Received: 14 April 2021

Revised: 17 October 2021

W) Check for updates

Accepted: 13 December 2021

DOI: 10.1002/ecs2.4011

ARTICLE

Macrosystems Ecology

Clustering community science data to infer songbird
migratory connectivity in the Western Hemisphere

Jaimie G. Vincent' © |
Joseph R. Bennett'

1Department of Biology, Carleton
University, Ottawa, Ontario, Canada

*Ecosystem Science and Management
Program, University of Northern British
Columbia, Prince George, British
Columbia, Canada

3The Nature Conservancy of Canada,
Vancouver, BC, Canada

“wildlife Research Division, Pacific
Wildlife Research Centre, Environment
and Climate Change Canada, Delta,
British Columbia, Canada

5Cornell Lab of Ornithology, Ithaca, New
York, USA

Correspondence
Jaimie G. Vincent
Email: jaimie.vincent@carleton.ca

Funding information

Environment and Climate Change
Canada; Liber Ero Fellowship Program;
Natural Sciences and Engineering
Research Council of Canada

Handling Editor: Brooke Maslo

INTRODUCTION

Richard Schuster™?® |

Scott Wilson™* | Daniel Fink®® |

Abstract

Migratory connectivity describes the spatial linkage among migrating individuals
through time. Accounting for it is necessary for full annual cycle conservation
planning, to avoid uneven protection leading to overall population declines.
However, conventional methods used to study migratory connectivity usually
demand substantial fiscal and human resources. We present a methodology that
infers patterns of migratory connectivity for songbirds using relative abundance
models created from eBird, a global community science program. We compare
our inferences with previously described patterns of migratory connectivity for
two species assumed to exhibit broadscale parallel migration strategies: wood
thrush (Hylocichla mustelina) and Wilson’s warbler (Cardellina pusilla). Initial
findings suggest that our method has the potential to be a rapid and inexpensive
way to infer broad patterns of connectivity for species that do not engage in leap-
frog migration nor deviate much from parallel migration. Our flexible framework
can be used to guide sampling designs for studies of migratory connectivity and
to generate hypotheses for species in need of urgent conservation planning for
which migratory connectivity has not yet been established.
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nonbreeding period limit our ability to understand the
full annual cycle ecology of migrants and hinder conser-

Conservation plans must consider the full annual cycle to
adequately conserve migratory birds (Marra et al., 2015;
Runge et al., 2014; Webster et al., 2002). However, creat-
ing such plans comes with many challenges, not the least
of which is the fact that migrants often traverse vast dis-
tances annually and spend the majority of the year in
regions where monitoring has been historically sparse
(Runge et al., 2014). Knowledge gaps in time and space
that ensue throughout migration and the stationary

vation planning.

Migratory connectivity represents an important
foundation for research and conservation that address
limiting factors across time and space (Rushing
et al. 2016) because it describes the spatial linkage
between individuals through time (Marra et al., 2019).
For this reason, in cases where there is weak
connectivity—defined as situations in which individuals
scatter from one period to another (Cohen et al., 2018;
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Webster et al., 2002), conservation action in a given area
is predicted to have a range-wide effect on the entire pop-
ulation. In contrast, when individuals remain in geo-
graphic proximity and, thus, display strong connectivity,
conservation action can be directed to specific areas used
by a subpopulation of conservation concern. Addition-
ally, migratory connectivity can allow for more strategic
conservation actions that minimize cost and economic
activities, such as dynamic habitat protection (Reynolds
et al.,, 2017). Conservation plans that ignore migratory
connectivity can lead to uneven protection, which can
result in regional population declines if conservation
effort is not targeted to maintain key habitats throughout
the annual cycle (Martin et al., 2007).

Identifying migratory connectivity requires tracking
representative samples of individuals from different
populations of a species throughout the annual cycle. In
the last few decades, increasingly precise methodologies
and technologies have been developed for tracking migra-
tion (Faaborg et al., 2010; McKinnon & Love, 2018). Each
tracking technology has its own benefits and limitations.
Recaptures of banded individuals are generally too low to
infer migratory connectivity for songbirds (Hobson, 2003;
Plissner & Haig, 2011), and light-level geolocators, which
also require the recapture of an individual to extract
migration data, can also have low return rates for certain
species and cannot provide information when mortality
occurs during migration (McKinnon & Love, 2018). Fur-
ther, satellite GPS tags can be expensive and too heavy for
smaller songbirds (McKinnon & Love, 2018). Although
light-level geolocators and satellite GPS tags provide
detailed migration information per individual, extensive
fieldwork is required to elucidate a migration network
(Knight et al., 2018). On the contrary, inferring migratory
connectivity using intrinsic markers such as genetic
markers and stable isotope ratios does not require recap-
ture of individuals and can readily incorporate historical
samples from museum specimens. However, they can be
limited by coarser spatial resolution (Hobson, 2011).
Another recently developed tool is the Motus Wildlife
Tracking System, which is a network of automated radio-
telemetry arrays that can track the movements of any
small flying animal over vast spatial scales; as more Motus
stations are erected, this technology will be increasingly
useful to pinpoint connections between populations
(Taylor et al., 2017). Thus, there is not a single approach to
spatially delineate migrating songbird populations in
migratory connectivity studies, and boundaries among
populations are not always identified based on movement
data. For example, boundaries can be established with
political borders or recognized conservation regions such
as Bird Conservation Regions (Kramer et al., 2018), or by
intuitively dividing regions onto a map. Delineations

between migrating populations have also been created by
clustering demographic data (Rushing et al., 2016) and
genetic data (Ruegg et al., 2014).

In this paper, we develop an approach to infer song-
bird migratory connectivity between the breeding and
nonbreeding ranges using the spatially explicit estimates
of species’ relative abundance based on observations
from the eBird community science program (Fink et al.,
2018, 2020). Our goal is to present a methodology that
capitalizes on readily available data products and show-
case a model-based approach that should not replace
(nor supersede) other methods of assessing migratory
connectivity, but rather provide researchers with addi-
tional analytical options to explore migratory connectiv-
ity that is not dependent on individual tracking data. Our
objective is to apply a partition-based clustering method
that mirrors the methodology developed by Rushing
et al. (2016) that delineates natural populations based on
demographic data. In doing so, our approach provides a
method for delineating migratory regions in both the
breeding and nonbreeding ranges based on the Euclidean
distance between simulated individuals. Next, we aim to
infer migratory connectivity using Bayes’ rule, incorpo-
rating the total relative abundance of a region as a prior
and assuming parallel migration to calculate the likeli-
hood of individuals migrating to a given breeding region.
Parallel migration refers to a migratory system where
individuals that breed in the western part of a species’
range will also overwinter in the western part of the non-
breeding range and, similarly, where individuals that
breed in the eastern part of the breeding range will over-
winter in the eastern part of the nonbreeding range
(Alerstam & Hedenstrom, 1998). Parallel migration is
commonly observed in songbirds where migratory con-
nectivity has been studied, and there is strong evidence
in the literature that supports the persistence of broad
East-West divides for many species throughout the
annual cycle (e.g, Kelly & Hutto, 2005; Norris
et al., 2006; Stanley et al., 2015). To evaluate the perfor-
mance of our methods, we apply our methodology to two
species for which there has been extensive migratory con-
nectivity research: wood thrush (Hylocichla mustelina)
(Stanley et al., 2015) and Wilson’s warbler (Cardellina
pusilla) (Ruegg et al., 2014). This novel, low-cost
approach to inferring migratory connectivity with com-
munity science data and common migration patterns
could be applied to understudied species as an initial
approach that can inform further exploration (e.g., to
species for which migratory connectivity estimates are
required before undertaking field studies) and to refine
migratory connectivity estimates for species for which
data are already available, thereby helping managers to
plan for full annual cycle conservation.
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METHODS
Study species

The wood thrush is a forest songbird that breeds in the
eastern United States and southeastern Canada and win-
ters in Central America. The species is listed as near-
threatened on the International Union for the Conserva-
tion of Nature (IUCN) Red List and threatened under
Canada’s Species at Risk Act. The strength of migratory
connectivity during wood thrush migration is uncertain,
although there is some evidence that spatial segregation
diminishes en route (Cohen et al., 2018). Nevertheless,
light-level geolocator tracking evidence suggests strong con-
nectivity and parallel migration between the breeding and
nonbreeding periods (Stanley et al., 2015). More specifically,
breeders in the American Northeast are strongly associated
with the eastern nonbreeding range (i.e., eastern Honduras
to Costa Rica); breeders in the American Midwest are con-
nected with the central and eastern nonbreeding ranges
(i.e., from Guatemala to Costa Rica); breeders in the west-
ern and southern portions of the American breeding range
are linked to the eastern and central nonbreeding ranges
(i.e., Mexico to western Honduras); and breeders from the
western breeding range disperse throughout the non-
breeding range, although individuals recaptured in the
western nonbreeding range were exclusively from the west-
ern breeding range (Stanley et al., 2015).

Wilson’s warbler is a shrub songbird that breeds
mostly in northern forests of Canada and the northwestern
United States and winters in Central America and along
the Gulf of Mexico. A broad East-West divide in the
breeding range is well documented for this species (Clegg
et al., 2003; Irwin et al., 2011; Kelly et al., 2002), with fur-
ther genetic differentiation within the western group more
recently recognized (Ruegg et al., 2014). Continent-wide,
there is evidence of moderate parallel migration, where
eastern breeders from Quebec and the Maritimes migrate
to the east of Veracruz, Mexico, and south to Panama, and
individuals from the northwestern group tend to spread
throughout the nonbreeding range (Irwin et al., 2011;
Ruegg et al., 2014). Isotopic and genetic analyses have
shown that individuals from the western group demon-
strate leapfrog and parallel migration (Clegg et al., 2003;
Kelly et al., 2002; Ruegg et al., 2014).

To judge the plausibility of our models, we compare
our migratory connectivity inferences with migratory net-
works constructed with multiple intrinsic markers and
light-level geolocator tracks for wood thrush (Stanley
et al.,, 2015) and migratory networks built via genetic
markers for Wilson’s warbler (Clegg et al., 2003; Irwin
et al., 2011; Kelly et al., 2002; Ruegg et al., 2014) in the
“Discussion.”

eBird relative abundance estimates

eBird is a global community science (aka citizen science)
project where members of the public can submit check-
lists containing information on bird counts and survey
effort for any region (Sullivan et al., 2009). We used the
relative abundance estimates (Fink et al., 2018) from the
eBird Status and Trends project to describe the relative
abundance of wood thrush and Wilson’s warbler during
the 2016 breeding and 2016/2017 nonbreeding seasons.
The relative abundance estimates from the eBird Status
and Trends project have been successfully used for other
broadscale studies that rely on full annual cycle connec-
tivity information (Johnston et al, 2020; Schuster
et al., 2019). These estimates are based on the Adaptive
Spatio-Temporal Exploratory Models (AdaSTEM) (Fink
et al., 2014; Fink et al., 2020) and data from the eBird
community science program (Sullivan et al., 2014). Adap-
tive Spatio-Temporal Exploratory Model controls for vari-
ation in detectability associated with search effort by
standardizing the relative abundance estimates as the
expected number of individuals of a species an observer
is likely to encounter between 7:00 AM and 8:00 AM
while traveling 1 km at a pixel resolution of 8 km?* for
every week of the year.

To infer migratory connectivity between the breeding
and nonbreeding seasons, we selected relative abundance
for a single week to represent a “snapshot” of each static
season. We selected the week of 4 July for the breeding
season and the week of 18 January for the nonbreeding
season for both species. For the purposes of this study,
the breeding period is inclusive of breeding adults, adults
with failed nesting attempts who have moved away from
their original nesting territory, and older hatch-year
birds, and the nonbreeding season does not include con-
siderations for intra-seasonal movement. We included
pixels located within the 95% home range estimate using
a kernel utilization distribution function assuming a
bivariate normal probability density function using the
adehabitat R package (Calenge, 2006).

Delineating regions
Simulated counts

To simulate individual birds from relative abundance
estimates, we transformed the modeled relative abun-
dance values into pseudo-counts, hereafter referred to as
“counts,” by multiplying the relative abundance value of
an 8.4-km? pixel by 10 and rounding to the nearest inte-
ger in order to capture relative abundance values <1. We
considered these counts to be a proxy for the number of
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individuals located within the pixel. To delineate the
seasonal populations into regions based on proximity
between individuals, we clustered simulated individual birds
using the Clustering for Large Applications (CLARA) algo-
rithm, a partition-based clustering method suitable for large
datasets that separates objects into a user-defined number of
clusters (Kaufman & Rousseeuw, 1990). Clustering for Large
Applications therefore requires the distance between individ-
ual objects (Kaufman & Rousseeuw, 1990). In our case, an
“object” refers to an individual simulated bird.

Determining the optimal number of clusters

We used two evaluative criteria to determine the optimal
number of clusters (k): the average silhouette method and
the gap statistic. The former measures an object’s similar-
ity (proximity) to other objects of its cluster compared with
its similarity to data objects of other clusters (Kaufman &
Rousseeuw, 1990). The latter compares the distribution of
the data objects within a cluster to the expected distribu-
tion under a null reference set (Tibshirani et al., 2001).

We used the NbClust function from the NbClust R
package to compute the average silhouette and gap statis-
tic for solutions between two and eight clusters. We chose
to test between two and eight clusters because of comput-
ing constraints and because we presumed that broadscale
migratory connectivity inferences with fewer large regions
would produce more conservative inferences than infer-
ences created with a larger number of smaller regions.

We computed both evaluative criteria 100 times by
randomly sampling 1000 counts each time. The mode of
all the optimal k solutions from the 100 samples derived
from the average silhouette index was compared with that
of the Gap statistic. If there was disagreement between the
two criteria, we considered the mode of the average sil-
houette index to be the optimal k (Long et al., 2010).

Clustering simulated counts

Clustering for Large Applications builds off the Par-
titioning Around Medoids (PAM) algorithm, which clus-
ters objects in an iterative process that minimizes the
dissimilarity (i.e., distance) of objects within clusters
(Kaufman & Rousseeuw, 1990). Partitioning Around
Medoids requires considerable computing power, which
is why it is unsuitable for large datasets. Clustering for
Large Applications randomly subsamples a large dataset
multiple times and computes PAM on each sample. Clus-
tering for Large Applications retains the set of clusters
that minimizes the dissimilarity of all objects to their
respective central object (Kaufman & Rousseeuw, 1990).

We applied the CLARA algorithm to the counts with
the cluster R package (Maechler et al., 2018). Clustering
for Large Applications requires the user to define the size
of the samples (i.e., the number of individuals to input
into the PAM algorithm) and the number of samples that
it will draw from the dataset to find the optimal cluster-
ing solution (i.e., the number of times that it will com-
pute the PAM algorithm). We defined the sample size to
be 15% of the total number of counts for computational
feasibility. We parameterized the algorithm to draw
100 samples to determine the optimal clustering solution.
We used Euclidean distance to compute the distance
between individuals. The resulting clusters delineated the
regions for each seasonal range.

Migratory connectivity analysis using
Bayes’ rule

To infer connections between breeding and nonbreeding
regions, we applied Bayes’ rule to calculate the probabili-
ties of connection for each simulated bird to every target
region in the other stationary period. Considering that
differences in total relative abundance between regions
could influence the probability of belonging to one region
(Gomez et al., 2019; Norris et al., 2006; Royle &
Rubenstein, 2004; Wilgenburg & Hobson, 2011), we
included a region’s total relative abundance as a prior
while applying Bayes’ rule:

fIb)f(b)

fbly)= )

(1)

The prior probability of connection with a location
b is dependent on the total relative abundance in that
region, noted as f(b), calculated by summing of the
counts of the region. We standardized the prior probabili-
ties for each region to sum to 1.

The likelihood of an individual’s assignment to a
given target region b from a given pixel y* denoted as f
(y*|b), is calculated with the underlying assumption that
the study species demonstrates parallel migration. That
is, individuals that breed in the most westerly area of the
range will migrate to the most westerly area of the non-
breeding range, and birds that breed in the most easterly
area of the breeding range will migrate to the most east-
erly area of the nonbreeding range. To represent this, we
first standardized all of the individuals’ longitudinal
values across each range and, for ease of calculation,
assumed that the distribution of standardized values
within each cluster was normal (though in some cases,
the distribution deviated from normal; see Appendix S1:
Figures S3 and S6). We then calculated the likelihood of
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all the simulated individuals to a target region from a
given pixel, f{y*|b), with a normal density function:

folb) =

| s om)| @

where y* is an individual’s standardized longitudinal
value relative to its seasonal range, and y, and o}, are the
standardized longitudinal mean value and standard devi-
ation of a target region, respectively. The marginal proba-
bility, noted as fly), is calculated using the following
equation:

b,
FO)=>_fOIb)f(b) 3)
by

For a given individual, the target region that resulted
in the highest f(b|y) value was considered the most likely
assignment region. We calculated the f{b]y) value per
breeding region for all the individuals in the nonbreeding
range and the f{b|y) value per nonbreeding region for all
the individuals in the breeding range.

RESULTS
Wood thrush

Based on the average silhouette index and the gap statistic,
we determined the optimal number of clusters for wood
thrush to be 3 in the breeding range and 2 in the non-
breeding range (Figure 1a, Appendix S2: Tables S1 and S2).

For wood thrush, when we connected breeding to
nonbreeding regions (Figure 1b), all individuals from the
western breeding cluster (Figure 1a, cluster 1) and the
central breeding cluster (Figure 1a, cluster 2) were
predicted to be connected to the western nonbreeding
cluster. Most individuals (57%) from the eastern breeding
cluster were assigned to the eastern nonbreeding cluster.

Almost all individuals located in the eastern non-
breeding cluster were predicted to be connected to the
eastern breeding cluster (Figure 1c). Conversely, individ-
uals located in the western nonbreeding cluster were esti-
mated to be connected to all of the breeding clusters,
with the majority being assigned to the central breeding
cluster (Figure 1c).

Wilson’s warbler

For Wilson’s warbler, two clusters were optimal in the
breeding range (Figure 2a). The nonbreeding range was

divided into five clusters, although there was disagree-
ment between the two evaluative criteria, where the aver-
age silhouette index suggested five clusters and the gap
statistic suggested two clusters (Appendix S2: Table S4).

When assigning connections to simulated individuals
in the breeding range (Figure 2b), most (75%) western
breeders were predicted to migrate to central Mexico
nonbreeding cluster (Figure 2, cluster 2), with 19% mov-
ing to northwestern Mexico (cluster 1), and only 6% to
southern Mexico (cluster 3). Eastern breeders were most
likely to migrate to the most eastern nonbreeding clusters
4 (36%) and 5 (58%), while 5% were predicted to migrate
to southern Mexico (cluster 3).

When connecting simulated individuals in the non-
breeding range (Figure 2c), our results predict low mixing
in central Mexico and in the southern United States
along the Gulf of Mexico (cluster 2). More extensive
mixing is predicted in southern Mexico and Guatemala
(cluster 3).

DISCUSSION

Migratory connectivity is notoriously challenging to study
for migratory birds, especially for songbirds because of
their small size and low recapture rates (McKinnon &
Love, 2018). Moreover, the high costs associated with
conventional field-based or tracking methods tend not to
resolve the issue of low sample sizes (although exceptions
exist; see Fraser et al., 2012; Knight et al., 2018; Ruegg
et al., 2014). Our research provides a method that can be
widely adopted to infer migratory connectivity for species
that are difficult to study with tracking technologies.

Our inferences are consistent with known migratory
connectivity patterns for wood thrush, though less so for
Wilson’s warbler. Models suggested strong connectivity
between southern/central breeding regions and western
nonbreeding regions for wood thrush but only weak con-
nectivity for northeastern breeders. For Wilson’s warbler,
our migratory connectivity model suggested that western
and eastern breeders are most likely to mix during the
nonbreeding period in central (cluster 2) and southern
Mexico (cluster 3).

In accordance with published wood thrush migratory
networks (Rushing et al., 2014; Stanley et al., 2015), our
results suggest that broadscale connectivity exists for
wood thrush along an East-West axis. Similar to the con-
nectivity network described in Rushing et al. (2014), our
models describe the high connectivity between the cen-
tral and western breeding clusters with the western
region of the nonbreeding range (Figures 1b). Likewise,
we find that our inferences are also congruent with Stan-
ley et al. (2015), where 102 wood thrush were tracked
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FIGURE 1 Migratory connectivity estimates for wood thrush. (a) Regions are defined by clustering eBird’s wood thrush Adaptive

Spatio-Temporal Exploratory Models (AdaSTEM) counts for the week of 4 July (breeding clusters) and 18 January (nonbreeding clusters).
Dark gray pixels represent the excluded pixels from the home range (95%) analysis. The purple, blue, and green regions correspond to the
breeding clusters 1, 2, and 3, respectively. The turquoise and orange regions correspond to the nonbreeding clusters 1 and 2, respectively.
(b) The proportion of counts from the breeding range assigned to the nonbreeding clusters. (c) The proportion of counts from the

nonbreeding range assigned to the breeding clusters

with light-level geolocators. However, we do note one
dissimilarity; light-level geolocator tracking revealed
higher connectivity between the central breeding cluster
and the eastern nonbreeding cluster than our model
suggested (Figure 1). This suggests that the parallel
migration assumption can be insufficient to predict
actual movement patterns by itself without field data to
inform additional priors.

Although our analyses identified the broad East-
West divide in the breeding range for Wilson’s warbler
(Clegg et al., 2003; Irwin et al., 2011; Kelly et al., 2002),
they failed to reflect finer-scale genetic populations
along the western coast of the United States (Ruegg
et al., 2014). Wilson’s warbler migratory connectivity
estimates obtained from range-wide and high-resolution
genetic markers (Ruegg et al., 2014) provide a rigorous
backdrop against which our methodology’s inferences
can be compared and its strengths and limitations can
be described.

There are two main areas of disagreement between
our inferences and the genetic inferences for Wilson’s

warbler, which likely reflect the larger population size of
the western than eastern breeders (see Appendix S1:
Figure S4). First, while our estimates predict that few
individuals from the central Mexico nonbreeding region
(cluster 2) migrate to the eastern breeding cluster (Figure 2c),
genetic markers did not predict a connection between east-
ern breeders and that region (Ruegg et al., 2014). For Wil-
son’s warbler, eastern breeders are notoriously difficult to
sample in the nonbreeding range even with an extensive
sampling design (Irwin et al., 2011). Further, no genetic sam-
pling occurred along the northwestern shore of the Gulf of
Mexico (Ruegg et al, 2014), which is part of our central
Mexico nonbreeding cluster. In this case, the differing migra-
tory connectivity estimates show how our methodology can
be helpful for filling in information gaps when it is not feasi-
ble to sample every part of a species’ range.

Second, our estimates did not predict that western
breeders overwinter along the entire longitudinal gradi-
ent of the nonbreeding range, as was shown via genetic
analyses (Ruegg et al., 2014). This difference highlights a
limitation of our methodology. Further work to improve
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FIGURE 2 Migratory connectivity estimates for Wilson’s warbler. (a) Regions are defined by clustering eBird’s Wilson’s warbler

Adaptive Spatio-Temporal Exploratory Models (AdaSTEM) counts for the week of 4 July (breeding clusters) and 18 January (nonbreeding

clusters). Dark gray pixels represent the excluded pixels from the home range (95%) analysis. The blue and green regions correspond to the
breeding clusters 1 and 2, respectively. The orange, turquoise, lilac, pink, and light green regions correspond to the nonbreeding clusters 1, 2,
3, 4, and 5, respectively. (b) The proportion of counts from the breeding range assigned to the nonbreeding clusters. (c) The proportion of

counts from the nonbreeding range assigned to the breeding clusters

our methodology could incorporate dispersal probabili-
ties relative to the proportion of individuals from each
breeding range and the total area occupied during the
nonbreeding season.

Possible applications

Our methods provide a novel and feasible way to esti-
mate plausible migratory connectivity patterns for species
that are in need of conservation planning and have lim-
ited data to identify connectivity. Additionally, this
model-based approach is not limited by survivorship bias,
although it is not the only way to circumvent the issue
(see Rushing et al., 2021). In some circumstances, our
methods may not reflect actual migratory connectivity,
which is why the results of connectivity networks con-
structed using this methodology can be thought of as a
starting point; other tracking technologies could then be
incorporated to provide a more integrated assessment of
connectivity. We caution that connectivity inferences
should be taken as coarse estimates and that the methods

presented in this study might not be appropriate for all
songbird species. In any case, conservation plans should
be robust enough to account for different connectivity
scenarios in case migratory connectivity is not confirmed,
poorly understood, or subject to change under different
environmental conditions (Runge et al., 2014).

In cases where other data, such as band records, migra-
tory tracks, stable isotopes, are available for a given species,
the Bayesian framework can be used to refine migratory
connectivity estimates according to new sources of infor-
mation when parallel migration can be reasonably
assumed. Indeed, methodologies that incorporate genetic
markers and stable isotopes ratios into a Bayesian frame-
work are already available in the literature (see, for e.g.,
Chabot et al., 2018; Rundel et al., 2013), and eBird data
specifically have already been used to constrain migratory
estimates derived from stable isotopes (Fournier et al.,
2017). If the assumption of broadscale parallel migration
can be made, our methodology can be easily used along-
side other data types without adding significant costs.

For species that are subject to field studies, our
methods can also be used to generate hypotheses of
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coarse connectivity to improve the sampling design for
future fieldwork in both stationary periods of the annual
cycle that would then refine connectivity estimates.
Migratory connectivity field studies should indeed aim to
sample individuals across the entire extent of their range
with an equal effort at each sampling site (Cohen
et al., 2018; Knight et al., 2018). A sound sampling strat-
egy would be to ensure sampling locations in each
hypothesized cluster, with equal sampling effort among
clusters in each period.

Caveats

We note several important caveats. First, our exploratory
methodology infers migratory connectivity between the
breeding and the nonbreeding ranges; it does not attempt
to describe connectivity during migration. This is because
parallel migration is not always maintained during
migration, even if the final destinations of individuals
often follow parallel patterns (e.g., Delmore et al., 2012).
However, because eBird relative abundance models are
available on a weekly basis, important common stop-
over areas could be identified in future studies if
assumptions can be made about migratory routes. For
example, geographically separate migration corridors
such as waterfowl migration flyways could provide
baseline assumptions for additional migratory connec-
tivity analysis for certain species. Further, our method-
ology does not include assumptions of latitudinal
migration strategies and eBird does not currently track
individual movement; therefore, we do not take into
account leapfrog or chain migration possibilities.

Second, we assumed that individuals’ longitudinal
values were normally distributed in each region to sim-
plify calculations. An improved methodology would con-
sider the unique distribution of longitudes of individuals
in each region and apply different probability density
functions accordingly. This would, however, still assume
that “perfect” parallel migration occurs, which of course
may never be the case. Relaxations of this assumption
could perhaps be explored in the future, via additional
simulations.

Third, the shape of the clustered regions is limited to
the nature of the CLARA algorithm, which seeks to mini-
mize the objective function based on the Euclidean dis-
tance of each cluster object to the centroid of each
cluster. Therefore, CLARA clusters tend to be spherical,
and oblong clusters are not recognized (Kaufman &
Rousseeuw, 1990). Ultimately, when applying our
method to a species in real-world conservation scenarios,
the resulting clusters should be tempered with expert
opinion and, if available, integrated with other data

relevant to population delineation such as genetic
markers, stable isotope ratios, or band returns. Some
density-based clustering techniques such as DBSCAN
can better recognize oblong clusters, but require care-
ful consideration of user-defined parameters (Zerhari
et al., 2015). To implement CLARA, the user must only
define the number of clusters and sample sizes. For
large datasets (such as ours), sample size is limited by
computational constraints.

Finally, community science data in general have been
critiqued for being biased toward areas with higher
human activity (Chandler et al., 2017; Lloyd et al., 2020;
Theobald et al.,, 2015). Nevertheless, when analyses
account for species and spatial bias, community science
is a valuable tool for conservation (McKinley et al., 2017).
Indeed, models of distribution and relative abundance
with eBird data account for variation in data density at
regional-seasonal scales and for varying survey effort
within region-seasons (Fink et al., 2010, 2013, 2014,
2020). Continent-wide weekly models such as the eBird
relative abundance estimates present new opportunities
for full annual cycle research (Schuster et al., 2019).

CONCLUSION

Conventional methods for tracking migratory connectiv-
ity can be challenging and expensive. To our knowledge,
this is the first time that community science has been
used as the only data source to explore migratory connec-
tivity using a parallel migration assumption. Our work
provides a low-cost opportunity to enhance our under-
standing of migration and can be applied to understudied
species in need of conservation action. Our method also
provides a flexible framework for producing hypotheses
relevant to field studies. To adapt this methodology on a
species-by-species basis, future work could incorporate
all other available data for the species of interest (such as
genetic markers and stable isotopes) to refine the cluster-
ing process and the inferred migratory connectivity and
could explore stopover connectivity if appropriate indi-
vidual movement data are available.
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