
An Adaptive Eigendeformation-based Reduced-Order
Homogenization Model for Composite Materials under

Volumetric and Interfacial Damage

Min Lin ∗
University of Wyoming, Laramie, Wyoming, 82071, US

David Brandyberry †
University of Illinois Urbana-Champaign, Champaign, IL, 61801, US

Xiang Zhang ‡
University of Wyoming, Laramie, Wyoming, 82071, US

In this manuscript, we present a multiscale Adaptive Reduced-Order Modeling (AROM)

framework to efficiently simulate the response of heterogeneous composite microstructures un-

der interfacial and volumetric damage. This framework builds on the eigendeformation-based

reduced-order homogenization model (EHM), which is based on the transformation field anal-

ysis (TFA) and operates in the context of computational homogenization with a focus on model

order reduction of the microscale problem. EHM pre-computes certain microstructure infor-

mation by solving a series of linear elastic problems defined over the fully resolved microstruc-

ture (i.e., concentration tensors, interaction tensors) and approximates the microscale problem

using a much smaller basis spanned over subdomains (also called parts) of the microstructure.

Using this reduced basis, and prescribed spatial variation of inelastic response fields over the

parts, the microscale problem leads to a set of algebraic equations with part-wise responses

as unknowns, instead of node-wise displacements as in finite element analysis. The volumetric

and interfacial influence functions are calculated by using the Interface enriched Generalized

Finite Element Method (IGFEM) to compute the coefficient tensors, in which the finite element

discretization does not need to conform to the material interfaces. AROM takes advantage of

pre-computed coefficient tensors associated with the finest ROM and efficiently computes the

coefficient tensors of a series of gradually coarsening ROMs. During the multiscale analysis

stage, the simulation starts with a coarse ROM which can capture the initial elastic response

well. As the loading continues and response in certain parts of the microstructure starts to

localize, the analysis adaptively switches to the next level of refined ROM to better capture
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those local responses. The performance of AROM is evaluated by comparing the results with

regular EHM (no adaptive refinement) and IGFEM under different loading conditions and fail-

ure modes for various 2D and 3D microstructures. The proposed AROM provides an efficient

way to model history-dependent nonlinear responses for composite materials under localized

interface failure and phase damage.

Nomenclature

y = Coordinates of the microscale domain

ū, 𝜖𝜖𝜖 , 𝜎̄𝜎𝜎 = macroscopic displacement, strain, stress

𝜖𝜖𝜖 , ũ = strain perturbation and displacement perturbation

𝜖𝜖𝜖 (𝛼) , 𝜇𝜇𝜇 (𝛼) , 𝜎𝜎𝜎 (𝛼) = strain, inelastic strain and stress of part 𝛼

H̆, h̆, h̃ = elastic, interface and phase influence functions

L, E, P, Q, T, C, D, = coefficient tensors

I = Identity tensor

Superscripts

𝛼, 𝛽 = part number

Subscripts

𝑖, 𝑗 , 𝑘 , 𝑙, 𝑚, 𝑛 = index

I. Introduction

COMPOSITES are widely used in aerospace engineering under extreme conditions, and there is a significant interest

in using computational modeling for predictive evaluation and design of composite structures [1]. Among all

the challenges associated with the modeling of composite materials, we are particularly interested in: 1) capturing the

highly nonlinear behaviors at the microstructural scale that includes both phase damage and interface debonding and;

2) efficiently upscaling from a material microstructure to a structural component. Efforts have been made to accu-

rately capture complex mechanical behaviors at the microstructural scale, such as using Finite Element Method (FEM),

Generalized/Extended Finite Element Method (G/XFEM) [2, 3] and their IGFEM variant [4–7], and Fast Fourier Trans-

form (FFT) based methods [8, 9]. However, challenges still remain for efficient upscaling from the microscale to the

macroscale due to the prohibitive computational cost.

Several multiscale strategies have been developed to determine both elastic and inelastic responses of a representa-

tive volume element (RVE). Among these multiscale methods, computational homogenization methods [10–12] have

been developed to upscale the fully resolved microscale response of an RVE to that of a material point in the struc-
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tural scale component. While this method is versatile and flexible to account for different macro/microscale structures

and microscale constitutive laws, even with sophisticated solver techniques and the most advanced parallel computing

resources [13, 14], the high computational cost still prohibits its broader application for engineering applications.

To alleviate the computational cost of computational homogenization, reduced order modeling (ROM) provides

a novel way to balance computational cost and efficiency. Different strategies have been developed to achieve model

order reduction at the microscale level. These strategies include but not limited to transformation field analysis [15] and

its nonuniform transformation extension [16–18], self-consistent clustering analysis [19, 20], proper orthogonal decom-

position [21, 22], the wavelet-reduced-order model [23], and recently data-driven techniques [24, 25]. Alternatively,

the eigendeformation-based reduced-order homogenization model (EHM) based on transformation field analysis [26]

(TFA), has been proposed to model heterogeneous materials using a hierarchical model-order reduction strategy [27].

EHM has been further extended to model plasticity [28–33], and both continuum and discrete damages [34, 35]. EHM

pre-computes certain microstructure information by solving a series of linear elastic problems defined over the fully re-

solved microstructure (i.e., concentration tensors, interaction tensors) and approximates the microscale problem using

a much smaller basis spanned over subdomains (also called parts) of the microstructure. Using this reduced basis, and

prescribed spatial variation of inelastic response fields over the parts, the microscale problem leads to a set of algebraic

equations with part-wise responses as unknowns, instead of node-wise displacement as in finite element analysis.

Recently, IGFEM has been used to solve the influence functions in EHM, and a penalty method is developed to

achieve a single global stiffness matrix for all the elastic, phase inelastic, and interface inelastic influence functions for

higher efficiency [36]. In addition, a new interface traction formation is proposed, and the response-based partition-

ing scheme is adopted [19] and extended for interface partitioning. They also systematically studied the response of

various composite microstructures, and further demonstrated the potential of using EHM for nonlinear microstructure

design [37]. Fig. 1 shows the efficiency and accuracy of EHM compared to the reference IGEFM simulation for a

simple particulate composite microstructure under different loading conditions and failure modes. Overall, EHM can

capture the stress-strain response reasonably well, with 2-5 orders of magnitude of higher efficiency than IGFEM.

It can also be seen from Fig. 1 that even for ROMwith a very small number of parts (e.g., one part for the inclusion,

phase or interface), it generally captures the initial response well and a finer ROM is needed at later loading stage.

This is expected as ROM assumes a uniform response in each of the parts, and a finer ROM is needed when localized

responses emerge in some of the parts. We, therefore, develop an AROMbased on EHM for efficient multiscale analysis.

During the multiscale analysis stage of AROM, the simulation starts with a coarse ROM which can capture the initial

elastic response well. As the loading continues and response in certain parts of the microstructure starts to localize, the

analysis adaptively switches to the next level of refined ROM to better capture those local responses. The performance

of AROM is evaluated by comparing the results with regular EHM (no adaptive refinement) and IGFEM under different

loading conditions and failure modes for various 2D and 3D microstructures.
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(a) Inclusion Continuum Damage

(c) Matrix Continuum Damage

(b) Interface Debonding

Fig. 1 Accuracy and speedup of EHM with different number parts for a single-inclusion particulate composite microstruc-
ture under different loading conditions and failure modes [36]: (a) Inclusion damage; (b) Interface cohesive debonding of
particles from the matrix; (c) Matrix damage.

The remainder of the manuscript is organized as follows: Section II overviews the EHM model, and details the

AROM refining scheme as well as the calculation of coefficient tensors for coarser ROMs from the finest ROM. Model

verification is then conducted in Section III, together with the case study of various 2D and 3D composite microstruc-

tures. Section IV summarizes the manuscript.

II. Theory
In this section, an overview of the existing EHM method that considers damage in the matrix, reinforcement, and

interface of composite materials is first provided. we then discuss in detail how to construct a series of gradually

refining ROMs for use during the multiscale simulation.
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A. Overview of EHM

EHM is based on TFA and works in a two-scale computational homogenization setting. EHM reduces the compu-

tational cost by: 1) Partition matrix, phase, and interface of the model into a smaller number of subdomains known as

parts; 2) A set of coefficient tensors associated with the microstructure partitioning are computed in the pre-processing

stage by solving the influence function problems defined over the linear elastic microstructures, which reflect the inter-

actions between the microstructure and parts; 3) Inelastic fields are assumed uniform within each part. With the above

treatment and simplifications, the microscale problem leads to a set of algebraic equations with part-wise responses as

unknowns. EHM can be used as a constitutive law in a multiscale analysis of an arbitrary macrostructure, or it can be

used to investigate the response of a microstructure under a prescribed macroscale loading history. We focus on the

latter, where the governing equations in the response of the microscale domain are defined as:

𝜎𝑖 𝑗 , 𝑗 (𝒚) = 0, 𝒚 ∈ Θ

𝜖𝑖 𝑗 (𝒚) = 𝜖𝑖 𝑗 + 𝜖𝑖 𝑗 (𝒚),

𝜖𝑖 𝑗 (𝒚) =
1
2
(
𝑢̃𝑖, 𝑗 + 𝑢̃ 𝑗 ,𝑖

)
,

𝜎𝑖 𝑗 (𝒚)𝑛 𝑗 (𝒚) = 𝑡𝑖 (⟦𝒖̃(𝒚)⟧), 𝒚 ∈ Γ

𝜎̄𝑖 𝑗 =
1
|Θ|

∫
Θ
𝜎𝑖 𝑗 (𝒚)𝑑Θ

(1)

where the macroscopic stress 𝜎̄𝑖 𝑗 is the numerical average of microscopic stress over the microscale RVE domain Θ.

The strain tensor 𝜖𝑖 𝑗 consists of macroscale component 𝜖𝑖 𝑗 and perturbation component 𝜖𝑖 𝑗 . 𝑢̃𝑖 is defined as perturbation

displacement, which is periodic in RVE. y is the microstructural coordinates, and the | · | operator indicates the area

(2D) or volume (3D) of the microstructure domain Θ. The last equation in 1 relates the cohesive tractions 𝑡𝑖 , caused by

displacement jumps along material interfaces, Γ.

The volumetric domain that is damageable can be partitioned into 𝑁̃ volumetric parts, represented by Θ[𝛼] (𝛼 =

1, 2, , 𝑁̃), and the imperfect material interfaces can be partitioned into 𝑁̆ parts, denoted by Γ[ 𝜉 ] (𝜉 = 1, 2, 𝑁̆). EHM

relates the perturbation displacement field by so-called elastic (H), phase inelastic (h̆), and interface inelastic (h̃) influ-

ence functions, which are computed by solving a series of linear elastic problems over the microscale domain using

IGFEM [36]. The perturbation field can be defined as:

𝑢̃𝑖 (𝒚) = 𝐻𝑘𝑙
𝑖 (𝒚)𝜖𝑘𝑙 +

𝑁∑
𝜉=1

ℎ̆
𝑛[ 𝜉 ]
𝑖 (𝒚)𝛿[ 𝜉 ]𝑛 +

𝑁̃∑
𝜉=1

ℎ̃𝑘𝑙 [𝛼]𝑖 (𝒚)𝜇[𝛼]
𝑘𝑙 (2)

where 𝜇[𝛼]
𝑘𝑙 is the inelastic in the phase part 𝛼 and 𝛿

[ 𝜉 ]
𝑛 is the displacement jump in the interface part 𝜉. The EHM

system for composite materials is summarized in Box 1 and details are in Ref. [36]. For the constitutive equations for

the nonlinear phase parts and traction-separation laws for the interface parts, while depending on user specification,
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we adopt the exponential cohesive-zone model (CZM) of Ortiz and Pandolfi [38], and the isotropic continuum damage

model presented by Simo and Ju [39].

• Residual of balancing strain in a phase part:

𝑅
(𝛽)
1 = 𝐸

𝑘𝑙 [𝛽 ]
𝑖 𝑗 𝜖𝑘𝑙 +

𝑀̃∑
𝛼=1

𝑃
𝑘𝑙 [𝛽𝛼]
𝑖 𝑗 𝜇

[𝛼]
𝑘𝑙

+
𝑀̌∑
𝜉=1

𝑂
𝑚[𝛽𝜉 ]
𝑖 𝑗 𝛿

[ 𝜉 ]
𝑚 − 𝜖

[𝛽 ]
𝑖 𝑗 = 0,∀𝛽 ∈ [1, 𝑁̃]

• Residual of balancing tractions in an interface part:

𝑅
(𝜂)
2 = 𝑡

[𝑛]
𝑛 −

𝑀̃∑
𝛼=1

𝐶
𝑘𝑙 [𝜂𝛼]
𝑛 𝜇

[𝛼]
𝑘𝑙

−
𝑀̌∑
𝜉=1

𝐷
𝑚[𝜂𝜉 ]
𝑛 𝛿

[ 𝜉 ]
𝑚 − 𝑇

𝑘𝑙 [𝜂 ]
𝑛 𝜖𝑘𝑙 = 0,∀𝜂 ∈ [1, 𝑁̆]

• Coefficient tensors:

𝐸
𝑘𝑙 [𝛽 ]
𝑖 𝑗 = 𝐼𝑖 𝑗𝑘𝑙 +

1��Θ[𝛽 ] �� ∫Θ[𝛽 ]
𝐻𝑘𝑙
(𝑖,𝑦 𝑗) (𝒚)𝑑Θ

𝑃
𝑘𝑙 [𝛽𝛼]
𝑖 𝑗 =

1��Θ[𝛽 ] �� ∫Θ[𝛽 ]
ℎ̃
𝑘𝑙 [𝛼]
(𝑖,𝑦 𝑗) (𝒚)𝑑Θ

𝑂
𝑚[𝛽𝜉 ]
𝑖 𝑗 =

1��Θ[𝛽 ] �� ∫Θ[𝛽 ]
ℎ̆
𝑚[ 𝜉 ]
(𝑖,𝑦 𝑗) (𝒚)𝑑Θ

𝑇
𝑘𝑙 [𝜂 ]
𝑛 =

1��Γ[𝜂 ] �� ∫Γ [𝜂 ]
𝑄𝑛𝑖 (𝒚)𝐿𝑖 𝑗 𝑝𝑞 (𝒚)

[
𝐻𝑘𝑙
(𝑝,𝑦𝑞) (𝒚) + 𝐼𝑝𝑞𝑘𝑙 (𝒚)

]
𝑛̄ 𝑗 (𝒚)𝑑Γ

𝐶
𝑘𝑙 [𝜂𝛼]
𝑛 =

1
|Γ[𝜂 ] |

∫
Γ [𝜂 ]

𝑄𝑛𝑖 (𝒚)𝐿𝑖 𝑗 𝑝𝑞 (𝒚)
[
ℎ̃
𝑘𝑙 [𝒚 )
(𝑝,𝑦𝑞) (𝒚) − 𝐼

[𝛼]
𝑝𝑞𝑘𝑙

(𝒚)
]
𝑛̄ 𝑗 (𝒚)𝑑Γ

𝐷
𝑚[𝜂𝜉 ]
𝑛 =

1��Γ[𝜂 ] �� ∫Γ [𝜂 ]
𝑄𝑛𝑖 (𝒚)𝐿𝑖 𝑗 𝑝𝑞 (𝒚) ℎ̆𝑚[ 𝜉 ]

(𝑝,𝑦𝑞) (𝒚)𝑛̄ 𝑗 (𝒚)𝑑Γ

Box 1 Summary of the reduced order microscale problem.

B. ROM Partitioning

ROM are approximations of high-fidelity simulations. One of the key characteristics of this approach is that it

provides a hierarchical sequence of ROMs ranging from low fidelity - high efficiency to high fidelity - low efficiency

models, by increasing the number of parts, such that computational performance characteristics of the ROMs can be

directly controlled. The idea of static and dynamic partitioning was conceptually discussed [27]. Static partitioning

refers to the parts being pre-defined and fixed, and the same ROM is used throughout the multiscale analysis. Dynamic

partitioning, on the other hand, computes and stores element-wise influence functions and allows the computation of

coefficient tensors for arbitrary partitioning on the fly (see coefficient tensors in Box 1) and can switch to a new ROM

during the multiscale analysis. The majority of ROMs are based on static partitioning, where one needs to split the

damageable phase regions and imperfect interfaces into a desired number of parts, and select their geometries.

When the ROM order (i.e., number of parts) is fixed, it is desirable to achieve the lowest error using optimal parti-

tioning of the microstructure. Geometry- and response-based partitioning of the microstructure are the most frequently

used partitioning strategies, which either uses the distinct geometry features (e.g., inclusions and matrix in composites

and grains in metals [28, 40–42]) of the microstructure to construct a part, or group regions of similar response when
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subjecting the microstructure to a given loading into a part [19, 43]. Optimization can also be used to determine the

optimal partitioning of the microstructure [44, 45]. Brandyberry et al. [36] adopted the response-based k-means cluster-

ing of phase parts [19], and extended it to interface partitioning. This partitioning scheme creates parts not necessarily

geometrically connected and is very flexible to use (i.e., only need to specify the number of parts), and this scheme will

be adopted in the current study. Details about these damage models are summarized in Ref. [36].

Inspired by mesh adaptivity in FEA [46, 47], and the observation from Fig. 1 that a coarse ROM is sufficient to

capture initial response while a finer ROM is desired when localized response emerges, we aim to develop an AROM

based on EHM. Fan et al. [48] developed an adaptive two-scale nonlinear homogenizationmethod, where computational

homogenization and a single ROM are used at different locations of the macrostructure. Recently, Ferreira et al. Ferreira

et al. [49] proposed an Adaptive Self-Consistent Clustering Analysis (ASCA) method to predict the plasticity and

fracture behaviors of particle-matrix composites, which demonstrates that this strategy can improve the accuracy while

remaining low computation cost. But this study does not consider interface damage and adopted a relatively simple

failure criterion for the phases.

C. AROM based on EHM with volumetric and interfacial damage

Our proposed AROM is based on EHM and considers both volumetric and interfacial damages. While one could

take the dynamic partitioning concept, and only refine selected parts as needed, we limit our consideration in the

current work to an adaptive refinement scheme that every coarse part will be refined to the user-specified level. Coarser

ROM parts are based on the grouping of the finest ROM parts through k-means clustering. In the pre-processing stage,

we first compute the coefficient tensors of the finest ROM and store the k-means partitioning information of coarser

ROMs. Based on that, the coefficient tensors of the coarser ROMs can be computed on the fly during the simulation

process. When the multiscale simulation starts, the coarsest ROM will be used which is expected to capture the initial

elastic response accurately. As the load continues, deformation and damage in certain parts start to accumulate, and

the simulation switches to the next level of refined ROM based on a refining threshold and state initialization rule.

Figure 2 schematically illustrates the construction of a series of gradually refining ROMs using an idealized two-

phase microstructure. Each color indicates a different material phase, while the black grid lines indicate part boundary

and white grids represent element edges. The user specifies the part numbers of a series of adaptively refining ROMs

to be used in the simulation for all phases (e.g., the adaptive part number list is (2,4,...,16) for two phases in Fig. 2).

We then first calculate the coefficient tensors of the finest ROM (Fig. 2d) during the pre-processing. In the multiscale

simulation, we start with the 2-part coarsest ROM (one-part-per-phase, Fig. 2b), and the coefficient tensors of this ROM

can be computed from the finest ROM using k-means clustering [19, 36] of the localization tensors (i.e., E[𝛽 ] in Box 1)

based on the finest 16-part ROM. The next level of coarse ROM (4-part) (Fig. 2c) can be computed in the same way.

This coarsening scheme will ensure that each parent part will be split into the desired number of children parts during
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(a) (b) (c) (d)

Fig. 2 Schematic illustration of AROM refinement of (a) a two-phase microstructure, which starts with (b) 2-part, then to
(c) 4-part, and finally to (d) 16-part ROM. Black lines show part boundaries while white lines indicate element edges.

the refining, and the children parts’ deformation state can be straightforwardly initialized using their parent state. The

interface partitioning/refinement takes a similar approach as the phases.

The calculations of coefficient tensors of a large number of ROMs could be computationally expensive, and we

leverage the spitting of a parent part into children parts for fast calculation of coefficient tensors of the coarser ROMs

using those of the finest ROM as illustrated in Box. 2. While more sophisticated refining criteria could be developed,

we consider refinement when the load reaches user-specified values in the current study.

• Coefficient tensors related to only phase parts::

𝑃 (𝛽𝛼) =
1∑𝑁𝛽

𝑘=1
��Θ(𝛽𝑘 )

�� 𝑁𝛽∑
𝑘=1

𝑁𝛼∑
𝑖=1

���Θ(𝛽𝑘 )
��� 𝑃 (𝛽𝑘𝛼𝑖 )

𝐸
𝑘𝑙 (𝛽)
𝑖 𝑗 =

1∑𝑁𝛽

𝑟=1
��Θ(𝛽𝑟 )

�� 𝑁𝛽∑
𝑟=1

���Θ(𝛽𝑟 )
��� 𝐸𝑘𝑙 (𝛽𝑟 )

𝑖 𝑗

𝐴
(𝛼)
𝑖 𝑗𝑘𝑙

=
𝑁𝛼∑
𝑠=1

𝐴
(𝛼𝑠 )
𝑖 𝑗𝑘𝑙

• Coefficient tensors related to only interface parts:

𝐷
𝑚(𝜂𝜉 )
𝑛 =

1∑𝑁𝜂

𝑠=1
��Γ (𝜂𝑠 )

�� 𝑁𝜂∑
𝑠=1

���Γ (𝜂𝑠 )
��� 𝑁𝜉∑
𝑟=1

𝐷
𝑚(𝜂𝑠 𝜉𝑟 )
𝑛

𝑇
𝑘𝑙 ( 𝜉 )
𝑛 =

1∑𝑁𝜉

𝑟=1
��Γ ( 𝜉𝑟 )

�� 𝑁𝜉∑
𝑟=1

���Γ ( 𝜉𝑖 )
���𝑇 𝑘𝑙 ( 𝜉𝑟 )

𝑛

𝐵̄
( 𝜉 )
𝑖 𝑗𝑛 =

𝑁𝜉∑
𝑟=1

𝐵̄
( 𝜉𝑟 )
𝑖 𝑗𝑛

• Coefficient tensors related to both interface and phase parts:

𝐶
𝑘𝑙 [𝜂𝛼]
𝑛 =

1∑𝑁𝜂

𝑠=1
��Γ (𝜂𝑠 )

�� 𝑁𝜂∑
𝑠=1

���Γ (𝜂𝑠 )
��� 𝑁𝛼∑
𝑟=1

𝐶
𝑘𝑙 (𝜂𝑠𝛼𝑟 )
𝑛

𝑂
𝑚(𝛽𝜉 )
𝑖 𝑗 =

1∑𝑁𝜂

𝑠=1
��Θ(𝛽𝑠 )

�� 𝑁𝛽∑
𝑠=1

𝑁𝜉∑
𝑟=1

���Θ(𝛽𝑠 )
���𝑂𝑚(𝛽𝑠 𝜉𝑟 )

𝑖 𝑗

Box 2 Computing coefficient tensors of coarse ROM from the finest ROM.
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III. Numerical Verification
In this section, we investigate a series of examples to probe the efficiency and accuracy of AROM. The first two

examples are based on a 3D composite model, a sphere reinforcement inclusion of radius 35 𝜇𝑚 inside a cubic represen-

tative volume element (RVE) with a side length of 100 𝜇𝑚. These two examples are under biaxial loading conditions

but with different failure modes. We consider continuum damage in the matrix and cohesive damage in the particle

interface. The third example is a particulate composite RVE that contains ten randomly distributed spherical particles.

Each particle is with a radius of 3.5 𝜇𝑚. This model is under a tri-axial macroscopic loading. The last example is a 90𝑜

unidirectional composite ply with complex geometries. In this model, a composite laminate that contains 575 circular

fibers is under a pure shear loading, and the interface failure is considered.

A. A particulate composite microstructure with a single spherical inclusion with matrix damage

We consider a particulate composite microstructure with a single spherical inclusion inside the epoxy matrix as

shown in the insert of Fig. 3b. For the spherical inclusion, it is an isotropic material with Young’s modulus of 12 GPa

and Poisson’s ratio of 0.4. The matrix is an isotropic epoxy matrix with Young’s modulus of 2.4 GPa and Poisson’s

ratio of 0.4. The matrix damage parameters for the continuum damage are 𝑌𝑖𝑛 = 0.15 MPa, 𝜇 = 20 𝑠−1, 𝑃1 = 15, and

𝑃2 = 0.4. The 3D RVE is subjected to biaxial tension loads where 𝜖 = {0.04, 0.04, 0, 0, 0, 0}.

Results of AROM, ROM, and reference IGFEM simulation are compared in Fig. 3b. In adaptive ROM (AROM),

it begins with 2 matrix phase parts, switches to 4 parts at simulation time step 𝑡 = 0.5, and continues refinement to 16

parts at 𝑡 = 0.7. The three matrix phase partitionings for AROM are shown in Fig. 3a. The corresponding stress-strain

curves of AROM, ROM, and IGFEM are shown in Fig. 3b. As seen from 3b, in the first switch point of AROM where

the macroscopic strain amplitude is near 0.013, the AROM model is refined into 4 parts. We can see there is a clear

stress drop in the first switch point. We also can find a similar drop at the second switch point where strain amplitude

is around 0.025. After the second switch point, AROM finally converges to the results of ROM with 16 matrix parts.

When compared with IGFEM results, the accuracy of AROM is comparable to 16-part ROM. AROM achieves better

accuracy than 2-part ROM and 4-part ROM. The computation time of AROM to solve the residual problems defined

in Box 1 is about 0.19 CPU seconds while that of 16-part ROM is about 0.36 CPU seconds, which indicates AROM is

nearly 2 times faster than 16-part ROM for this simple RVE.

B. A particulate composite microstructure containing a single spherical inclusion with interface damage

The second example has the same model geometry, elastic material properties, and loading condition as in the last

section. But here only the interface damage is considered, and the damage parameters for Ortiz-Pandolfi Cohesive

Zone Model are 𝜎𝑐 = 100 MPa and 𝛿𝑐 = 20 𝑛𝑚.

AROM begins with a coarse ROM with 2 interface parts, then 4 interface parts, and finally the finest ROM with
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Fig. 3 (a) Phase partitioning using 2 parts, 4 parts, and 16 parts in AROM under biaxial loading condition; (b) Stress-
strain curves of IGFEM, AROM (from 2 to 16 phase parts) and ROM (2, 4, and 16 phase parts).

16 interface parts. The interface partition history for AROM is shown in Fig. 4a. We use the same refinement switch

points at timestep t = 0.5 and 0.7 as in the previous example. In the switch points, the interface parts are refined from 2

interface parts to 4 parts, and 4 parts to 16 parts, respectively. The stress-strain curves of AROM, ROM, and IGFEM in

the 11 direction are shown in Fig. 4b, and the zoomed version of the rectangular black box in Fig. 4b is shown in Fig. 4c.

From Fig. 4c, AROM demonstrates similar drops in the switch points as in the previous matrix damage case. AROM

converges to the 16-part ROM results. The computation time of AROM to solve the residual problems is about 0.07

s while that of 16-part ROM is about 0.11 s. AROM achieves a 1.5x speedup compared with ROM with 16 interface

parts.

C. 3D particulate composites containing ten spherical inclusions

ROM can be used to compute models with complicated geometries. The example presented here is a 3D par-

ticulate composite that is composed of ten randomly distributed spherical inclusions. It considers all three types of

damages: matrix, inclusion, and interface damages under tri-axial loads. The macroscopic strain load is 𝜖 = {0.04,-

0.02,-0.02,0,0,0}. In this example, the matrix continuum damage parameters are 𝑌𝑖𝑛 = 0.15 MPa, 𝜇 = 20 𝑠−1, 𝑃1 = 10,

and 𝑃2 = 0.2, and the inclusion damage parameters are 𝑌𝑖𝑛 = 0.15 MPa, 𝜇 = 20 𝑠−1, 𝑃1 = 5, and 𝑃2 = 0.5. The

cohesive damage parameters are 𝜎𝑐 = 100 MPa and 𝛿𝑐 = 20 𝑛𝑚.

Adaptive strategy is applied for both phase parts (matrix and inclusion) and interface parts (particle interface). The

adaptive part lists for matrix, inclusion and interface are [5,10,15], [6,12,24], and [7,14,28], respectively. ROM is

with 15 matrix parts, 24 inclusion parts, and 28 interface parts. The refinement switch points of AROM are the same

as in previous examples, t = 0.5 and 0.7. AROM starts with 5 matrix parts, 6 inclusion parts, and 7 interface parts.

The stress-strain curves of AROM and ROM are shown in Fig. 5a. At the first switch point, AROM overestimates the
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Zoomed stress-train curves of the black rectangle area in (b).
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Fig. 5 (a) Stress-strain curves of AROM and ROM considering matrix, damage and interface damage of the particulate
microstructure in the insert under tri-axial loading. AROM begins with 5 matrix, 6 inclusion, and 7 interface parts (abbre-
viated as [5, 6, 7]), then to [10, 12, 14] and finally to [15, 24, 28], while ROM use a constant partition of [15, 24, 28]. Stress
contours of AROM before each refining and at the end of the simulation (i.e., t=0.5, 0.7, and 1 s) in (b)-(d), and corresponding
ROM results in (e)-(g).

stress response by less than 5% when compared with ROM. And at the second switch point, AROM underestimates the

response by about 3%. But the finest AROM finally converges to the ROM results. The stress contours of AROM are

illustrated in Fig. 5b-d and that of ROM is illustrated in Fig. 5e-g. It can be seen from Fig. 5b and e, in the first switch

point, the overall stress response of AROM is slightly higher than ROM, which conforms to the observation in stress-

strain curves. The localized response of the final stress contour at 𝑡 = 1.0 of AROM shown in Fig. 5d demonstrates

remarkable agreement with that of ROM shown in Fig. 5g.

D. A composite ply with interface damage

In this subsection, we investigate a model with more complicated geometries. A unidirectional composite ply

including 575 circular fibers is shown in Fig. 6a. The cohesive damage model is applied to the fiber interfaces, and the

domain is subjected to a pure shear loading with an amplitude of 0.03.

The adaptive interface part list is [4,16,64], and ROM is with 64 interface parts. Fig. 6a demonstrates the 𝜎̄12 -

𝛾̄12 curves of AROM and ROM. The localized shear stress distributions in AROM and 64-part ROM are compared

in Fig. 6c and d, which shows similar shear stress distributions. And the spatial variations of shear stress along the

horizontal red dot lines in Fig. 6c and d are plotted in Fig. 6b. AROM obtains the same local response as ROM.

IV. Summary
We develop an AROM framework to further accelerate EHM for the modeling of composite materials under vol-

umetric and interfacial damage. The user specifies and constructs a series of gradually refining ROMs during the

pre-processing stage. During the multiscale analysis, the simulation starts with a coarse ROM that can efficiently and

accurately capture the initial response, and switches to a refined ROM when localized response starts to accumulate

12



Fig. 6 (a) Stress-strain curves of AROM and ROM of a 90o unidirectional composite ply in the insert with interface damage
under shear loading. AROM begins with 4 interface parts, then to 16 and finally 64 interface parts. ROM is with 64 interface
parts; Shear stress contour of AROM in (c) and ROM in (d), and their spatial distribution along the center line marked in
(c) and (d) are compared in (b).
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in some of the ROM parts. A series of numerical examples on different 2D and 3D composite microstructures are

analyzed and demonstrate the computational accuracy and efficiency of AROM compared with non-refining ROM

and reference IGFEM simulation. Future work focuses on developing non-uniform refinement and more sophisticated

refining criteria.
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