
Accelerating Serverless Computing by Harvesting Idle Resources
Hanfei Yu

hyu25@lsu.edu
Louisiana State University
Baton Rouge, LA, USA

Hao Wang
haowang@lsu.edu

Louisiana State University
Baton Rouge, LA, USA

Jian Li
lij@binghamton.edu

SUNY-Binghamton University
Binghamton, NY, USA

Xu Yuan
xu.yuan@louisiana.edu

University of Louisiana at Lafayette
Lafayette, LA, USA

Seung-Jong Park
sjpark@lsu.edu

Louisiana State University
Baton Rouge, LA, USA

ABSTRACT
Serverless computing automates �ne-grained resource scaling and
simpli�es the development and deployment of online services with
stateless functions. However, it is still non-trivial for users to allo-
cate appropriate resources due to various function types, dependen-
cies, and input sizes. Miscon�guration of resource allocations leaves
functions either under-provisioned or over-provisioned and leads
to continuous low resource utilization. This paper presents Freyr ,
a new resource manager (RM) for serverless platforms that maxi-
mizes resource e�ciency by dynamically harvesting idle resources
from over-provisioned functions to under-provisioned functions.
Freyr monitors each function’s resource utilization in real-time,
detects over-provisioning and under-provisioning, and learns to
harvest idle resources safely and accelerates functions e�ciently
by applying deep reinforcement learning algorithms along with a
safeguard mechanism. We have implemented and deployed a Freyr
prototype in a 13-node Apache OpenWhisk cluster. Experimental
results show that 38.8% of function invocations have idle resources
harvested by Freyr , and 39.2% of invocations are accelerated by
the harvested resources. Freyr reduces the 99th-percentile function
response latency by 32.1% compared to the baseline RMs.

CCS CONCEPTS
•Computer systems organization!Cloud computing; •Com-
puting methodologies! Planning and scheduling.

KEYWORDS
Serverless computing, resource harvesting, reinforcement learning

ACM Reference Format:
Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022. Ac-
celerating Serverless Computing by Harvesting Idle Resources. In Pro-
ceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022,
Virtual Event, Lyon, France. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3485447.3511979

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or a�liate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3511979

1 INTRODUCTION
The emergence of serverless computing has extensively simpli�ed
the way that developers access cloud resources. Existing server-
less computing platforms, such as AWS Lambda, Google Cloud
Functions, and Azure Functions, have enabled a wide spectrum
of cloud applications, including web services [34], video process-
ing [3, 11], data analytics [19, 27], and machine learning [7, 35]
with automated resource provisioning and management. By decou-
pling traditional monolithic cloud applications into inter-linked
microservices executed by stateless functions, serverless computing
frees developers from infrastructure management and adminis-
tration with �ne-grained resource provisioning, auto-scaling, and
pay-as-you-go billing [20].

Existing serverless computing platforms enforce static resource
provisioning for functions. For example, AWS Lambda allocates
function CPU cores in a �xed proportion to the memory size con-
�gured by users [6], leading to either CPU over-provisioned or
under-provisioned for the function execution. Therefore, server-
less service providers are enduring poor resource utilization due
to users’ inappropriate function con�guration—some functions are
assigned with more resources than they need [14]. The high concur-
rency and �ne-grained resource isolation of serverless computing
further amplify such ine�cient resource provisioning.

A few recent studies attempted to address the above issues. Some
researchers proposed to maximize resource utilization and reduce
the number of cold-starts by predicting the keep-alive windows of
individual serverless functions [12, 31]. Fifer [14] incorporated the
awareness of function dependencies into the design of a new re-
source manager to improve resource utilization. COSE [1] attempts
to use Bayesian Optimization to seek for the optimal con�gura-
tion for functions. Furthermore, several works [21, 22, 32] aimed to
accelerate functions and improve resource e�ciency by adjusting
CPU core allocations for serverless functions in reaction to their
performance degradation during function executions.

However, none of the existing studies has directly tackled the
low resource e�ciency issue raised by the inappropriate function
con�gurations. There are three critical challenges from the per-
spective of serverless service providers to address this issue. First, a
user function is secured as a black box that shares no information
about its internal code and workloads, making it hardly possible for
the serverless system to estimate the precise resource demands of
user functions. Second, decoupling monolithic cloud applications to
serverless computing architectures generates a variety of functions

1741

https://doi.org/10.1145/3485447.3511979
https://doi.org/10.1145/3485447.3511979
https://doi.org/10.1145/3485447.3511979
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485447.3511979&domain=pdf&date_stamp=2022-04-25


WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

with diverse resource demands and dynamic input workloads. Third,
the resource provisioning for serverless functions is �ne-grained
spatially (i.e., small resource volumes) and temporally (i.e., short
available time).

In this paper, we address the aforementioned challenges by pre-
senting Freyr , a new serverless resource manager (RM) that dynam-
ically harvests idle resources to accelerate functions and maximize
resource utilization. Freyr estimates the CPU and memory satura-
tion points respectively of each function and identi�es whether
a function is over-provisioned or under-provisioned. For those
over-provisioned functions, Freyr harvests the wasted resources
according to their saturation points; for those under-provisioned
functions, Freyr tries to accelerate them by o�ering additional, and
just-in-need allocations to approach saturation points. We apply
an experience-driven algorithm to identify functions over-supplied
and under-supplied by monitoring a series of performance metrics
and resource footprints, including CPU utilization, memory utiliza-
tion, and function response latency to estimate the actual resource
demands of running functions. To deal with the highly volatile envi-
ronment of serverless computing and large numbers of concurrent
functions, we propose to apply the Proximal Policy Optimization
(PPO) algorithm [30] to learn from the realistic serverless system
and make per-invocation resource adjustments. Besides, we design
a safeguard mechanism for safely harvesting idle resources without
introducing any performance degradation to function executions
that have resource harvested.

We implement Freyr based on Apache OpenWhisk [4], a popular
open-source serverless computing platform. We develop a Deep
Reinforcement Learning (DRL) model and training algorithm using
PyTorch and enable multi-process support for concurrent function
invocations. We evaluate Freyr with the other three baselines on an
OpenWhisk cluster using realistic serverless workloads. Compared
to the default resource manager in OpenWhisk, Freyr reduces the
99th-percentile function response latency of invocations1 by 32.1%.
Particularly, Freyr harvests idle resources from 38.8% of function
invocations while accelerating 39.2% on the OpenWhisk cluster.
Notably, Freyr only degrades a negligible percentage of function
performance under the system performance variations of the Open-
Whisk cluster.

2 BACKGROUND AND MOTIVATION
This section �rst introduces the status quo of resource provisioning
and allocation in serverless computing. Then, we use real-world
experiments to demonstrate that serverless functions can easily
become under-provisioned or over-provisioned, and motivate the
necessity to accelerate under-provisioned functions and optimize
resource utilization by harvesting idle resources at runtime.

2.1 Resource Provisioning and Allocation in
Serverless Computing

Existing serverless computing platforms (e.g., AWS Lambda, Google
Cloud Functions, and Apache OpenWhisk) request users to de�ne
memory up limits for their functions and allocate CPU cores ac-
cording to a �xed proportion of the memory limits [4, 5, 13, 36].

1In this paper, a function denotes an executable code package deployed on serverless
platforms, and a function invocation is a running instance of the code package.

EG-L EG-S Saturation

La
te

nc
y 

(s
)

0

2

4

CPU cores
2 4 6 8

La
te

nc
y 

(s
)

0
1
2
3

Memory (MB)
500 1000

KNN-L KNN-S Saturation

La
te

nc
y 

(s
)

0

5

CPU cores
2 4 6 8

La
te

nc
y 

(s
)

2

4

Memory (MB)
500 1000

Figure 1: Saturation points of EG andKNNwith small (S) and
large (L) workload sizes. EG-S (L) generates 1K (10K) emails,
and KNN-S (L) inputs 2K (20K) data samples.

Obviously, the �xed proportion between CPU and memory alloca-
tions leaves serverless functions either under-provisioned or over-
provisioned because functions’ CPU and memory demands di�er
signi�cantly.

Further it is non-trivial for users to accurately allocate appropri-
ate amounts of resource for their functions [1, 32] due to various
function types, dependencies, and input sizes. Users are prone to
oversize their resource allocation to accommodate potential peak
workloads and failures [18, 32]. Finally, users’ inappropriate re-
source allocations and providers’ �xed CPU and memory provision-
ing proportion jointly degrade the resource utilization in serverless
computing as resources allocated to functions remain idle (more
discussion in Supplementary Materials E).

2.2 Resource Saturation Points
We further demonstrate how easily a serverless function becomes
under-provisioned or over-provisioned by introducing a new no-
tion of saturation points. Given a function and an input size, there
exists a resource allocation saturation point—allocating resource
beyond this point can no longer improve the function’s perfor-
mance, but allocating resource below this point severely degrades
the performance.

We pro�le the saturation points of two applications: email gen-
eration (EG) and K-nearest neighbors (KNN), representing two
popular serverless application categories: web applications and ma-
chine learning, respectively. We identify the allocation saturation
points of CPUs and memory separately by measuring the response
latency of functions allocated with di�erent number of CPU cores
and di�erent sizes of memory. When adjusting a function’s CPU
(memory) allocation, we �x its memory (CPU) allocation to 1,024
MB (8 cores).

Figure 1 shows that saturation points vary from functions and
input sizes. It is non-trivial for users to identify the saturation points
for every function with speci�c input sizes in their applications.
Particularly, serverless functions are typically driven by events
with varying input sizes. Without dynamic and careful resource
allocations, functions tend to become either over-provisioned or
under-provisioned.

2.3 The Need for Harvesting Idle Resources
Resource harvesting is a common methodology in virtual envi-
ronments that increases resource utilization by reallocating idle

1742



Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Saturation User-defined Greedy

harvesting

C
PU

 c
or

es

0

2

4

6

8

Function ID
EG IR ALU KNN

(a) CPU allocation
R

es
po

ns
e 

La
te

nc
y 

(s
)

0

2

4

6

Function ID
EG IR ALU KNN

(b) Function response latency

Figure 2: The CPU allocation and response latency of four
real-world functions: EG, image recognition (IR), arithmetic
logic units (ALU), and KNN, where the EG generates 100K
emails, the IR classi�es ten images, the ALU calculates 20M
loops, and the KNN inputs 20K data samples.

resources to under-provisioned services without degrading the per-
formance of services being harvested [2, 38, 40].

To motivate the need for dynamic resource harvesting in server-
less computing, we compare the function response latency achieved
by the default resource manager (Fixed RM) and greedy resource
manager (Greedy RM) when executing four real-world serverless
functions. The Fixed RM simply accepts and applies a �xed resource
allocation pre-de�ned by users, such as the RM in OpenWhisk and
AWS Lambda. The Greedy RM dynamically harvests CPU cores
from functions over-provisioned and assigns the harvested CPU
cores to functions under-provisioned in a �rst-come-�rst-serve
manner based on the estimated function saturation points learned
from functions’ recent resource utilization (details in Section 5). In
this experiment, we collect historical resource utilizations of four
functions and pro�le their saturation points.

Figure 2(a) shows the Greedy RM accelerates the ALU by harvest-
ing three CPU cores from the EG (i.e., the EG function invocation)
and one CPU core from the IR. Though the KNN is also under-
provisioned, the Greedy RM assigns all harvested CPU cores to the
ALU since the ALU is invoked before the KNN. As a comparison,
Figure 2 also plots the saturation points of each function invo-
cation and their response latency when allocated with saturated
resources. Figure 2(b) shows the Greedy RM can increase resource
utilization and accelerate under-provisioned functions without sac-
ri�cing over-provisioned functions’ performance in the motivation
scenario.

2.4 Deep Reinforcement Learning
Due to the volatility and burstiness of serverless computing, it is
non-trivial to accurately estimate the saturation points based on
functions’ recent resource utilization, and the greedy resource har-
vesting and re-assignment can hardly minimize the overall function
response latency. Thus, we propose to utilize reinforcement learn-
ing (RL) algorithms to learn the optimal resource harvesting and
re-assignment strategies.

At every timestep t , the agent is in a speci�c state st , and evolves
to state st+1 according to a Markov process with the transition
probability P(st ,at , st+1) when action at is taken [33]. The imme-
diate reward for the agent to take action at in state st is denoted as
rt . The goal of the agent is to �nd a policy � that makes decisions
regarding what action to take at each timestep, at ⇠ � (·|st ), so as
to maximize the expected cumulative rewards, E� [

Õ1
t=1 �

t�1rt ],
where � 2 (0, 1] is a discount factor.

To capture the patterns of real-world systems and address the
curse-of-dimensionality, deep reinforcement learning (DRL) has
been introduced to solve scheduling and resource provisioning prob-
lems in distributed systems [23–26], where deep neural networks
serve as the function approximators that describe the relationship
between decisions, observations, and rewards.

3 OVERVIEW
3.1 Design Challenges
Unlike long-running VMs with substantial historical traces for de-
mand prediction and �exible time windows for resource harvesting,
function executions in serverless computing are highly concur-
rent, event-driven, and short-lived with bursty input workloads [9],
making it hardly practical to reuse the existing VM resource harvest-
ing methods. To enable e�cient and safe resource harvesting and
performance acceleration in serverless computing, Freyr’s design
tackles three key challenges:

Volatile and bursty serverless environments. The hetero-
geneity of serverless functions, the high concurrency of invocation
events, and the burstiness of input workloads jointly make it non-
trivial to accurately determine whether a function execution has
idle resources to be harvested. Besides, serverless functions are
sensitive to the latency introduced by resource harvesting and
re-assignment due to their short lifetime and event-driven nature.

Huge space of harvesting and re-assignment decisions.Un-
like the default resource managers that enforce a �xed proportion
between the CPU and memory allocations, we decouple the re-
source provisioning for CPU and memory for more accurate re-
source harvesting and re-assignment, leading to a two-dimensional
resource pool for Freyr to seek for the optimal resource allocation.
This is an immense action space for the DRL agent. For example,
AWS Lambda allows any memory sizes between 128 MB and 10,240
MB and up to 6 CPU cores—60,672 choices in total. Such a huge
action space complicates the DRL algorithm design and extensively
increases the computation complexity to train the DRL agent.

Potential performance degradation.While Freyr harvests re-
sources from functions deemed as over-provisioned and improves
the entire workload, one necessary requirement is to prevent the
performance of those functions from degrading. It is vital to guaran-
tee Service Level Objectives (SLOs) of each individual function, i.e.,
harvested functions have no signi�cant performance degradation.

3.2 Freyr’s Architecture
Freyr is a resource manager in serverless platforms that dynami-
cally harvests idle resources from over-provisioned function invo-
cations and reassign the harvested resources to accelerate under-
provisioned function invocations. It is located with the controller of
a serverless computing framework and interacts with the container
system (e.g., Docker [10]) that executes function invocations.

Figure 3 shows an overview of Freyr’s architecture. First, con-
current function requests arrive at the frontend to invoke speci�c
functions with user-de�ned resource allocations. The controller
admits the function requests, registers their con�gurations, and
schedules them to the invokers. Before the execution of functions,
Freyr inputs observations from serverless platform database and

1743



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Freyr

KV Storage

Invoker

Frontend

…

DRL Agent

state

CPU
Mem

Waiting Queue

Container

λ λ λ

λ

Database

allocation

Controller
Load Balancer Safeguard

(CPU, mem) allocation

(results, usage)

Func req 1

Distributed Message Queue
(Pub/Sub)

Func req N

Figure 3: Freyr’s architecture.

makes resource harvesting and re-assignment decisions. The con-
troller instructs invokers to enforce the decisions when executing
function invocations.

To handle the volatile and bursty serverless environments,
Freyr is designed to be event-driven with multi-process support
that the arrival of a function request triggers Freyr to make resource
harvesting decisions. To shrink the huge decision space, Freyr
trains a score network to justify each allocation option of function
invocations, converting the action space of all potential allocation
options to a score for individual allocation option. Freyr evaluates
the score of each allocation option using this score network and
enforces the allocation option with the highest score. To avoid
potential performance degradation of functions with resources
harvested, Freyr applies a safeguard mechanism to prevent those
potentially dangerous allocation options and guarantees the SLOs
of every function invocation within a workload. The safeguard
examines whether the allocation decision made by the DRL agent
is below a function’s historical resource usage peak. Besides, the
safeguard monitors the function’s runtime resource utilization and
returns all harvested resources by calling a safeguard invocation
when its resources appear to be fully utilized.

4 DESIGN
4.1 Problem Formulation
We consider a serverless platform that handles a workloadW with
multiple concurrent function invocations. Let f denote a function
invocation inW . We assume the response latency e of f is dom-
inated by CPU and memory. Each function invocation f has a
resource allocation p = (pc ,pm ), where pc and pm denote a set
of CPU and memory resources, respectively. We assume p is non-
preemptive and �xed when the platform is executing f , i.e., p is
consistently provisioned to f until the execution completes. Thus,
we de�ne the relationship between the response latency and the
resource allocation as: e = B(p). Section 2.2 demonstrates that a
function invocation has a pair of saturation points for CPU and
memory denoted by p� = (p�c ,p�m ), respectively.

The platform determines whether it can harvest or accelerate a
function invocation f by comparing p with p�: if p�c < pc (p�m <

pm ), f has idle CPU (memory), the platform can harvest at most
pc �p�c resources without increasing response latency e ; if p�c > pc
(p�m > pm ), the allocation of f hasn’t saturated, the platform can
provide f with atmostp�c �pc resources to improve the performance
of f , i.e., reduce response latency e . Thus for CPU or memory,
function invocations in a workloadW can be classi�ed into three
groups of invocations:W = Wh +Wa +Wd , whereWh denotes
the set of invocations that can be harvested,Wa denotes the set
of invocations that can be accelerated, andWd denotes the set of
invocations which have descent user con�gurations (p� = p).

We de�ne a slowdown value as the performance metric to avoid
prioritizing long invocations while keeping short invocations starv-
ing. Recall that W denotes the workload, f denotes a function
invocation inW . Function invocations arrive at the platform in a
sequential order. At the �rst invocation of a function, the platform
captures the response latency eb with resources (pbc ,pbm ) con�gured
by the user and employs it as a baseline denoted by b. When i-th
invocation completes execution, the platform captures the response
latency ei of it. The slowdown of the i-th invocation is calculated
as

slowdown :=
ei

eb
. (1)

We normalize the response latency of each invocation with base-
line latency of user con�guration. Intuitively, the slowdown indi-
cates how a function invocation performs regardless of its duration
length. A function invocation may be accelerated while being har-
vested at the same time (e.g., p�c < pc while p�m > pm ). In this
case, the slowdown is a mixed result. For individual invocations,
we only focus on the performance regardless of details of resource
allocation, i.e., the invocation is good as long as it yields low slow-
down. We use average slowdown to measure how well a workload
is handled by the platform with harvesting and acceleration. Hence,
the goal is to �nd a set of resource allocation p = (p1,p2, ...,p |W | )
which minimizes the average slowdown of a workload, de�ned as

a��_slowdown :=
1
|W |

’
f 2W

ei

eb
=

1
|W |

’
f 2W

B(pi )
B(pb )

(2)

However, as introduced in Section 2.2, estimating varying satu-
ration points of sequential function invocations posts a challenging
sequential decision problem. The complex mapping from set of p
to objective average slowdown can hardly be solved by existing
deterministic algorithms. Hence, we opt for DRL and propose Freyr ,
which learns to optimize the problem by replaying experiences
through training. Freyr observes information from platform level
and function level in real time. Figure 4 depicts how Freyr estimates
CPU/memory saturation points. Given a function invocation, we
encode every possible CPU and memory option into a scalar value
representing the choice.

4.2 Information Collection and Embedding
When allocating resources for a function invocation, Freyr col-
lects information from two levels: platform level and function
level, as summarized in Table 1. Speci�cally, for the platform, Freyr
captures the number of invocations remaining in the system (i.e.,
inflight_request_num), available CPU cores, and available mem-
ory. For the incoming function, Freyr queries invocation history

1744



Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

C
on

ca
te

na
te

Alloc 
option 1

Platform

Inflight invocations

Available CPU

Available Memory

Function

Avg CPU peak

Avg memory peak

Baseline exec time
…

…

…

Actor network

…

…

Critic network

Score network

So
ftm

ax… …
Best Alloc 

Option

Safeguard

SelectionScoringEmbedding

State vector
<latexit sha1_base64="b0Zg0oKODwx5iBCr99W9Nvdm8nA=">AAAB+XicbVDLSgMxFL1TX7W+Rl26GSyCqzJTirosuHElFewD2rFkMpk2NJMMSaZQhv6JGxeKuPVP3Pk3ZtpZaOuBkMM595KTEySMKu2631ZpY3Nre6e8W9nbPzg8so9POkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB5Db3u1MiFRX8Uc8S4sdoxGlEMdJGGtr2IBAsVLPYXJmaP90P7apbcxdw1olXkCoUaA3tr0EocBoTrjFDSvU9N9F+hqSmmJF5ZZAqkiA8QSPSN5SjmCg/WySfOxdGCZ1ISHO4dhbq740MxSoPZyZjpMdq1cvF/7x+qqMbP6M8STXhePlQlDJHCyevwQmpJFizmSEIS2qyOniMJMLalFUxJXirX14nnXrNu6rVHxrVZqOoowxncA6X4ME1NOEOWtAGDFN4hld4szLrxXq3PpajJavYOYU/sD5/ABzBk+4=</latexit>

sN

State vector
<latexit sha1_base64="cE2URrL8ycYa26UWbQu3Cd4WODw=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjOlqMuCG5cV7APasWQyaRuaSYYkUyhD/8SNC0Xc+ifu/Bsz7Sy09UDI4Zx7yckJE8608bxvZ2Nza3tnt7RX3j84PDp2T07bWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+HkLvc7U6o0k+LRzBIaxHgk2JARbKw0cN1+KHmkZ7G9Mj1/8gduxat6C6B14hekAgWaA/erH0mSxlQYwrHWPd9LTJBhZRjhdF7up5ommEzwiPYsFTimOsgWyefo0ioRGkpljzBoof7eyHCs83B2MsZmrFe9XPzP66VmeBtkTCSpoYIsHxqmHBmJ8hpQxBQlhs8swUQxmxWRMVaYGFtW2Zbgr355nbRrVf+6WnuoVxr1oo4SnMMFXIEPN9CAe2hCCwhM4Rle4c3JnBfn3flYjm44xc4Z/IHz+QPwvpPR</latexit>

s1

…… …

<latexit sha1_base64="G/33BeKgAB2rDHxdmZ+PEojSKc8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxilEcCK5kdZmHC7Ow602tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMrmd+64lrI2J1j+OE+xEdKBEKRtFKd48PXq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFduq6VaNYsjDydwCufgwSXU4Abq0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz/9ho2R</latexit>

q1

<latexit sha1_base64="KR2nMYDnT2svv59723j6Blo5pgE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd0Q1GPAiyeJaB6QrGF20psMmZ1dZ2aFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGV1O/+YRK81jem1GCfkT7koecUWOlu8eHm26h6JbcGcgy8TJShAy1buGr04tZGqE0TFCt256bGH9MleFM4CTfSTUmlA1pH9uWShqh9sezUyfk1Co9EsbKljRkpv6eGNNI61EU2M6ImoFe9Kbif147NeGlP+YySQ1KNl8UpoKYmEz/Jj2ukBkxsoQyxe2thA2ooszYdPI2BG/x5WXSKJe881L5tlKsVrI4cnAMJ3AGHlxAFa6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHKYmNrg==</latexit>

qN

M
ea

n…

<latexit sha1_base64="db8O+O3QOth+qkcVAK+fcPUuFZU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWNF+wFtLJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuLaiFg94CThfkSHSoSCUbTSffDo9Utlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVO9q5Xotj6MAp3AGF+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwDmrI2C</latexit>

b1

<latexit sha1_base64="ficGjazwQbPMzRATQlTjhSdk+Bw=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXjxJRPOAZA2zk95kyOzsMjMrhJBP8OJBEa9+kTf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsYXc/81hMqzWP5YMYJ+hEdSB5yRo2V7oPH216x5JbdOcgq8TJSggz1XvGr249ZGqE0TFCtO56bGH9CleFM4LTQTTUmlI3oADuWShqh9ifzU6fkzCp9EsbKljRkrv6emNBI63EU2M6ImqFe9mbif14nNeGVP+EySQ1KtlgUpoKYmMz+Jn2ukBkxtoQyxe2thA2poszYdAo2BG/55VXSrJS9i3LlrlqqVbM48nACp3AOHlxCDW6gDg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDEq+Nnw==</latexit>

bN

<latexit sha1_base64="KXZ8tkiq9BAWix0xeTT81HfGYv8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKqR4LXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i387hPXRsTqEWcJ9yM6ViIUjKKVuoOA6iyYD8sVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOydXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxe9kJDRnKGeWUKaFvZWwCdWUoU2oZEPw1l/eJJ1a1WtUaw/1SrOex1GEC7iEa/DgBppwDy1oA4MpPMMrvDmJ8+K8Ox+r1oKTz5zDHzifP4Cej6Q=</latexit>

b̄

<latexit sha1_base64="wq2j3T4SEPVSmG/YS0lK5d4oC5M=">AAACAnicbVDLSsNAFJ34rPUVdSVuBotQNyUpRV0W3LisYB/QhDKZTtqhkwczN2IJwY2/4saFIm79Cnf+jZM2C209cOFwzr3ce48XC67Asr6NldW19Y3N0lZ5e2d3b988OOyoKJGUtWkkItnziGKCh6wNHATrxZKRwBOs602uc797z6TiUXgH05i5ARmF3OeUgJYG5rETEBh7XtrKqg6wB0ijOHey84FZsWrWDHiZ2AWpoAKtgfnlDCOaBCwEKohSfduKwU2JBE4Fy8pOolhM6ISMWF/TkARMuenshQyfaWWI/UjqCgHP1N8TKQmUmgae7swPVoteLv7n9RPwr9yUh3ECLKTzRX4iMEQ4zwMPuWQUxFQTQiXXt2I6JpJQ0KmVdQj24svLpFOv2Re1+m2j0mwUcZTQCTpFVWSjS9REN6iF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/4FSXsw==</latexit>

P(option)

…

C
on

ca
te

na
te

Alloc 
option N

Function Function info…

Platform info…Platform

Figure 4: The work�ow of Freyr.

of the function which records average CPU peak, average mem-
ory peak, average inter-arrival time (IAT), average execution time,
and baseline execution time (i.e., baseline) with user-requested
resources.

Once collecting such information, Freyr encapsulates them with
a potential resource allocation option. More precisely, we embed
information and the potential con�guration option together into
a �at state vector as input to Freyr agent, with the information
embedding process illustrated in Figure 4.

4.3 Score Network
Freyr uses a score network to calculate the priority of selecting po-
tential resource allocation options. Figure 4 visualizes the policy
network of Freyr agent, and illustrates the work�ow of how the
agent selects the best allocation option based on states. At time t , a
function invocation arrives at the platform which has in total N po-
tential resource con�guration options. After embedding procedure,
Freyr collects a batch of state vectors st = (s1t , . . . , snt , . . . , sNt ),
where snt maps the state to the n-th option. Freyr inputs st to the
score network. We implement the score network using two neural
networks, an actor network and a critic network. The actor network
computes a score qnt , which is a scalar value mapped from the
state vector snt representing the priority to select con�guration
option n. Then Freyr applies a Softmax operation to the scores
(q1t , . . . ,qnt , . . . ,qNt ) to compute the probability of selecting option
n based on the priority scores, given by

Pt (option = n) =
exp(qnt )ÕN
n=1 exp(qnt )

,

at time t . The critic network outputs a baseline value bnt for option
n, the average baseline value b̄t is calculated as

b̄t =
1
N

N’
n=1

bnt , (3)

which is used to reduce variance when training Freyr . The whole
operation of policy network is end-to-end di�erentiable.

The score network itself contains no manual feature engineering.
Freyr agent automatically learns to compute accurate priority score
of allocation options through training. More importantly, Freyr
uses the same score network for all function invocations and all

Table 1: The observation state space of the DRL agent.

Platform
State

avail_cpu, avail_mem
inflight_request_num

Function
State

avg_cpu_peak, avg_mem_peak,
avg_interval, avg_execution_time,
baseline

potential resource allocation options. By embedding options into
state vectors, Freyr can distinguish between di�erent options and
use the score network to select the best option. Reusing the score
network reduces the size of networks and limits the action space
of Freyr agent signi�cantly.

4.4 Safeguard
We design Freyr to improve both over-provisioned and under-
provisioned functions. However, when harvesting resources from
functions deemed as over-provisioned, it is possible that Freyr
under-predicts their resource demands. The performance of func-
tions degrades when being over-harvested. We devise a safeguard
mechanism atop Freyr to regulate decisions by avoiding decisions
that may harm performance and returning harvested resources
immediately when detecting a usage spike. We use this safeguard
mechanism to mitigate obvious performance degradation of indi-
vidual functions.

Algorithm 1 summarizes the safeguard mechanism built atop
Freyr . We refer safeguard invocation as invoking the function with
user-de�ned resources. When there are no previous invocations,
Freyr triggers the safeguard to obtain resource usage and calibrate
the baseline mentioned in Equation 1 (lines 5–7). For further invo-
cations, Freyr queries the history of function and polls the usage
peak, allocation of the last invocation, and the highest peak since
last baseline calibration (lines 10–12). Freyr �rst checks current
status of the function, i.e., over-provisioned or under-provisioned
(line 13). We assume functions with resource usage below 80%
of user-requested level is over-provisioned. For over-provisioned
(harvested) functions, Freyr then checks the usage peak of last invo-
cation (line 14). If the usage peak approaches 80% of allocation, we
suspect there may be a load spike, which could use more resources
than current allocation. This triggers the safeguard invocation and

1745



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Algorithm 1: Safeguard mechanism atop Freyr .
1 while request_queue.notEmpty do
2 function_id request_queue.dequeue()
3 calibrate_baseline False
4 last_request QueryRequestHistory(function_id)
5 if last_request == None then

/* Trigger safeguard */
6 range [user_de�ned]
7 calibrate_baseline True
8 else
9 threshold 0.8

10 last_alloc last_request.alloc
11 last_peak last_request.peak
12 recent_peak GetRecentPeak(function_id)
13 if last_peak < user_de�ned then

/* Over-provisioned */
14 if last_peak / last_alloc � threshold then

/* Trigger safeguard */
15 range [user_de�ned]
16 calibrate_baseline True
17 else
18 range [recent_peak + 1, user_de�ned]
19 end
20 else

/* Under-provisioned */
21 range [recent_peak + 1, max_per_function]
22 end
23 end
24 alloc_option Freyr(function_id, range)
25 Invoke(function_id, alloc_option, calibrate_baseline)
26 end

baseline re-calibration, Freyr immediately returns harvested re-
source to the function at the next invocation (lines 15–16). If there
is no usage spike, Freyr is allowed to select an allocation option
from recent peak plus one unit to a user-requested level (line 18).
For under-provisioned functions, Freyr is allowed to select from
recent peak plus one unit to the maximum available level (line 21).
After an allocation option is selected, Freyr invokes the function
and forwards the invocation to invoker servers for execution.

Supplementary Materials D presents a sensitivity analysis of
safeguard thresholds and shows that the safeguard mechanism
e�ectively regulates decisions made by Freyr and protects SLOs of
functions that have resources harvested.

4.5 Training the DRL Agent
Freyr training proceeds in episodes. In each episode, a series of func-
tion invocations arrive at the serverless platform, and each requires
a two-dimensional action to con�gure CPU and memory resources.
When the platform completes all function invocations, the current
episode ends. Let T denote the total number of invocations in an
episode, and ti denote the arrival time of the i-th invocation. We
continuously feed Freyr with a reward r after it takes an action to

Lo
ss

103

104

105

Episode
0 500 1000

(a) Cumulative average loss

R
ew

ar
ds

-102

-103

-104

Episode
0 500 1000

(b) Cumulative rewards

Figure 5: The trends of cumulative average loss (left) and cu-
mulative rewards (right) of Freyr’s 1,000-episode training on
the OpenWhisk testbed.

handle an invocation. Concretely, we penalize Freyr with

ri = �
’

f 2S |titi�1

ei

eb
+ R(slowdown<1) � R(slowdown>1),

after taking action on the i-th invocation, whereW is the set of invo-
cations that �nish during the interval [ti�1, ti ), e

i

eb is the slowdown
of an invocation f introduced in Section 4.1, and two constant sum-
maries for awarding good and penalizing bad actions (R(slowdown<1)
and R(slowdown>1)). The goal of the algorithm is to maximize the
expected cumulative rewards given by

E

" T’
i=1

� t�1
 
�

’
f 2S |titi�1

ei

eb
+ R(slowdown<1) � R(slowdown>1)

!#
. (4)

Similar to [24], we set the discount factor � in Equation 4 to be 1.
Hence, Freyr learns to minimize the overall slowdown of the given
workload.

We use the algorithm 2 to train Freyr with 4 epochs per sur-
rogate optimization and a 0.2 clip threshold [30]. We update the
policy network parameters using the AdamW optimizer [17] with a
learning rate of 0.001. We train Freyr with 1,000 episodes. The total
training time is about 120 hours. Figure 5 shows the learning curve
and cumulative rewards of Freyr training on OpenWhisk testbed.
In Figure 5(a), the descending loss trendline indicates that Freyr
gradually learns to make good resource management decisions.
In Figure 5(b), the ascending trendline shows that Freyr seeks to
maximize the cumulative rewards through training. Supplementary
Material A and B introduces the details of Freyr’s training algorithm
and implementation.

5 EVALUATION
We implement Freyr with 6K lines of Scala code in Apache Open-
Whisk [4] and deploy it to a realistic OpenWhisk cluster. We train
and evaluate Freyr using realistic workloads from public serverless
benchmarks and invocation traces sampled from Azure Functions
traces [31] (implementation details in Supplementary Materials B).

5.1 Methodology
Baselines.We compare Freyr with three baseline RMs: 1) Fixed RM :
the default RM of most existing serverless platforms that allocates
CPU cores in a �xed proportion to user-de�ned memory sizes.
2) Greedy RM detects a function’s saturation points based on its
historical resource usage by gradually decreasing (increasing) the

1746



Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

1

Default
Harvest

Accelerate
Safeguard

S
lo

w
do

w
n

CPU cores
−5 0 5

0.9

1.0

1.1

S
lo

w
do

w
n

Memory (MB)
−1.0 −0.5 0 0.5 1.0

1

S
lo

w
do

w
n

CPU cores
−5 0 5

1

2

S
lo

w
do

w
n

Memory (MB)
−500 0 500

2

4

S
lo

w
do

w
n

CPU cores
−5 0

2

4

S
lo

w
do

w
n

Memory (MB)
−1.0 −0.5 0 0.5 1.0

0.5

1.0

S
lo

w
do

w
n

CPU cores
−5 0 5

0.5

1.0

S
lo

w
do

w
n

Memory (MB)
−500 0 500

(a) Fixed RM (b) Greedy RM (c) ENSURE (d) Freyr

Figure 6: Performance of individual invocations processed by Fixed RM, Greedy RM, ENSURE, and Freyr in OpenWhisk eval-
uation. Default (•): invocations with user-requested allocation. Accelerate (+): invocations accelerated by supplementary allo-
cation. Harvest (�): invocations with resource harvested. Safeguard (⇥): invocations protected by the safeguard.

allocation for an over-provisioned (under-provisioned) function
in a �ne-tuned and �xed step. Our implementation sets the detect
step size one core and 64 MBs for CPU and memory, respectively.
Besides, Greedy RM allocates resources to functions in a �rst-come-
�rst-serve manner. 3) ENSURE [32] allocates memory resources
as users request and adjusts the CPU cores for each function at
runtime when detecting performance degradation.
Evaluation metrics. We use the slowdown value de�ned in Sec-
tion 4.1 to measure the performance of a function invocation. Func-
tion invocationswith lower slowdowns have lower response latency.
For resource harvesting, Freyr aims to maximize the amount of har-
vested resources while having minimal impact on the performance
of victim functions. For resource re-assignment, Freyr treats in-
vocations with di�erent lengths of response latency as the same
by reducing slowdowns, which improves the overall performance
of the workload. We also report the details of SLO violation and
99th-percentile (P99) function response latency of the workload.
Testbed:We deploy and evaluate Freyr on an OpenWhisk cluster
with 13 physical servers. Two of the servers host the OpenWhisk
components, such as the frontend, the controller, the messaging
queue, and database services. One deploys the Freyr agent. The
remaining ten servers serve as the invokers for executing functions.
The server hosting Freyr agent has 16 Intel Xeon Skylake CPU cores
and 64 GB memory, and each of the other 12 servers has eight Intel
Xeon Skylake CPU cores and 32 GB memory. Each function can
be con�gured with eight CPU cores and 1,024 MB of RAM at most.
Considering the serverless functions’ short lifecycle, we monitor
their CPU and memory usage per 0.1 second and keep the historical
resource usage in the Redis (i.e., KV store in Figure 3).
Workloads:We randomly sampled two function invocation sets
for OpenWhisk evaluation. Table 2 depicts the two invocation sets
(OW-train and OW-test) used in the OpenWhisk evaluation. We use
a scaled-down version of the invocation traces, i.e., we assume the
invocation trace is based on seconds rather than minutes. This re-
scaling increases the intensity of workloads while speeding up Freyr

OpenWhisk training by reducing the total workload duration. We
employ ten real-world functions from three serverless benchmark
suites: SeBS [8], ServerlessBench [39], and ENSURE-workloads [32]
(details of the ten functions in Supplementary Materials C). For DH,
EG, IP, KNN, ALU, MS and GD, each is initially con�gured with
four CPU cores and 512 MB memory; for VP, IR and DV, each is
initially con�gured with eight cores and 1,024 MB. We set the initial
resource con�guration of each function according to the default
settings from the suites.

5.2 Results
We summarize the slowdown and resource allocation of function
invocations of the testing workload in Figure 6. In each subgraph,
each point (i.e., •, +, �, and ⇥) indicates a function invocation. The
y-axis indicates the slowdown values of function invocations, and
the x-axis shows the CPU and memory allocation of function in-
vocations relative to their user con�gurations. The negative CPU
and memory values indicates that RMs harvest corresponding re-
sources from those invocations, and the positive means that those
invocations are provided with additional resources.
Overall performance. Freyr outperforms other baseline RMs with
the best overall performance. For processing the same testing work-
load, Freyr achieves a lowest average slowdown of 0.82, whereas
Fixed RM, Greedy RM, ENSURE are 1.0, 1.12, and 1.78, respectively.
Recall in Section 4.1, a lower slowdown indicates a faster function

Table 2: Characterization of training and testing work-
load sets in the OpenWhisk evaluation. Metrics include: to-
tal number of unique traces, total number of invocations
(Calls), average inter-arrival time (IAT), and requests per sec-
ond.

Set Traces Calls Avg IAT (s) Reqs/sec

OW-train 1,000 26,705 2.21 0.44
OW-test 10 268 2.20 0.45

1747



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

Fixed
Greedy
ENSURE
Freyr

C
D

F 
(%

)

0

50

100

Response Latency (s)
10 20 30

(a) CDF of response latency
C

D
F 

(%
)

0

50

100

Slowdown
1 2 3

(b) CDF of slowdown

Figure 7: The CDF of function response latency (left) and
slowdown (right) in OpenWhisk experiment respectively.

response. Compared to the default RM in OpenWhisk, Freyr pro-
vides an average of 18% faster function executions and 32.1% lower
P99 response latency for the testing workload. Freyr harvests idle
resources from 38.8% of function invocations and accelerates 39.2%
of invocations.
Harvesting and acceleration. Figure 6 shows the performance
of 268 individual invocations processed by four RMs. Fixed RM has
no resource adjustment during its workload processing. Greedy
harvests an average of 1.7 cores and 168 MB from victim invoca-
tions and accelerates under-provisioned functions with an average
of 3 cores and 392 MB. ENSURE’s policy also harvests and acceler-
ates invocations with CPU cores but makes no changes to memory
resources. ENSURE harvests an average of 3.4 cores from victims
and accelerates under-provisioned functions with an average of
1.9 cores. Freyr harvests an average of 1.5 cores and 380 MB from
victims and accelerates under-provisioned functions with an aver-
age of 3.6 cores and 164 MB. Freyr re-assign harvested resources
to accelerate under-provisioned invocations, which speeds up for
under-provisioned function invocations up to 92%.
SLO violation. Figure 6 shows that both Greedy RM and ENSURE
severely violate function SLOs since there are some function invo-
cations with slowdown values much larger than 1. Fixed RM has
no violation as it performs no harvesting or acceleration. Greedy
RM degrades the performance of some victim invocations over
60%. ENSURE violates SLOs of some victim invocations over 500%
when harvesting CPU cores. Compared to Greedy RM and ENSURE,
Freyr rationally harvests idle resources from under-provisioned in-
vocations, as the performance degradation of victim invocations
is limited within 6%. When harvesting idle resources, Freyr calls
safeguard for 21.8% of invocations to avoid potential performance
degradation due to usage spike.
P99 latency. Figure 7(a) shows the CDF of function response la-
tency of the testing workload. Freyr has a P99 function response
latency in less than 19 seconds, whereas Fixed RM, Greedy RM and
ENSURE are 28, 25, and 38 seconds, respectively. Figure 7(b) shows
the CDF of the slowdown of the testing workload. Freyr maintains
P99 slowdowns below 1.06 for all invocations, whereas Greedy RM
and ENSURE are 1.58 and 4.5, respectively. As Fixed RM adjusts no
resources, the slowdown stays 1.0 for all percentile.

6 RELATEDWORK
Resource harvesting. Research has been conducted on VM re-
sourcemanagement in traditional clouds for years. SmartHarvest [38]

proposes a VM resource harvesting algorithm using online learn-
ing. Unlike Freyr , which uses harvested resources to accelerate
function executions, SmartHarvest o�ers a new low-priority VM
service using harvested resources. Directly replacing Freyr with
SmartHarvest is not feasible as SmartHarvest is not designed for
serverless computing. Zhang et al. [40] proposed to harvest VMs
for serverless computing, while Freyr harvests idle resources of
serverless functions directly.
Resource provisioning. Spock [15] proposes a serverless-based
VM scaling system to improve SLOs and reduce costs. For resource
management in serverless, [22] and [32] both aim to automatically
adjust CPU resource when detecting performance degradation dur-
ing function executions, which help mitigate the issue of resource
over-provisioning. Unlike [22] and [32] that only focus on CPU,
Freyr manages CPU and memory resources independently. Ka�es et
al. [21] propose a centralized scheduler for serverless platforms that
assigns each CPU core of worker servers to CPU cores of scheduler
servers for �ne-grained core-to-core management. Freyr focuses
on resource allocation rather than scheduling or scaling. Fifer [14]
tackles the resource under-utilization in serverless computing by
packing requests to fewer containers for function chains. Instead of
improving packing e�ciency, Freyr directly harvests idle resources
from under-utilized functions.
Reinforcement learning. S���� [35] adopts DRL techniques to
dynamically invoke functions for distributed machine learning
with a serverless architecture. Our work Freyr leverages DRL to
improve the platform itself rather than serverless applications. Dec-
ima [25] leverages DRL to schedule DAG jobs for data processing
clusters. Metis [37] proposes a scheduler to schedule long-running
applications in large container clusters. TVW-RL [26] proposes a
DRL-based scheduler for time-varying workloads. George [23] uses
DRL to place long-running containers in large computing clusters.
Di�er from the above works, Freyr learns resource management in
serverless computing using DRL.

7 CONCLUSION
This paper proposed a new resource manager, Freyr , which har-
vests idle resources from over-provisioned functions and acceler-
ates under-provisioned functions with supplementary resources.
Given realistic serverless workloads, Freyr improved most function
invocations while safely harvesting idle resources using reinforce-
ment learning and a safeguard mechanism. Experimental results on
the OpenWhisk cluster demonstrate that Freyr outperforms other
baseline RMs. Freyr harvests idle resources from 38.8% of func-
tion invocations and accelerates 39.2% of invocations. Compared to
the default RM in OpenWhisk, Freyr reduces the 99th-percentile
function response latency by 32.1% for the same testing workload.

ACKNOWLEDGMENTS
This work is supported in part by the US National Science Founda-
tion under grant number CRII-OAC-2153502, OIA-1946231, CRII-
CNS-2104880, CRII-SaTC-1948374, and the Louisiana Board of Re-
gents for the Louisiana Materials Design Alliance (LAMDA). Any
opinion and �ndings expressed in the paper are those of the authors
and do not necessarily re�ect the view of the funding agency.

1748



Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE:

Con�guring Serverless Functions using Statistical Learning. In Proc. of IEEE
INFOCOM.

[2] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun, Ke Wang, Brian Dolan,
Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh Elnikety, et al. 2020.
Providing SLOs for Resource-Harvesting VMs in Cloud Platforms. In Proc. of
USENIX OSDI.

[3] Lixiang Ao, Liz Izhikevich, Geo�reyMVoelker, and George Porter. 2018. Sprocket:
A Serverless Video Processing Framework. In Proc. of ACM SoCC.

[4] Apache. 2018. Apache OpenWhisk O�cial Website. https://openwhisk.apache.
org. [Online; accessed 1-May-2018].

[5] AWS. 2018. AWS Lambda: Serverless Compute. https://aws.amazon.com/lambda/.
[Online; accessed 1-May-2018].

[6] AWS. 2021. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/
dg/limits.html. [Online; accessed 1-May-2021].

[7] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2019. Cirrus: a Serverless Framework for End-to-end ML Work�ows. In Proc. of
ACM SoCC.

[8] Marcin Copik et al. 2020. SeBS: A Serverless Benchmark Suite for Function-as-a-
Service Computing. arXiv preprint arXiv:2012.14132 (2020).

[9] DataDog. 2020. The State of Serverless. https://www.datadoghq.com/state-of-
serverless-2020/. [Online; accessed 1-July-2021].

[10] Docker. 2021. Docker: Empowering App Development for Developers. https:
//www.docker.com. [Online; accessed 1-May-2021].

[11] Sadjad Fouladi, Riad SWahby, Brennan Shacklett, Karthikeyan Balasubramaniam,
William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads. In Proc. of USENIX NSDI.

[12] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping Serverless
Computing Alive with Greedy-Dual Caching. In Proc. of ACM ASPLOS.

[13] Google Cloud. 2018. Google Cloud Function:Event-Driven Serverless Compute
Platform. https://cloud.google.com/functions. [Online; accessed 1-May-2018].

[14] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram,
Mahmut T Kandemir, and Chita R Das. 2020. Fifer: Tackling Underutilization in
the Serverless Era. In Proc. of ACM Middleware.

[15] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,
Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019. Spock: Exploiting
Serverless Functions for SLO and Cost Aware Resource Procurement in Public
Cloud. In Proc. of IEEE CLOUD.

[16] IBM. 2021. IBM Cloud Functions. https://www.ibm.com/cloud/functions.
[17] Loshchilov Ilya and Hutter Frank. 2019. Decoupled Weight Decay Regularization.

In Proc. of ICLR.
[18] Călin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,

Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,
et al. 2018. PerfIso: Performance Isolation for Commercial Latency-Sensitive
Services. In Proc. of USENIX ATC.

[19] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proc. of ACM
SoCC.

[20] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simpli�ed: A Berkeley View on Serverless Computing.
arXiv:1902.03383 [cs.OS]

[21] Kostis Ka�es, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019. Centralized
Core-Granular Scheduling for Serverless Functions. In Proc. of ACM SoCC.

[22] Y. K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya. 2020. Auto-
mated Fine-Grained CPU Cap Control in Serverless Computing Platform. IEEE
Transactions on Parallel and Distributed Systems (2020).

[23] Suyi Li, Luping Wang, Wei Wang, Yinghao Yu, and Bo Li. 2021. George: Learning
to Place Long-Lived Containers in Large Clusters with Operation Constraints. In
Proc. of ACM SoCC.

[24] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016.
Resource Management with Deep Reinforcement Learning. In Proc. of ACM
HotNets.

[25] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data Pro-
cessing Clusters. In Proc. of ACM SIGCOMM.

[26] Shanka Subhra Mondal, Nikhil Sheoran, and Subrata Mitra. 2021. Scheduling of
Time-Varying Workloads Using Reinforcement Learning. In Proc. of AAAI.

[27] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proc. of
ACM SIGMOD.

[28] PyTorch. 2018. PyTorch: Tensors and Dynamic Neural Networks in Python with
Strong GPU Acceleration. https://pytorch.org. [Online; accessed 1-May-2018].

[29] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2017. Trust Region Policy Optimization. arXiv:1502.05477 [cs.LG]

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

[31] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In Proc. of USENIX ATC.

[32] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veeren-
dra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. 2020. ENSURE:
E�cient Scheduling and Autonomous Resource Management in Serverless Envi-
ronments. In Proc. of ACSOS.

[33] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. MIT press Cambridge.

[34] Mayur Tanna and Harmeet Singh. 2018. Serverless Web Applications with React
and Firebase: Develop real-time applications for web and mobile platforms. Packt
Publishing Ltd.

[35] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a
Serverless Architecture. In Proc. of IEEE INFOCOM.

[36] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking behind the Curtains of Serverless Platforms. In Proc. of
USENIX ATC.

[37] Luping Wang, Qizhen Weng, Wei Wang, Chen Chen, and Bo Li. 2020. Metis:
Learning to Schedule Long-Running Applications in Shared Container Clusters
at Scale. In Proc. of ACM SC.

[38] YawenWang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya Bhandari, Neer-
aja J Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos Kozyrakis, and Ricardo
Bianchini. 2021. SmartHarvest: Harvesting Idle CPUs Safely and E�ciently in
the Cloud. In Proc. of ACM EuroSys.

[39] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao
Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless Platforms
with ServerlessBench. In Proc. of ACM SoCC.

[40] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proc. of ACM SOSP.

1749

https://openwhisk.apache.org
https://openwhisk.apache.org
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.docker.com
https://www.docker.com
https://cloud.google.com/functions
https://www.ibm.com/cloud/functions
https://arxiv.org/abs/1902.03383
https://pytorch.org
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347


WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park

A THE TRAINING ALGORITHM
Freyr uses a policy gradient algorithm for training. Policy gradient
methods are a class of RL algorithms that learn policies by perform-
ing gradient ascent directly on the parameters of neural networks
using the rewards received during training. When updating policies,
large step sizes may collapse the performance, while small step sizes
may decrease the sampling e�ciency. We use the Proximal Policy
Optimization (PPO) algorithms [30] to ensure that Freyr takes ap-
propriate step sizes during policy updates. More speci�cally, given
a policy �� parameterized by � , the PPO algorithm updates policies
at the k-th episode via

�k+1 = argmax
�

E
s,a⇠��k

h
L(s,a,�k ,� )

i
,

where L is the surrogate advantage [29], a measure of how policy
�� performs relative to the old policy ��k using data from the old
policy. We use the PPO-clip version of a PPO algorithm, where L is
given by

L(s,a,�k ,� ) = min
⇣ �� (a |s)
��k (a |s)

A��k (s,a), �(�,A��k (s,a))
⌘
,

and �(�,A) is a clip operation de�ned as

�(�,A) =
(
(1 + �)A, if A � 0,
(1 � �)A, otherwise,

where A is the advantage calculated as rewards r subtracted by
baseline values b; � is a hyperparameter that restricts how far the
new policy is allowed to deviate from the old. Intuitively, the PPO
algorithm sets a range for step sizes of policy updates, which pre-
vents the new policy from deviating too much from the old (either
positive or negative).

Algorithm 2 presents the training process of Freyr . For each
episode, we record the whole set of trajectories including the states,
actions, rewards, baseline values predicted by the critic network,
and the logarithm probability of the actions for all invocations. After
each training episode �nishes, we use the collected trajectories to
update the actor and critic networks.

B IMPLEMENTATION DETAILS
Apache OpenWhisk is an open-source, distributed serverless plat-
form that powers IBM Cloud Functions [16]. Figure 3 illustrates the
architecture of Freyr based on OpenWhisk. OpenWhisk exposes an
NGINX-based REST interface for users to interact with the platform.
Users can create new functions, invoke functions, and query results
of invocations via the frontend. The Frontend forwards function
invocations to the Controller, which selects an Invoker (typically
hosted using VMs) to execute invocations. The Load Balancer in-
side the Controller implements the scheduling logic by considering
Invoker’s health, available capacity, and infrastructure state. Once
choosing an Invoker, the Controller sends the function invocation
request to the selected Invoker via a Kafka-based distributed mes-
saging component. The Invoker receives the request and executes
the function using a Docker container. After �nishing the func-
tion execution, the Invoker submits the result to a CouchDB-based
Database and informs the Controller. Then the Controller returns
the result of function executions to users synchronously or asyn-
chronously. Here we focus on resource management for containers.

Algorithm 2: Freyr Training Algorithm.
1 Initial policy (actor network) parameters �0 and value

function (critic network) parameters �0
2 for episode k 0, 1, 2, . . . do
3 Run policy �k = � (�k ) in the environment until T -th

invocation completes
4 Collect set of trajectories Dk = {�i }, where

�i = (si ,ai ), i 2 [0,T ]
5 Compute reward r̂t via Equation 4
6 Compute baseline value b̄t via Equation 3
7 Compute advantage Ât = r̂t � b̄t
8 Update actor network by maximizing objective using

stochastic gradient ascent:

�k+1 = argmax
�

1
|Dk |T

’
� 2Dk

T’
t=0

L(st ,at ,�k ,� )

9 Update critic network by regression on mean-squared
error using stochastic gradient descent:

�k+1 = argmin
�

1
|Dk |T

’
� 2Dk

T’
t=0

(b̄t � r̂t )2

10 end

We modify the following modules of OpenWhisk to implement
our resource manager:

Frontend: Initially, OpenWhisk only allows users to de�ne the
memory limit of their functions and allocates CPU power propor-
tionally based on memory. To decouple CPU and memory, we add a
CPU limit and enable the Frontend to take CPU and memory inputs
from users. Users are allowed to specify CPU cores and memory of
their functions, and the Frontend forwards both CPU and memory
limits to the Controller.

Controller: The Load Balancer makes scheduling decisions for
the Controller. When selecting an Invoker, the Load Balancer con-
siders available memory of Invokers. We modify the Load Balancer
also to check available CPU cores of Invokers—the Load Balancer
selects Invokers with enough available CPU cores and memory to
execute function invocations.

Invoker: The Invoker uses a semaphore-based mechanism to
control containers’ access to available memory. We apply the same
mechanism to control access to available CPU cores independently.

Container: By default, OpenWhisk uses cpu-shares parameter
to regulate CPU power of containers. When plenty of CPU cycles
are available, all containers with cpu-shares use as much CPU as
they need. While cpu-shares improves CPU utilization of Invok-
ers, it can lead to performance variation of function executions.
We change the CPU parameter to cpus which restricts how many
CPU cores a container can use. This is aligned with the CPU alloca-
tion policy of AWS Lambda [6]. For each function invocation, we
monitor the CPU cores and memory usage of its container using

1750



Accelerating Serverless Computing by Harvesting Idle Resources WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 3: Characterizations of serverless applications used
in OpenWhisk evaluation. (DH: Dynamic HTML, EG: Email
Generation, IP: Image Processing, VP: Video Processing, IR:
Image Recognition, KNN: K Nearest Neighbors, GD: Gradi-
ent Descent, ALU: Arithmetic Logic Units, MS: Merge Sort-
ing, and DV: DNA Visualization.)

Function Type Dependency

DH Web App Jinja2, CouchDB
EG Web App CouchDB
IP Multimedia Pillow, CouchDB
VP Multimedia FFmpeg, CouchDB
IR Machine Learning Pillow, torch, CouchDB
KNN Machine Learning Scikit-learn, CouchDB
GD Machine Learning NumPy, CouchDB
ALU Scienti�c CouchDB
MS Scienti�c CouchDB
DV Scienti�c Squiggle, CouchDB

cgroups. We record the usage peak during function execution and
keep it as history for Freyr to query.

DRL agent:We implement the Freyr’s agent using two neural
networks, each with two fully connected hidden layers. The �rst
hidden layer has 32 neurons, and the second layer has 16 neurons.
Each neuron uses Tanh as its activation function. The agent is
implemented in 2K lines of Python code using PyTorch [28]. Freyr
is lightweight because the policy network consists of only 1858
parameters (12 KB in total). Mapping a state to an action takes less
than 10 ms.

C WORKLOAD CHARACTERIZATIONS
Table 3 describes the type and dependency of 10 serverless applica-
tions from benchmark suites. DH downloads HTML template, pop-
ulates the templates based on input, and uploads them to CouchDB.
EG generates emails based on the input and returns them to the
CouchDB. IP downloads images, resizes them, and uploads them to
CouchDB. VP downloads videos, trims and tags them with a water-
mark, and uploads to CouchDB. IR downloads a batch of images,
classi�es them using ResNet-50, and uploads them to CouchDB.
KNN downloads the dataset, performs the KNN algorithm on it,
and uploads the result to CouchDB. GD performs three kinds of
gradient descent based on input and uploads the result to CouchDB.
ALU computes the arithmetic logic based on input and uploads the
result to CouchDB. MS performs merge sorting based on input and
uploads the result to CouchDB. DV downloads a DNA sequence
�le, visualizes the sequence, and uploads the result to CouchDB.
We pro�le the ten applications con�gured with eight CPU cores
and 1,024 MB memory, which is the maximum allocation in our
experimental environment.

D SAFEGUARD SENSITIVITY ANALYSIS
Safeguard threshold. We set the default threshold value in the
safeguard algorithm to be 0.8, which allows Freyr to trigger the
safeguard just before detecting a full utilization. The threshold is

Sa
fe

 In
vo

ke

0%

50%

100%

Threshold
0 0.5 1.0

Avg Slowdown Degradation

Av
g 

Sl
ow

do
w

n

0.8

0.9

1.0 D
egradation

0%

5%

10%

15%

Threshold
0 0.5 1.0

(a) % of safe invocations (b) Avg slowdown & degradation

Figure 8: Sensitivity analysis of safeguard thresholds.

tunable—a high threshold may allow Freyr to presumptuously har-
vest idle resource and deteriorate performance, while a low thresh-
old may too conservatively restrict the harvesting and under-utilize
resources. We conduct a threshold analysis on our OpenWhisk
testbed using the workload OW-test from Table 2 to evaluate the
sensitivity of safeguard threshold in Freyr . We increase Freyr’s safe-
guard threshold from 0 to 1 with a step of 0.1 and run the same
workload using Freyr . Figure 8(a) shows the percentage of safe
invocations (invocations allocated with user-de�ned CPU/memory)
under each threshold. Figure 8(b) shows the average slowdown and
percentage of degraded invocations under each threshold. When
increasing the threshold, the rate of safe invocation drops down
as Freyr gradually harvests idle resources wildly. The percentage
of degraded invocations gradually rises because Freyr’s harvesting
policy becomes more and more unrestricted. For average slowdown
of the workload, Freyr achieves better and better overall perfor-
mance until its threshold reaching 0.8. Due to severe performance
degradation, Freyr yields a worse performance for thresholds 0.9
and 1.0.

To deploy Freyr in a production environment, service providers
can tune the safeguard threshold based on their own criteria, i.e.,
tightening the threshold to conservatively harvest or loosing the
threshold to actively harvest idle resources.
Safeguard e�ectiveness. To examine safeguard e�ectiveness in
Freyr , we also evaluate a variant of Freyr with safeguard turned
o�. We run the workload OW-test from Table 2 on our OpenWhisk
testbed using safeguard-o� Freyr and obtain the average slowdown
and performance degradation. Freyr without safeguard processes
the testing workload with an average slowdown of 1.28 while de-
grading at most 15.7% to function response latency, which is 36%
slower and has 9.5% more degradation than the original version.
The result shows that Freyr’s safeguard e�ectively regulates the
decision-making process, thus guaranteeing the performance of
individual functions.

E DEPLOYING FREYR
In industrial serverless computing environments, such as Open-
Whisk, AWS Lambda, and Google Cloud Functions, integrating
Freyr lead to merits for both service providers and users. For ser-
vice providers, Freyr carefully harvests idle resources and reuses
them to accelerate function invocations, which improves the overall
serverless platform’s resource utilization. For users who mistak-
enly con�gured insu�cient resource allocation for their functions,
Freyr transparently brings potential performance protection (i.e.,
faster function executions) using harvested idle resources without
violating other users’ SLOs.

1751


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Resource Provisioning and Allocation in Serverless Computing
	2.2 Resource Saturation Points
	2.3 The Need for Harvesting Idle Resources
	2.4 Deep Reinforcement Learning

	3 Overview
	3.1 Design Challenges
	3.2 Freyr's Architecture

	4 Design
	4.1 Problem Formulation
	4.2 Information Collection and Embedding
	4.3 Score Network
	4.4 Safeguard
	4.5 Training the DRL Agent

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A The Training Algorithm
	B Implementation Details
	C Workload Characterizations
	D Safeguard Sensitivity Analysis
	E Deploying Freyr

