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Abstract Decision trees have been a very popular class of predictive models for decades due to their inter-
pretability and good performance on categorical features. However, they are not always robust and tend to
overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a
mixed integer programming formulation to construct optimal decision trees of a prespecified size. We take the
special structure of categorical features into account and allow combinatorial decisions (based on subsets of
values of features) at each node. Our approach can also handle numerical features via thresholding. We show
that very good accuracy can be achieved with small trees using moderately-sized training sets. The optimization

problems we solve are tractable with modern solvers.
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1 Introduction

Interpretability has become a well-recognized goal for machine learning models as they push further
into domains such as medicine, criminal justice, and business. In many of these applications machine
learning models complement domain experts and for human decision-makers to trust these models,
interpretability is crucial. Decision trees have been a very popular class of predictive models for
decades due to their interpretability and good performance on categorical features. Decision trees
(DTs, for short) are similar to flow-charts as they apply a sequence of binary tests or decisions
to predict the output label of the input data. As they can be easily interpreted and applied by
non-experts, DTs are considered as one of the most widely used tools of machine learning and
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data analysis (see the recent survey [11] and references therein). Another advantage of DTs is that
they often naturally result in feature selection, as only a part of the input is typically used in the
decision-making process. Furthermore, DTs can work with both numerical and categorical data
directly, which is not the case for numerical classifiers such as linear classifiers or neural networks,
as these methods require the data to be real-valued (and ordinal). For example, if a categorical
feature can take three values such as (¢) red, (ii) blue, or, (iii) yellow, it is often represented by
a group of three binary features such that one of these features takes the value 1 while the other
two are 0. A numerical classifier would treat this group of three features independently where any
combination of 0/1 values are possible - ignoring the valuable information that only three values
for the triplet are possible. Numerical classifiers typically recover this lost information by observing
enough data and fitting the model accordingly. However, this is not a trivial task, and may require
a more complex model than what is really necessary. In comparison, DTs can explicitly deal with
categorical features.

There are also known disadvantages to DT predictors. For example, they are not always robust,
as they might result in poor prediction on out-of-sample data when the tree is grown too large.
Hence, small trees are often desirable to avoid overfitting and also for the sake of interpretability.
Assuming that for a given data distribution there exists a small DT that can achieve good accuracy,
the small DTs that are computed by a typical recursive DT algorithm (such as CART [5,16]) may
not achieve such accuracy, due to the heuristic nature of the algorithm. Moreover, it is usually
impossible to establish a bound on the difference between the expected accuracy of the DT produced
by a heuristic algorithm and the best possible DT.

Currently, popular algorithms used for constructing DTs (such as CART or C4.5) are sequential
heuristics that first construct a tree and then trim (prune) it to reduce its size, see [11]. When
building the tree, these heuristics use various criteria to choose a feature and a condition on that
feature to branch on. As the tree is built gradually, the resulting DT is not necessarily “the best” for
any particular global criterion. One recent example of this fact is the winning entry [7] in the FICO
interpretable machine learning competition [8]. The authors of [7] construct a simple classifier in
conjunctive normal form which in fact can also be seen as a small depth decision tree. The authors

show that their classifier is both simpler and more accurate (on test data) than the trees constructed

by CART.

In this paper, we aim to find optimal small DTs for binary classification problems that pro-
duce interpretable and accurate classifiers for the data for which such classifiers exist. We call a
DT optimal if it has the best possible classification accuracy on a given training dataset. We allow
complex branching rules using subsets of values of categorical features. For example, if a categorical
feature represents a person’s marital status and can take the values “single”, “married”, “divorced”,
“widowed”, or “has domestic partner”, a simple branching rule, which looks at numerical represen-
tation of the features, will make decisions based on a feature being “single” or not, while a more
appropriate decision may be “either married or has a domestic partner” or not. Such combinato-
rial branching rules are considered desirable and in the case of binary classification using CART,
branching on the best subset values of a categorical feature can be done again according to a se-
quential local heuristic. On the other hand, combinatorial branching may lead to overfitting when a
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categorical variable can take a large number of values. If the categorical variable can take £ values,
then, there are 2¢ — 2 possible subsets of values of this feature that can be used for branching. To
avoid overfitting, our model allows bounding the size of the subset used for branching.

While finding an optimal DT (even without the combinatorial decisions) is known to be an
NP-hard problem [10], we show that with careful modeling, the resulting integer programs can
be solved to optimality in a reasonable amount of time using commercial solvers such as Cplex.
Moreover, since we directly optimize the empirical loss of a DT in our model, even suboptimal
feasible solutions tend to yield classifiers that outperform those learned by other DT algorithms. In
particular, we consider a binary classification problem, which means that the output nodes (leaves)
of our DTs generate binary output. Our problem formulation takes particular advantage of this
fact. Also, while our formulation can be generalized to real-valued data, it is designed for the case
when the input data is binary. Hence, we will consider input data as being a binary vector with the
property that features are grouped so that only one feature can take the value 1 in each group for
each data sample. Our formulation explicitly takes this structure into account as we allow branching
on any subset of the values of that feature. To our knowledge such generalized rules have not been
addressed by any algorithm aiming at constructing optimal trees, such as a recent method proposed
in [3], which we will discuss in the next section.

In this paper, we focus on constructing small DTs with up to four levels of decisions, which
makes the resulting model clearly interpretable and easily usable by humans. Our formulation, in
principle, can work for binary trees of any topology; however, as we will show in our computational
results, trees of more complex topologies are much more time consuming to train and require larger
training sets to avoid overfitting. The purpose of this paper is to show that if an accurate small
(interpretable) tree exists for a given data set, it can be obtained in a reasonable time by our
proposed model, while popular heuristic methods such as C4.5 [16] and random forests [6] tend to
produce less accurate and less interpretable trees. We note that even though we mostly focus on
categorical features, our approach can easily handle numerical features via tresholding. We discuss
how to do this later and also present numerical experiments with data sets with both categorical

and numerical features.

The key approach we pursue is to formulate the DT training problem as a mixed-integer opti-
mization problem that is specially designed to handle categorical variables. We then propose several
modifications that are intended to aid a branch-and-bound solver, e.g. symmetry breaking. We also
consider an extension to a formulation that directly constrains either training sensitivity or training

specificity and then maximizes the other measure.

The rest of the paper is organized as follows: First, in Section 2, we discuss related work in using
integer formulations for practical machine learning. Then, in Section 3, we describe the main ideas
of our approach and the structure of the data for which the model is developed. In Section 4 we
describe an initial IP model and several techniques for strengthening this formulation. We present

some computational results and comparisons in Section 5.
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2 Related Work

The idea of solving decision trees to optimality given a fixed topology is hardly new. In [5] from
1984, the authors discuss the “one-step optimality” of inductive (greedy) tree algorithms, and how
one would ideally prefer an “overall optimal” method wherein the tree is learned in one step (such
as the one we explore in this paper). The authors remark that this is analogous to a “best subset
selection” procedure of linear regression, and continue to say that “At the current stage of computer
technology, an overall optimal tree growing procedure does not appear feasible for any reasonably
sized dataset”. In [14], the authors detail what they call the “look-ahead pathology” of greedy tree
learning algorithms, lending further evidence of possible failures of greedy one-step methods.

In the 1990s several papers considered optimization formulations for optimal decision tree learn-
ing, but deliberately relaxed the inherently integer nature of the problem. In particular, in [1], a
large-scale linear optimization problem, which can be viewed as a relaxation, is solved to global
optimality via a specialized tabu search method over the extreme points of the linear polytope. In
[2], a similar formulation is used, but this time combined with the use of support-vector machine
techniques such as generalized kernels for multivariate decisions, yielding a convex nonlinear opti-
mization problem which admits a favorable dual structure. More recent work [15] has employed a
stochastic gradient method to minimize a continuous upper bound on misclassification error made
by a deep decision tree. None of these methods, though, guarantee optimal decision trees, since
they do not consider the exact (integer) formulations, such as the one discussed in this paper.

Recently, in [3], an integer model for optimal decision trees has been proposed. The key difference
with the model in this paper is that [3] does not target categorical variables and, hence, does
not exploit the resulting combinatorial structure. Moreover, all features are treated as real-valued
ones, hence a categorical feature is replaced by several binary features, and two possible models
are proposed. The first uses arbitrary linear combinations of features, and, in principal, is more
general than what we propose here, but results in a loss of interpretability. The second uses the
value of one feature in each branching decision, and hence is less general than the model in this
paper. Additionally, we focus on binary classification problems whereas [3] presents a formulation
for multi-class classification. Rather than fixing a tree topology, as we do, they propose tuning a
regularization parameter in the objective; as the parameter magnitude increases, more leaf nodes
may have no samples routed to them, effectively yielding shallower trees. We note that this does
not simplify the underlying optimization problem, and moreover requires tuning parameters in
a setting where the training of models is computationally non-negligible, and the effect of the
choice of regularization parameter on the tree topology cannot be known a priori. In fact, in the
computational results of [3], the depth is often fixed. Finally, unlike the work in [3], we not only
propose a basic model that specifically exploits the categorical nature of the features, but we also
propose several modifications of the model that produce stronger formulations and improve the

efficiency of the branch-and-bound solver.

We would now like to remark on other relevant uses of integer optimization in classification
settings. In particular, [18] considered the problem of learning optimal “or’s of and’s”, which fits
into the problem of learning optimal disjunctive normal forms (DNFs), where optimality is measured
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by a trade-off between the misclassification rate and the number of literals that appear in the “or
of and’s”. The work in [18] remarks on the relationship between this problem and learning optimal
decision trees. In [18], for the sake of computational efficiency, the authors ultimately resort to
optimally selecting from a subset of candidate suboptimal DNF's learned by heuristic means rather
than solving their proposed mixed-integer optimization problem. Similarly, [13] proposes learning
DNPF-like rules via integer optimization, and propose a formulation that can be viewed as boolean
compressed sensing, lending theoretical credibility to solving a linear programming relaxation of
their integer problem. Another integer model that minimizes misclassification error by choosing
general partitions in feature space was proposed in [4], but when solving the model, global optimality
certificates were not easily obtained on moderately-sized classification datasets, and the learned
partition classifiers rarely outperformed CART, according to the overlapping author in [3]. Finally,
a column generation based mixed-integer programming approach to construct optimal DNFs was
recently proposed in [7]. This approach seems to work quite well on several binary classification
datasets including the FICO challenge data [8].

3 Setting

In this paper we consider datasets of the form {(g¢,...,g},¢") 14 € 1,2,..., N} where g;'- € G for
some finite set G for j = 1,...,¢, and y* € {—1,+1} is the class label associated with a negative
or positive class, respectively. For example, if the data is associated with a manufacturing process
with ¢ steps, then each G; may correspond to a collection of different tools that can perform the
jth step of the production process and the label may denote whether the resulting product meets
certain quality standards or not. The classification problem associated with such an example is
to estimate the label of a new item based on the particular different step-tool choices used in its
manufacturing. Alternatively, the classification problem can involve estimating whether a student
will succeed in graduating from high school based on features involving gender, race, parents marital

status, zip-code and similar information.

Any (categorical) data of this form can alternatively be represented by a binary vector so that
gj- € G is replaced by a unit vector of size |Gj| where the only non-zero entry in this vector indicates
the particular member of G; that the data item contains. In addition, a real-valued (numerical)
feature can be, when appropriate, made into a categorical one by “binning” - that is breaking
up the range of the feature into segments and considering segment membership as a categorical
feature. This is commonly done with features such as income or age of an individual. For example,
for advertising purposes websites typically represent users by age groups such as “teens”, “young
adults”, “middle aged”, and “seniors” instead of actual age.

The non-leaf nodes in a decision tree are called the decision nodes where a binary test is applied
to data items. Depending on the results of these tests, the data item is routed to one of the leaf
nodes. Each leaf node is given a binary label that determines the label assigned to the data by the
DT. The binary tests we consider are of the form “does the jth feature of the data item belong to
set @j?”, where @j C Gj. If the categorical data is represented by a binary vector, then the test
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Fig. 1 A decision tree example
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becomes checking if at least one of the indices from a given collection contains a 1 or not. We do
not consider more general tests that might check different conditions on multiple features.

As a concrete example, consider the tree in Figure 3 applied to binary vectors a € {0,1}% whose
elements are divided into two groups: {a1,as, as,as} and {as,as} corresponding to two categorical
features in the original data representation. The branching decision at node 1 (the root), is based
on whether one of a; or as is equal to 1. If true, a given data sample is routed to the left, otherwise
(that is, if both a; and ag are 0), the sample is routed to the right. The branching at nodes 2
and 3 (the two children of node 1) are analogous and are shown in the picture. We can now see
that data samples s' = (1,0,0,0,0,1) and s®> = (0,1,0,0,0,1) are routed to leaf node 1, sample
53 =1(0,0,1,0,1,0) is routed to leaf node 3, and samples s* = (0,0,0,1,1,0) and s° = (0,0, 1,0,1,0)
are routed to leaf node 4. The labels of the leaf nodes are denoted by the colors white and gray in
Figure 3.

Formally, a DT is defined by (i) the topology of the tree, (i) binary tests applied at each
decision node, and, (i7i) labels assigned to each leaf node. Throughout the paper we consider tree
topologies where a decision node either has two leaf nodes or else has two other decision nodes as
children. Note that decision trees defined this way are inherently symmetric objects, in the sense
that the same DT can be produced by different numberings of the decision and leaf nodes as well as
different labeling of the leaf nodes and the binary tests applied at the decision nodes. For example,
reversing the binary test from (ag) to (—ag) in decision node 2, and at the same time flipping the
labels of the leaf nodes 1 and 2, results in an identical DT. More generally, it is possible to reverse
the binary test at any decision node and “flip” the subtrees rooted at that node to obtain the same
tree.

The optimization problem we consider in the next section starts with a given tree topology
and finds the best binary tests (and labels for the leaf nodes) to classify the test data at hand
with minimum error. Due to the symmetry discussed above, we can fix the labeling of the leaf
nodes at the beginning of the process and the problem reduces to finding the best binary tests, or
equivalently, choosing a categorical feature and a subset of its realizations at each decision node.
Therefore, the optimization problem consists of assigning a binary test to each decision node so
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as to maximize the number of correctly classified samples in the training set. We say that the
classification of the ith sample is correct provided the path the ith sample takes through the tree
starting from the root node ends at a leaf corresponding to the correct label. The ultimate goal
of the process, however, is to obtain a DT that will classify new data well, i.e., we are actually
concerned with the generalization ability of the resulting DT.

Notice that given two tree topologies such that one is a minor of the other (i.e. it can be
obtained from the other by deleting nodes and contracting edges), the larger tree would always
be able to classify at least as many samples correctly as the smaller one on the training data.
Consequently, for optimization purposes, larger trees always perform better than any of its minors.
However, larger trees generally result in more computationally challenging optimization problems.
In addition, smaller trees are often more desirable for classification purposes as they are more robust

and are easier to interpret.

4 Integer Programming Formulation

In this section, we first present the basic integer programming formulation and then describe some
enhancements to improve its computational efficiency. We initially assume that the topology of the
binary tree is given (see Figure 2) and therefore the number of decision and leaf nodes as well as
how these nodes are connected is known. We will then describe how to pick a good topology. The
formulation below models how the partitioning of the samples is done at the decision nodes, and

which leaf node each sample is routed to as a result.

We begin by introducing the notation. Let the set of all samples be indexed by I = {1,2,...,|I|},
let I, C I denote the indices of samples with positive labels and let I_ = I'\ I denote the indices
of the samples with negative labels. Henceforth, we assume that for each sample the input data is
transformed into a binary vector where each categorical feature is represented by a unit vector that
indicates the realization of the categorical feature. With some abuse of terminology, we will now
refer to the entries of this binary vector as “features”, and the collection of these 0/1 features that
are associated with the same categorical feature as “groups”. Let the set of groups be indexed by
G =1{1,2,...,|G|} and the set of the 0/1 features be indexed by J = {1,2,...,|J|}. In addition,
let J(g) denote the set of features that are contained in group g¢. In the example associated with
Figure 3 above, we have G = {1,2}, J ={1,2,3,4,5,6}, and J(1) = {1, 2, 3,4}, J(2) = {5,6}. For
sample i, we denote the value of its jth feature by a}.

Let the set of decision nodes be indexed by K = {1,2,...,|K|} and the set of leaf nodes be
indexed by B = {1,2,...,|B|}. We denote the indices of leaf nodes with positive labels by By C B
and the indices of leaf nodes with negative labels by B_ = B\ By. For convenience, we let By
contain even indices, and B_ contain the odd ones.
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4.1 The basic formulation

We now describe our key decision variables and the constraints on these variables. We use binary
variables v'gC € {0,1} for g € G and k € K to denote if group g is selected for branching at decision
node k. As discussed in Section 3, exactly one group has to be selected for branching at a decision
node; consequently, we have the following set of constraints:

d vk=1 VkeK. (1)

geG

The second set of binary variables z;“ € {0,1} for j € J and k € K are used to denote if feature
7 is one of the selected features for branching at a decision node k. Clearly, feature j € J can be
selected only if the group containing it is selected at that node. Therefore,we have the following set
of constraints:

2 <vh Vke K, VgeG, VjeJ(g) (2)

in the formulation. Without loss of generality, we use the convention that if a sample has one of
the selected features at a given node, it follows the left branch at that node; otherwise it follows
the right branch.

Let

S = {(v,z) e {0, 1YEIXIGE s 1o, 1} (4, 2) satisfies inequalities (1) and (2)},

and note that for any (v,z) € S one can construct a corresponding decision tree in a unique way
and vice versa. In other words, for any given (v, z) € S one can easily decide which leaf node each
sample is routed to. We next describe how to relate these variables (and therefore the corresponding
decision tree) to the samples.

We use binary variables ¢ € {0,1} for b € B and i € I to denote if sample i is routed to leaf
node b. This means that variable Ci should take the value 1 only when sample i exactly follows
the unique path in the decision tree that leads to leaf node b. With this in mind, we define the
expression

L(i,k) =) aizf VkeK, Viel, (3)
Jj€J

and make the following observation:

Proposition 1 Let (z,v) € S. Then, for alli € I and k € K we have L(i, k) € {0,1} . Further-
more, L(i,k) =1 if and only if there exists some j € J such that a§- =1 and zjk =1.

Proof For any (z,v) € S and k € K, exactly one of the v];

véf = 0 for all g # ¢'. Therefore, z:é€ = 0 for all j &€ J(g). Consequently, the first part of the claim
follows for all i € I as L(i,k) = > ;c; aé-z;? = jcig) aé-zf = Zﬁ € {0,1} where j; € J(¢) is the
index of the unique feature for which a}i = 1. In addition, L(i,k) = 1 if and only if zﬁ = 1 which

variables, say v’g“,, takes value 1 and

proves the second part of the claim. m
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Fig. 2 A balanced depth-3 tree
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Consequently, the expression L(i, k) indicates if sample ¢ € I branches left at node k € K.
Similarly, we define the expression

R(i,k)=1—L(i,k) Vke K, Viel, (4)

to indicate if sample ¢ branches right at node k.

To complete the model, we relate the expressions L(i, k) and R(i, k) to the ci variables. Given
that the topology of the tree is fixed, there is a unique path leading to each leaf node b € B from
the root of the tree. This path visits a subset of the nodes K (b) C K and for each k € K (b) either
the left branch or the right branch is followed. Let K(b) C K(b) denote the decision nodes where
the left branch is followed to reach leaf node b and let K®(b) = K(b)\ K*(b) denote the decision
nodes where the right branch is followed. Sample ¢ is routed to b only if it satisfies all the conditions
at the nodes leading to that leaf node. Consequently, we define the constraints

i < L(i,k) Vbe B, VYiel, Vk e KL(b), (5)
&t <R(i,k) Vbe B, Viel, Yk e KE(®), (6)
for all i € I and b € B. Combining these with the equations
=1 Viel (7)
beB

gives a complete formulation. Let
Q(z,v) = {ceA{0, 1IVXIBL: such that (5)-(7) hold }.
We next formally show that combining the constraints in .S and Q(z,v) gives a correct formulation.

Proposition 2 Let (z,v) € S, and let ¢ € Q(z,v). Then, c¢j € {0,1} for alli € I and b € B.
Furthermore, if ci =1 for somei € I and b € B, then sample i is routed to leaf node b.

Proof Given (z,v) € S and i € I, assume that the correct leaf node sample i should be routed to
in the decision tree defined by (z,v) is the leaf node b'. For all other leaf nodes b € B\ {b'}, sample
i either has L(i,k) = 0 for some k € KL(b) or R(i,k) = 0 for some k € K%(b). Consequently,
i = 0 for all b # b'. Equation (7) then implies that ¢}, = 1 and therefore ¢} € {0,1} for all b € B.
Conversely, if ¢i, = 1 for some b’ € B, then L(i,k) = 1 for all k € K*(b) and R(i,k) = 1 for all
ke KE(b). ]
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We therefore have the following integer programming (IP) formulation:

max Z Z ci—i—C’Z Z ch (8a)

i€l beBy icl_ beB_
s. t. (z,v) € S (8b)
c € Q(z,v) (8¢)

where C in the objective (8a) is a constant weight chosen in case of class imbalance. For instance,
if a training set has twice as many good examples as bad examples, it may be worth considering
setting C' = 2, so that every correct classification of a bad data point is equal to two correct
classifications of good data points.

Notice that formulation (8) allows solutions where all samples follow the same branch. For
example, it is possible to have a solution where a branching variable vg = 1 for some k£ € K and
g € G, and at the same time zf =0 for all j € J(g). In this case L(i,k) = 0 for all i € I and all
samples follow the right branch. It is possible to exclude such solutions using the following pair of
constraints:

(@)= Dok > 3 2 > of, (9)

jed(g)
for all £ € K and g € G. These constraints enforce that if a group is selected for branching, then
at least one, but not all, of its features should be selected. We should note that in our experiments
we have not seen any benefit from using these inequalities and decided not to include them in the

formulation.

4.2 Choosing the tree topology

The IP model (8) finds the optimal decision tree for a given tree topology which is an input to the
model. It is possible to build a more complicated IP model that can also build the tree topology
(within some restricted class) but for computational efficiency, we decided against it. Instead, for
a given dataset, we use several fixed candidate topologies and build a different DTs for each one of
them. We then pick the most promising one using cross-validation. The four tree topologies we use
are the balanced depth-3 tree shown in Figure 2 and the additional trees shown in Figure 3.

Note that the first two trees presented in Figure 3 can be obtained as a minor of the balanced
depth-3 tree shown in Figure 2 and therefore, the optimal value of the model using the balanced
depth-3 tree will be at least as good as that of the smaller trees. Similarly, these two trees can also
be obtained as a subtree of the last tree in Figure 3. However, due to possible overfitting, the larger
trees might perform worse than the smaller ones on new data (in testing). As we will show via
computational experiments, training smaller trees take fraction of the time compared to training
larger trees, hence training a collections of trees of increasing topologies is comparable to training
one large tree.
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Fig. 3 Possible tree topologies
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4.3 Computational tractability

While (8) is a correct formulation, it can be improved to enhance computational performance. We
next discuss some ideas that help reduce the size of the problem, break symmetry and strengthen the
linear programming relaxation. We first observe that the LP relaxation of (8), presented explicitly
below, is rather weak.

max ZZC@#—CZZC@

icl; beB, icI_beB_

s. . d uf =1 VkeK,
geG

2y <) VEkEK, VgeG, Vje (),

IN

IN

L(i,k) Vbe B, Viel, Yk e KL (b),
R(i,k) VYbe B, Viel, Yk € KR(b),

g =1 Viel

beB

G

C

IN

c, v, z > 0.
Note that we do not need an explicit upper bound of 1 on the variables as it is implied by other
constraints. Also note that as ), p ci < 1, for all ¢ € I, the optimal value of the LP relaxation is
at most |I|+ C|I_|. Assuming that the decision tree has at least two levels, we will next construct

a solution to the LP that attains this bound. Moreover, this solution would also satisfy v;f € {0,1}
forall k € K and g € G.
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As the decision tree has at least two levels, both the left and right branches of the root node
contain a leaf node in B, as well as a leaf node in B_. Let b% b ¢ B_ and bJLr, bf € B4 where
bl and bi belong to the left branch and b and bf belong to the right branch. For an arbitrary
g € G, we construct the solution (z, v, ¢) as follows: First we set vlg =1for all k € K and z;.“ =1/2
for all k € K and j € J(g). We then set ¢} = 1/2 for b € {bZ, b5} for all i € I, and set ¢} = 1/2 for
b € {b%, b} for all i € I_. We set all the remaining variables to zero. Notice that Y, 5 ¢ =1 for
i€l and ) cp. ci =1 for i € I} and therefore the value of this solution is indeed |Iy|+ C|I_].
To see that the this solution is feasible for the LP relaxation of (8), first note that > . v;f =1 for
all k € K and zf < vg for all j € J(g), g € G, and k € K. Also notice that L(i, k) = R(i,k) = 1/2
for all i € I and k € K, which implies that (11) and (12) are also satisfied for all i € I and k € K.

4.8.1 Relazing some binary variables

The computational difficulty of a MILP typically increases with the number of integer variables in
the formulation and therefore it is desirable to impose integrality on as few variables as possible.
We next show that all of the v variables and most of the z variables take value {0, 1} in an optimal
solution even when they are not explicitly constrained to be integral.

k
g

declared integral for all g € G and decision nodes k € K, and, (ii) variables ij are not declared

Proposition 3 FEvery extreme point solution to (8) is integral even if (i) variables vy are not

integral for 7 € J and decision nodes k € K that are adjacent to a leaf node.

Proof Assume the claim does not hold and let p = (9, 2,¢) be an extreme point solution that is
fractional. Let K C K denote the decision nodes that are adjacent to leaf nodes and consider
node a ¢ K. First note that if vy is fractional, that is, if 1 > #§ > 0 for some feature group b € G,
then 1 > vy for all groups g € G as > gec Vg = 1. Consequently, for this decision node we have all
zi =0 as 2§ € {0,1} for j € J. This also implies that L(i,a) = 0 for all i € I. In this case, for any
g € G, the point p can be perturbed by setting the vy variable to 1 and setting the remaining v
variables to 0 to obtain a point that satisfies the remaining constraints. A convex combination of
these perturbed points (with weights equal to vy ) gives the point p, a contradiction. Therefore all

175 are integral for g € G and k € K \ K.

Therefore, if p is fractional, then at least one of the following must hold: either (i) 1 > @;f >0
for some k € K* and g € G, or, (ii) 1 > Z]’? > 0 for some k € K and j € J, or, (iii) 1 > ¢} > 0
for some b € B and i € I. As all these variables are associated with some decision node k € K%,
we conclude that there exists a decision node a € K for which either 1 > vg > 0 for some g € G,
or, 1 > z¢ > 0 for some j € J, or, 1 > ¢; > 0 for some i € I and b € {b4,b_} where by € B and
b_ € B_ are the two leaf nodes attached to decision node a on the left branch and on the right
branch, respectively.

Let I} denote the set of samples in I such that €;;+ > 0 and similarly, let I, denote the set of
samples in I~ such that cﬂl;i > 0. If (?,;+ # L(i,a), for some i € I}, then point p can be perturbed
by increasing and decreasing E§)+ to obtain two new points that contain p in their convex hull,
a contradiction. Note that L(i,k) € {0,1} for all i € I and k € K \ K and therefore these two
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points indeed satisfy all the constraints. Consequently, we conclude that (?iu = L(i,a) for alli € I}.
Similarly, ¢, =1— L(i,a) for all i € I, . Notice that this observation also implies that, if &, is
fractional for some i € I or & is fractional for some i € I, then L(i,a) is also fractional, which
in turn implies that for some feature h € J we must have z > 0 fractional as well.

Now assume there exists a feature h € J(g) such that vy > zj > 0. In this case increasing and
decreasing zj by a smgll amount and simultaneously updating the values of 5?4 for i € I} and E};_
for i € I; to satisfy ¢,, = L(i,a) and ¢, =1 — L(i,a) after the update, leads to two new points
that contain p in their convex hull. Therefore, we conclude that zj is either zero, or zj; = vj.

So far, we have established that if & is fractional for some i € I; U IS and b € {by,b_}, then
there is a fractional z{ variable for some feature j € J. In addition, we observed that if there is
a fractional z7 for some j € J then there is a fractional vy for some g € G. Therefore, if p is not
integral, there exists a feature group d € G such that 1 > 9§ > 0. As > gec Ug = 1, this implies
that there also exists a different group e € G \ {d} such that 1 > ¢ > 0.

We can now construct two new points that contain p in their convex hull as follows: For the first
point we increase v and decrease ¢ by a small amount and for the second point we do the opposite
perturbation. In addition, for both points we first update the values of z¢ for all j € J(d) U J(e)
and z{ > 0 so that 2§ = v§ for all j € J(d) and 2§ = v¢ for all j € J(e). Finally, we perturb
the associated ¢, variables for i € I, U, and b € {b;,b_} so that E§;+ = L(i,a), for i € I}, and

a ?
62_ =1—L(i,a) for all i € I . Both points are feasible and therefore we can conclude that p is not

an extreme point, which is a contradiction. Hence p cannot be fractional. =

We have therefore established that the v variables do not need to be declared integral and the
only z variables that need to be declared integral in the formulation (8) are the feature selection

variables ij for all features j € J and decision nodes k € K that are not adjacent to a leaf node.

4.8.2 Deleting unnecessary variables

Notice that the objective function (8a) uses variables ci only if it corresponds to a correct classifi-
cation of the sample (i.e., i € I and b€ By, or i € [_ and b € B_). Consequently, the remaining
cg variables can be projected out of the formulation without changing the value of the optimal
solution. We therefore only define cé variables for

{(i,b):i €Iy, be By, or,ic€l_,be B_} (10)

and write constraints (5) and (6) for these variables only. In addition, This reduces the number of ¢
variables and the associated constraints in the formulation by a factor of one half. In this projected
formulation equation (7) becomes

d cd<iforieland Y ¢<lforiel
beB+ beB—
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4.3.8 Relaxing more binary variables

Also note that the objective function (8a) is maximizing a (weighted) sum of ¢} variables and the
only constraints that restrict the values of these variables are inequalities (5), (6) and (7) which
all have a right hand side of 0 or 1. Consequently, replacing the integrality constraints ci €{0,1}
with simple bound constraints 1 > cz > 0, still yields optimal solutions that satisfy CZ € {0,1}.
Hence, we do not require ci to be integral in the formulation and therefore significantly reduce the
number of integer variables. Thus, we have a formulation for training optimal decision trees, where
the number of integer variables is independent of the number of samples.

4.8.4 Strengthening the model

We next present valid inequalities for (8) that can be used to strengthen its LP relaxation. Consider
inequalities (5)

e < L(i, k)
fori € I, b € B and k € K(b) where K¥(b) denotes the decision nodes where the left branch is
followed to reach the leaf node b. Also remember that Y, c; =1 for i € I due to equation (7).

Now consider a fixed i € I and k € K. If L(i, k) = 0, then ¢} = 0 for all b such that k € KZ(b).
On the other hand, if L(i, k) = 1 then at most one ¢} = 1 for b such that k € K*(b). Therefore,

> d <L,k (11)

beB:KL(b)>k
is a valid inequality for all 4 € I and k € K. While this inequality is satisfied by all integral solutions
to the set Q(z,v), it is violated by some of the solutions to its continuous relaxation. We replace
the inequalities (5) in the formulation with (11) to obtain a tighter formulation. We also replace

inequalities (6) in the formulation with the following valid inequality:

> ¢ <R(,k) (12)
beB:KE(b)ok
for all - € I and k € K. Note that, by definition, L(i,k) + R(i,k) =1 for all ¢ € I and k € K, and
consequently, adding inequalities (11) and (12) for the root node of the decision tree implies that
SpepCh <lforalliel.

When using inequalities (11) and (12) in the projected formulation described in Section 4.3.2,
we write these inequalities with the cf) variables whose indices are contained in the set described in
(10). Moreover, in this case adding the inequalities associated with the root node of the decision
tree yields >, g+ ci <1forielyand > beB- ci <1 for i € I_. Therefore, the projected version
of (7) described in Section 4.3.2 becomes redundant.

4.8.5 Breaking symmetry: Anchor features

If the variables of an integer program can be permuted without changing the structure of the
problem, the integer program is called symmetric. This poses a problem for MILP solvers (such as
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Cplex) since the search space increases exponentially, see Margot (2009). The formulation (8) falls
into this category as there may be multiple alternative solutions that represent the same decision
tree. In particular, as we have discussed earlier in the paper, we consider a decision node that is not
adjacent to leaf nodes and assume that the subtrees associated with the left and right branches of
this node are symmetric (i.e. they have the same topology). In this case, if the branching condition
is reversed at this decision node (in the sense that the values of the v variables associated with
the chosen group are flipped), and, at the same time, the subtrees associated with the left and
right branches of this node are switched, one obtains an alternative solution to the formulation
corresponding to the same decision tree. To avoid this, we designate one particular feature j(g) €
J(g) of each group g € G to be the anchor feature of that group and enforce that if a group
is selected for branching at such a node, samples with the anchor feature follow the left branch.
More precisely, we turn one of the inequalities in (2) to an equation and add the following to the
formulation:

Zig) = Uy (13)

for all g € G, and all k£ € K that is not adjacent to a leaf node and has symmetric subtrees hanging
on the right and left branches. While equations (13) lead to better computational performance,
they do not exclude any decision trees from the feasible set of solutions.

4.4 Controlling overfitting due to combinatorial branching

As mentioned earlier, combinatorial branching may lead to overfitting when |J(g)| is large for a
categorical feature g € G as there are 217! possible ways to branch using this feature. To avoid
overfitting, we require the size of the subset used for branching to be either at most max.card or
at least (|J(g)| — max.card) for some input parameter maz.card. To this end, for each node k € K

and for each group g € G that corresponds to a categorical feature with |J(g)| > maz.card, we

k

s and include the following constraints in the formulation,

create an additional variable x

Z 28 < maz.card + (|J(g)| — maz.card)(1 — a:l;)

Z z;-“ > (|J(g)] — mazx.card) — (|J(g9)| — max.card)a;];
j€J(9)

xh € {0,1}.

We note that these new variables can also be used to break symmetry in the problem. Instead of
using anchor features, one can simply set all xlgf variables to 1 for ¢ € G whenever £ € K is not
adjacent to a leaf node and has symmetric subtrees hanging on the right and left branches. Similar
to using anchor features, this restriction would exclude one of the solutions obtained by reversing
the branching condition at a decision node (i.e. flipping the values of the v variables associated
with the chosen group), and, switching the subtrees associated with the left and right branches of
this node.
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4.5 Handling numerical features

To handle numerical features, we simply turn them into categorical features by binning them into
intervals using deciles as thresholds. Consequently, each numerical feature becomes a categorical
feature with (up to) 10 possible values, depending on the decile it belongs to. Therefore, one can
use the model described above without any further changes. However, this might lead to decision
trees that branch on, for example, whether or not a numerical feature belongs to the second or
seveth quantiles, which of course is not a very interpretable condition. It is therefore desirable to
branch on these features in a way that captures their ordinal nature. To this end, we add additional
constraints for these features to ensure that the branching decisions correspond to “less than or
equal to” or “greater than or equal to” conditions.

More precisely, for each node k € K and for each group g € G that corresponds to a numerical
feature, we create an additional variable w'gC to denote if the branching condition is of “greater
than or equal to” or “less than or equal to” form. We then require the associated z;“ variables
for j € J(g) to take either increasing (when w’; = 1) or decreasing values (when wg = 0). The

additional constraints are,

2> —w) Vi, j+1€J(g)
g 22f —(L-wy) Vij—1€J(g)
w]; €{0,1}.

We note that it is possible to enforce “less than or equal to” or “greater than or equal to”
form without using the additional variables w, by binarizing numerical features differently, see [7,
19]. However in this case the LP formulation becomes more dense and overall solution times are

significantly slower.

We also note that an alternative way to break symmetry in this case is to set all w;f variables
to 1 for ¢ € G (without loss of generality) whenever k € K is not adjacent to a leaf node and
has symmetric subtrees hanging on the right and left branches. For balanced trees this property is
satisfied for all non-leaf nodes. Fixing w variables this way enforces that the left branch of a decision
node will check if the greater than or equal to condition holds for the associated numerical feature.
Clearly, if this symmetry breaking rule is used, one should not use anchor features described in
Section 4.3.5.

4.6 Maximizing sensitivity/specificity

In many practical applications, especially those involving imbalanced datasets, the user’s goal is to
maximize sensitivity (the true positive rate, or TPR), while guaranteeing a certain level of specificity
(the true negative rate, or TNR), or vice versa, instead of optimizing the total accuracy. While such
problems cannot be addressed with heuristics such as CART (except by a trial-and-error approach
to reweighting samples), our model (8) readily lends itself to such a modified task. For example, if
we intend to train a classifier with a guaranteed specificity (on the training set) of 0.95, then we
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simply add the following constraint to (8)

ST 3 > [(1-095)|L]] (14)

i€l_beB_

and change the objective function (8a) to

Y ) 4 (15)

i€]+ b€B+

Likewise, we can produce a model that maximizes specificity while guaranteeing a certain level

of sensitivity by switching the expressions in the constraint (14) and objective (15).

5 Computational Results

We now turn to computational experiments for which we used a collection of 10 binary (two-class)
classification datasets. We obtained two of these datasets (ala and breast-cancer-wisconsin) from
LIBSVM [9], one from FICO Explainable Machine Learning Challenge [8] and the remaining 7
from the UCI Machine Learning repository [12]. These datasets were selected because they fit into
our framework as the majority of their variables are either binary or categorical. Each dataset was
preprocessed to have the binary form assumed by the formulation, with identified groups of binary

variables. A summary description of the problems is given in Table 1.

Table 1 Summary description of the datasets

dataset # Samples % Positive # Features # Groups

ala 1605 25% 122 14

breast-cancer-wisconsin (bc) 695 65% 90 9
chess-endgame (krkp) 3196 52% 73 36

mushrooms (mush) 8124 52% 111 20

tic-tac-toe-endgame (ttt) 958 65% 27 9
monks-problems-1 (monks-1) 432 50% 17 6
congressional-voting-records (votes) 435 61% 48 16
spect-heart (heart) 267 79% 44 22
student-alcohol-consumption (student) 395 67% 109 31
FICO Explainable ML Challenge (heloc) 9871 48% 253 23

Each dataset/tree topology pair results in a MILP instance, which we implemented in Python
2.7 and then solved with Cplex version 12.6.1 on a computational cluster, giving each instance
access to 8 cores of an AMD Opteron 2.0 GHz processor. Throughout this section, we will refer to
our method as ODT (Optimal Decision Trees).

5.1 Tuning the IP model

We begin with some computational tests to illustrate the benefit of various improvements to the
IP model that were discussed in §4.3. We only show results for five of the datasets: ala, be, krkp,
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mush and ttt, since for the other datasets, aside from heloc, the IP is solved quickly and the effect

of improvements is less notable, while for heloc the time limit was reached in all cases.

We note that the deletion of unnecessary variables discussed in §4.3.2 seems to be performed
automatically by Cplex in preprocessing, and so we do not report results relevant to this modeling
choice. However, we experiment with anchoring adding (13) (§4.3.5), relaxing appropriate z vari-
ables and ¢ variables (§4.3.1 and §4.3.1), and strengthening the model using additional constraints
(11) and (12) (§4.3.4). In particular, we compare the model where none of the above techniques
are applied and using the formulation (8) (Nothing), only relaxation and strengthening (11) and
(12) are applied (No Anchor), only anchoring (13) and strengthening (11) and (12) are applied (No
Relax), only anchoring (13) and relaxation are applied (No Strength) and finally when all of the
techniques are applied (All).

In Table 2 we show the results for symmetric DTs of depths 3, while using reduced datasets
of 200 randomly subsampled data instances. In each column we list the total time in seconds it
took Cplex to close the optimality gap to below the default tolerance and the total number of LPs
solved in the process. In the case when Cplex exceeded 3 hours, the solve is terminated and a ”*”

is reported instead of the time.

Table 2 IP Strengthening for depth-3 with 200 samples - each table entry represents # seconds/number of LPs solved

Dataset Nothing No Anchor No Relax No Strength All
ala * /2443792 */2422165 * /5660954 2670/598733 3098/1157891
bc 2193/50075 405/118193 139/52375 188/18121 44/18660
krkp 5377 /2766623 392/95623 3726/2702709 1434/291221 320/131274
mush 31/26 22/20 12/65 22/26 23/49
ttt 1837/1914999 346/169235 71/63109 175/28588 31/10737
monks-1 32/6904 8/1596 7/2997 14/1165 5/988
votes 293/53430 99/37350 92/29934 199/26077 96,/22971
heart 423/71498 199/42365 404/253792 898/62794 329/56847
student * /666388 * /785314 */1290360 * /406928 * /426357
heloc */347971 */ 77376 * /187537 */99320 */281425

As we see from Table 2, the data set with 200 data points make the IP difficult to solve for some
data sets, such as ala, student and heloc but is easy to some others, such as bc and mush. Hence
in Table 3 we show results for various sizes of data, selected so that the corresponding IP is not
trivial but is still solvable within three hours.

We can conclude from Tables 2 and 3 that our proposed strategies provide significant improve-
ment in terms of computational time. In some cases, turning off an option may outperform using
all options; for example, turning off variable strengthening improves computational time for ala
and mush compared to the All option in Table 2 and for krkp and student in Table 3 However, the
All option consistently dominates other options in the majority of the cases, hence we conclude

that using all proposed improvements is the best overall strategy.

Next we show the dependence of computational time on the tree topology and the size of the data
set. In Table 4 we report these results for the krkp, ala, and bc data set each averaged over five runs
with random sample selection. Here, by depth-2.5 we refer to the topology shown in the upper right
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Table 3 IP Strengthening for depth-3 with varying samples - each table entry represents # seconds/number of LPs solved

Dataset Samples Nothing No Anchor No Relax. No Strength All

ala 100 7262/2555737 2541 / 1584533 503/426853 1352 /840813 170/104504
be 300 7766/1013135 5445/981711 223/64411 386,/32262 349/53194
krkp 400 * /559764 6984/847235 7533/1289615 2936 /97214 3693/719622
mush 500 151/37 41/0 55/1109 182/215 38/7

ttt 300 1394/404553 946 /226864 424/88755 253/29869 35/12154
monks-1 600 397/32176 21/6248 15/2639 44/3198 18/2616
votes 600 9176/347632 959/109632 1373/181187 877/40894 283/47520
heart 600 1204,/104583 558,/66056 231/44498 1002/38486 806/101075
student 50 1861/389174 2079/733080 814/135282 734/211029 1774/484257
heloc 50 187/9995 216,/21293 110/11791 170/18185 25/3195

corner of Figure 3, and by imbalanced, we refer to the topology shown in the bottom of Figure 3.
In these experiments we terminated each Cplex run after 3 hours and when this happens on all five
runs we report ”*” in the tables instead of the time. In the case when some runs terminated in less
than two hours and some did not, we averaged the times of the finished runs and reported the time
in the able, followed by ” (*)”

Table 4 Solution times (in seconds) for krkp, bc and ala.

Topology Data set 100 200 300 400 500 600
depth2 krkp 2.7 6.0 11.1 14.1 17.4 22.0
depth-2.5 krkp 13.4 34.0 76.5 97.3 796.6 321.4
depth-3 krkp 238.9 1851.3 1556.7 2226.4  4320.7(*) 6238.8(*)
imbalanced  krkp 568.5  4367.2(*) 5950.1(*) 6660.2(*) * *
depth2 bc 1.8 3.6 6.8 8.7 12.5 14.1
depth2.5 bc 9.7 35.4 55.2 106.3 175.4 199.6
depth3 bc 9.3 252.6 531.6 2100.5 2917.7  6753.8(*)
imbalanced  bc 19.8 2238.4  2843.52(%) 4706.9  6861.5(*) *
depth2 ala 2.9 7.1 11.5 18.3 23.0 31.1
depth2.5 ala 72.7 470.8 754.6 935.3 961.1 3032.2
depth3 ala 364.4 1975.6 5928.7(*)  6626.0 (*) * *
imbalanced ala 2163.5  6282.1(*) * * * *

As one would expect, Table 4 shows that solving the IP to optimality becomes increasingly more
difficult when the sample size increases and when the tree topology becomes more complicated.
However, the increase in solution time as sample size increases differs significantly among different
datasets for the same tree topology depending on the number of features and groups of the dataset
as well as how well the data can be classified using a decision tree. Note that even though the
imbalanced trees and depth-3 trees have the same number of nodes, solving the IP for imbalanced
trees is more challenging. We believe that this is at least partly due to the fact that symmetry
breaking using anchor features has to be disabled at the root node of imbalanced trees, as the
tree is not symmetric. To confirm this we switched off symmetry breaking for depth-3 trees and
the solutions time general increased dramatically. For example for ala the corresponding row of
the table became [3469.1(x), 6430.8(%), *, *, *, *| which means that some of the instances with
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100 and 200 samples did not solve to optimality and for solved instances the average time for 100
samples increased from 364.4 to 3469.1 seconds and time for 200 samples increased from 1975.6 to
6430 seconds. Moreover, none of the larger instances finished solving. For bc the corresponding row
of the table became [16.5, 2538.7, 4477.4(x), 6721.6(*), 6729.9(x), *|.

Restricting the number of features in the data can significantly reduce computational time. To
demonstrate this, we run the following experiments: we first repeatedly apply the CART algorithm
to each data set, using 90% of the data and default setting and thus not applying any particular
restriction of the size of the tree. We then select groups that have been used for branching decision
at least once in the CART tree. We then remove all other feature groups from the IP formulation
(by setting the corresponding v variables to 0) and apply our ODT model to the reduced problem.
On average this procedure reduced the number of original features (groups) in ala from 14 to 7.2,
in bc from 9 to 2.4, and in krkp from 36 to 8. The effect of this reduction on the solution time is
illustrated in Table 5. We can see that in many cases significant improvement in terms of time is
achieved over results reported in Table 4. We will discuss the effect of the feature selection on the

prediction accuracy later in Section 5.4.

Table 5 Solution times (in seconds) for krkp, bc and ala using feature selection

Topology Data set 100 200 300 400 500 600
depth2 krkp 0.2 0.3 0.8 1.4 2.4 2.8
depth-2.5 krkp 1.0 2.0 4.7 8.0 12.3 14.8
depth-3 krkp 1.8 4.5 12.9 19.0 31.0 37.2
imbalanced  krkp 4.3 10.7 36.9 60.1 90.3 108.8
depth2 bc 0.2 0.23 0.3 0.4 0.5 0.8
depth2.5 bc 0.7 1.6 2.7 4.4 6.8 10.6
depth3 bc 0.8 2.4 4.1 6.2 9.0 12.1
imbalanced  bc 2.4 5.8 10.7 18.4 28.9 41.9
depth2 ala 1.0 2.4 3.8 5.6 8.4 10.2
depth2.5 ala 8.8 22.5 36.9 72.3 105.8 145.3
depth3 ala 47.6 2884 610.8 1636.3 1963.7 1987.2
imbalanced ala 167.8 767.0 2020.4 4069.7(*) 5786.1(*) 6334.0(*)

5.2 Effect of combinatorial branching

We next make a comparison to see the effect of the constraint on combinatorial branching for
categorical data which is discussed in Section 4.4. When using this constraint with maz.card = 1
we recover “simple” branching rules where branching is performed using only one possible value of
the feature, as is done in [3]. We compare simple branching denoted as simple, constrained branching
using max.card = 2, denoted by comb-con and unconstrained branching, denoted as comb-unc. We
have also tried max.card = 3 and max.card = 4, but max.card = 2 consistently gave better testing
accuracy than the other values. We only show the results for two data sets, ala and mush because
for the other data sets combinatorial branching did not produce different results as most of the
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categorical features had only 2 or 3 possible values. We compare decision trees of depths 2 and 3
trained using data sets of size 600. Results averaged over five runs are shown in Table 6.

Table 6 The average training (testing) accuracy for combinatorial vs. simple branching using depth-2 and depth-3 trees

depth-2 depth-3
Dataset simple comb-con comb-unc simple comb-con comb-unc
ala 82.2 (80.8) 82.9 (81.0) 83.3(79.9) 84.0(80.8) 84.8 (80.8) 85.7 (80.1)
mush 95.8 (95.7)  99.6 (99.4)  99.6 (99.4) 98.4 (97.7) 99.9 (99.4)  99.9 (99.3)

We see that for mush using combinatorial branching makes a significant improvement. In par-
ticular, for depth-3 trees and even without max cardinality constraint, it achieves a 99.3% out-of-
sample accuracy compared to 97.7% for simple branching. We show the optimal depth-3 tree for
mush dataset in Figure 4. However, for ala - even though unconstrained combinatorial branching
achieves good training accuracy they do not generalize as well as simple branching rules. In particu-
lar, the ala dataset contains one group (occupation) with many different possible values. Branching
on this group results in combinatorially many possible decisions which leads to overfitting. Adding
a constraint with maz.card = 2 remedies the situation, while still providing a small improvement

over simple branching.

Fig. 4 Optimal depth-3 decision tree for the Mushroom dataset with %99.3 out of sample accuracy.

' Bruises? '

Yes No

(Gill size)

Texture of stalk
surface below ring(s)

{Broad} {Narrow} {Fibrous, smooth} {Silky, scaly}
Is spore color Is habitat - Is odor
# of rings
{chocolate, red}? {woods, paths, waste}? {almond, rusty, none}?
Yes No Yes No
l Eat ‘ | Don’t | Eat Don’t

5.3 Effect of constraints for numerical features.

Here we compare the effect of special constraints introduced for the numerical features in Section
4.5. The results of this comparison are shown in Table 7. When the constraint is imposed, the
feature group is treated as numerical, and this formulation is label with ”n”, for numerical. When
the constraint is not imposed, then the group is treated as if the original feature is categorical, and
the formulation is labeled with ”¢”, for categorical. We compare both accuracy and time averaged

from 5 runs with 30 mins limit.
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Table 7 The average training (testing) accuracy/solution time with or without constraints for numerical features.

Dataset n/c depth-2 depth-2.5 depth-3 Imbalanced
ala n 82.9 (81.0)/22 84.7 (80.5)/748 84.8 (80.8)/1800  84.7 (80.7)/1800
c 82.9 (81.0)/24 84.5 (81.0)/1191  84.7 (80.3)/1800  84.8 (80.1)/1800
bc n 96.7 (96.6)/6 97.5 (95.4)/70 97.8 (96.2)/608 97.8 (95.6)/1749
c 96.7 (96.0)/6 97.8 (94.9)/272 98.4 (94.7)/1800  98.5 (95.5)/1800
heloc n 72.0 (71.2)/7 73.3 (70.6)/119 73.8 (70.0)/515 74.1 (69.8)/1788
c 72.9 (70.4)/13.6  74.9 (68.0)/1711  75.9 (68.1)/1800 75.6 (68.6)/1800
student n 92.1 (90.5)/1 92.6 (91.0)/8 92.6 (90.5)/25 93.1 (91.5)/127
c 92.1 (90.5)/1 92.6 (91.0)/10 92.6 (90.5)/62 93.1 (91.0)/113

We observe that overall adding the special constraint to impose the numerical nature of the
group improves the testing accuracy and saves computational time.

5.4 Comparison with CART depth-3 trees

We next focus on comparing the accuracy of ODTs with CART. We consider 4 different tree
topologies for ODTs: depth-2, depth-2.5, depth-3 and imbalanced. We use CART as implemented
in the package rpart for R [17]. We compare the performance of ODT to CART by restricting the
maximum depth of the learned CART trees to 3, thus allowing at most 8 leaf nodes, which is the
maximum that our trees can have. We note that this does not mean the learned CARTSs have the
same topology as our ODTs. In fact, we found that due to various pruning heuristics, the topologies
of the trees learned by CART vary erratically and in most cases the tree has much fewer that 8
leaves, as is shown in Table 8. On the other hand, in a later section we show that when CART is
not restricted to maximum depth-3 the resulting trees are much larger.

We also investigate the effect of feature selection by running CART first and considering only
the features used by CART in constructing ODTs. For each dataset, we generate five random
training/testing splits of the dataset by sampling without replacement and report the averages. We
use 90% of the data for training CART and we use min{90%, 600} data points for training ODTs.

In Tables 8 and 9 we show the results for ODTs trained for up to 30 minutes with and without
feature selection, respectively, and compare with CART trees of depth-3. In both tables we list
the average training and testing accuracy, in percentages, over the five runs. We highlight in bold
the best testing accuracy achieved by the ODTs if it is more than 1% larger than that achieved
by CART, and reversely, highlight accuracy of CART when it is more than 1% larger than best
accuracy of ODT. The standard deviation in all cases is fairly small, typically around 0.2 — 0.3%.

In Table 8 we see that testing accuracy achieved by ODTs after 30 minutes of training is
significant better than that of depth-3 CART. Comparing Tables 8 and 9, we see that on average
the feature selection typically degrades training accuracy but results in better testing accuracy.
This can be explained by the fact that reducing the number of features prevents the ODTs from
overfitting. This observation suggests that using feature selection, especially for larger trees could

be beneficial not only for computational speedup but for better accuracy.
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Table 8 The average training (testing) accuracy with 30 mins limit without feature selection.

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3 # of leaves
ala 82.9 (80.9)  84.7 (80.5)  84.7 (81.0)  85.2 (80.0) 82.0 (79.3) 3.6
be 96.7 (96.6) 97.5 (95.6) 97.8 (94.9) 97.9 (96.4) 96.0 (94.6) 3.8
heloc 72.4 (69.8) 73.2 (70.0) 73.7 (69.6) 73.0 (68.8) 70.8 (71.0) 2
krkp 86.7 (87.0) 93.2 (93.9) 93.3 (93.9) 94.1 (94.1) 90.4 (90.3) 4
mush 99.6 (99.4) 100.0 (99.5) 100.0 (99.7)  100.0 (99.6) 99.4 (99.3) 4
ttt 71.8 (67.7) 77.0 (72.7) 79.3 (74.2) 81.9 (79.5) 75.3 (73.1) 6.6
monks-1  78.2 (74.1) 84.1 (76.8) 89.6 (82.3) 100.0 (100.0) 76.6 (76.8) 2.4
votes 96.2 (95.5) 96.9 (93.6) 97.4 (94.1) 98.0 (95.0) 95.7 (95.9) 2.4
heart 85.5 (88.1) 88.6 (89.6) 88.7 (89.6) 90.7 (85.2) 88.5 (91.1) 4
student 92.8 (91.0) 93.1 (91.0) 93.3 (89.0) 93.4 (89.5) 89.5 (86.0) 4.4

Table 9 The average training (testing) accuracy with 30 mins limit with feature selection

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3

ala 82.9 (81.0) 84.7 (80.5) 84.8 (80.8)  84.7 (80.7) 82.0 (79.3)
be 96.7 (96.6) 97.5 (95.4) 97.8 (96.2)  97.8 (95.6) 96.0 (94.6)
heloc 72.0 (71.2)  73.3 (70.6) 73.8 (70.0)  74.1 (69.8) 70.8 (71.0)
krkp 86.7 (87.0)  93.2 (93.9) 93.2 (93.9) 94.6 (93.8) 90.4 (90.3)
mush 99.6 (99.4)  99.9 (99.4)  99.9 (99.4)  100.0 (99.6)  99.4 (99.3)
ttt 71.8 (67.7)  77.0 (72.7) 79.3 (74.2)  81.9 (79.5) 75.3 (73.1)
monks-1  78.2 (74.1)  84.1 (76.8) 89.6 (82.3)  100.0 (100.0) 76.6 (76.8)
votes 95.9 (95.5)  96.3 (95.0) 96.7 (95.0)  97.3 (96.8) 95.7 (95.9)
heart 85.5 (88.1)  88.6 (90.4) 88.6 (90.4)  90.2 (88.9) 88.5 (91.1)
student  92.1 (90.5)  92.6 (91.0) 92.6 (90.5)  93.1 (91.5) 89.5 (86.0)

We next repeat the same experiments from Tables 8 and 9 with a 5 minute time limit on Cplex
and report the results in Tables 10 and 11. Note that the time for feature selection is negligible.

Table 10 The average training (testing) accuracy with 5 mins limit without feature selection.

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3
ala 82.9 (80.9) 84.5 (80.6) 84.4 (80.9) 83.5 (80.4) 82.0 (79.3)
be 96.7 (96.6) 97.5 (95.6) 97.7 (96.4) 97.6 (96.2) 96.0 (94.6)
heloc 72.4 (69.8) 72.0 (69.1) 66.2 (65.0) 58.2 (57.6) 70.8 (71.0)
krkp 86.7 (87.0) 93.2 (93.9)  92.1 (92.1) 92.9 (92.9) 90.4 (90.3)
mush 99.6 (99.4) 100.0 (99.5)  100.0 (99.7)  100.0 (99.7) 99.4 (99.3)
ttt 71.8 (67.7) 77.0 (72.7) 78.7 (74.0) 77.5 (75.0) 75.3 (73.1)
monks-1  78.2 (74.1) 84.1 (76.8) 89.6 (82.3) 100.0 (100.0) 76.6 (76.8)
votes 96.2 (95.5) 96.9 (93.6) 97.3 (94.5) 97.5 (92.7) 95.7 (95.9)
heart 85.5 (88.1)  88.6 (89.6)  88.7 (89.6)  90.4 (88.1) 88.5 (91.1)
student  92.8 (91.0)  93.0 (91.5)  93.0 (90.0)  87.7 (86.5) 89.5 (86.0)

Comparing Tables 8 and 10, we do not see a significant difference in accuracy for depth-2 and
depth-2.5 ODTs due to the reduction of the time limit from 30 minutes to 5 minutes. For depth-3
ODTs, and the imbalanced trees however, both training and testing performance gets noticeably
worse due to the reduction of the time limit. Comparing Tables 10 and 11, we see that in most
cases feature selection helps in terms of both training and testing accuracy.
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Table 11 The average training (testing) accuracy with 5 mins limit with feature selection

Dataset depth-2 depth-2.5 depth-3 Imbalanced CART-D3

ala 82.9 (81.0) 84.6 (80.4) 84.4 (80.2)  84.6 (80.7) 82.0 (79.3)
be 96.7 (96.6) 97.5 (95.4) 97.7 (95.8)  97.7 (95.2) 96.0 (94.6)
heloc 72.0 (71.2)  73.3 (70.6) 73.7 (69.7)  73.5 (70.9) 70.8 (71.0)
krkp 86.7 (87.0)  93.2 (93.9) 93.2 (93.9) 94.6 (93.8) 90.4 (90.3)
mush 99.6 (99.4)  99.9 (99.4)  99.9 (99.4)  99.9 (99.4) 99.4 (99.3)
ttt 71.8 (67.7)  77.0 (72.7) 78.7 (74.0) 775 (75.0) 75.3 (73.1)
monks-1  78.2 (74.1)  84.1 (76.8) 89.6 (82.3)  100.0 (100.0) 76.6 (76.8)
votes 95.9 (95.5)  96.3 (95.0) 96.7 (95.0)  97.3 (96.8) 95.7 (95.9)
heart 85.5 (88.1)  88.6 (90.4) 88.6 (90.4)  90.2 (88.9) 88.5 (91.1)
student  92.1 (90.5)  92.6 (91.0)  92.6 (90.5)  93.1 (91.5) 89.5 (86.0)

Overall the testing accuracy degrades between Tables 8 and 11, but not very significantly, thus
we conclude that feature selection helps for larger trees independent of the time limit. Moreover,
average testing accuracy of ODTs obtained only after 5 minutes of computation using feature
selection seems to be similar to testing accuracy with 30 minute time limit (with or without feature
selection) and thus still outperforms CART. We should also note that when the IPs are terminated
earlier, the optimality gap is usually larger but it often happens that an optimal or a near optimal
integral solution is already obtained by Cplex.

5.5 Effect of training set size

To demonstrate the effect of the training set size on the resulting testing accuracy we present the
appropriate comparison in Table 12. In these experiments we run Cplex with a 30 minute time.

Table 12 Comparison of training (testing) accuracy across training data sizes with 30 minutes limit and feature selection

Dataset Topology 600 1200 1800 2400
ala 2 82.9 (81.0) 82.4 (79.3) 82.0 (79.6) 82.0 (79.6)
krkp 2 86.7 (87.0) 86.8 (87.0) 86.8 (87.1) 86.8 (87.2)
mush 2 99.6 (99.4) 99.5 (99.4) 99.4 (99.4) 99.4 (99.4)
heloc 2 72.0 (71.2)  72.2 (70.8) 71.9 (71.2) 71.7 (71.2)
ala 2.5 84.7 (80.5) 83.7 (80.0) 83.4 (79.6) 83.4 (79.6)
krkp 2.5 93.2 (93.9) 93.8 (93.8) 93.6 (94.0) 93.7 (94.1)
mush 2.5 99.6 (99.4) 99.8 (99.5) 99.7 (99.6) 99.7 (99.6)
heloc 2.5 73.3 (70.6) 73.1 (70.9) 72.6 (70.6) 72.3 (71.5)
ala 3 84.7 (80.7)  83.6 (79.6) 83.3 (80.2) 83.3 (80.2)
krkp 3 94.6 (93.8)  93.8 (93.8) 93.6 (94.0) 93.7 (94.1)
mush 3 100.0 (99.6) 99.9 (99.6) 99.9 (99.7) 99.8 (99.8)
heloc 3 73.8 (70.0) 73.5 (70.9) 72.9 (71.3) 72.5 (71.4)
ala 1B 84.8 (80.8) 83.6 (79.2) 82.5 (79.6) 82.2 (79.0)
krkp IB 93.2 (93.9)  94.5 (93.7) 94.2 (93.9) 94.1 (94.1)
mush 1B 99.9 (99.4) 100.0 (99.8) 100.0 (100.0)  100.0 (100.0)
) ) )

heloc IB 74.1 (69.8 73.2 (71.0 72.1 (714 72.0 (71.4)



Optimal Decision Trees 25

We observe that in most cases increasing the size of the training data narrows the gap between
training and testing accuracy. This can happen for two reasons - because optimization progress
slows down and training accuracy drops and/or because there is less overfitting. For example, for
ala it appears to be harder to find the better tree and so both the training and the testing accuracy
drops, while for mush testing accuracy gets better, as the gap between training and testing accuracy
closes. We also see, for example in the case of mush and krkp, the effect of the increase of the data
set tends to diminish as the gap between training and testing accuracy. This is a common behavior
for machine learning models, as larger training data tends to be more representative with respect
to the entire data set. However, in our case, we utilize the larger data set to perform prior feature
selection and as a result relatively small training sets are often sufficient for training of the ODTs.
Hence, the computational burden of solving IPs to train the ODTs is balanced by the lack of need

to use large training sets.

5.6 Choosing the tree topology

In this section we discuss how to chose the best tree topology via cross-validation and compare
the accuracy obtained by the chosen topology to the accuracy of trees obtained by CART with

cross-validation.

For each dataset we randomly selected 90% of the data points to use for training and validation,
leaving the remaining data for final testing. For the smaller data sets, we select the best topology
using standard 5-fold cross validation. For large data sets such as ala, bc, krkp, mush and ttt, we
instead repeat the following experiment 5 times: we randomly select 600 data points as the training
set and train a tree of each topology on this set. The remaining data is used as a validation set
and we compute the accuracy of each trained tree on this set. After 5 experiments, we select the
topology that has the best average validation accuracy. We then retrain the tree with this topology
and report the testing accuracy using the hold-out 10%. We train CART with 90% of the data
points, allowing it to choose the tree depth using its default setting and then report the testing
accuracy using the hold-out set. We summarize the results in Table 13 where for each method we
list the average testing accuracy and the average number of leaves in the tree chosen via cross-
validation. We set ODT time limit to 30 mins and used feature selection from CART trained on
90% of each dataset.

We can summarize the results in Table 13 as follows: in most cases, either ODTs outperform
CARTSs in terms of accuracy or else they tend to have a significantly simpler structure than the
CART trees. In particular, for data sets ala, student and bc that contain interpretable human-
relatable data, ODTs perform better in terms of accuracy and better or comparably in inter-
pretability, undoubtedly because there exist simple shallow trees that make good predictors for
such data sets, and the exact optimization method such as ours can find such trees, while a heuris-
tic, such as CART may not. On the other hand, on the dataset ¢ttt (which describes various positions
in a combinatorial game), simple two or three levels of decision are simply not enough to predict
the game outcome. In this case, we see that CART can achieve better accuracy, but at the cost of
using much deeper trees. A similar situation holds for krkp, but to a lesser extent. Finally, monks-1
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Table 13 Comparison of testing accuracy and size of cross validated trees vs. CART

Dataset ODT ave. # of leaves CART ave. # of leaves

ala 80.9 6.8 79.6 9.6
bc 96.0 4.8 94.9 4.2
heloc 71.4 4.8 71.0 3.6
krkp 93.6 6.8 96.6 9

mush 99.8 7.6 99.3 3

ttt 81.0 8.0 93.1 20.2
monks-1 100.0 8.0 82.3 8.6
votes 95.7 7.2 95.5 2.4
heart 89.6 7.2 88.9 5

student 90.5 4.8 86.0 6.2

data set is an artificial data set, classifying robots using simple features describing parts of each
robot. Classification in monks-1 is based on simple rules that can be modeled using shallow trees
and ODT performance is much better on that data set than that of CART. In conclusion, our
results clearly demonstrate that when classification can be achieved by a small interpretable tree,

ODT outperforms CART in accuracy and interpretability.

5.7 Training depth-2 tree on full heloc data.

We performed a more detailed study of the heloc data set which was introduced in the FICO
interpretable machine learning competition [8]. The authors of the winning approach [7] produced
a model for this data set which can be represented as a depth-2 decision tree achieving 71.7 testing
accuracy. Here we show how we are able to obtain comparable results with our approach. First
we applied feature selection using CART, making sure that at least 4 features are selected. Then
we trained a depth-2 tree using our ODT model and 90% of the data points (8884 points). The
optimal solution was obtained within 405 seconds and the resulting testing accuracy is 71.6. The

corresponding CART model gives 71.0 testing accuracy.

5.8 Results of maximizing sensitivity/specificity

We now present computational results related to the maximization of sensitivity or specificity, as
discussed in Section 4.6. We will focus on the bc dataset, which contains various measurements of
breast tumors. The positive examples in this data sets are the individuals with malignant tumors in
the breast. Clearly, it is vitally important to correctly identify all (or almost all) positive examples,
since missing a positive example may result in sending a individual who may need cancer treatment
home without recommending further tests or treatment. On the other hand, placing a healthy indi-
vidual into the malignant group, while undesirable, is less damaging, since further tests will simply
correct the error. Hence, the goal should be maximizing specificity, while constraining sensitivity.
Of course, the constraint on the sensitivity is only guaranteed on the training set. In Table 14 we
present the results of solving such model using min([.9n],600) samples and the resulting testing
sensitivity (TPR) and specificity (TNR). We report average and variance over 30 runs.
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Table 14 TPR vs. TNR, breast cancer data, depth-2 and depth-3 trees

depth-2 depth-3
Training Testing Training Testing
TPR | TNR TPR | TNR TPR | TNR TPR | TNR
100 79.6 99.1 76.8 100 91.6 97.2 83.6
99.5 85.4 98.9 82.4 99.5 94.6 97.4 89.7
99 89.5 97.7 89.4 99 97.2 96.8 90.0
98.5 92 98.1 90.9 98.5 97.2 97.2 90.9
98 92.7 97.7 91.0 98 98.7 96.4 94.6
97 95.8 97.5 94.7 97 99.4 96.6 96.1
96 97.3 96.4 93.9 96 99.9 94.2 94.7
95 98.4 96.2 98.0 95 100.0  93.9 93.0

We observe that, while depth-2 trees deliver worse specificity in training than depth-3 trees,

they have better generalization and hence closely maintain the desired true positive rate. This is

also illustrated in Figure 5.

Fig. 5 Breast Cancer Data, Training v.s. Testing Sensitivity
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6 Concluding remarks

Training Sensitivity

We have proposed an integer programming formulation for constructing optimal binary classifica-

tion trees for data consisting of categorical features. This integer programming formulation takes

problem structure into account and, as a result, the number of integer variables in the formulation

is independent of the size of the training set. We show that the resulting MILP can be solved to

optimality in the case of small decision trees; in the case of larger topologies, a good solution can

be obtained within a set time limit. We show that our decision trees tend to outperform those pro-

duced by CART, in accuracy and/or interpretability. Moreover, our formulation can be extended

to optimize specificity or sensitivity instead of accuracy, which CART cannot do.

Our formulation is more specialized than that proposed recently in [3] and is hence is easier to

solve by an MILP solver. However, our model allows flexible branching rules for categorical variables,
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as those allowed by CART. In addition the formulations proposed in [3] are not particularly aimed

at interpretability.

Several extensions and improvements should be considered in future work. For example, while

the number of integer variables does not depend on the size of the training set, the number of

continuous variables and the problem difficulty increases with the training set size. Hence, we plan

to consider various improvements to the solution technique which may considerably reduce this

dependence.
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