. 

. Material and methods 

.1. Study site 

The study was conducted at AgResearch Lincoln, New Zealand from

3 March to 10 April 2017. It used two experimental paddocks each

.1625 ha which had been sown as pure stands of ‘GA66’ diploid peren-

ial ryegrass in October 2016. One paddock contained endophyte in-

ected perennial ryegrass, with the endophyte being a ‘standard’ (also

eferred to as wild-type or common toxic) strain of Epichloë festucae var.

olii . The standard strain is known to cause ryegrass staggers in sheep

nd other livestock [10] . The other paddock was a control, with ‘GA66’

erennial ryegrass that did not contain endophyte. 

.2. Animals 

The protocol for this study was approved by the AgResearch Inver-

ay Animal Ethics Committee (Dunedin, NZ; application # 14103). 

A total of 28 crossbred female sheep that were 18 months old, were

andomly assigned to the two paddocks (14 sheep per paddock). The

ean live weight of the sheep was 56.3 kg ± 0.6 SE at the beginning of

he study. 

All 14 sheep in the endophyte infected paddock and eight of the 14

heep in the control paddock were fitted with Gulf Coast X-16-4 Ac-

elerometers (Gulf Coast Data Concepts, LLC, Waveland, MS USA). Ac-

elerometers were fitted on collars around the neck of the sheep and

ecorded movements of the x, y and z axes. Movement of the head fore

nd aft was associated with the x axis. Left and right head movements

ere associated with the y axis and up and down movements were asso-

iated with the z axis.. Movement data were recorded at a rate of 12 Hz

nd were stored on the accelerometer until retrieval at the end of the

tudy. Three sheep in each paddock were tracked with igotU 600 GPS

eceivers (MobileAction, New Taipei City, Taiwan) on collars. Positions

ere recorded at 3-minute intervals. One GPS receiver in the control

addock did not record any positions for the entire study period most

ikely due to battery failure. In this experiment, positions recorded out-

ide the paddocks were deleted from the data set. ArcMap geographical

nformation software (ESRI ArcGIS Suite, Redlands, California USA) was

sed to identify positions recorded outside of the paddocks. 

.3. Study design 

The trial was based on protocols developed and modified over many

ears in the evaluation of novel grass-endophyte associations, as best

escribed by [14] . Sheep grazed control and endophyte paddocks during

he autumn of 2017 from March 23 to April 10. Sheep were scored for

tagger symptoms using a 0 to 5 scale [20] in which score 0 means
2 
o symptoms, score 5 means severe tremors after minor disturbance

r exercise. The sheep were chased out of their treatment paddock and

own the raceway between paddocks for a few minutes at a modest run.

tagger scores were recorded on March 30, April 3 and April 10. Most

heep (21 of 28) were weighed at the beginning of the study, and all

heep were weighed at the end of the study. 

. GPS data analysis 

Distance travelled each hour (m/hour) was calculated by summing

he distances between all positions recorded during an hour. The hourly

verage travel rate (m/min) was calculated by averaging the velocity

ecorded by the GPS on an hourly basis. Distance travelled per day

m/day) was calculated by summing all the distances between positions

ecorded during a day (24 h). The daily average travel rate (m/min)

as calculated by averaging all the velocities recorded by the GPS each

ay (24 h). Separate statistical analyses of GPS data were conducted for

our and day data. 

Hourly metrics were analyzed using the repeated measures proce-

ure of PROC MIXED in SAS (SAS Institute Inc., Cary, NC, USA; [23] ).

he fixed effects of the model consisted of treatment (endophyte or con-

rol), day, hour as well as the interactions of treatment by day and treat-

ent by hour and treatment by hour by day. However, the two-way

nteractions and three-way interaction were not significant (P > 0.05).

onsequently, they were removed from the final model. Thus, the final

odel was reduced to treatment, day and hour as fixed effects. The sub-

ect of repeated measures analyses was sheep. Covariance of repeated

easures was modelled using auto-regressive order of 1 [AR(1)] covari-

nce structure because it had the lowest Akaike’s Information Criteria

AIC) value among three structures evaluated, AR(1), compound sym-

etry and unstructured [23] . 

Daily metrics were also analysed using repeated measures procedure

f PROC MIXED in SAS [23] . The fixed effects of the model consisted of

reatment (endophyte or control), day and the interaction of treatment

y day. The subject of repeated measures analyses was sheep. Similar to

he analysis of hourly metrics, AR(1) was selected because its AIC value

as lower than the other structures evaluated, compound symmetry and

nstructured [23] . 

. Accelerometer data analyses 

.1. Data preprocessing 

The raw accelerometer data recorded from 0600 h to 1800 h on the 3

ays when staggers was scored and 1 day before the last sensor’s record,

ere extracted and initially partitioned into 1-minute epochs. For one

heep, the accelerometer stopped just before the last stagger score was

ecorded so the day the third stagger score was recorded was not avail-

ble. Accelerometer data from the day (0600 h to 1800 h) were used

ecause sheep activity at night is lower than during the day and less

ikely to be informative (see results below). The 1-minute epochs were

hen averaged into 30-minute periods for machine learning classifica-

ion. Thirty 1-minute epochs, without any missing data, were averaged

or each 30-minute period. The 1-minute epoch does not miss any times-

amps if it contains more than or equal to 700 timestamps; otherwise,

he epoch is considered as a missed timestamp epoch. Only epochs with-

ut any missing timestamps were utilized in our experiment. The stag-

er scores were associated with the accelerometer epochs based on the

imestamps. Data from sheep in the control paddock were not used for

he machine learning analyses. 

.2. Metrics description 

Nineteen metrics from [16] were calculated for each 1-minute epoch.

ecause the four metrics 𝐴 𝑥 , 𝐴 𝑦 , 𝐴 𝑧 , and 𝐴 𝑥𝑦𝑧 are perfectly collinear with

ach other via Variance Inflation Factor in our dataset, only averages of
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Table 1 

Sixteen features and the equation used to calculate values. 

Feature Equation 

Average all-axis ( 𝐴 𝑥𝑦𝑧 ) 𝐴 𝑥𝑦𝑧 = 
1 
𝑇 

∑𝑇 

1 ( 𝑥 ( 𝑡 ) + 𝑦 ( 𝑡 ) + 𝑧 ( 𝑡 ) ) 
Minimum X-axis ( 𝑀𝑖 𝑛 𝑥 ) The minimum X-axis value in the epoch 

Minimum Y-axis ( 𝑀𝑖 𝑛 𝑦 ) The minimum Y-axis value in the epoch 

Minimum Z-axis ( 𝑀𝑖 𝑛 𝑧 ) The minimum Z-axis value in the epoch 

Maximum X-axis ( 𝑀𝑎 𝑥 𝑥 ) The maximum X-axis value in the epoch 

Maximum Y-axis ( 𝑀𝑎 𝑥 𝑦 ) The maximum Y-axis value in the epoch 

Maximum Z-axis ( 𝑀𝑎 𝑥 𝑧 ) The maximum Z-axis value in the epoch 

Standard Deviation X-axis ( 𝑆 𝐷 𝑥 ) 𝑆 𝐷 𝑥 = 
√ 

1 
𝑇 

∑𝑇 

𝑡 =1 ( 𝑥 ( 𝑡 ) − ̄𝑥 ) 
2 

where ̄𝑥 is the mean of X-axis value in the epoch 

Standard Deviation Y-axis ( 𝑆 𝐷 𝑦 ) 𝑆 𝐷 𝑦 = 
√ 

1 
𝑇 

∑𝑇 

𝑡 =1 ( 𝑦 ( 𝑡 ) − 𝑦̄ ) 
2 

where 𝑦̄ is the mean of Y-axis value in the epoch 

Standard Deviation Z-axis ( 𝑆 𝐷 𝑧 ) 𝑆 𝐷 𝑧 = 
√ 

1 
𝑇 

∑𝑇 

𝑡 =1 ( 𝑧 ( 𝑡 ) − ̄𝑧 ) 
2 

where ̄𝑧 is the mean of Z-axis value in the epoch 

Average Standard Deviation all-axis ( 𝑆 𝐷 𝑥𝑦𝑧 ) 𝑉 𝐴 𝑅 𝑥𝑦𝑧 = 
1 

3∗ 𝑇 
∗ ( 𝑆𝐷 

2 
𝑥 
∗ 𝑇 + 𝑆𝐷 

2 
𝑦 
∗ 𝑇 + 𝑆𝐷 

2 
𝑧 
∗ 𝑇 ) 

𝑆 𝐷 𝑥𝑦𝑧 = 
√
𝑉 𝐴 𝑅 𝑥𝑦𝑧 

Movement Intensity (MI) 𝑀𝐼 = 1 
𝑇 

∑𝑇 

𝑡 =1 

√ 

𝑥 ( 𝑡 ) 2 + 𝑦 ( 𝑡 ) 2 + 𝑧 ( 𝑡 ) 2 

Signal Magnitude Area (SMA) 𝑆𝑀𝐴 = 1 
𝑇 

∑𝑇 

𝑡 =1 ( |𝑥 ( 𝑡 ) | + |𝑦 ( 𝑡 ) | + |𝑧 ( 𝑡 ) |) 
Energy (Energy) 𝐸𝑛𝑒𝑟𝑔𝑦 = 1 

𝑇 

∑𝑇 

𝑡 =1 ( 𝑥 ( 𝑡 ) 
2 + 𝑦 ( 𝑡 ) 2 + 𝑧 ( 𝑡 ) 2 ) 2 

Entropy (Entropy) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1 
𝑇 

∑𝑇 

𝑡 =1 (1 + ( 𝑥 ( 𝑡 ) + 𝑦 ( 𝑡 ) + 𝑧 ( 𝑡 ) ) 
2 ) ∗ 𝑙𝑛 (1 + ( 𝑥 ( 𝑡 ) + 𝑦 ( 𝑡 ) + 𝑧 ( 𝑡 ) ) 2 ) 

Movement Variation (MV) 𝑀𝑉 = 1 
𝑇 

∑𝑇 

𝑡 =2 ( |𝑥 ( 𝑡 − 1 ) − 𝑥 ( 𝑡 ) | + |𝑦 ( 𝑡 − 1 ) − 𝑦 ( 𝑡 ) | + |𝑧 ( 𝑡 − 1 ) − 𝑧 ( 𝑡 ) |) 
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he 3 axes ( 𝐴 𝑥𝑦𝑧 ) were evaluated and 𝐴 𝑥 , 𝐴 𝑦 , and 𝐴 𝑧 were not evaluated.

herefore, sixteen metrics in Table 1 were calculated for each 1-minute

poch. For datasets 1 and 2, the 1-minute epochs were averaged together

nto 30-minute instances. 

• Dataset 1 has 30-minute instances and 2 classes: 

○ label 0 corresponds to stagger scores 0, 1, and 2; 

○ label 1 corresponds to stagger scores 3 and 4. 
• Dataset 2 has 30-minute instances and 3 classes: 

○ label 0 corresponds to stagger scores 0; 

○ label 1 corresponds to stagger scores 1, and 2; 

○ label 2 corresponds to stagger scores 3 and 4. 
• Dataset 3 has 1-minute epochs and 5 classes with labels 0, 1, 2, 3, and

4, which correspond to stagger scores 0, 1, 2, 3, and 4, respectively.

Dataset 3 is much larger than datasets 1 and 2 because the duration

f the instance is much shorter in dataset 3 and there are more classes

 Table 2 ). 

.3. Machine learning of accelerometer data 

Classification of perennial ryegrass staggers scores using accelerom-

ter data falls within the scope of machine learning (ML). In typical

lassification problems, the 30-minute instances in datasets 1 and 2,

r the 1-minute epochs in dataset 3 ( Table 2 ) are regarded as data in-

tances or objects. The stagger scores describing the level of sickness

re denoted as the class/target of one data instance/object. The metrics

escribing the movement of a sheep ( Table 1 ) are denoted as features or

ttributes. Each data instance consists of multiple features. In this study,

L approaches are utilized to classify a data instance to a class which

ndicates whether a sheep has staggers. 

In addition to the missing data point problem, another major chal-

enge in applying ML techniques to solve this classification problem is
Table 2 

Number of instances and classes of the three datasets. 

The total number of instances 

Dataset Class 0 Class 1 C

1 970 47 

2 435 535 4

3 13115 11745 4

3 
hat the data are not balanced — there is a big difference in the num-

er of instances from the two different classes: stagger and no-stagger, in

ataset 1 ( Table 2 ). Imbalanced data can result in poor predictive perfor-

ance of classification models, specifically a low accuracy for the class

ith few examples (called the minority class). For example, in dataset 1,

he number of instances of the stagger class is dramatically lower than

hat of non-stagger class, so the stagger class is the minority class. We

re more interested in detecting the instances belonging to the stagger

lass than those in the no-stagger class; thus, the stagger class is more

mportant than non-stagger class in dataset 1. 

.3.1. Model selection and resampling method 

To deal with the class imbalance problem, the first technique we

pply is stratified cross validation [21] . In building classification mod-

ls, data are split into two sets, training and testing. The former set is

sed in ML algorithms to create a model. After building the model, the

atter set is used to check the effectiveness of ML algorithms by calcu-

ating an evaluation metric (e.g. accuracy, F1 score, etc.). The division

f the dataset is random. However, there is a chance that the minority

lass does not exist in the training set but appears in the testing set.

f so, the model will not predict the test data correctly, resulting in a

ow evaluation metric. This is because, during the training process, the

odel does not learn and capture the information of the minority class

n the training set and fails to represent the actual dataset population.

tratified sampling can help cope with the imbalance, because the tech-

ique splits data such that the percentage of instances for each class of

he dataset is preserved in each set. To enhance the robustness of the

odel, we apply k-fold cross-validation in which the whole dataset is di-

ided into k folds. Among the k folds, k-1 folds are used for training and

ne fold is used for testing. In our experiment, we use k = 10. With a

ombination of stratified sampling, the class distribution of each fold is

qual to the proportion of instances of each class in the dataset. 
lass 2 Class 3 Class 4 

7 

386 754 675 
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Secondly, to rebalance the class distribution in a dataset, oversam-

ling and under-sampling approaches have been utilized in different

achine learning applications [ 19 , 25 , 33 ]. In our study, we applied

he Synthetic Minority Over-sampling Technique (SMOTE) [8] that has

hown incredible performance in dealing with imbalanced datasets.

MOTE is an oversampling method that is used to increase the num-

er of instances in the minority class such that the number of instances

n minority class was equal to the number of instances in majority class.

nstead of duplicating the instances in minority, SMOTE increases the

umber of instances of the minority class by constructing “synthetic ”

eriods. By using SMOTE, the training set is not only more balanced but

lso diversified. 

.3.2. Features 

Two types of features were developed to classify potential stagger

cores. The first type is called domain features ( Table 1 ) calculated di-

ectly from the accelerometer data. In addition, some classical feature

xtraction techniques such as Principal Component Analysis and Linear

iscriminant Analysis (LDA) can improve the quality of domain features

13] . We applied LDA [27] in our study as the second type of feature.

DA is a supervised method that is used to reduce the number of dimen-

ions by projecting data points in a high-dimensional dataset into a new

ow-dimensional feature space. LDA not only maximizes the separation

etween multiple classes but also minimizes the distances between in-

tances within each class. In LDA, at most c-1 feature projections are

roduced, where c is the number of classes in a dataset. Therefore, we

et up the numbers of features in our study to be 1, 2 and 4, which were

he maximum for datasets 1, 2 and 3, respectively (because the numbers

f classes in datasets 1, 2 and 3 are 2, 3 and 5, respectively). By using

DA, the number of features is reduced from 16 domain features to 1, 2

nd 4 features in datasets 1, 2 and 3, respectively. 

.3.3. Machine learning classifiers 

Many machine learning classification algorithms have been devel-

ped such as Decision Trees, Random Forests, Support Vector Machine

SVM), and k-nearest neighbors. In our study, we leverage the power of

he ensemble approach [11] that combines different classifiers to pro-

uce a better predictive classifier than each individual classifier alone

called the non-ensemble approach). Among ensemble methods, Ran-

om Forests [6] is one of the most popular and powerful algorithms that

as shown outstanding predictive performance in imbalanced datasets

nd was used in this study. Random Forests consists of multiple de-

ision trees. Each individual tree provides a class prediction, and the

lass with the most votes from the many decision trees becomes the

elected model’s prediction. Furthermore, to compare the performance

etween ensemble and non-ensemble approaches, SVM [9] was chosen

s a representative algorithm for non-ensemble approaches because it is

 good-working supervised ML algorithm for classification from the lit-

rature and has been applied in classifying sheep behavior [16] . In SVM,

 hyperplane (decision boundary) is computed to separate the data. The

odel chooses the best hyperplane, which maximizes the distance be-

ween the hyperplane and the training samples that are closest to the

yperplane. Moreover, when datasets are not linearly separate, SVM is

ernelized to deal with non-linear classification problems. The idea for

ernel SVM classification is as follows. First, non-linear data are trans-

ormed into the higher dimensional space in which the data becomes

inearly separable. Then, a linear SVM model is applied to classify the

ata in the new space. To determine whether applying kernel SVM was

ecessary for our study, we calculated the least square error of a lin-

ar model developed from linear regression. The result was extremely

ow; thus, our dataset was non-linear. As a result, we applied kernel

VM in our study. To reduce the computational expensive transforma-

ion features in the new space, Radial Basis Function (RBF) kernel was

tilized in kernel SVM. All the above algorithms are implemented using

he scikit-learn library of Python [27] . 
4 
.3.4. Machine Learning approach evaluation 

Different fundamental evaluation metrics such as accuracy, preci-

ion, recall, and F1-score, have been proposed to evaluate the perfor-

ance of classification models. Because of the imbalanced class distri-

ution in our study, F1-score is an effective metric to evaluate our model

33] . F1-score is computed using the following equation: 

 1 = 2 ∗ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

here 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃 

𝑇𝑃+ 𝐹𝑃 
and 𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 

𝑇𝑃+ 𝐹𝑁 

In the above equations, true positive (TP) is the number of instances

hich are correctly classified as stagger classes by the models; false pos-

tive (FP) is the number of instances which are incorrectly classified as

tagger classes by the models; false negative (FN) is the number of in-

tances which are incorrectly as non-stagger class by the models. 

.4. Repeated measures statistical analyses of accelerometer data 

The top four important features resulting from using Random Forests

lgorithm in scikit-learn , based on Gini impurity, are Minimum Z-axis

 𝑀 𝑖 𝑛 𝑧 ), Maximum Z-axis ( 𝑀 𝑎 𝑥 𝑧 ), Average of all axes ( 𝐴 𝑥𝑦𝑧 ), and Move-

ent Intensity ( 𝑀 𝐼 ). To discover another possible set of top important

eatures, we utilized PROC HPForest in SAS [26] , which focuses on out-

f-bag (OOB) error to select the most significant classification variables.

he top four important features resulting from the HPForest algorithm in

AS, based on OOB Gini values, were (Maximum Z-axis ( 𝑀𝑎 𝑥 𝑧 ), Move-

ent Intensity ( 𝑀 𝐼 ), Maximum X-axis ( 𝑀𝑎 𝑥 𝑥 ), and Energy ( 𝐸𝑛𝑒𝑟𝑔𝑦 ). 

We conducted a separate statistical analysis using two common

eatures between the two classification processes ( scikit-learn library

27] and SAS): 𝑀𝑎 𝑥 𝑧 and 𝑀 𝐼 . The maximum of the Z axis and MI were
tilized as dependent variables and analyzed using the repeated mea-

ures of PROC MIXED in SAS [23] . The hourly means of 𝑀𝑎 𝑥 𝑧 and 𝑀𝐼

rom all sheep monitored by accelerometers during the study period

ere used in the analysis. Fixed effects in the model consisted of period

period 1 – March 23 to March 27, period 2 – March 28 to 30 and period

 – March 31 to April 6), Julian date within period, diurnal time class

morning - 0500 to 1000 h, midday - 1000 to 1700 h, and night - 1700

o 0500 h), hour within diurnal time class, last stagger score (LSS), the

nteraction of LSS by period, LSS by diurnal time class and the 3-way

nteraction of LSS by period by diurnal time class. The subject of the

epeated measures analyses was the monitored sheep. Covariance of re-

eated measures was modelled using the compound symmetry structure

ecause it had the lowest AIC value of the AR(1), compound symmetry

nd unstructured covariance structures evaluated [23] . 

. Results 

.1. Sheep health 

Most sheep did not display severe ryegrass staggers symptoms. No

ontrol sheep displayed symptoms. The mean last stagger score in the

ndophyte infected paddock was 1.14 (range 0 to 4). Control sheep (-

.14 kg ± 0.66 SE) lost more (P = 0.002) weight than sheep in the en-

ophyte paddock (0.78 kg ± 0.42 SE). 

.2. GPS data 

In daily analyses of distance travelled per day, control sheep (4403

/day ± 93 SE) tended (P = 0.080) to travel farther each day than sheep

n the endophyte infected paddock (4089 m/day ± 76 SE). Control sheep

3.08 m/min ± 0.06 SE) tended (P = 0.075) to move faster (greater ve-

ocity) than sheep in the endophyte paddock (2.88 m/min ± 0.05 SE).

ravel and velocity varied (P < 0.05) among days of the study. No inter-

ction between treatment (endophyte vs control) and days was detected

P > 0.10) for either travel or velocity. 

In hourly analyses, no differences in travel (m/hour) were detected

etween sheep in the control and endophyte paddocks (P = 0.17). Travel
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Table 3 

F1 score for accuracy when predicting perennial ryegrass staggers scores 

when applying Single Vector Machines (SVM) and Random Forests with do- 

main features in three datasets. Bold indicates the highest F1 score. 

SVM Random Forests 

Dataset 1 0.887 0.965 

Dataset 2 0.640 0.814 

Dataset 3 0.646 0.871 

Table 4 

F1-score for accuracy when predicting perennial ryegrass staggers scores 

when applying Single Vector Machines (SVM) and Random Forests with Lin- 

ear Discriminant Analysis (LDA) in three datasets. Bold indicates the highest 

F1 score. 

SVM Random Forests 

Dataset 1 0.813 0.836 

Dataset 2 0.630 0.615 

Dataset 3 0.596 0.669 
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Fig. 1. Mean of the maximums of the Z axis by period during the morning (0500 

to 1000), midday (1000 to 1700), and night (1700 to 0500). Means and standard 

errors (error bars) are provided for the control pasture (C) and last stagger scores 

(LSS) 0, 1, and > 1 in the endophyte infected pasture during period 1 (March 

23 to 27), period 2 (March 28 to 31), and period 3 (April 1 to 6). 
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s

er hour varied (P < 0.001) among hours of the day. No differences in

ravel per hour were detected (P = 0.22) among days and no interac-

ions of day by treatment (P = 0.57) and hour by treatment (P = 0.43)

ere detected. The velocity of control sheep (3.12 m/min ± 0.05 SE)

as greater (P = 0.049) than for sheep in the endophyte paddock (2.91

/min ± 0.04 SE). Velocity varied (P = 0.044) among days. Velocity

lso varied (P < 0.001) among hours. No interactions between day and

reatment (P = 0.51) and hour and treatment (P = 0.31) were detected

or velocity. 

.3. Accelerometer data 

.3.1. Machine Learning analyses 

The efficacy of SVM and Random Forests classification with domain

eatures is shown in Table 3 . With domain features, performance of Ran-

om Forests was much higher than SVM ( Table 3 ). The highest perfor-

ance (F1-score of 0.965) was with dataset 1 and Random Forests. 

The use of SVM and Random Forests with LDA resulted in infe-

ior performance than using domain features ( Tables 3 and 4 ). Random

orests had the highest performance overall ( Table 4 ). For datasets 1

nd 3, the pattern of results using LDA was similar to the use of features

 Table 3 ) where Random Forests shows higher F1-scores than SVM, but

he result for dataset 2 shows that Random Forests is slightly worse than

VM. This is mainly because of the number of features and instances in

hese datasets. The detailed discussions about these results and incon-

istencies can be found in Section 6.1 . 

.3.2. Repeated measures analyses of accelerometer data 

No differences in LSS were detected (P = 0.66) for 𝑀𝑎 𝑥 𝑧 . Maximum

-axis varied among periods (P < 0.0001) and days within a period

P = 0.0024). Maximum Z-axis differed (P < 0.0001) among the diurnal

ime classes (morning, midday, night) and differed (P < 0.0001) among

ours within diurnal time classes. A strong interaction was detected (P

 0.0001) between LSS and diurnal time class and between LSS and

eriod (P = 0.0092). Moreover, there was a strong (P < 0.0001) 3-way

nteraction between LSS, period and diurnal time class ( Fig. 1 ). 

No differences in 𝑀 𝐼 were detected for LSS (P = 0.80). Movement

ntensity varied (P < 0.001) among periods and days within period. In

ddition, 𝑀 𝐼 varied (P < 0.001) among the diurnal time classes and

ours with diurnal time class. There were strong interactions between

SS and period (P = 0.001) and LSS and diurnal time classes (P < 0.001).

he 3-way interaction between LSS, period and diurnal time class was

lso important (P < 0.001) for MI ( Fig. 2 ). 
5 
The diurnal activity patterns of two sheep that displayed moderate to

evere ryegrass stagger symptoms (LSS 3 and 4) at the end of the study

hanged compared to the beginning of the study when their stagger

core was 0 ( Fig. 3 and 4 ). The periods of relatively constant values near

ero (likely inactivity) of the y- and especially z-axis were longer at the

nd of the study than at the beginning. Although all 3 accelerometer

xes showed changes in activity patterns, the y-axis (side to side head

ovements) and especially the z-axis (up and down head movements)

howed the most notable changes. 
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Fig. 2. Mean movement intensity (MI) by period during the morning (0500 to 1000), midday (1000 to 1700) and night (1700 to 0500). Means and standard errors 

(error bars) are provided for the control pasture (C) and last stagger scores (LSS) 0, 1 and > 1 in the endophyte infected pasture during period 1 (March 23 to 27), 

period 2 (March 28 to 31), and period 3 (April 1 to 6). 
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. Discussion 

In this study, only two sheep showed any moderate to severe rye-

rass stagger symptoms (LSS 3 or 4). Weight gain of sheep grazing en-

ophyte infected pasture was higher than control sheep supporting the

ssertion that ryegrass symptoms were minimal. The weather was cool
6 
uring the study, which may have reduced herbage endophyte toxin

oncentrations in comparison to late summer when staggers are typi-

ally high at this trial site [14] . Although there is evidence that sheep

n the endophyte paddock travelled slower and slightly less distance

ach day than control sheep, GPS tracking does not appear to be useful

or detecting staggers. No patterns in the daily differences among days
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Fig. 3. Average 1-minute movement data from 

the x, y and z axes during the first and last 24- 

hour periods in study for sheep 17011 with the 

highest last stagger score (LSS) of 4. Accelerom- 

eter readings are given from 0000 h to 2359 h. 
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or velocity were detected. Distance travelled and velocity did not in-

rease or decrease as the study progressed, which would be expected

f GPS tracking was a potential indicator of ryegrass staggers. Instead,

he differences in travel among days were erratic. Paddock size in this

tudy was very small (0.1625 ha), which limited the ability of sheep

o fully express spatial movements. Differences in travel between the

ndophyte-infected and control paddocks is likely an artifact of differ-

nces among sheep or differences in the forage characteristics of the

addocks. However, the amount of available forage was similar in both

addocks. 
7 
.1. Machine Learning of accelerometer data explained a large amount of 

he stagger scores 

The LDA generated features did not perform better than the domain

eatures used in both Random Forests and SVM. The domain features

or accelerometer data were adapted and combined by [16] based on

quations from [ 1 , 4 , 5 , 7 , 24 ] to detect sheep behavior, and they per-

ormed well in this study. In contrast, LDA, in our study, projected the

ata points into perpendicular axes, but failed to help in classification

ecause the features were directly informative. Such feature reduction
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Fig. 4. Average 1-minute movement data from the x, y and 

z axes during the first and last 24-hour periods in study 

for sheep 17008 with the second highest last stagger score 

(LSS) of 3. Accelerometer readings are given from 0000 h 

to 2359 h. 
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n LDA negatively affects the datasets with smaller numbers of instances

in our case), even though it does not affect datasets with large numbers

f instances. LDA is usually good in cases where there are thousands of

eatures and some of them are redundant or highly related to other fea-

ures [28] . In this study, we removed variables that were highly corre-

ated before using LDA in Random Forests and SVM which likely reduced

he effectiveness of using LDA. 

In general, Random Forests outperforms SVM due to the power of

nsemble approach. Ensemble approaches give a better result than the

orresponding non-ensemble approach, because the error probability of

n ensemble approach is always better than the error (if < 0.5) of its

ndividual classifier [33] . However, there is an exception in the result

f applying LDA to dataset 2 because the smaller number of instances

n each class negatively affected the accuracy. Dataset 2 has the same
8 
otal number of instances as dataset 1 but, dataset 2 has one more class

ompared with dataset 1 because the number of instances in class 0 in

ataset 1 is divided into classes 0 and 1 in dataset 2. Thus, dataset 2 has

ess information in each class to learn and capture, to classify data, than

n dataset 1. The F1-score in dataset 1 is higher than dataset 3 because

 longer duration of an instance may have provided more information

nd improve the F1-score. Dataset 3 has more instances than dataset 1

ut the duration of instances in dataset 1 is 30 times longer than those

n dataset 3 which may have resulted in a higher F1-score. 

To confirm our experimental result that Random Forests was the best

lassifier algorithm for our study, Waikato Environment for Knowledge

nalysis (WEKA) [18] , a well-known ML software, was applied to our

atasets. WEKA provides ML algorithms for different ML tasks such as

lassification, clustering, and regression. We utilized the Auto-WEKA
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273–297 . 
ackage [22] to search and identify ML algorithms and their hyperpa-

ameters to achieve the best performance. The result obtained using

uto-WEKA also showed that Random Forests was the best classifier.

ven though Auto-WEKA gave the same result as our work, we do not

ecommend it due to the following reasons: 

• The maximum depth of the tree used in Auto-WEKA could be unlim-

ited; thus, Random Forests model in WEKA can be prone to overfit-

ting. 
• Auto-WEKA does not contain resampling methods to account for im-

balanced dataset, and K-folds cross validation used in Auto-WEKA

may not fit when the class distribution is not equal, specifically in

our datasets. 

In brief, two ML classifiers and two types of features from accelerom-

ter data were used to classify whether a sheep had staggers. Overall,

andom Forests classification provided the best performance. The result

ndicates that ensemble methods have potential to deal with problems

hat have small numbers of instances and imbalanced data. 

.2. Statistical analyses of accelerometer metrics (features) support the 

esults of machine learning 

Diurnal activity patterns monitored by accelerometer metrics ( 𝑀𝑎 𝑥 𝑧 
nd 𝑀 𝐼 ) appeared to change during the latter part of the study for sheep

isplaying symptoms (LSS > 1) based on the strong interaction of period,

iurnal time class and LSS. Activity levels indicated by MI increased for

ll sheep at the end of the study, but for the sheep with symptoms, the

ctivity increase was smaller during the last few days of the study. This

ay be due to losses in motor function resulting from the endophyte

eurotoxins. Although few sheep showed symptoms, accelerometer met-

ics of sheep changed from the beginning of the study compared with

he end of the study. The most notable changes occurred during the

aylight hours. At night, when sheep were less active, no differences in

ccelerometer metrics were apparent among sheep with differing LSS.

he most notable change in behavior from the beginning to the end of

he study occurred in the z axis that records up and down movements

f the head ( Fig. 3 and 4 ). Up and down head movements (z axis) occur

hile sheep are grazing, as do the other head movements (x and y axes)

o a lesser degree. The timing of the largest differences in activity (mid-

ay) and the clear differences in the z-axis between the beginning and

nd of the study suggest that grazing behavior is affected by perennial

yegrass staggers. 

Accelerometer metric levels and patterns clearly varied among sheep

ven at the beginning of the study (e.g., Fig. 3 and 4 ). The variation

mong sheep was likely a result of individual difference in behavior and

ariability in the accelerometers [34] . This variation among sheep em-

hasizes the need for developing algorithms that are based on changes

n individual animal behavior patterns rather than groups of livestock

3] . In addition to accelerometers, other technologies such as nose band

ensors may also be useful for monitoring livestock grazing endophyte

nfected forages, quantifying grazing time and biting rate [ 29 , 30 , 36 ].

echnological advancements, such as Bluetooth® (Bluetooth SIG, Inc.,

irkland, WA USA) can facilitate data transfer from these monitoring

evices in real time. Monitoring of individual sheep and development

f machine learning and potentially “change-point ” algorithms may be-

ome a valuable method for detecting the onset of perennial ryegrass

taggers and other diseases. 

Use of remote monitoring systems such as accelerometers has po-

ential to help producers detect when sheep should be moved from an

ndophyte-infected paddock to a paddock with a non-toxic endophyte-

nfected ryegrass or a paddock without endophyte infected forage. Store-

n-board accelerometers used in this study store movement data on the

evice and do not provide managers with the data until the accelerome-

er is removed from the animal and downloaded from the device. How-

ver, real-time monitoring of livestock with accelerometers is becoming

ommercially available. Herddogg ( https://herddogg.com , accessed 1
9 
ebruary 2022) ear tags provide an activity index based on 3-axis ac-

elerometers every 6 minutes. The tags can transmit this activity index

o a reader termed a “dog bone ” via Bluetooth® technologies. The dog

one reader then transmits that data to the internet using cellular tech-

ology. With further development, near real time or real time technolo-

ies could transmit data to the internet where it could be evaluated using

achine learning techniques and/or change point algorithms, and the

esults could be processed and interpreted using artificial intelligence

echnologies [17] . An alarm could then be sent to the producer that a

heep may be affected by endophyte toxins and should be evaluated. 

Monitoring livestock with on-animal sensors should improve our un-

erstanding of animal behaviour in pastures with endophyte infected

orages. Scasta et al. [31] found that cattle intake of alkaloids changed if

all grass prairies containing endophyte infected tall fescue were patch

urned. The presence of tall fescue affects structural heterogeneity of

angelands by altering the influence of patch burning and grazing [ 29 ,

0 ]. Monitoring livestock grazing behaviour and the potential influence

f endophyte infected forage on animal heath may improve our under-

tanding of these systems and ability to manage them. 

. Conclusion 

The application of ML classification to accelerometer data was suc-

essfully used in this case study to identify changes in behavior asso-

iated with ryegrass staggers in sheep. The results of our study show

hat ML is a good tool for developing algorithms to detect staggers from

ccelerometer data because it combines variable patterns from differ-

nt metrics. Although more research is needed, the combination of ML

nd real-time monitoring of sheep behavior with accelerometers has

otential to detect when endophyte toxin levels affect their well-being

ryegrass staggers) and the animals should be moved to a different pas-

ure. In addition, monitoring of livestock health and grazing behaviour

ith accelerometers and other on-animal sensors may provide data to

elp manage endophyte infected pastures and facilitate practices such

s patch-burn grazing. 
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