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ARTICLE INFO ABSTRACT
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Perennial ryegrass staggers (staggers) is a neurotoxic condition in livestock that is caused by consumption of
ryegrass (Lolium perenne) infected with specific strains of Epichloé fungal endophytes. These grass-endophyte
associations produce toxins that can adversely affect animals and can in some cases lead to death. In sheep,
symptoms typically include head shaking, changes in gait, stiffness and falling. Affected sheep can recover after
removing them from pastures containing toxic strains of endophyte. A pilot case study was conducted in Lincoln,
New Zealand to determine if ryegrass staggers could be identified with data collected through GPS tracking
and accelerometers. Fourteen sheep per treatment grazed in either a toxic endophyte-infected ryegrass paddock
or an endophyte-free control paddock for 17 days in late March and early April 2017. Randomly selected sheep
were fitted with collars containing a 3-axis accelerometer recording movements at 12 Hz (10 collars in endophyte
infected paddock and 6 in the control paddock). Three sheep per treatment were also tracked at 3-minute intervals
with GPS receivers. Sheep were scored by an experienced observer for symptoms of staggers weekly and at the
end of the study using a O to 5 scale. Control sheep did not display any symptoms of staggers and 10 sheep in the
infected pasture displayed little or no symptoms (0 or 1 score). The other 4 sheep in infected pasture had scores
from 2 to 4 at the end of the study. Sheep grazing in the infected pasture (2.91 m/min + 0.04 SE) moved slower
(P=0.04) than sheep in the control pasture (3.12 m/min + 0.05 SE). Distance travelled varied among days, but
there did not appear to be any temporal trends. Machine learning analyses of accelerometer data showed that
the behavior of affected sheep changed during the study. Activity of sheep displaying symptoms (scores > 2)
increased more in the morning and midday during the latter part of the study than control sheep and sheep with
few or no symptoms (score < 2). However, behavior of individual sheep at night remained relatively consistent
during the study. Accelerometers may be useful for remotely detecting perennial ryegrass staggers.

On-animal sensor
Machine learning
Perennial ryegrass staggers

1. Introduction

Sheep raised on perennial ryegrass (Lolium perenne L) pastures can
suffer from perennial ryegrass staggers [10]. It is a neurotoxic condition
that afflicts several species of grazing livestock that is the result of toxins
produced when specific strains of an asexual, mutualistic Epichloé fungal
endophyte infect the host ryegrass. When animals consume forage with
these toxins and become ill, symptoms develop gradually over time. In
most cases, animals recover when moved to pastures with no endophyte
or to pastures infected with selected, non-toxic endophytes.

It is crucial to monitor sheep, and other livestock, grazing endo-
phyte infected pastures to ensure animal welfare. In addition, on-animal

sensing may be useful for understanding the complex interactions of
grazing and prescribed fire on toxin levels and livestock responses in
rangelands invaded by or dominated by endophyte infected forages
[29-31] such as tall fescue (Schedonorus arundinaceus [Schreb.] Dumort.
nom. cons.). Visual monitoring or periodic testing for staggers is time
consuming and labor intensive, especially when sheep are kept in large
groups or in extensively farmed pastures. On-animal sensors have po-
tential to remotely monitor and identify changes in animal behavior
[2]. The behaviors expressed by the animal can be utilized to detect
when livestock are becoming ill. In this paper, we explore this con-
cept via sensors applied to sheep grazing endophyte infected perennial
ryegrass.
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Remote monitoring of livestock well-being using GPS tracking and
accelerometers have been evaluated in different environments and ap-
plications. Lambing can be identified using GPS tracking [12, 15] and ac-
celerometers [16]. Machine learning (ML) can be used to classify sheep
behavior from accelerometer data [16]. Accelerometers can be used to
detect diseases such as bovine ephemeral fever in cattle [34]. Recent
developments have promised to provide GPS tracking and accelerom-
eter data in real time or near real time such as the internet of things,
LoRaWAN [32, 35] and satellite technologies. Real time monitoring of
livestock may allow farmers and ranchers to respond more rapidly when
animals become ill.

The objective of this paper is to provide a “proof of concept study” to
evaluate the potential of detecting perennial ryegrass staggers through
remote monitoring of sheep with GPS tracking and accelerometers. We
apply classification ML algorithms to accelerometer data from moni-
tored sheep. The study hypothesizes that accelerometer and GPS track-
ing data will be able to identify the changes of behavior that occur when
sheep are affected by perennial ryegrass staggers.

2. Material and methods
2.1. Study site

The study was conducted at AgResearch Lincoln, New Zealand from
23 March to 10 April 2017. It used two experimental paddocks each
0.1625 ha which had been sown as pure stands of ‘GA66’ diploid peren-
nial ryegrass in October 2016. One paddock contained endophyte in-
fected perennial ryegrass, with the endophyte being a ‘standard’ (also
referred to as wild-type or common toxic) strain of Epichloé festucae var.
lolii. The standard strain is known to cause ryegrass staggers in sheep
and other livestock [10]. The other paddock was a control, with ‘GA66’
perennial ryegrass that did not contain endophyte.

2.2. Animals

The protocol for this study was approved by the AgResearch Inver-
may Animal Ethics Committee (Dunedin, NZ; application # 14103).

A total of 28 crossbred female sheep that were 18 months old, were
randomly assigned to the two paddocks (14 sheep per paddock). The
mean live weight of the sheep was 56.3 kg + 0.6 SE at the beginning of
the study.

All 14 sheep in the endophyte infected paddock and eight of the 14
sheep in the control paddock were fitted with Gulf Coast X-16-4 Ac-
celerometers (Gulf Coast Data Concepts, LLC, Waveland, MS USA). Ac-
celerometers were fitted on collars around the neck of the sheep and
recorded movements of the x, y and z axes. Movement of the head fore
and aft was associated with the x axis. Left and right head movements
were associated with the y axis and up and down movements were asso-
ciated with the z axis.. Movement data were recorded at a rate of 12 Hz
and were stored on the accelerometer until retrieval at the end of the
study. Three sheep in each paddock were tracked with igotU 600 GPS
receivers (MobileAction, New Taipei City, Taiwan) on collars. Positions
were recorded at 3-minute intervals. One GPS receiver in the control
paddock did not record any positions for the entire study period most
likely due to battery failure. In this experiment, positions recorded out-
side the paddocks were deleted from the data set. ArcMap geographical
information software (ESRI ArcGIS Suite, Redlands, California USA) was
used to identify positions recorded outside of the paddocks.

2.3. Study design

The trial was based on protocols developed and modified over many
years in the evaluation of novel grass-endophyte associations, as best
described by [14]. Sheep grazed control and endophyte paddocks during
the autumn of 2017 from March 23 to April 10. Sheep were scored for
stagger symptoms using a 0 to 5 scale [20] in which score 0 means
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no symptoms, score 5 means severe tremors after minor disturbance
or exercise. The sheep were chased out of their treatment paddock and
down the raceway between paddocks for a few minutes at a modest run.
Stagger scores were recorded on March 30, April 3 and April 10. Most
sheep (21 of 28) were weighed at the beginning of the study, and all
sheep were weighed at the end of the study.

3. GPS data analysis

Distance travelled each hour (m/hour) was calculated by summing
the distances between all positions recorded during an hour. The hourly
average travel rate (m/min) was calculated by averaging the velocity
recorded by the GPS on an hourly basis. Distance travelled per day
(m/day) was calculated by summing all the distances between positions
recorded during a day (24 h). The daily average travel rate (m/min)
was calculated by averaging all the velocities recorded by the GPS each
day (24 h). Separate statistical analyses of GPS data were conducted for
hour and day data.

Hourly metrics were analyzed using the repeated measures proce-
dure of PROC MIXED in SAS (SAS Institute Inc., Cary, NC, USA; [23]).
The fixed effects of the model consisted of treatment (endophyte or con-
trol), day, hour as well as the interactions of treatment by day and treat-
ment by hour and treatment by hour by day. However, the two-way
interactions and three-way interaction were not significant (P > 0.05).
Consequently, they were removed from the final model. Thus, the final
model was reduced to treatment, day and hour as fixed effects. The sub-
ject of repeated measures analyses was sheep. Covariance of repeated
measures was modelled using auto-regressive order of 1 [AR(1)] covari-
ance structure because it had the lowest Akaike’s Information Criteria
(AIC) value among three structures evaluated, AR(1), compound sym-
metry and unstructured [23].

Daily metrics were also analysed using repeated measures procedure
of PROC MIXED in SAS [23]. The fixed effects of the model consisted of
treatment (endophyte or control), day and the interaction of treatment
by day. The subject of repeated measures analyses was sheep. Similar to
the analysis of hourly metrics, AR(1) was selected because its AIC value
was lower than the other structures evaluated, compound symmetry and
unstructured [23].

4. Accelerometer data analyses
4.1. Data preprocessing

The raw accelerometer data recorded from 0600 h to 1800 h on the 3
days when staggers was scored and 1 day before the last sensor’s record,
were extracted and initially partitioned into 1-minute epochs. For one
sheep, the accelerometer stopped just before the last stagger score was
recorded so the day the third stagger score was recorded was not avail-
able. Accelerometer data from the day (0600 h to 1800 h) were used
because sheep activity at night is lower than during the day and less
likely to be informative (see results below). The 1-minute epochs were
then averaged into 30-minute periods for machine learning classifica-
tion. Thirty 1-minute epochs, without any missing data, were averaged
for each 30-minute period. The 1-minute epoch does not miss any times-
tamps if it contains more than or equal to 700 timestamps; otherwise,
the epoch is considered as a missed timestamp epoch. Only epochs with-
out any missing timestamps were utilized in our experiment. The stag-
ger scores were associated with the accelerometer epochs based on the
timestamps. Data from sheep in the control paddock were not used for
the machine learning analyses.

4.2. Metrics description
Nineteen metrics from [16] were calculated for each 1-minute epoch.

Because the four metrics A,, A, A, and A, are perfectly collinear with
each other via Variance Inflation Factor in our dataset, only averages of
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Table 1

Smart Agricultural Technology 2 (2022) 100040

Sixteen features and the equation used to calculate values.

Feature

Equation

Average all-axis (4,,.)
Minimum X-axis (Min,)
Minimum Y-axis (Min,)
Minimum Z-axis (Min,)
Maximum X-axis (Max,)
Maximum Y-axis (Max,)
Maximum Z-axis (M ax,)

Standard Deviation X-axis (SD,)
Standard Deviation Y-axis (SD,)

Standard Deviation Z-axis (SD.)

Average Standard Deviation all-axis (SD,,,)

Movement Intensity (MI)
Signal Magnitude Area (SMA)
Energy (Energy)

Az = 5 X7 G0 + 90 + 2()

The minimum X-axis value in the epoch

The minimum Y-axis value in the epoch

The minimum Z-axis value in the epoch

The maximum X-axis value in the epoch

The maximum Y-axis value in the epoch

The maximum Z-axis value in the epoch

SD, = /3 3L, (-9’

where % is the mean of X-axis value in the epoch
SD,= /7 XL, 00 - 3

where j is the mean of Y-axis value in the epoch
SD, = /% > 0 - 27

where z is the mean of Z-axis value in the epoch
VAR, = 7= % (SD2+ T+ SD2 T+ SD? % T)
SD,,.= \/VAR,,,

MI = ; Z,T:]T\/x(t)z +y(0)* + z(t)?

SMA= LFT (X0 +yOl + 120

Energy =1 7 (x(t)” + y(t) + z(tY)?

Entropy (Entropy)
Movement Variation (MV)

Entropy = % S+ () + (@) + 20)) * In (1 + (x(1) + y(0) + 2(1))
MV = % Z,T:Z(Ix(r =D =x@)|+ |yt = 1) =yl + [zt = 1) = z(1)])

the 3 axes (Ay,,) were evaluatedand A,, A Vs and A, were not evaluated.
Therefore, sixteen metrics in Table 1 were calculated for each 1-minute
epoch. For datasets 1 and 2, the 1-minute epochs were averaged together
into 30-minute instances.

e Dataset 1 has 30-minute instances and 2 classes:
O label 0 corresponds to stagger scores 0, 1, and 2;
O label 1 corresponds to stagger scores 3 and 4.
e Dataset 2 has 30-minute instances and 3 classes:
O label 0 corresponds to stagger scores 0;
O label 1 corresponds to stagger scores 1, and 2;
O label 2 corresponds to stagger scores 3 and 4.
e Dataset 3 has 1-minute epochs and 5 classes with labels 0, 1, 2, 3, and
4, which correspond to stagger scores 0, 1, 2, 3, and 4, respectively.

Dataset 3 is much larger than datasets 1 and 2 because the duration
of the instance is much shorter in dataset 3 and there are more classes
(Table 2).

4.3. Machine learning of accelerometer data

Classification of perennial ryegrass staggers scores using accelerom-
eter data falls within the scope of machine learning (ML). In typical
classification problems, the 30-minute instances in datasets 1 and 2,
or the 1-minute epochs in dataset 3 (Table 2) are regarded as data in-
stances or objects. The stagger scores describing the level of sickness
are denoted as the class/target of one data instance/object. The metrics
describing the movement of a sheep (Table 1) are denoted as features or
attributes. Each data instance consists of multiple features. In this study,
ML approaches are utilized to classify a data instance to a class which
indicates whether a sheep has staggers.

In addition to the missing data point problem, another major chal-
lenge in applying ML techniques to solve this classification problem is

Table 2
Number of instances and classes of the three datasets.

that the data are not balanced — there is a big difference in the num-
ber of instances from the two different classes: stagger and no-stagger, in
dataset 1 (Table 2). Imbalanced data can result in poor predictive perfor-
mance of classification models, specifically a low accuracy for the class
with few examples (called the minority class). For example, in dataset 1,
the number of instances of the stagger class is dramatically lower than
that of non-stagger class, so the stagger class is the minority class. We
are more interested in detecting the instances belonging to the stagger
class than those in the no-stagger class; thus, the stagger class is more
important than non-stagger class in dataset 1.

4.3.1. Model selection and resampling method

To deal with the class imbalance problem, the first technique we
apply is stratified cross validation [21]. In building classification mod-
els, data are split into two sets, training and testing. The former set is
used in ML algorithms to create a model. After building the model, the
latter set is used to check the effectiveness of ML algorithms by calcu-
lating an evaluation metric (e.g. accuracy, F1 score, etc.). The division
of the dataset is random. However, there is a chance that the minority
class does not exist in the training set but appears in the testing set.
If so, the model will not predict the test data correctly, resulting in a
low evaluation metric. This is because, during the training process, the
model does not learn and capture the information of the minority class
in the training set and fails to represent the actual dataset population.
Stratified sampling can help cope with the imbalance, because the tech-
nique splits data such that the percentage of instances for each class of
the dataset is preserved in each set. To enhance the robustness of the
model, we apply k-fold cross-validation in which the whole dataset is di-
vided into k folds. Among the k folds, k-1 folds are used for training and
one fold is used for testing. In our experiment, we use k=10. With a
combination of stratified sampling, the class distribution of each fold is
equal to the proportion of instances of each class in the dataset.

The total number of instances

Dataset Class 0 Class 1 Class 2 Class 3 Class 4
1 970 47

2 435 535 47

3 13115 11745 4386 754 675
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Secondly, to rebalance the class distribution in a dataset, oversam-
pling and under-sampling approaches have been utilized in different
machine learning applications [19, 25, 33]. In our study, we applied
the Synthetic Minority Over-sampling Technique (SMOTE) [8] that has
shown incredible performance in dealing with imbalanced datasets.
SMOTE is an oversampling method that is used to increase the num-
ber of instances in the minority class such that the number of instances
in minority class was equal to the number of instances in majority class.
Instead of duplicating the instances in minority, SMOTE increases the
number of instances of the minority class by constructing “synthetic”
periods. By using SMOTE, the training set is not only more balanced but
also diversified.

4.3.2. Features

Two types of features were developed to classify potential stagger
scores. The first type is called domain features (Table 1) calculated di-
rectly from the accelerometer data. In addition, some classical feature
extraction techniques such as Principal Component Analysis and Linear
Discriminant Analysis (LDA) can improve the quality of domain features
[13]. We applied LDA [27] in our study as the second type of feature.
LDA is a supervised method that is used to reduce the number of dimen-
sions by projecting data points in a high-dimensional dataset into a new
low-dimensional feature space. LDA not only maximizes the separation
between multiple classes but also minimizes the distances between in-
stances within each class. In LDA, at most c-1 feature projections are
produced, where c is the number of classes in a dataset. Therefore, we
set up the numbers of features in our study to be 1, 2 and 4, which were
the maximum for datasets 1, 2 and 3, respectively (because the numbers
of classes in datasets 1, 2 and 3 are 2, 3 and 5, respectively). By using
LDA, the number of features is reduced from 16 domain features to 1, 2
and 4 features in datasets 1, 2 and 3, respectively.

4.3.3. Machine learning classifiers

Many machine learning classification algorithms have been devel-
oped such as Decision Trees, Random Forests, Support Vector Machine
(SVM), and k-nearest neighbors. In our study, we leverage the power of
the ensemble approach [11] that combines different classifiers to pro-
duce a better predictive classifier than each individual classifier alone
(called the non-ensemble approach). Among ensemble methods, Ran-
dom Forests [6] is one of the most popular and powerful algorithms that
has shown outstanding predictive performance in imbalanced datasets
and was used in this study. Random Forests consists of multiple de-
cision trees. Each individual tree provides a class prediction, and the
class with the most votes from the many decision trees becomes the
selected model’s prediction. Furthermore, to compare the performance
between ensemble and non-ensemble approaches, SVM [9] was chosen
as a representative algorithm for non-ensemble approaches because it is
a good-working supervised ML algorithm for classification from the lit-
erature and has been applied in classifying sheep behavior [16]. In SVM,
a hyperplane (decision boundary) is computed to separate the data. The
model chooses the best hyperplane, which maximizes the distance be-
tween the hyperplane and the training samples that are closest to the
hyperplane. Moreover, when datasets are not linearly separate, SVM is
kernelized to deal with non-linear classification problems. The idea for
kernel SVM classification is as follows. First, non-linear data are trans-
formed into the higher dimensional space in which the data becomes
linearly separable. Then, a linear SVM model is applied to classify the
data in the new space. To determine whether applying kernel SVM was
necessary for our study, we calculated the least square error of a lin-
ear model developed from linear regression. The result was extremely
low; thus, our dataset was non-linear. As a result, we applied kernel
SVM in our study. To reduce the computational expensive transforma-
tion features in the new space, Radial Basis Function (RBF) kernel was
utilized in kernel SVM. All the above algorithms are implemented using
the scikit-learn library of Python [27].
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4.3.4. Machine Learning approach evaluation

Different fundamental evaluation metrics such as accuracy, preci-
sion, recall, and F1-score, have been proposed to evaluate the perfor-
mance of classification models. Because of the imbalanced class distri-
bution in our study, F1-score is an effective metric to evaluate our model
[33]. Fl-score is computed using the following equation:

Precision * Recall

Fl1=2x —
Precision + Recall
.. TP _ TP
Where Precision = TPIFP and Recall = TPIFN

In the above equations, true positive (TP) is the number of instances
which are correctly classified as stagger classes by the models; false pos-
itive (FP) is the number of instances which are incorrectly classified as
stagger classes by the models; false negative (FN) is the number of in-
stances which are incorrectly as non-stagger class by the models.

4.4. Repeated measures statistical analyses of accelerometer data

The top four important features resulting from using Random Forests
algorithm in scikit-learn, based on Gini impurity, are Minimum Z-axis
(M in,), Maximum Z-axis (M ax,), Average of all axes (A,,,), and Move-
ment Intensity (M I). To discover another possible set of top important
features, we utilized PROC HPForest in SAS [26], which focuses on out-
of-bag (OOB) error to select the most significant classification variables.
The top four important features resulting from the HPForest algorithm in
SAS, based on OOB Gini values, were (Maximum Z-axis (M ax,), Move-
ment Intensity (M I), Maximum X-axis (M ax, ), and Energy (Energy).

We conducted a separate statistical analysis using two common
features between the two classification processes (scikit-learn library
[27] and SAS): Max, and M 1. The maximum of the Z axis and MI were
utilized as dependent variables and analyzed using the repeated mea-
sures of PROC MIXED in SAS [23]. The hourly means of Max, and M T
from all sheep monitored by accelerometers during the study period
were used in the analysis. Fixed effects in the model consisted of period
(period 1 - March 23 to March 27, period 2 — March 28 to 30 and period
3 — March 31 to April 6), Julian date within period, diurnal time class
(morning - 0500 to 1000 h, midday - 1000 to 1700 h, and night - 1700
to 0500 h), hour within diurnal time class, last stagger score (LSS), the
interaction of LSS by period, LSS by diurnal time class and the 3-way
interaction of LSS by period by diurnal time class. The subject of the
repeated measures analyses was the monitored sheep. Covariance of re-
peated measures was modelled using the compound symmetry structure
because it had the lowest AIC value of the AR(1), compound symmetry
and unstructured covariance structures evaluated [23].

5. Results
5.1. Sheep health

Most sheep did not display severe ryegrass staggers symptoms. No
control sheep displayed symptoms. The mean last stagger score in the
endophyte infected paddock was 1.14 (range O to 4). Control sheep (-
2.14 kg + 0.66 SE) lost more (P =0.002) weight than sheep in the en-
dophyte paddock (0.78 kg + 0.42 SE).

5.2. GPS data

In daily analyses of distance travelled per day, control sheep (4403
m/day + 93 SE) tended (P =0.080) to travel farther each day than sheep
in the endophyte infected paddock (4089 m/day + 76 SE). Control sheep
(3.08 m/min +0.06 SE) tended (P =0.075) to move faster (greater ve-
locity) than sheep in the endophyte paddock (2.88 m/min + 0.05 SE).
Travel and velocity varied (P < 0.05) among days of the study. No inter-
action between treatment (endophyte vs control) and days was detected
(P > 0.10) for either travel or velocity.

In hourly analyses, no differences in travel (m/hour) were detected
between sheep in the control and endophyte paddocks (P =0.17). Travel
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Table 3

F1 score for accuracy when predicting perennial ryegrass staggers scores
when applying Single Vector Machines (SVM) and Random Forests with do-
main features in three datasets. Bold indicates the highest F1 score.

SVM Random Forests
Dataset 1 0.887 0.965
Dataset 2 0.640 0.814
Dataset 3 0.646 0.871

Table 4

Fl-score for accuracy when predicting perennial ryegrass staggers scores
when applying Single Vector Machines (SVM) and Random Forests with Lin-
ear Discriminant Analysis (LDA) in three datasets. Bold indicates the highest
F1 score.

SVM Random Forests
Dataset 1 0.813 0.836
Dataset 2 0.630 0.615
Dataset 3 0.596 0.669

per hour varied (P < 0.001) among hours of the day. No differences in
travel per hour were detected (P=0.22) among days and no interac-
tions of day by treatment (P=0.57) and hour by treatment (P =0.43)
were detected. The velocity of control sheep (3.12 m/min + 0.05 SE)
was greater (P =0.049) than for sheep in the endophyte paddock (2.91
m/min + 0.04 SE). Velocity varied (P=0.044) among days. Velocity
also varied (P < 0.001) among hours. No interactions between day and
treatment (P=0.51) and hour and treatment (P =0.31) were detected
for velocity.

5.3. Accelerometer data

5.3.1. Machine Learning analyses

The efficacy of SVM and Random Forests classification with domain
features is shown in Table 3. With domain features, performance of Ran-
dom Forests was much higher than SVM (Table 3). The highest perfor-
mance (F1-score of 0.965) was with dataset 1 and Random Forests.

The use of SVM and Random Forests with LDA resulted in infe-
rior performance than using domain features (Tables 3 and 4). Random
Forests had the highest performance overall (Table 4). For datasets 1
and 3, the pattern of results using LDA was similar to the use of features
(Table 3) where Random Forests shows higher F1-scores than SVM, but
the result for dataset 2 shows that Random Forests is slightly worse than
SVM. This is mainly because of the number of features and instances in
these datasets. The detailed discussions about these results and incon-
sistencies can be found in Section 6.1.

5.3.2. Repeated measures analyses of accelerometer data

No differences in LSS were detected (P =0.66) for Max,. Maximum
Z-axis varied among periods (P < 0.0001) and days within a period
(P =0.0024). Maximum Z-axis differed (P < 0.0001) among the diurnal
time classes (morning, midday, night) and differed (P < 0.0001) among
hours within diurnal time classes. A strong interaction was detected (P
< 0.0001) between LSS and diurnal time class and between LSS and
period (P =0.0092). Moreover, there was a strong (P < 0.0001) 3-way
interaction between LSS, period and diurnal time class (Fig. 1).

No differences in M I were detected for LSS (P =0.80). Movement
intensity varied (P < 0.001) among periods and days within period. In
addition, M I varied (P < 0.001) among the diurnal time classes and
hours with diurnal time class. There were strong interactions between
LSS and period (P =0.001) and LSS and diurnal time classes (P < 0.001).
The 3-way interaction between LSS, period and diurnal time class was
also important (P < 0.001) for MI (Fig. 2).
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Fig. 1. Mean of the maximums of the Z axis by period during the morning (0500
to 1000), midday (1000 to 1700), and night (1700 to 0500). Means and standard
errors (error bars) are provided for the control pasture (C) and last stagger scores
(LSS) 0, 1, and > 1 in the endophyte infected pasture during period 1 (March
23 to 27), period 2 (March 28 to 31), and period 3 (April 1 to 6).

The diurnal activity patterns of two sheep that displayed moderate to
severe ryegrass stagger symptoms (LSS 3 and 4) at the end of the study
changed compared to the beginning of the study when their stagger
score was 0 (Fig. 3 and 4). The periods of relatively constant values near
zero (likely inactivity) of the y- and especially z-axis were longer at the
end of the study than at the beginning. Although all 3 accelerometer
axes showed changes in activity patterns, the y-axis (side to side head
movements) and especially the z-axis (up and down head movements)
showed the most notable changes.
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Fig. 2. Mean movement intensity (MI) by period during the morning (0500 to 1000), midday (1000 to 1700) and night (1700 to 0500). Means and standard errors
(error bars) are provided for the control pasture (C) and last stagger scores (LSS) 0, 1 and > 1 in the endophyte infected pasture during period 1 (March 23 to 27),

period 2 (March 28 to 31), and period 3 (April 1 to 6).

6. Discussion

In this study, only two sheep showed any moderate to severe rye-
grass stagger symptoms (LSS 3 or 4). Weight gain of sheep grazing en-
dophyte infected pasture was higher than control sheep supporting the
assertion that ryegrass symptoms were minimal. The weather was cool

during the study, which may have reduced herbage endophyte toxin
concentrations in comparison to late summer when staggers are typi-
cally high at this trial site [14]. Although there is evidence that sheep
in the endophyte paddock travelled slower and slightly less distance
each day than control sheep, GPS tracking does not appear to be useful
for detecting staggers. No patterns in the daily differences among days
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for velocity were detected. Distance travelled and velocity did not in-
crease or decrease as the study progressed, which would be expected
if GPS tracking was a potential indicator of ryegrass staggers. Instead,
the differences in travel among days were erratic. Paddock size in this
study was very small (0.1625 ha), which limited the ability of sheep
to fully express spatial movements. Differences in travel between the
endophyte-infected and control paddocks is likely an artifact of differ-
ences among sheep or differences in the forage characteristics of the
paddocks. However, the amount of available forage was similar in both
paddocks.

6.1. Machine Learning of accelerometer data explained a large amount of
the stagger scores

The LDA generated features did not perform better than the domain
features used in both Random Forests and SVM. The domain features
for accelerometer data were adapted and combined by [16] based on
equations from [1, 4, 5, 7, 24] to detect sheep behavior, and they per-
formed well in this study. In contrast, LDA, in our study, projected the
data points into perpendicular axes, but failed to help in classification
because the features were directly informative. Such feature reduction
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Fig. 4. Average 1-minute movement data from the x, y and
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in LDA negatively affects the datasets with smaller numbers of instances
(in our case), even though it does not affect datasets with large numbers
of instances. LDA is usually good in cases where there are thousands of
features and some of them are redundant or highly related to other fea-
tures [28]. In this study, we removed variables that were highly corre-
lated before using LDA in Random Forests and SVM which likely reduced
the effectiveness of using LDA.

In general, Random Forests outperforms SVM due to the power of
ensemble approach. Ensemble approaches give a better result than the
corresponding non-ensemble approach, because the error probability of
an ensemble approach is always better than the error (if < 0.5) of its
individual classifier [33]. However, there is an exception in the result
of applying LDA to dataset 2 because the smaller number of instances
in each class negatively affected the accuracy. Dataset 2 has the same

total number of instances as dataset 1 but, dataset 2 has one more class
compared with dataset 1 because the number of instances in class 0 in
dataset 1 is divided into classes 0 and 1 in dataset 2. Thus, dataset 2 has
less information in each class to learn and capture, to classify data, than
in dataset 1. The F1-score in dataset 1 is higher than dataset 3 because
a longer duration of an instance may have provided more information
and improve the F1-score. Dataset 3 has more instances than dataset 1
but the duration of instances in dataset 1 is 30 times longer than those
in dataset 3 which may have resulted in a higher F1-score.

To confirm our experimental result that Random Forests was the best
classifier algorithm for our study, Waikato Environment for Knowledge
Analysis (WEKA) [18], a well-known ML software, was applied to our
datasets. WEKA provides ML algorithms for different ML tasks such as
classification, clustering, and regression. We utilized the Auto-WEKA
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package [22] to search and identify ML algorithms and their hyperpa-
rameters to achieve the best performance. The result obtained using
Auto-WEKA also showed that Random Forests was the best classifier.
Even though Auto-WEKA gave the same result as our work, we do not
recommend it due to the following reasons:

¢ The maximum depth of the tree used in Auto-WEKA could be unlim-
ited; thus, Random Forests model in WEKA can be prone to overfit-
ting.

e Auto-WEKA does not contain resampling methods to account for im-
balanced dataset, and K-folds cross validation used in Auto-WEKA
may not fit when the class distribution is not equal, specifically in
our datasets.

In brief, two ML classifiers and two types of features from accelerom-
eter data were used to classify whether a sheep had staggers. Overall,
Random Forests classification provided the best performance. The result
indicates that ensemble methods have potential to deal with problems
that have small numbers of instances and imbalanced data.

6.2. Statistical analyses of accelerometer metrics (features) support the
results of machine learning

Diurnal activity patterns monitored by accelerometer metrics (M ax,
and M I) appeared to change during the latter part of the study for sheep
displaying symptoms (LSS > 1) based on the strong interaction of period,
diurnal time class and LSS. Activity levels indicated by MI increased for
all sheep at the end of the study, but for the sheep with symptoms, the
activity increase was smaller during the last few days of the study. This
may be due to losses in motor function resulting from the endophyte
neurotoxins. Although few sheep showed symptoms, accelerometer met-
rics of sheep changed from the beginning of the study compared with
the end of the study. The most notable changes occurred during the
daylight hours. At night, when sheep were less active, no differences in
accelerometer metrics were apparent among sheep with differing LSS.
The most notable change in behavior from the beginning to the end of
the study occurred in the z axis that records up and down movements
of the head (Fig. 3 and 4). Up and down head movements (z axis) occur
while sheep are grazing, as do the other head movements (x and y axes)
to a lesser degree. The timing of the largest differences in activity (mid-
day) and the clear differences in the z-axis between the beginning and
end of the study suggest that grazing behavior is affected by perennial
ryegrass staggers.

Accelerometer metric levels and patterns clearly varied among sheep
even at the beginning of the study (e.g., Fig. 3 and 4). The variation
among sheep was likely a result of individual difference in behavior and
variability in the accelerometers [34]. This variation among sheep em-
phasizes the need for developing algorithms that are based on changes
in individual animal behavior patterns rather than groups of livestock
[3]. In addition to accelerometers, other technologies such as nose band
sensors may also be useful for monitoring livestock grazing endophyte
infected forages, quantifying grazing time and biting rate [29, 30, 36].
Technological advancements, such as Bluetooth® (Bluetooth SIG, Inc.,
Kirkland, WA USA) can facilitate data transfer from these monitoring
devices in real time. Monitoring of individual sheep and development
of machine learning and potentially “change-point” algorithms may be-
come a valuable method for detecting the onset of perennial ryegrass
staggers and other diseases.

Use of remote monitoring systems such as accelerometers has po-
tential to help producers detect when sheep should be moved from an
endophyte-infected paddock to a paddock with a non-toxic endophyte-
infected ryegrass or a paddock without endophyte infected forage. Store-
on-board accelerometers used in this study store movement data on the
device and do not provide managers with the data until the accelerome-
ter is removed from the animal and downloaded from the device. How-
ever, real-time monitoring of livestock with accelerometers is becoming
commercially available. Herddogg (https://herddogg.com, accessed 1
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February 2022) ear tags provide an activity index based on 3-axis ac-
celerometers every 6 minutes. The tags can transmit this activity index
to a reader termed a “dog bone” via Bluetooth® technologies. The dog
bone reader then transmits that data to the internet using cellular tech-
nology. With further development, near real time or real time technolo-
gies could transmit data to the internet where it could be evaluated using
machine learning techniques and/or change point algorithms, and the
results could be processed and interpreted using artificial intelligence
technologies [17]. An alarm could then be sent to the producer that a
sheep may be affected by endophyte toxins and should be evaluated.

Monitoring livestock with on-animal sensors should improve our un-
derstanding of animal behaviour in pastures with endophyte infected
forages. Scasta et al. [31] found that cattle intake of alkaloids changed if
tall grass prairies containing endophyte infected tall fescue were patch
burned. The presence of tall fescue affects structural heterogeneity of
rangelands by altering the influence of patch burning and grazing [29,
30]. Monitoring livestock grazing behaviour and the potential influence
of endophyte infected forage on animal heath may improve our under-
standing of these systems and ability to manage them.

7. Conclusion

The application of ML classification to accelerometer data was suc-
cessfully used in this case study to identify changes in behavior asso-
ciated with ryegrass staggers in sheep. The results of our study show
that ML is a good tool for developing algorithms to detect staggers from
accelerometer data because it combines variable patterns from differ-
ent metrics. Although more research is needed, the combination of ML
and real-time monitoring of sheep behavior with accelerometers has
potential to detect when endophyte toxin levels affect their well-being
(ryegrass staggers) and the animals should be moved to a different pas-
ture. In addition, monitoring of livestock health and grazing behaviour
with accelerometers and other on-animal sensors may provide data to
help manage endophyte infected pastures and facilitate practices such
as patch-burn grazing.
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