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Abstract: This review highlights the recent development of nanocatalyst-enabled chemical transformations in water, leveraging
the nanomicelle/surfactant chemistry and related technology. Various chemical reactions, including the most frequently used
transformations in the pharmaceutical industry, are discussed herein. A potential implementation of such nano-technology in large-

scale synthesis at an industry level is also briefly touched on.
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Introduction. For a little over a decade, chemistry with soft
and dispersed matters has emerged as a prominent strategy in
the quest for more sustainable practices [1-3]. The approach
has offered the opportunity to move away from traditional
fossil-based solvents. It has brought a generic solution to
phasing out of the reprotoxic dipolar-aprotic solvents [4-9] and
generated a real opportunity to conduct multi-step sequences
in @ common medium (water), rendering various types of
chemistry compatible in an aqueous medium [10,11]. The rapid
development of a chemistry toolbox in bulk water enabled a
broader scope of impactful transformations, whether
conducted stoichiometrically or catalytically [12]. The latter
especially allows for the true power of the technology to be
unleashed with profound advantages coming from the nano-
reactors that the soft and dispersed matters constitute in virtue
of the hydrophobic effects. The effect enables reactions under
very mild reaction conditions, more often at room temperature
or gentle warming, and leads to observed exquisite
selectivities. These optimal selectivities reduce the number of
operations, such as washings, extractions, and purifications,
dramatically impacting productivity, environmental, and cost
footprints. These advancements contribute significantly to the
field of homogeneous catalysis [13-15]. However, the following
account focuses on the emerging development and the use of
nanoparticles (NPs) in heterogeneous catalysis.

Heterogeneous Catalysis in Nanomicelles. The advent of
chemistry in water by using benign surfactants has
tremendously gained visibility, triggering interest from
academia and industry. Its applications to catalysis provide
environmental and economic benefits, including the worker’s
safety, reduced cost, and enhanced productivity due to high
process yield and selectivity. Novartis became particularly
interested in pushing the boundaries in both homogeneous and
heterogeneous catalysis. A series of spectacular
methodologies have been developed in homogeneous
catalysis, and our collaborators and we have reported the
related work [16-20]. Many associated examples can be found
in the excellent recent reviews written by Lipshutz and co-
workers [12-14]. In heterogeneous catalysis, the aqueous
nanomicelles system enables the extraordinary catalytic
performance of metallic NPs (the catalyst). Generally, the NPs

aggregate in the hydrophilic regions of the supramolecular
systems. Therefore, these NPs should be fine in size and
morphology to readily interact and operate in the
supramolecular arrangements. In collaboration with Lipshutz
and Handa, suitable support for palladium NPs, displaying a
superior catalytic activity, was rapidly identified [11,21]. In
virtue of the very effective compartmentalization effect, it
turned out to be active in very low palladium (Pd) loading,
typically well below 0.1 mol%, and showed excellent yields in
various cross-couplings or reduction events on a wide array of
substrates [21]. The low Pd loading for high conversions is
particularly remarkable, i.e., as little as 80 ppm for nitro
reductions (Figure 1a) and 320 ppm for the more demanding
Suzuki-Miyaura cross-couplings. We had interestingly arrived
at these limits, starting our journey by using native iron chloride
that was contaminated with this low amount of Pd. Later on, to
gain robustness and reliability, systematic doping of the
support with extraneous Pd was conducted using Pd(OAc). as
the Pd source. For cross-couplings, recycling the catalyst was
also feasible due to the heterogeneous nature of the catalyst.

A variety of transformations were achieved using this strategy,
including Suzuki-Miyaura and Sonogashira cross-couplings
[21], click chemistry [22], selective nitro reductions [23,24], or
halides embedded dihalocyclopropantions [25], all under very
mild reaction conditions (Figure 1b-d). The activity and
selectivity were associated with the careful choice of the metal,
such as Pd or nickel (Ni) ligated with the suitable ligand. SPhos
was used with Pd for the Suzuki-Miyaura cross-couplings,
while X-Phos [26] or HandaPhos [27] with Pd was used for the
Sonogashira cross-couplings. In contrast, Pd or Ni only was
required for nitro and halide reductions. Likewise, copper (Cu)
salt was used for click chemistry.

We also discovered the synergistic effect of iron (Fe) doping
resulting in the formation of bimetallic NPs, presumably
minimizing the extent of aggregation and enabling faster
catalysis [28]. Such NPs can be readily formed by reducing
(with a Grignard reagent) the transition-metal pre-catalyst
deposited in situ onto iron chloride. The resulting solid particles



can be used as such or isolated and stored for future use. One
of the additional benefits of such systems is using them in flow
[29,30]. This standard protocol for the synthesis of NPs was
general to a variety of ligand-free or ligated metals. These NPs
are applied to broad arrays of catalytic transformations on a
production scale. However, we cannot build the necessarily
sustainable supply chain that would allow us to procure and
use these NPs reliably. The main reason has been our relative
inability to define proper specifications that ensure the
adequate performance of the catalyst. Nonetheless, such NPs
used for micellar catalysis can provide tremendous
opportunities to conduct smooth, complex sequences in
operationally straightforward and effective processes (Figure
2).
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Fe-based nanoparticles-mediated transformations in water.
(a) Preparation of nanoparticles. (b) Nitro group reductions. (c)
Suzki-Miyaura couplings catalyzed by Fe ppm Pd nanoparticles.
(d) Cu-free selective Sonogashira couplings.
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One-pot sequence catalyzed by NPs in aqueous TPGS-750-M.

The lack of a sustainable supply chain for the NPs mentioned
above led us to look for more robust and more straightforward
alternatives relying on existing solid catalysts. We have turned
our attention to charcoal as a support and have identified
charcoal-supported metals as highly effective systems
[11,31,32]. Thus far, only reduction of olefins, nitro functional
group [31], and reductive aminations [32] were reported relying
on 0.2 to 0.4 mol% Pd loading using simple operational
protocols (Figure 3a, b).

Although Pd-C catalyst offered a valuable alternative for
reduction chemistry, it was ineffective for more useful cross-
coupling transformations. It is likely due to this catalytic
system's physical and chemical properties. The size of the
solid catalyst is certainly too large for optimal micellar catalysis,
and the support is improper for Pd ligation with the suitable
ligands. Therefore, we continued our quest to find a more
practical NPs generation that resulted in the reformation of the
solid support itself, onto which the metal and ligand can be
more readily added [33]. The concept was illustrated on a
Mizoroki-Heck coupling and proceeded very smoothly (Figure
3c). In this case, the Fe NPs were first prepared within a
sculpting process by practical reduction with a Grignard,
resulting in the formation of spherical shaped NPs, followed by
the addition of Pd(-Bu2P)2 and extraneous ligand, once again
reduced with a Grignard, and aging. Nanorods of 100 to 200
nm length were then obtained, which smoothly catalyze the
desired cross-coupling with as little as 0.25 mol% Pd. We were
able to store the spherical Fe NPs and further dope them with
various metals and ligands just before use for the desired
transformation. We are particularly excited by this novel
preparation of NPs that should greatly facilitate the technology
for application in industrial laboratories and on the scale.



Figure 3
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(a, b) Nitro group reduction and reductive amination catalyzed by
Pd/C catalyst in aqueous TPGS-750-M. (c-e) NPs for cross-
couplings.

In the meantime, several peers embraced the concept and
developed independent solutions to cross-couplings, or
reductions, essentially relying on a similar approach [34-37].
The methodology that enables C-S coupling using Cu NPs in
a carbohydrate-based surfactant (Figure 3d) has particular
interest and relevance [38]. The surfactant can be readily
obtained via condensation of glucose to a PEG-amine that
most likely stabilizes the NPs. The latter are formed by in
situ reductions of Cu(OAc); to catalytically more active Cu,O
via the reducing nature of the sugar derivative. The resulting
catalyst performs moderately, requiring 3 mol% catalyst
loading and elevated temperature (100 °C). Characterization
data revealed the average 50 nm-sized micelles and Cu NPs
of 1.35 nm sitting within the PEG region at the outer surface of
micelles or inside the micelles (dynamic phenomenon).

Wallace and co-workers reported another unique
compartmentalization approach. The authors have explored in

situ produced NPs by microorganisms to catalyze Suzuki-
Miyaura cross-coupling reactions (Figure 3e) [39]. Such
micellar catalysis using biogenic Pd NPs is fascinating. It
opens up opportunities for compatible bio and chemo-catalysis
in a very effective and sustainable manner, such as no need
for ligand, low catalyst loading, and mild reaction temperatures.

Proline-Based Rationally Designed Surfactant for NPs
Catalysis. Handa and co-workers have designed novel
functional surfactants that facilitate the preparation and
stabilization of catalytic NPs. The appendage of an additional
relatively polar proline moiety between the hydrophilic and
lipophilic fragments offers the opportunity to chelate with
metals and template the formation of NPs. The proline-derived
PS-750-M surfactant chelate and forms microscopic
aggregates within its very polar proline core [16,40]. With the
surfactant in hand, we learned how to fully harness its
structural and chemical properties on practical transformations
while understanding how chemistry in the micelles of PS-750-
M works. The proline fragment of the amphiphile preferentially
ligates Pd, Cu, Ni, and combinations thereof are used as is or
deposited onto a surface, such as charcoal. The use of
polymetallic catalytic systems was beneficial in minimizing the
extent of aggregation and increasing the catalytic activity. With
such an approach, efficient and robust synthetic protocols for
Suzuki-Miyaura couplings of (iso)quinolines [19], Buchwald-
Hartwig or Sonogashira cross-couplings [11], alpha arylation of
nitriles [41], oxidative Mizoroki-Heck-type couplings [42],
selective hydrogenolysis [43], and selective reductions [44]
have been reported. Besides, the reactivity of carbenes and
carbanions has been thoroughly investigated [20] (Figure 4a-
f). In all cases, the size of the NPs catalyst ranged from below
1 to 2.5 nm. For the Buchwald-Hartwig aminations, charcoal,
as the surface, plays a crucial role in anchoring the two metals.
Cu and Pd were found to be bridged with a phosphine ligand,
most likely via a 2e—3c bond. The design of the catalyst offered
remarkable recyclability and stability of the catalyst with
negligible metal leaching. For the alpha arylation of nitriles, an
exciting protocol for the spontaneous in-situ generation of the
NPs was developed. Due to its operational simplicity and
robustness, it will find resonance soon.

Authors have also shown that the PS-750-M could readily
replace phosphine ligands in the NPs catalysis for cross-
couplings [42,45]. Remarkably, the cross-couplings of water-
sensitive acid chlorides have been cleanly achieved. Using
state-of-the-art NMR, IR, and SERS spectroscopies, the
authors displayed that the amphiphile PS-750-M binds with the
Pd NPs surface through amidic and ester carbonyls. NMR
spectroscopy further revealed the integration of Pd NPs with
the aqueous micelles. Besides the broad substrate scope,
excellent functional group tolerance, and scalability, these NPs
were equally effective for cross-couplings between (hetero)aryl
halides and boronic acids.

Cellulose-Based Additives for Efficient Catalysis in Water.
Recently, a series of disclosures on the impressive
hydrophobic effect of food additive polymer HPMC on the
reaction rates and selectivity has also appeared in the literature
from Braje and Handa [8]. The presence of hydrophobic
pockets in the aqgueous HMPC enabled compartmentalization
within the reaction mixture that caused excellent catalytic
activity and selectivity. Notably, extremely fast reaction rates
were reported under these reaction conditions. The
organometallic catalyst spontaneously and instantaneously
transformed into NPs. The ultrasmall NPs were reported with



an average size of 1.5 nm. The extraordinarily active NPs
enabled cross-couplings of various substrates in < 5 minutes
(Figure 4g). A similar strategy was also recently reported by
Diner and co-workers [46]. The authors reported the formation
of Ni boride NPs and their use in nitro reduction using
nanocellulose (Figure 4h).
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Summary. In this brief account, we have highlighted our
journey and the contribution of other groups to the field of

sustainable chemistry in water using soft and dispersed
matters. It is not an exhaustive overview of the literature but
rather a report on recent and potentially impactful
developments from an industrial perspective.
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