


ICPP ’22, August 29-September 1, 2022, Bordeaux, France Jason Niu, Jaroslaw Zola, and Ahmet Erdem Sarıyüce

bipartite motifs which canmodel higher-order relations while being

computationally a�ordable.

One promising structure in this context is the 6-cycle, proposed

by Opsahl [28] to model the triadic closure in bipartite networks. A

6-cycle consists of three nodes on each node set forming a cycle. Re-

cently, Yang et al. introduced algorithms for counting non-induced

6-cycles [40]. While their algorithms are e�cient, they ignore the

inducedness constraint which is a key to get more informative

results by avoiding combinatorial explosion. In general, it is well

known that induced motifs (also known as graphlets) are more

useful than non-induced motifs in real-world applications, such as

anomaly detection, but also remain more challenging to compute

[30, 36]. In an induced 6-cycle, each node has exactly two edges.

There is no butter�y (or biclique) since each pair of nodes (from

the same set) shares only one neighbor. An induced 6-cycle relates

three nodes in the same node set to each other by forming a triangle

in the projections with the minimal number of edges (see Figure 1).

In that respect, induced 6-cycles o�er a more distilled perspective

than butter�ies or bicliques. However, counting induced 6-cycles

is more challenging than non-induced 6-cycles since one has to

account for the lack of certain edges to ensure inducedness.

In this work, we present parallel algorithms to count induced

6-cycles in bipartite graphs. To the best of our knowledge, there

is no prior work on counting induced 6-cycles. Due to the high

computational cost, we use the a�ordances of shared-memory paral-

lelization for practical runtime performance. We �rst consider two

previous studies on cycle counting in bipartite networks and adapt

them for parallel induced 6-cycle counting. In particular, we use

the breadth-�rst search idea from [13] and wedge join technique

from [37]. We show that those approaches have prohibitive time

and space costs, and are therefore not scalable for large bipartite

networks. As a solution, we propose counting induced 6-cycles over

node triplets (three nodes on the same node set). Node triplets o�er

a systematic way to count induced 6-cycles in batches, thus avoid-

ing duplicate work and enabling time-space tradeo�s for faster

computation. We further consider space improvements by mini-

mizing global storage and reduction of set intersection/di�erence

operations when designing the BatchTripletJoin algorithm. In all

our algorithms, we expose embarrassingly parallel computations

in the coarse level and also make use of a preprocessing routine

to assign better workloads for the threads. Preprocessing �lters

out the redundant parts of the graph while keeping the induced

6-cycle count the same and performs graph reordering to increase

e�ciency. We perform an extensive experimental evaluation on

real-world networks and investigate the runtime and memory us-

age performance of our algorithms along with strong and weak

scalability studies.

Our contributions can be summarized as follows:

• Preprocessing. We consider several techniques to �lter and

reorder the graph to speed up the induced 6-cycle counting. These

techniques are applied to all our algorithms.

• Adapting cycle counting algorithms. Since this is the �rst

study on induced 6-cycle counting, we propose two parallel adap-

tations of prior works on cycle counting to �nd the total number

of induced 6-cycles.

• Counting by node triplets. We give a new approach based

on counting induced 6-cycles for node triplets. We show the

relationship between node triplets and induced 6-cycles through

a pattern of set operations.

• Improving the runtime and memory usage. We introduce

BatchTripletJoin, an improved space-e�cient algorithm for

node triplets that uses reduced set operations.

• Evaluation on real-world networks. We evaluate all our al-

gorithms on various real-world bipartite networks. We compare

the runtime of our algorithms for di�ering number of cores to

demonstrate high scalability and practical runtimes. On a net-

work with more than half a billion edges, BatchTripletJoin

�nishes the computation in 13.2 hours by using 52 threads.

Outline. We present preliminary de�nitions and notation in

Section 2 and summarize the prior work on motif counting in bipar-

tite networks in Section 3. Then, we give a series of preprocessing

techniques to speed up induced 6-cycle counting in Section 4 and

adaptations of two cycle counting algorithms for induced 6-cycle

counting in Section 5. Next, we present our two main algorithms

based on the use of node triples in Section 6. We give our experi-

mental evaluation in Section 7 and conclusion in Section 8.

2 PRELIMINARIES

We work on a simple and undirected bipartite graphG = (U ,V ,E)

whereU is the set of nodes in the left set, V is the set of nodes in

the right set, and E is the set of edges. The neighbors of a node v is

denoted by N (v). The degree of a node v (|N (v)|) is d(v) and the

average degree of nodes inU andV are ïdU ð and ïdV ð, respectively.

Also, we use ïd2U ð to denote the average number of distance-2

neighbors of nodes inU . We denote |U | + |V | asn (number of nodes)

and |E | asm (number of edges). The summation of all elements in a

listX is denoted as sum(X ). For parallel time and space complexities,

we represent the number of processing units as p.

An induced 6-cycle is a set of six nodes u1,u2,u3 ∈ U and

v1,v2,v3 ∈ V and six edges as follows (w.l.o.g):

(i) (u1,v2), (u1,v3), (u2,v1), (u2,v3), (u3,v1), (u3,v2) edges exist;

(ii) (u1,v1), (u2,v2), (u3,v3) edges do not exist.

If only (i) holds, it is a non-induced 6-cycle. In a given bipartite

networkG , we �nd the total number of instances of induced 6-cycles.

In an induced 6-cycle instance, two vertices are connected if and

only if they are also connected inG . The degree of a node is exactly

two in an induced 6-cycle and at least two in a non-induced 6-cycle.

Figure 1 gives an example for both.

We de�ne a wedge as a 2-path composed of two endpoint ver-

ticesu1,u2 ∈ U and a center vertexv ∈ V with edges (u1,v), (u2,v)

∈ E (we always consider the endpoints in the left set and the center

vertex in the right set). An induced 6-cycle is made up of three

wedges connected to each other in a cyclic way. We useW (x) to

denote the set of wedges where x is the smaller of the two endpoints

(in U ) andW (x ,y) to denote the set of wedges whose endpoints

are x and y. The total number of wedges centered on V is equal to
∑

v ∈V

(d (v)
2

)

and denoted by |W |. The averageW (u) for all u ∈ U

is represented as ïWU ð.

3 RELATED WORK

In this section, we review various related works on �nding motifs

in bipartite networks.
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Algorithm 1: Preprocessing (G)

Input: G = (U ,V ,E): graph

Output: G ′ = (U ′,V ′,E ′): processed graph

1 G ← 2-core of G

2 if |U | > |V | then Swap(U ,V ) // Ensure |U | < |V |

// Sort the nodes in U by inc. count of wedges

3 X ← SortbyWedдeCounts(U )

4 Let x ’s rank R[x] be its index in X

5 parallel foreach u ∈ U do add R[u] toU ′

6 V ′ ← V

// N ′(x ) is the neighbors of node x in G′

// In both loops, neighbors sorted in descending order

7 parallel foreach u ∈ U do

N ′(R[u]) ← Sort({v |(u,v) ∈ E})

8 parallel foreach v ∈ V do

N ′(v) ← Sort({R[u]|(u,v) ∈ E})

9 return G ′

Counting Short Cycles in Bipartite Networks. A cycle in a bi-

partite network is considered to be short if its length k follows

д f k f 2д − 2 where д is the length of the smallest cycle in the

graph. The objective here is to count all non-induced short cycles

in bipartite networks. A message-passing algorithm was proposed

by Karimi and Banihashemi [20] which iteratively passes messages

across a node’s neighbors to count all short cycles within a bipartite

graph. Dehghan and Banihashemi [13] proposed an algorithm to

count short cycles by applying breadth-�rst search to all nodes in

either the left or right set of a bipartite network.

Butter�y Counting. In this problem, the objective is to count the

number of butter�ies in bipartite networks. A butter�y is the small-

est cycle in bipartite networks and has a variety of applications

such as document clustering [14] and link spam detection [16]. The

�rst work for butter�y counting is by Wang et al. who introduced a

counting scheme which uses the number of wedges containing each

node in the left set to calculate the total butter�y count [38]. Sanei-

Mehri et al. improved upon Wang et al.’s algorithm by computing

the number of wedges for each node in the set with lower runtime

cost [32]. The set with the higher sum of squares of the degrees for

each node is selected. Along with the exact counting algorithms,

they also proposed randomized algorithms which can approximate

the number of butter�ies in bipartite networks. In another work,

Sanei-Mehri et al. introduced streaming algorithms to count but-

ter�ies in graph streams [33]. Shi and Shun [37] recently designed

a parallel butter�y counting algorithm which modi�ed Chiba and

Nishizeki’s wedge retrieval process [11] to enable parallelization.

6-Cycle Counting. The problem of counting 6-cycles in bipartite

networks has only recently been studied for large bipartite net-

works. Yang et al. introduced algorithms to count the number of

non-induced 6-cycles, which they denote as bi-triangles [40]. Their

algorithms are based on combining wedges and super-wedges, with

the former being 2-paths and the latter being 3-paths. They also in-

troduce local 6-cycle counting algorithms which count the number

of 6-cycles containing a speci�ed node or edge. In our work, we

consider induced 6-cycle counting, which is more challenging

and promising for real-world applications.

4 PREPROCESSING

We make use of a generic preprocessing step in all our algorithms

which formats the graph to speed up computations (Section 4).

To speed up the computation for large bipartite graphs, we can

shrink and reformat the graph such that the induced 6-cycle count

stays the same. In Preprocessing, outlined in Algorithm 1, we give

a computation that takes as input a bipartite graph and outputs

another bipartite graph that �lters out some parts of the input and

reorders the nodes and neighbor lists. We �rst update the input

graph to only consider the nodes and edges that are in a 2-core,

which is a maximal connected subgraph in which all nodes have

a degree of at least 2 (line 1). Since all the nodes in an induced

6-cycle have a degree of at least 2, we can simply ignore the nodes

outside the 2-core, thus reducing the size of the graph. Afterwards,

if necessary, we swap the left (U ) and right sets (V ) to ensure that

the left set (U ) has the smaller number of nodes (line 2). We always

parallelize based onU in our counting algorithms, hence making

it the smaller set increases the number of induced 6-cycles that

are processed in batches for each thread. Next, we reorder each

node u ∈ U in increasing order of wedges from u (lines 3 - 5).

The wedge count for a node u is
∑

v ∈N (u) d(v) − 1 (we consider

the wedges where u is an end-point, as de�ned in Section 2). Note

that Shi and Shun [37] showed that reordering the graph using

approximate degree ordering or degeneracy ordering yields e�cient

results and here we consider wedge count based ordering in a

similar spirit. Finally, we sort each neighbor list in descending order

of node ids (lines 7 - 8). This enables linear time set intersection and

di�erence operations. We evaluate the impact of our techniques

in Preprocessing as well as various node reordering schemes in

Section 7.4.

Time and space complexity. In Preprocessing, core decom-

position (line 1) takesO(m) time [6]. The swapping of left and right

sets (line 2) is O(1) if pointers are swapped instead of the contents

themselves. Finally, reordering the nodes and sorting neighbor

lists in descending order (lines 3-8) takes O(|X | log |X | + m log

m) time where |X | =min(|U |, |V |). Overall, Preprocessing takes

O(m loдm) time. Asymptotically, it never becomes the bottleneck

in any of our counting algorithms. The space complexity for storing

the processed graph and temporary variables is O(n +m).

5 ADAPTING CYCLE COUNTING

Since induced 6-cycle counting has not been studied before, we

start by proposing two adaptations inspired by the previous works

for cycle counting in bipartite networks. The �rst is a modi�ed

version of breadth-�rst search to count induced 6-cycles, which

Dehghan and Banihashemi also used to count short cycles [13]

(Section 5.1). The second is based on the parallel wedge retrieval

algorithm proposed by Shi and Shun, which was used for butter�y

counting [37] (Section 5.2).

5.1 Counting by Breadth-First Search

One of the more common methods for �nding cycles in a graph

is through breadth-�rst search (BFS) [13]. The idea is to simply

perform a traversal for a few levels and determine the number of

cycles that the root node takes part in. To count induced 6-cycles, we

introduce the NodeJoin algorithm, outlined in Algorithm 2. Given
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Algorithm 2: NodeJoin (G)

Input: G (U ,V ,E): graph

Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)

2 counts ← [] // |U | values

3 parallel foreach u1 ∈ U do

4 S ← ∅ // Hashmap of node pairs (from U ) to values

5 foreach v2,v3 ∈ N (u1) s.t. v2 > v3 do

6 H ← ∅ // Set of nodes

7 foreach u3 ∈ N (v2)\N (v3) and u3 > u1 do

8 add u3 to H

9 foreach u2 ∈ N (v3)\N (v2) and u2 > u1 do

10 foreach u3 ∈ H do
// S stores the number of v1s (see Fig.

2)

11 if (u2,u3) < S then

12 S[(u2,u3)] ← |N (u2) ∩ N (u3)\N (u1)|

13 counts[u1] ← counts[u1] + S[(u2,u3)]

14 count ← sum(counts) // Parallel reduction

15 return count

a bipartite graph G = (U ,V ,E), NodeJoin counts the induced 6-

cycles by performing a limited BFS from each vertex u ∈ U up until

a depth level of three. Figure 2 illustrates the BFS tree whereu1 ∈ U

is the root node. v2,v3 ∈ V are two of u1’s neighbors, hence put

at level one. In level two, we �nd a neighbor of v2 which is not

connected to v3, denoted by u3 (and vice versa, denoted by u2). In

the last level, we �nd a common neighbor of u2 and u3, denoted by

v1, which is not connected to u1.

For each root node u1 ∈ U , the same u2, u3 pair may appear in

multiple induced 6-cycles containing u1. To avoid duplicate pro-

cessing, we use the container S (line 4 in Algorithm 2) to store the

number of nodes in N (u2) ∩ N (u3)\N (u1), which corresponds to

v1s in the last level of the BFS tree (line 12). We also ensure an

ordering such that u3 > u1 and u2 > u1 (lines 7 and 9) to break the

symmetry and thus prevent the duplicate processing of node pairs

from U . Note that the counts list contains the number of induced

6-cycles counted through each vertex; it is not the actual count for

each vertex. The sum of counts gives the total induced 6-cycle count

(line 14). NodeJoin has a coarse-grained parallelism where the root

nodes inU are shared among the threads (line 3).

A signi�cant drawback of NodeJoin is the recomputation of

set intersections across BFS trees. Multiple root nodes u1 may par-

ticipate in an induced 6-cycle with the same u2 and u3 node pair,

resulting in the recomputation of N (u2) ∩ N (u3) (line 12). One so-

lution would be to store each set intersection for all pairs of root

nodes, but it will have prohibitive space usage for large networks.

Time complexity. We express the costs in terms of average

node degrees, ïdU ð and ïdV ð, to enable a tight analysis. There are

|U | iterations performed in total which go over each node u ∈ U

(line 3). The loop in line 5 iterates over node pairs in u1’s neighbor

list, corresponding toO(
( ïdU ð

2

)

) iterations. The cost of lines 7 and 8

isO(ïdV ð). Lines 9 and 10 takeO(ïdV ð) iterations each, for a total of

O(ïdV ð
2) iterations. Computing the set operations in line 12 takes

O(ïdU ð) time because N (u2) ∩ N (u3)\N (u1) can be computed in

Figure 2: NodeJoin’s BFS tree. The

dotted lines represent the edges

which do not exist. The BFS tree goes

from top to bottom with u1 being

the root node and node v1 at depth

level three. We check for the lack of

the blue edge in line 7 and of the red

edge in line 9 in Algorithm 2.

linear-time by simultaneously going over the neighbor lists of u2,

u3, and u1 (neighbor lists are kept sorted in descending order, see

Section 4). Overall, the total time of NodeJoin is O(|U | ·
( ïdU ð

2

)

·

(ïdV ð + ïdV ð
2 · ïdU ð)) which is equal toO(m · ïdU ð

2 · ïdV ð
2)O(m · ïdU ð

2 · ïdV ð
2)O(m · ïdU ð

2 · ïdV ð
2). The

parallel time complexity of NodeJoin is simply O(1/p ·m · ïdU ð
2 ·

ïdV ð
2) since it is embarrassingly parallel.

Space complexity. In addition to the O(m) space taken by the

graph, NodeJoin uses one global container counts (line 2) and

two local containers S (line 4) and H (line 6) per thread to store

various auxiliary information. counts stores |U | values. S stores

O(
( ïdV ð

2

)

) values which in the worst case can be O(|U |2). H stores

up to |U | nodes. Therefore, the space complexity of NodeJoin is

O(m + p · (|U | + |U |2 + |U |) = O(p · |U |2). Note that in practice we

observe that this is a loose bound and the actual memory footprint

is much smaller (see Section 7.3).

5.2 Counting by Wedges

An alternative way to count induced 6-cycles is by aggregating

wedges. Since induced 6-cycles are composed of three overlapping

wedges (see Figure 3), we can reduce the cost of computation by

operating on wedges rather than nodes. Shi and Shun proposed to

use (and store) wedges for counting butter�ies [37]. We can count

induced 6-cycles using a similar wedge retrieval technique while

taking advantage of the patterns associated with inducedness.

We describe our wedge based counting algorithmWedgeJoin

in Algorithm 3.WedgeJoin simply goes over triples of wedges and

counts the ones that form an induced 6-cycle. Wedge retrieval (lines

2-6) is based o� of Shi and Shun’s [37] algorithm and enables the

parallel processing of wedges. The parallel containerW allows for

fast access of wedges based on endpoints. Unlike their algorithm,

we only �nd wedges with endpoints inU instead of the entire node

set. In our implementation,W is a list of all the wedges in the graph

such that each wedge consists of two nodes from U (endpoints)

and one node fromV (center). We partitionW based on the smaller

endpoint (u1) and sort each partition with respect to the larger

endpoint (u2). For all nodes u1 ∈ U ,W enables the retrieval of all

wedges with endpoints u1,u2 and center v3 such that u1 < u2.

WedgeJoin �nds cycles of wedges (u1,v3,u2), (u2,v1,u3), and

(u1,v2,u3) such that u1 < u2 < u3. Line 8 (in Algorithm 3) iterates

over all blue wedges (u1,v3,u2) and line 10 iterates over all green

wedges (u2,v1,u3) (Figure 3). The lack of edges (u1,v1), (u2,v2), and

(u3,v3) is needed to satisfy the inducedness (the dashed black edges

in Figure 3). To ensure that the blue and green wedge pair satisfy

the inducedness constraint, we �rst check for the nonexistence

of (u1,v1) and (u3,v3) in line 13. Afterwards, we traverse all red

wedges (u1,v2,u3) (Figure 3) in line 15. Finally, we check for the

last unwanted edge (u2,v2) in line 17 and increment the induced

6-cycle count of the blue wedge.
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Algorithm 3:WedgeJoin (G)

Input: G (U ,V ,E): graph

Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)

2 W ← ∅ // Parallel container of wedges

3 parallel foreach u1 ∈ U do

4 foreach v3 ∈ N (u1) do

5 foreach u2 ∈ N (v3) s.t. u2 > u1 do

6 add (u1,v3,u2) toW (sorted by endpoints)

7 counts ← [] // |W | values

8 parallel foreachw1 ∈W do

9 (u1,v3,u2) ← w1 // Blue wedge in Fig. 3; u1 < u2

10 foreachw2 ∈W (u2) do

11 (u2,v1,u3) ← w2 // Green wedge in Fig. 3;

u2 < u3

12 // Speedup #1: If v3 ∈ N (u3), skip all the

successive wedges with the same endpoints;

also no need to check v3 < N (u3) for such

wedges

13 if v1 < N (u1) and v3 < N (u3) then

14 // Speedup #2: Reuse the count below for all

the successive green wedges with the same

pair of endpoints

15 foreachw3 ∈W (u1,u3) do

16 (u1,v2,u3) ← w3 // Red wedge in Fig. 3

17 if v2 < N (u2) then counts[w1]++

18 count ← sum(counts) // Parallel reduction

19 return count

We have two speedups for faster computation, mentioned in

lines 12 and 14. In the �rst speedup, we aim to skip the processing

of some green wedges with particular endpoints. Note that inW ,

the wedges with the same smaller-endpoint (u1) are sorted with

respect to their larger-endpoint (u2). This means that while going

over the green wedges (w2) in line 10, where u2 is the smaller-

endpoint, we may encounter successive green wedges with the

same pair of endpoints, u2 and u3 (where the center point (v1) from

V is di�erent). In that case, ifv3 ∈ N (u3) happens to be true, we can

skip processing all such successive green wedges with endpoints

u2,u3 because the (u3,v3) edge violates the inducedness condition.

We can do this by simply keeping a �ag and temporary variable to

remember the larger-endpoint (u3) from the last processed green

wedge. This way we do not check whether v3 < N (u3) again and

again. More importantly, if v3 ∈ N (u3), we skip processing all the

green wedges with the same pair of endpoints u2,u3 . In the second

speedup, we again take advantage of the successive green wedges

with the same pair of endpoints. We perform the computation in

lines 15 to 17 once for aw1,w2 pair and reuse the induced 6-cycle

count for all successive w1,w
′
2
pairs where w2 and w ′

2
share the

same endpoints. We use both speedups in our implementation.

WedgeJoin computes the true count of induced 6-cycles by

�nding three wedges where: (1) Nodes on the left are unique:

Lines 9 and 11 enforce uniqueness by establishing an ordering

u1 < u2 < u3; (2) Nodes on the right are unique: Each node on

right is the center of a traversed wedge (lines 9, 11, and 16) which

Figure 3: A cycle of three wedges

(red, blue, and green) and the lack of

any other edge are needed to form

an induced 6-cycle. The dashed edges

must be nonexistent; including any

of those would make the 6-cycle non-

induced.

contain two endpoints—through the inducedness checks in lines 13

and 17, we prove uniqueness by checking if a pair of endpoints from

all three traversed wedges connects to multiple nodes on right; (3)

The six induced edges exist (the blue, green, and red edges in

Figure 3): Since all nodes are unique, each traversed wedge (lines 8,

10, and 15) contains two of the induced edges; (4) The three non-

induced edges do not exist (the dashed black edges in Figure 3):

We have explicit conditions on lines 13 and 17 corresponding to

the three inducedness checks. Finally, since we go over all triples

of wedges, all the induced 6-cycles are counted.

Time complexity.Wedge retrieval (lines 2-6) traverses over all

wedges which have endpoints inU and takesO(|U | · ïdU ð · ïdV ð) =

O(m · ïdV ð) time. Starting in line 8, we iterate over all the wedges,

taking O(m · ïdV ð) iterations. The loop on line 10 �nds the wedges

where a node u ∈ U is the smaller endpoint, which corresponds

to O(ïWU ð) iterations. We �nd the third wedge in line 15, which

takes O(ïdU ð) iterations. Line 17 simply takes O(1) time. Overall,

WedgeJoin takesO(m · ïdV ð+m · ïdV ð · ïWU ð · ïdU ð)which is equal

toO(m · ïdV ð · ïWU ð · ïdU ð)O(m · ïdV ð · ïWU ð · ïdU ð)O(m · ïdV ð · ïWU ð · ïdU ð) time (divided by p when parallelized).

Comparing with NodeJoin, which has O(m · ïdU ð
2 · ïdV ð

2) time,

whether ïWU ð is smaller than ïdU ð · ïdV ð determines if WedgeJoin

is faster than NodeJoin. However, as we see in Section 7, even

in real-world networks where ïWU ð is larger than ïdU ð · ïdV ð,

the constant time speedups implemented in WedgeJoin causes

WedgeJoin to run signi�cantly faster than NodeJoin.

Space complexity. The global containers counts (line 7) andW

(line 2) takes space equivalent to the number of wedges, which is

much more than theO(m) space required for the graph. Each wedge

takes O(1) space and there are O(|W |) wedges in total, which also

corresponds to the total space complexity of WedgeJoin.

6 NODE TRIPLETS FOR FASTER COUNTING

In this section, we propose a new technique that considers node

triplets to count the induced 6-cycles. We de�ne a node triplet to be

a grouping of three unique nodes such that all nodes are in the same

set (U or V ) and there exists a 4-path connecting the three nodes.

Inspired by Yang et al.’s approach for non-induced 6-cycles [40], we

derive a formula to �nd the number of induced 6-cycles for a given

node triplet and compute the total count by going over all node

triplets. The formula lets us systematically avoid the duplicate work

and engage in time-space tradeo�s for faster computation. We �rst

introduce the TripletJoin algorithm in Section 6.1 which simply

applies the formula for all node triplets and also stores the set of

common neighbors for fast computation. Then, we present our

�nal algorithm, BatchTripletJoin, in Section 6.2 which improves

TripletJoin by storing common neighbors more e�ciently and

reducing set operations.
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Algorithm 4: TripletJoin (G)

Input: G (U ,V ,E): graph

Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)

2 counts ← [] // |U | values

// For each node pair in U , common neighbors stored in

S

3 S ← ∅ ∗ |U | // |U | hashmaps of nodes to sets

4 parallel foreach u1 ∈ U do

5 foreach vj ∈ N (u1) do

6 foreach ui ∈ N (vj ) s.t. ui > u1 do

7 add vj to S[u1][ui ]

8 parallel foreach u1 ∈ U do

9 H ← ∅ // Distance-2 neighbors of u1 with greater

id

10 foreach vj ∈ N (u1) do

11 foreach ui ∈ N (vj ) s.t. ui > u1 do

12 add ui to H

13 foreach u2,u3 ∈ H s.t. u3 > u2 do

14 if u3 ∈ S[u2].keySet() then

15 counts[u1] ← counts[u1] + (|S[u1][u2]\N (u3)|) ·

(|S[u1][u3]\N (u2)|) · (|S[u2][u3]\N (u1)|)
16 count ← sum(counts) // Parallel reduction

17 return count

6.1 Counting by Node Triplets

Node triplets o�er a systematic way to count the induced 6-cycles.

Given that there are exactly six edges in an induced 6-cycle and no

two nodes share more than one neighbor, we can derive a formula

to �nd the number of induced 6-cycles for a given node triplet:

Theorem 1. Given a bipartite network G = (U ,V ,E) and three

unique nodes u1, u2, and u3 ∈ U , the number of induced 6-cycles

containing the node triplet (u1,u2,u3) is:

|N (u1) ∩ N (u2)\N (u3)| · |N (u1) ∩ N (u3)\N (u2)|·

|N (u2) ∩ N (u3)\N (u1)|
(1)

Proof. Let unique nodes v1, v2, and v3 ∈ V be in an induced 6-

cycle withu1,u2, andu3 as depicted in the induced 6-cycle of Figure

3. The di�erence between a 6-cycle and an induced 6-cycle is that,

in an induced 6-cycle, neither of v1, v2, and v3 can be a common

neighbor of all three nodes u1, u2, and u3. Therefore, the number

of induced 6-cycles containing u1, u2, u3, v1, and v3 is the number

of possible v2s which are neighbors of u1 and u3 but not u2. This

can be represented as |N (u1)∩N (u3)\N (u2)|. Likewise, the number

of possible v1s and v3s are |N (u2) ∩ N (u3)\N (u1)| and |N (u1) ∩

N (u2)\N (u3)|, respectively. The sets of {N (u1) ∩ N (u2)\N (u3)},

{N (u1) ∩ N (u3)\N (u2)}, and {N (u2) ∩ N (u3)\N (u1)} are mutually

exclusive. Therefore, multiplying the size of these three sets gives

the number of induced 6-cycles for the node triplet u1,u2,u3. □

Algorithm 4 outlines the TripletJoin algorithm. Given a bipar-

tite graph G = (U ,V ,E), TripletJoin computes the number of

participating induced 6-cycles for all node triplets ofU and returns

the total sum. TripletJoin processes at most
( |U |
3

)

node triplets,

of which many may share multiple nodes, such as the same pair

of nodes u1,u2 ∈ U . This may cause serious recomputation of

N (u1) ∩ N (u2), which corresponds to a signi�cant runtime cost.

Therefore, we store the common neighbors of node pairs in U , i.e.,

N (u1)∩N (u2) ∀u1,u2 ∈ U , in container S (lines 3-7). Then, for each

u1, we use a containerH (line 9) to store all its distance-2 neighbors

which are greater than itself. Afterwards, we obtain node triplets

by iterating over unique node pairs in H and compute the induced

6-cycle count of each by Theorem 1 (line 15). This process of �nding

node triplets avoids going over all
( |U |
3

)

triplets by only processing

the three nodes which form a 4-path (lines 10- 12: u1-vx -u2 and

u1-vy -u3 for arbitraryvx andvy ). Such node triplets are more likely

to be a part of an induced 6-cycle when compared to an arbitrary

node triplet inU .

Time complexity. Lines 4-7 iterate through all wedges of the

graph, which takes O(|W |) time. Then, for each node inU (line 8),

we �nd its distance-2 neighbors (lines 9-12), takingO(m · ïdV ð) time

in total. Line 13 traverses through pairs of distance-2 neighbors,

which takes, on average, O(
( ïd2U ð

2

)

) time. Line 15 does a compu-

tation based on Theorem 1, which takes an average of O(ïdU ð)

time. Therefore, TripletJoin has a time complexity of O(|W | +

|U | ·
( ïd2U ð

2

)

· ïdU ð) = O(m · ïd2U ð
2)O(m · ïd2U ð
2)O(m · ïd2U ð
2). As we see in Section 7, the

time complexity of TripletJoin is typically much smaller than

both NodeJoin (O(m · ïdU ð
2 · ïdV ð

2)) andWedgeJoin (O(m · ïdV ð ·

ïWU ð · ïdU ð)) because the number of distance-2 neighbors of a node

is often much less than the number of wedges it has. The parallel

time complexity of TripletJoin is O(1/p ·m · ïd2U ð
2) since it is

embarrassingly parallel.

Space complexity. In addition to the O(m) space required for

the graph and the O(|U |) space required for the container counts

(line 2), TripletJoin involves storing wedges (line 3) in the global

scope, which takes O(|W |) space and determines the total space

complexity. Note that the local storage of distance-2 neighbors of a

nodeu ∈ U (line 9) only takesO(p · ïd2U ð) space, which is surpassed

by the global storage of wedges and thus does not increase the total

space complexity.

6.2 Faster Triplet Counting with Less Space

Herewe consider three orthogonal improvements on top of TripletJoin

for a more time and space e�cient algorithm.

Storing size of intersections. By globally storing wedges in

WedgeJoin and set intersections in TripletJoin, we are able to

solve the recomputation issue of wedges and set intersections, re-

spectively. However, for large graphs, the space required for this

storage is prohibitive and may exceed the amount of available mem-

ory. To reduce the memory usage, we can make a more e�cient use

of global storage across loop iterations and local storage within loop

iterations. Since local storage is temporary, its memory is freed (and

thus can be reallocated) after each iteration, unlike global storage.

Compared to TripletJoin, which stores the set intersections in

global storage, we can only store the sizes of set intersections glob-

ally (not the sets) and use local storage only for the set intersections

which directly relate to the associated loop iteration.

Reduced set operations. Another improvement is about the

computation of induced 6-cycle counts for a node triple. In an

induced 6-cycle, each node v ∈ V has exactly two edges. We can

use this to improve upon Theorem 1 by eliminating the need for the
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Algorithm 5: BatchTripletJoin (G)

Input: G (U ,V ,E): graph

Output: count : number of induced 6-cycles

1 G ← Preprocessing (G)

2 counts ← [] // |U | values

// For each node pair in U , # of common neighbors

stored in S

3 S ← ∅ ∗ |U | // |U | hashmaps of nodes to values

4 parallel foreach u1 ∈ U do

5 foreach vj ∈ N (u1) do

6 foreach ui ∈ N (vj ) s.t. ui > u1 do

7 S[u1][ui ] ← S[u1][ui ] + 1

8 parallel foreach u1 ∈ U do

9 H ← ∅ // Hashmap of nodes to node sets

10 foreach vj ∈ N (u1) do

11 foreach ui ∈ N (v) s.t. ui > u1 do

12 add vj to H [ui ]

13 foreach u2,u3 ∈ H .keySet() s.t. u3 > u2 do

14 if u3 ∈ S[u2].keySet() then

15 x ← |H [u2] ∩ H [u3]|

16 counts[u1] ← counts[u1]+

(|H [u2]| − x) · (|H [u3]| − x) · (S[u2][u3] − x)
17 count ← sum(counts) // Parallel reduction

18 return count

set di�erence operation, reducing the number of computations. As

shown in Theorem 2, we can instead subtract the number of nodes

which are connected to all three nodes in a node triplet. Therefore,

instead of computing three O(|V |) set di�erence computations, we

can simply compute one O(|V |) set intersection computation.

Theorem 2. Given a bipartite networkG = (U ,V ,E), three unique

nodes u1,u2,u3 ∈ U , and x = |N (u1) ∩ N (u2) ∩ N (u3)|, the number

of induced 6-cycles containing the node triplet is:

(|N (u1) ∩ N (u2)| − x) · (|N (u1) ∩ N (u3)| − x)·

(|N (u2) ∩ N (u3)| − x)
(2)

Proof. Given a setX , |X | − |X ∩A| = |X\A|. Therefore, |N (u1)∩

N (u2)| − x is equivalent to |N (u1) ∩ N (u2)\N (u3)| in Theorem 1.

As such, Theorem 2 is correct by the same reasoning as Theorem

1. □

We consider the improvements above in BatchTripletJoin, out-

lined in Algorithm 5, which reduces the number of computations

and is more e�cient than TripletJoin in terms of memory usage.

In lines 4-7, we compute and globally store the sizes of the set

intersections between the neighbor lists for all u1,ui node pairs.

Afterwards, we iterate through all u1s (line 8) and store the non-

empty set intersections between the neighbor lists of u1 and all

ui ∈ U s.t. ui > u1 (lines 9-12). Finally, we count the number of

induced 6-cycles associated with each node triplet {u1,u2,u3} by

Theorem 2 (line 16) and return the sum of all the counts. In our

implementation, we force the compiler to vectorize the inner loops

and it gave a slight improvement on the largest networks.

Time complexity. BatchTripletJoin features three orthogo-

nal improvements over TripletJoin but the time complexity does

Table 1: Statistics of the real-world bipartite networks used in the

experiments. I6C stands for number of induced 6-cycles.

Networks |U | |V | m I6C

DBLP (DB) 4,000,150 1,425,813 10,002,631 5.10 x 107

Github (GI) 56,555 123,345 440,237 1.37 x 1011

IMDB (IM) 1,232,031 419,661 5,596,667 2.01 x 1010

Kindle (KI) 1,406,890 430,530 3,205,467 5.20 x 109

Twitter (TW) 175,214 530,418 1,890,661 5.58 x 1011

Movielens (ML) 69,878 10,677 10,000,054 1.69 x 1017

Reuters (RE) 781,265 283,911 60,569,726 9.91 x 1018

LiveJournal (LJ) 3,201,203 7,489,073 112,307,385 2.10 x 1018

not change. E�cient usage of memory and reduction of set oper-

ations (line 16) only o�er constant time speedup and thus does

not a�ect the overall time complexity. Overall, the total time com-

plexity of BatchTripletJoin is equal to TripletJoin, which is

O(m · ïd2U ð
2)O(m · ïd2U ð
2)O(m · ïd2U ð
2).

Space complexity. BatchTripletJoin utilizes three global stor-

age containers - one for storing the graph, one for the container

counts (line 2), and one for the container S (line 3) - and one local

container H (line 9). Storing the graph requires O(m) space and

counts uses O(|U |) space to store |U | values. S stores the size of

the non-empty intersections of the neighbor lists of node pairs in

U for which the space complexity is O(|U | · ïd2U ð). Note that in

real-world networks, this is signi�cantly smaller than the number

of wedges, as we also show numerically in Section 7. The local

container H stores edges and thus takesO(p ·m) space. In total, the

space complexity of BatchTripletJoin is O(|U | · ïd2U ð).

7 EXPERIMENTS

In this section, we evaluate our algorithms in Section 6 as well as

the adaptations in Section 5 on real-world datasets from Konect [21]

and ICON [3]. For brevity, we use NJ (NodeJoin),WJ (WedgeJoin),

TJ (TripletJoin), and BTJ (BatchTripletJoin). Table 1 gives broad

statistics of the datasets.

DBLP is the graph of authors and their papers [24]. Github con-

nects users with their projects [9]. IMDB contains actors and the

movies they played in [1]. Kindle is the network of books and the

users who rated those books [18]. Twitter contains Twitter users

and the tags they mentioned in their tweets [12]. Movielens is a

network of users and the movies they rate [17]. Reuters contains

story-word inclusions in Reuters news [23]. LiveJournal is the

network of users and their group memberships [26].

We give the statistics of our real-world datasets after Preprocess-

ing and the computed time complexities of our algorithms in Table

Net. |U | |V | m ïWU ð ïd2U ð NJ WJ TJ

DB 644K 1.92M 5.89M 12.5 5.67 4.67 x 109 2.07 x 109 1.90 x 10
8

GI 22.9K 34.3K 335K 1,423 813 6.83 x 10
9 6.80 x 1010 2.21 x 1011

IM 350K 497K 4.80M 347 282 8.41 x 10
10 2.20 x 1011 3.81 x 1011

KI 198K 370K 2.01M 231 201 6.20 x 10
9 2.58 x 1010 8.14 x 1010

TW 129K 138K 1.46M 161 117 2.07 x 1010 2.80 x 1010 1.99 x 10
10

ML 10.6K 69.9K 10.0M 222,291 4,589 1.83 x 1017 3.01 x 1017 2.11 x 10
14

RE 169K 781K 60.5M 20,920 899 4.65 x 1016 3.51 x 1016 4.88 x 10
13

LJ 2.19M 2.98M 107M 1,983 581 3.28 x 1014 3.71 x 1014 3.61 x 10
13

Table 2: Statistics of the networks after Preprocessing. For Node-

Join (O (m · ïdU ð
2 · ïdV ð

2)),WedgeJoin (O (m · ïdV ð · ïWU ð · ïdU ð)),

and TripletJoin (O (m · ïd2U ð
2)), we give the numerical values for

their time complexities and highlight the best in bold. Note that

BatchTripletJoin has the same time complexity as TripletJoin.
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more induced 6-cycles compared to a lower degree node. Since we

process induced 6-cycles based on the node with minimum id and

higher degree nodes are assigned a higher id, we process a lower

proportion of induced 6-cycles for higher degree nodes in their

parallel threads (and vice versa). Comparing individual ordering

schemes, increasing wedge ordering outperforms the other order-

ing schemes in six of eight networks, including the two largest

networks (Reuters and LiveJournal), which is why we consider

it as the default ordering in Preprocessing.

8 CONCLUSION AND FUTUREWORK

We introduced e�cient and scalable parallel algorithms to count

induced 6-cycles in bipartite networks. To the best of our knowl-

edge, this is the �rst inquiry in induced 6-cycle counting. Experi-

ments on real-world bipartite networks show that our best algo-

rithm, BatchTripletJoin, is highly parallelizable in relation to the

number of processors and enables practical computation for large

networks with up to half a billion edges; on the 52 times scaled

Movielens network with a total of 520M edges, BatchTripletJoin

�nishes the computation in 13.2 hours by using 52 threads.

Although BatchTripletJoin exhibits strong performance, it is

unable to compute some large networks in under 24 hours with

52 threads, such as the 52 times scaled Reuters and LiveJournal

networks (3B-5B edges). It also shows poor scalability when the

network has relatively few induced 6-cycles, as in the DBLP network.

As a future work, we will investigate scaling our algorithm to

larger networks with billions of edges. We will also extend our

methods to handle the networks with low induced 6-cycle counts.

One interesting question in this context is how quickly one can

terminate the computation if the graph has no induced 6-cycles.
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