
Sub-1.5 Time-Optimal Multi-Robot Path Planning
on Grids in Polynomial Time

Teng Guo Jingjin Yu

Abstract—It is well-known that graph-based multi-robot path
planning (MRPP) is NP-hard to optimally solve. In this work,
we propose the first low polynomial-time algorithm for MRPP
achieving 1–1.5 asymptotic optimality guarantees on solution
makespan (i.e., the time it takes to complete a reconfiguration of
the robots) for random instances under very high robot density,
with high probability. The dual guarantee on computational
efficiency and solution optimality suggests our proposed general
method is promising in significantly scaling up multi-robot
applications for logistics, e.g., at large robotic warehouses.

Specifically, on an m1 ×m2 gird, m1 ≥ m2, our RTH (Rubik
Table with Highways) algorithm computes solutions for routing
up to m1m2

3
robots with uniformly randomly distributed start

and goal configurations with a makespan of m1 +2m2 + o(m1),
with high probability. Because the minimum makespan for such
instances is m1 + m2 − o(m1), also with high probability,
RTH guarantees m1+2m2

m1+m2
optimality as m1 → ∞ for random

instances with up to 1
3

robot density, with high probability.
m1+2m2
m1+m2

∈ (1, 1.5]. Alongside this key result, we also establish
a series of related results supporting even higher robot densities
and environments with regularly distributed obstacles, which
directly map to real-world parcel sorting scenarios. Building
on the baseline methods with provable guarantees, we have
developed effective, principled heuristics that further improve
the computed optimality of the RTH algorithms. In extensive
numerical evaluations, RTH and its variants demonstrate excep-
tional scalability as compared with methods including ECBS and
DDM, scaling to over 450 × 300 grids with 45, 000 robots, and
consistently achieves makespan around 1.5 optimal or better, as
predicted by our theoretical analysis.

I. INTRODUCTION

We examine multi-robot path planning (MRPP, also known
as multi-agent path finding or MAPF [45]) on two-dimensional
grids, with potentially regularly distributed obstacles (see
Fig. 1). The main objective of MRPP is to find a set of
collision-free paths for routing many robots from a start
configuration to a goal configuration. In practice, solution opti-
mality is also of key importance; yet optimally solving MRPP
is generally NP-hard [46, 55], even in planar [52] and grid
settings [10]. MRPP algorithms find many important large-
scale applications, including, e.g., in warehouse automation
for general order fulfillment [51], grocery order fulfillment
[35], and parcel sorting [50]. Other application scenarios
include formation reconfiguration [38], agriculture [6], object
transportation [40], swarm robotics [39, 24], to list a few.

Motivated by applications including grocery fulfillment and
parcel sorting, we focus on MRPP in which the underlying

The authors are with the Department of Computer Science, Rutgers, the
State University of New Jersey, Piscataway, NJ, USA. E-Mails: {teng.guo,
jingjin.yu}@rutgers.edu.

6

9

5

8

1

23

4

7

12

10

11 16

17

18

1314

(a) (b)
Fig. 1: (a) Real-world parcel sorting system (by JD.com) using many
robots on a large grid-like environment with holes for dropping
parcels; (b) A snapshot of a similar MRPP instance we can solve
in polynomial-time with provable optimality guarantees. In practice,
our algorithms scale to maps of size 450×300, supporting over 50K
robots, and achieves 1.x-optimality (see, e.g., Fig. 11).

graph is an m1 × m2 grid, m1 ≥ m2, with extremely high
robot density. Whereas recent studies [53, 10] have shown
that such problems can be solved in polynomial time with
O(1) optimality guarantees, the constant factor associated
with the guarantee is generally prohibitively high (≫ 1) for
these methods to be practical. In this research, we break this
barrier by showing that, we can achieve (1 + δ)-makespan
optimality for MRPP on large grids in polynomial-time in
which δ ∈ (0, 0.5 + ε], ε → 0 as m1 → ∞. Through the
judicious application of a novel global object rearrangement
method called Rubik Tables [48] together with many algo-
rithmic techniques, and combined with careful analysis, we
establish that in polynomial time:

• For m1m2 robots, i.e., at maximum robot density, RTM
(Rubik Table for MRPP) computes a solution for an arbi-
trary MRPP instance under a makespan of 7m1+14m2;

• For m1m2

3 robots and uniformly randomly distributed
start/goal configurations, RTH (Rubik Tables with High-
ways) computes a solution with a makespan of m1 +
2m2 + o(m1), with high probability. In contrast, such an
instance has a minimum makespan of m1 +m2 − o(m1)
with high probability. This implies that, as m1 → ∞, an
optimality guarantee of m1+2m2

m1+m2
∈ (1, 1.5] is achieved,

with high probability;
• For m1m2

3 robots, for an arbitrary (i.e., not necessarily
random) instance, a solution can be computed with a
makespan of 3m1 + 4m2 + o(m1) using RTH;

• For m1m2

2 robots, the same m1+2m2

m1+m2
optimality guarantee

can be achieved with a slightly larger overhead using
RTLM (Rubik Tables with Line Merge);

• The same m1+2m2

m1+m2
optimality guarantee may be achieved

on grids with up to m1m2

9 regularly distributed obstacles

together with 2m1m2

9 robots using RTH (e.g., Fig. 1(b)).
Moreover, we have developed effective and principled

heuristics to work together with RTH that further reduce the
computed makespan by a large margin, i.e., for m1m2

3 robots,
a makespan smaller than m1 + 2m2 can often be achieved.
Demonstrated through extensive numerical evaluations, our
methods are highly scalable, capable of solving instances with
tens of thousands of robots in dense settings under two min-
utes. Simultaneously, the solution optimality approaches the
1–1.5 range as predicted theoretically. This level of scalability
far exceeds what was possible. With the sub-1.5 optimality
guarantee, our approach unveils a promising direction toward
the development of practical, provably optimal multi-robot
routing algorithms that runs in low polynomial time.

Related work. Literature on multi-robot path and mo-
tion planning [25, 12] is expansive; here, we mainly focus
on graph-theoretic (i.e., the state space is discrete) studies
[56, 45]. As such, in this paper, MRPP refers explicitly to
graph-based multi-robot path planning. Whereas the feasibility
question has long been positively answered for MRPP [26],
the same cannot be said when it comes to securing optimal
solutions, as computing time- or distance-optimal solutions are
shown to be NP-hard in many settings, including for general
graphs [16, 46, 55], planar graphs [52, 2], and even regular
grids [10], similar to the setting addressed in this study.

Nevertheless, given its high utility, especially in e-commerce
applications [51, 35, 50] that are expected to grow signifi-
cantly [9, 1], many algorithmic solutions have been proposed
for optimally solving MRPP. Among these, combinatorial-
search based solvers [27] have been demonstrated to be
fairly effective. MRPP solvers may be classified as being
optimal or suboptimal. Reduction-based optimal solvers solve
the problem through reducing the MRPP problem to other
problem, e.g., SAT [47], answer set programming [11], in-
teger linear programming (ILP) [56]. Search-based optimal
MRPP solvers include EPEA* [15], ICTS [42], CBS [43],
M* [49], and many others. Due to the inherent intractability
of optimal MRPP, optimal solvers usually exhibit limited
scalability, leading to considerable interests in suboptimal
solvers. Unbounded solvers like push-and-swap [31], push-
and-rotate [8], windowed hierarchical cooperative A∗ [44],
all return feasible solutions very quickly, but at the cost of
solution quality. Balancing the running-time and optimality is
one of the most attractive topics in the study of MRPP/MAPF.
Some algorithms emphasize the scalability without sacrificing
as much optimality, e.g., ECBS [3], DDM [22], EECBS
[30], PIBT [36], PBS [34]. There are also learning-based
solvers [7, 41] that scales well in sparse environments.
Effective orthogonal heuristics have also been proposed [18].
Recently, O(1)−approximate or constant factor time-optimal
algorithms have been proposed, e.g. [53, 10], that tackle highly
dense instances. However, these algorithms only achieve low-
polynomial time guarantees at the expense of very large
constant factors, rendering them theoretically interesting but
impractical.

In contrast, with high probability, our methods run in low

polynomial time with provable 1–1.5 asymptotic optimality. To
our knowledge, this paper presents the first MRPP algorithms
to simultaneously guarantee polynomial running time and 1.x
solution optimality.

Organization. The rest of the paper is organized as follows.
In Sec. II, we provide a formal definition of graph-based
MRPP, and introduce the Rubik Table problem and the
associated algorithm. RTM, a basic adaptation of the Rubik
Table results for MRPP at maximum robot density which
ensures a makespan upper bound of 7m1+14m2, is described
in Sec. III. An accompanying lower bound of m1+m2−o(m1)
for random MRPP instances is also established. In Sec. IV
we introduce RTH for one third robot density achieving a
makespan of m1 + 2m2 + o(m1). Obstacle support is also
discussed. In Sec. V, we show how one-half robot density
may be supported with optimality guarantees similar to that of
RTH. We thoroughly evaluate the performance of our methods
in Sec. VI and conclude with Sec. VII. Given the amount
of material included in the work, to provide a concentrated
discussion, we refer the readers to [17] for proofs to theorems.

II. PRELIMINARIES

A. Multi-Robot Path Planning on Graphs

Graph-based multi-robot path planning (MRPP) seeks
collision-free paths that efficiently route robots. Consider an
undirected graph G(V,E) and n robots with start config-
uration S = {s1, . . . , sn} ⊆ V and goal configuration
G = {g1, . . . , gn} ⊆ V . Each robot has start and goal vertices
si, gi. We define a path for robot i as a map Pi : N → V where
N is the set of non-negative integers. A feasible Pi must be a
sequence of vertices that connects si and gi: 1) Pi(0) = si; 2)
∃Ti ∈ N, s.t. ∀t ≥ Ti, Pi(t) = gi; 3) ∀t > 0, Pi(t) = Pi(t−1)
or (Pi(t), Pi(t− 1)) ∈ E.

With warehouse automation-like applications in mind, we
work with G being 4-connected grids, aiming to minimize
the makespan, i.e., maxi{|Pi|}. Unless stated otherwise, G
is assumed to be an m1×m2 grid with m1 ≥ m2. Also, “ran-
domness” in this paper always refers to uniform randomness.
The version of MRPP we study is sometimes referred to as
the one-shot MAPF problem [45]. We mention that our results
also translate to guarantees on the life-long setting [45], which
is briefly discussed in Sec. VII.

B. The Rubik Table Problem (RTP)

The Rubik Table problem (RTP) [48] formalizes the task of
carrying out globally coordinated token swapping operations
on lattices, with many interesting applications. The problem
has many variations; in our study, we use the basic 2D form
and the associated algorithms, which are summarized below.
Problem 1 (Rubik Table Problem (RTP) [48]). Let M be an
m1(row)×m2(column) table, m1 ≥ m2, containing m1m2

items, one in each table cell. The m1m2 items are of m2

colors with each color having a multiplicity of m1. In a shuffle
operation, the items in a single column or a single row of M
may be permuted in an arbitrary manner. Given an arbitrary
configuration XI of the items, find a sequence of shuffles that

take M from XI to the configuration where row i, 1 ≤ i ≤
m1, contains only items of color i. The problem may also be
labeled, i.e., each item has a unique label in 1, . . . ,m1m2.

A key result from [48], which we denote as the Rubik
Table Algorithm (RTA), establishes that a colored RTP can be
solved using m2 column shuffles followed by m1 row shuffles.
Additional m1 row shuffles then solve the labeled RTP.

Theorem 1 (Rubik Table Theorem [48]). An arbitrary Rubik
Table problem on an m1×m2 table can be solved using m1+
m2 shuffles. The labeled Rubik Table problem can be solved
using 2m1 +m2 shuffles.

We briefly illustrate how RTA works on an m1 ×m2 table
with m1 = 4 and m2 = 3 (in Fig. 2); we refer readers to
[48] for more details. RTA operates in two phases. In the
first phase, a bipartite graph B(T,R) is constructed based on
the initial table configuration where the partite set T are the
colors/types of items, and the set R are the rows of the table
(Fig. 2(b)). An edge is added to B between t ∈ T and r ∈ R
for every item of color t in row r. From B(T,R), a set of m2

perfect matchings can be computed, as guaranteed by [21].
Each matching, containing m1 edges, connects all of T to
all of R, and dictates how a column should look like after
the first phase. For example, the first set of matching in solid
lines in Fig. 2(b) says that the first column should be ordered
as yellow, cyan, red, and green as shown in Fig. 2(c). After
all matchings are processed, we get an intermediate table,
Fig. 2(c). Notice that each row of Fig. 2(a) can be shuffled to
yield the corresponding row of Fig. 2(c); this is the key novelty
of the RTA. After the first phase of m1 row shuffles, the
intermediate table (Fig. 2(c)) can then be rearranged with m2

column shuffles to solve the colored RTP (Fig. 2(d)). Another
m1 row shuffles can then solve the labeled RTP (Fig. 2(e)). We
note that it is also possible to perform labeled rearrangement
using m2 column shuffles followed by m1 row shuffles and
then followed by another m2 column shuffles.

8 6

3 2 9

5

6 8

9

1

3 2

1 3 2

5

9

6 4

7 8

1 2 3

4

7

5 6

8 9

4

1

7

10

R1

R2

R3

R4 7 45

11

12

10 11

12

10 1112 10 11 12

(a) (b) (c) (d) (e)

Fig. 2: Illustration of applying the 11 shuffles. (a) The initial 4 × 3
table with a random arrangement of 12 items that are colored and
labeled. The labels are consistent with the colors. (b) The constructed
bipartite graph. It contains 3 perfect matchings, determining the 3
columns in (c); only color matters in this phase. (c) Applying 4
row shuffles to (a), according to the matching results, leads to an
intermediate table where each column has one color appearing exactly
once. (d) Applying 3 column shuffles to (c) solves a colored RTP.
(e) 4 additional row shuffles fully sort the labeled items.

RTA runs in O(m1m2 logm1) (notice that this is nearly
linear with respect to n = m1m2, the total number of items)
expected time or O(m2

1m2) deterministic time. If m1 = m2 =
m, then the times become O(m2 logm) expected and O(m3)
deterministic, respectively.

III. SOLVING MRPP UP TO MAXIMUM DENSITY W/ RTA

The built-in global coordination capability of RTA naturally
applies to solving makespan-optimal MRPP. Since RTA only
requires three rounds of shuffles and each round involves either
parallel row shuffles or parallel column shuffles, if each round
of shuffles can be realized with makespan proportional to the
size of the row/column, then a makespan upper bound of
O(m1+m2) can be guaranteed. This is in fact achievable even
when all of G’s vertices are occupied by robots, by recursively
applying a labeled line shuffle algorithm [53], which can
arbitrarily rearrange a line of m robots embedded in a grid
using O(m) makespan.

Lemma 2 (Basic Simulated Labeled Line Shuffle [53]). For
m labeled robots on a straight path of length m, embedded
in a 2D grid, they may be arbitrarily ordered in O(m) steps.
Moreover, multiple such reconfigurations can be performed on
parallel paths within the grid.

The key operation is based on a localized, 3-step pair
swapping routine, shown in Fig. 3. For more details on the
line shuffle routine, see [53].

1 2

4 5

3

6

4 1

5 2

3

6

4 2

5 6

1

3

2 1

4 5

3

6

Fig. 3: On a 2 × 3 grid, swapping two robots may be performed in
three steps with three cyclic rotations.

The basic simulated labeled line-shuffle algorithm, however,
has a large constant factor. Borrowing ideas from parallel odd-
even sort [4], we can greatly reduce the constant factor in
Lemma 2. First, we need the following lemma.

Lemma 3. It takes at most seven steps and six steps to perform
arbitrary combinations of pairwise horizontal swaps on 3× 2
grids and 4× 2 grids, respectively.

Proof of Lemma 3. Using integer programming [56], we ex-
haustively compute makespan-optimal solutions for arbitrary
horizontal reconfiguration on 3×2 (8 possible cases) and 4×2
grids (16 possible cases), which confirms the claim.

As an example, it takes seven steps to horizontally “swap”
all three pairs of robots on a 3× 2 grid, as shown in Fig. 4.

1

3

5 6

4

2 6

4

2 5

1

3 2

4

6 5

3

13

5

6 4

2

1 4

1

2 5

3

6 1

2

5 3

6

4 2

6

5 3

4

13

6

4 2

5

1

Fig. 4: An example of a horizontal “swap” on a 3×2 grid that takes
seven steps, in which all three pairs are swapped. It takes at most
seven steps to horizontally swap robots arbitrarily on a 3× 2 grid.

Lemma 4 (Faster Line Shuffle). For m robots on a straight
path of length m, embedded in a 2D grid, they may be
arbitrarily ordered in 7m steps. Moreover, multiple such
reconfigurations can be performed simultaneously on parallel
straight paths within the grid.

Proof. “Sorting” of m robots on a straight path of length m
may be realized using parallel odd-even sort [4] in m − 1
rounds, which only requires the ability to simulate potential
pairwise “swaps” interleaving odd phases (swapping robots
located at positions 2k+1 and 2k+2 on the path for some k)
and even phases (swapping robots located at positions 2k+2
and 2k + 3 on the path for some k). Here, it does not matter
whether m is odd or even. To simulate these swaps, we can
partition the grid embedding the path into 3× 2 grids in two
ways for the two phases, as illustrated in Fig. 5.

Fig. 5: Partitioning a grid into disjoint 3 × 2 grids in two ways
for simulating odd-even sort. The highlighted pairs of robots maybe
independently “swapped” within each 3× 2 grid as needed.

A perfect partition requires that the second dimension of
the grid, perpendicular to the straight path, be a multiple of
3. If this is not the case, some partitions at the bottom can
use 4 × 2 grids. By Lemma 3, each odd-even sorting phase
can be simulated using at most 7m steps. Clearly, shuffling
on parallel paths is directly supported.

Combining RTA and fast line shuffle (Lemma 4) yields a
polynomial time MRPP algorithm for fully occupied grids
with a makepsan of 7m1 + 14m2.

Theorem 5 (MRPP on Grids under Maximum Robot Density,
Upper Bound). MRPP on an m1 ×m2 grid, m1 ≥ m2 ≥ 3,
with each grid vertex occupied by a robot, can be solved in
polynomial time in a makespan of 7m1 + 14m2.

We note that the case of m2 = 2 can also be solved similarly
except when m1 = 2, with a slightly altered procedure since
we can only use partitions of 2× 3 grids. We omit the details
for this minor case which readers can readily fill in.

The straightforward pseudo-code for RTM, the RTA based
algorithm for MRPP on grids supporting the maximum pos-
sible robot density, is given in Alg. 1. The comments in the
main RTM routine indicate the corresponding RTA phases.
For MRPP on an m1×m2 grid with row-column coordinates
(x, y), we say robot i belongs to color 1 ≤ j ≤ m1 if gi.y = j.
Function Prepare() in the first phase finds intermediate
states {τi} for each robot through perfect matchings and routes
them towards the intermediate states by (simulated) column
shuffles. If the robot density is smaller than required, we may
fill the table with “virtual” robots [23, 53]. For each robot i
we have τi.y = si.y. Function ColumnFitting() in the
second phase routes the robots to their second intermediate
states {µi} through row shuffles where µi.x = τi.x and
µi.y = gi.y. In the last phase, function RowFitting()
routes the robots to their final goal positions using additional
column shuffles.

We now establish the optimality guarantee of RTM, assum-
ing MRPP instances are randomly generated. For rearranging

Algorithm 1: Rubik Table Based MRPP Solver
Input: Start and goal vertices S = {si} and G = {gi}

1 Function RTM(S,G):
2 Prepare(S,G) ▷ Computing Fig. 2(b)
3 ColumnFitting(S,G) ▷ Fig. 2(a) → Fig. 2(c)
4 RowFitting(S,G) ▷ Fig. 2(c) → Fig. 2(d)

5 Function Prepare(S,G):
6 A← [1, ...,m1m2]
7 for (t, r) ∈ [1, ...,m1]× [1, ...,m1] do
8 if ∃i ∈ A where si.x = r ∧ gi.y = t then
9 add edge (t, r) to B(T,R)

10 remove i from A

11 compute matchings M1, ...,Mm2 of B(T,R)
12 A← [1, ...,m1m2]
13 foreach Mr and (t, r) ∈Mr do
14 if ∃i ∈ A where si.x = r ∧ gi.y = t then
15 τi ← (r, si.y) and remove i from A
16 mark robot i to go to τi

17 perform simulated column shuffles in parallel

18 Function ColumnFitting(S,G):
19 foreach i ∈ [1, ...,m1m2] do
20 µi ← (τi.x, gi.y) and mark robot i to go to µi

21 perform simulated row shuffles in parallel

22 Function RowFitting(S,G):
23 foreach i ∈ [1, ...,m1m2] do
24 mark robot i to go to gi

25 perform simulated column shuffles in parallel

robots on an m1 × m2 grid, the expected makespan lower
bound on random instances is Ω(m1 +m2) [53]. To obtain a
finer optimality ratio, however, a finer lower bound is needed,
which is established in the following.

Proposition 6 (Precise Makespan Lower Bound of MRPP on
Grids). The minimum makespan of random MRPP instances
on an m1×m2 grid with Θ(m1m2) robots is m1+m2−o(m1)
with arbitrarily high probability as m1 → ∞.

Proof. Without loss of generality, let the constant in Θ(m1m2)
be some c > 0, i.e., there are cm1m2 robots. We examine the
top left and bottom right corners of the m1 ×m2 grid G. In
particular, let Gtl (resp., Gbr) be the top left (resp., bottom
right) αm1 × αm2 sub-grid of G, for some positive constant
α ≪ 1. For u ∈ V (Gtl) and v ∈ V (Gbr), assuming each grid
edge has unit distance, then the Manhattan distance between
u and v is at least (1− 2α)(m1 +m2). Now, the probability
that some u ∈ V (Gtl) and v ∈ V (Gbr) are the start and goal,
respectively, for a single robot, is α4. For cm1m2 robots, the
probability that at least one robot’s start and goal fall into Gtl

and Gbr, respectively, is p = 1− (1− α4)cm1m2 .
Because (1 − x)y < e−xy for 0 < x < 1 and y > 0 1,

p > 1−e−α4cm1m2 . Therefore, for arbitrarily small α, we may
choose m1 such that p is arbitrarily close to 1. For example,

1This is because log(1− x) < −x for 0 < x < 1; multiplying both sides
by a positive y and exponentiate with base e then yield the inequality.

we may let α = m
− 1

8
1 , which decays to zero as m1 → ∞,

then it holds that the makespan is (1 − 2α)(m1 + m2) =

m1 + m2 − 2m
− 1

8
1 (m1 + m2) = m1 + m2 − o(m1) with

probability p > 1− e−c
√
m1m2 .

Comparing the upper bound established in Theorem 5 and
the lower bound from Proposition 6 immediately yields

Theorem 7 (Optimality Guarantee of RTM). For random
MRPP instances on an m1 ×m2 grid with Ω(m1m2) robots,
m1 ≥ m2 ≥ 3, as m1 → ∞, RTM computes in polynomial
time solutions that are 7(1+ m2

m1+m2
)-makespan optimal, with

high probability.

We emphasize that RTM always runs in polynomial time
and is not limited by any probabilistic guarantee; the high
probability guarantee is only for solution optimality. The
same is true for other algorithms’ high probability guarantees
proposed in this paper. We also note that high probability guar-
antees are stronger than and imply guarantees in expectation.

IV. NEAR-OPTIMALLY SOLVING MRPP WITH UP TO ONE
THIRD ROBOT DENSITY

Though RTM runs in polynomial time and provides con-
stant factor makespan optimality in expectation, the constant
factor is still relatively large due to the extreme density. In
practice, a robot density of around 1

3 (i.e., n = m1m2

3) is
already very high. As it turns out, with n = cm1m2 for some
constant c > 0 and n ≤ m1m2

3 , which is assumed throughout
this section, the constant factor can be dropped significantly by
employing a “highway” heuristic to simulate the row/column
shuffle operations.

A. Rubik Table for MRPP with “Highway” Shuffle Primitive

Random MRPP instances. For the highway heuristics,
we first work with random MRPP instances. Let us assume
for the moment that m1 and m2 are multiples of three; we
partition G into 3 × 3 cells (see, e.g., Fig. 1(b) and Fig. 6).
We use Fig. 6, where Fig. 6(a) is a random start configuration
and Fig. 6(f) is a random goal configuration, as an example
to illustrate RTH– Rubik Table (for MRPP) with Highways,
targeting robot density up to 1

3 . RTH involves two phases:
anonymous reconfiguration and MRPP resolution with Rubik
Table and highway heuristics.

In the anonymous reconfiguration phase, in which robots are
treated as being indistinguishable or unlabeled, arbitrary start
and goal configurations (under 1

3 robot density) are converted
to intermediate configurations where each 3× 3 cell contains
no more than 3 robots. We call such configurations bal-
anced configurations. With high probability, random MRPP
instances are not far from being balanced. To establish this
result (Proposition 9), we need the following.

Theorem 8 (Minimax Grid Matching [28]). Consider an
m × m square containing m2 points following the uniform
distribution. Let ℓ be the minimum length such that there exists
a perfect matching of the m2 points to the grid points in the

5

1

8

9

66

9

5 8

1

2

3

4

712 10

11

12

3

7

4

2

10

11

8 461 11

9 25 7 3

10

12

9

8

7

10

11

5

1

2

3

6

4

12

9

8

7

10

5

1

2

4

3

6

12

11 6

95

81

2

3

4 7 12

10

11

(a) (b) (c)

(d) (e) (f)

Fig. 6: An example of applying RTH to solve an MRPP instance. (a)
The start configuration; (b) The start balanced configuration obtained
from (a); (c) The intermediate configuration obtained from the Rubik
Table preparation phase; (d) The intermediate configuration obtained
from the column fitting phase. Apply additional column shuffles for
labeled items; (e) The goal balanced configuration obtained from the
goal configuration; (f) The goal configuration.

square for which the distance between every pair of matched
points is at most ℓ. Then ℓ = O(log

3
4 m) with high probability.

Theorem 8 applies to rectangles with the longer side being
m as well (Theorem 3 in [28]).

Proposition 9. On an m1 × m2 grid, with high probability,
a random configuration of n = m1m2

3 robots is of distance
o(m1) to a balanced configuration.

Proof. We prove for the case of m1 = m2 = 3m using the
minimax grid matching theorem (Theorem 8); generalization
to m1 ≥ m2 can be then seen to hold using the generalized
version of Theorem 8 that applies to rectangles (Theorem 3
of [28], which in fact applies to arbitrarily simply connected
region within a square region).

Now let m1 = m2 = 3m. We may view a random
configuration of m2 robots on a 3m × 3m grid as randomly
placing m2 continuous points in an m×m square with scaling
(by three in each dimension) and rounding. By Theorem 8, a
random configuration of m2 continuous points in an m ×m
square can be moved to the m2 grid points at the center of
the m2 disjoint unit squares within the m×m square, where
each point is moved by a distance no more than O(log

3
4 m),

with high probability. Translating this back to a 3m × 3m
gird, we have that m2 randomly distributed robots on the grid
can be moved so that each 3 × 3 cell contains exactly one
robot and the maximum distance moved for any robot is no
more than O(log

3
4 m), with high probability. Applying this

argument three times yields that a random configuration of
m2

1

3 robots on an m1 × m1 gird can be moved so that each
3× 3 cell contains exactly three robots and no robot needs to
move more than a O(log

3
4 m1) steps, with high probability. We

note that, because the robots are indistinguishable, overlaying

three sets of reconfiguration paths will not cause an increase
in the distance traveled by any robot (and will reduce it).

In the example, unlabeled reconfiguration corresponds to
Fig. 6(a)→Fig. 6(b) and Fig. 6(f)→Fig. 6(e) (note that MRPP
solutions are time-reversible). We simulated the process of
anonymous reconfiguration for m1 = m2 = 300, i.e., on
a 300 × 300 grids. For 1

3 robot density, the actual number
of steps, averaged over 100 random instances, is less than
5. We call configurations like Fig. 6(b)-(e), which have all
robots concentrated vertically or horizontally in the middle of
the 3 × 3 cells, centered balanced configurations or simply
centered configurations. Completing the first phase requires
solving two unlabeled MRPP problems [54, 32], easily doable
in polynomial time.

In the second phase, RTA is applied with a highway
heuristic to get us from Fig. 6(b) to Fig. 6(e), transform-
ing between vertical centered configurations and horizontal
centered configurations. To do so, RTA is applied (e.g., to
Fig. 6(b) and (e)) to obtain two intermediate configurations
(e.g., Fig. 6(c) and (d)). To go between these configurations,
e.g., Fig. 6(b)→Fig. 6(c), we apply a heuristic by moving
robots that need to be moved out of a 3 × 3 cell to the two
sides of the middle columns of Fig. 6(b), depending on their
target direction. If we do this consistently, after moving robots
out of the middle columns, we can move all robots to their
desired goal 3 × 3 cell without stopping nor collision. Once
all robots are in the correct 3 × 3 cells, we can convert the
balanced configuration to a centered configuration in at most
3 steps, which is necessary for carrying out the next simulated
row/column shuffle. Adding things up, we can simulate a
shuffle operation using no more than m + 5 steps where
m = m1 or m2. The efficient simulated shuffle leads to
low makespan MRPP routing algorithms. It is clear that all
operations take polynomial time; a precise running time is
given at the end of this subsection.

Theorem 10 (Makespan Upper Bound for Random MRPP,
≤ 1

3 Density). For random MRPP instances on an m1 ×
m2 grid, where m1 ≥ m2 are multiples of three, for n ≤
m1m2

3 robots, an m1 + 2m2 + o(m1) makespan solution can
be computed in polynomial time, with high probability.

Proof. By Proposition 9, anonymous reconfiguration requires
distance o(m1) with high probability. By Theorem 1 from
[53], this implies that a plan can be obtained for anonymous
reconfiguration that requires o(m1) makespan. For the second
phase of MRPP resolution with Rubik Table and highway
heuristics, by Theorem 1, we need to perform m1 parallel
row shuffles with row width of m2, followed by m2 parallel
column shuffles with column width of m1, followed by another
m1 parallel row shuffles with row width of m2. Simulating
these shuffles require m1 +2m2 +O(1) steps. All together, a
makespan of m1 + 2m2 + o(m1) is required, with very high
probability.

Contrasting Theorem 10 and Proposition 6 yields

Theorem 11 (Makespan Optimality for Random MRPP, ≤ 1
3

Density). For random MRPP instances on an m1 ×m2 grid,
where m1 ≥ m2 are multiples of three, for n = cm1m2

robots with c ≤ 1
3 , as m1 → ∞, a (1 + m2

m1+m2
) makespan

optimal solution can be computed in polynomial time, with
high probability.

Since m1 ≥ m2, 1 + m2

m1+m2
∈ (1, 1.5]. In other words, in

polynomial running time, RTH achieves (1 + δ) asymptotic
makespan optimality for δ ∈ (0, 0.5], with high probability.

From the analysis so far, if m1 and/or m2 are not multiples
of 3, it is clear that all results in this subsection continue to
hold for robot density 1

3 − (m1 mod 3)(m2 mod 3)
m1m2

, which is
arbitrarily close to 1

3 for large m1. It is also clear that the
same can be said for grids with certain patterns of regularly
distributed obstacles (Fig. 1(b)), i.e.,

Corollary 12 (Random MRPP, 1
9 Obstacle and 2

9 Robot
Density). For random MRPP instances on an m1 ×m2 grid,
where m1 ≥ m2 are multiples of three and there is an obstacle
at coordinates (3k1+2, 3k2+2) for all applicable k1 and k2,
for n = cm1m2 robots with c ≤ 2

9 , a solution can be computed
in polynomial time that has makespan m1 + 2m2 + o(m1)
with high probability. As m1 → ∞, the solution approaches
1 + m2

m1+m2
optimal, with high probability.

Arbitrary MRPP instances. We now examine applying
RTH to arbitrary MRPP instances under 1

3 robot density. If
an MRPP instance is arbitrary, all that changes to RTH is the
makespan it takes to complete the anonymous reconfiguration
phase. On an m1 × m2 grid, by computing a matching,
it is straightforward to show that it takes no more than
m1 + m2 steps to complete the anonymous reconfiguration
phase, starting from an arbitrary start configuration. Since two
executions of anonymous reconfiguration are needed, this adds
2(m1 +m2) additional makespan. Therefore, we have

Theorem 13 (Arbitrary MRPP, ≤ 1
3 Density). For arbitrary

MRPP instances on an m1 × m2 grid, m1 ≥ m2, for n ≤
m1m2

3 robots, a 3m1 + 4m2 + o(m1) makespan solution can
be computed in polynomial time. This implies that, for n =
cm1m2 ≤ m1m2

3 robots, a polynomial time can compute an
asymptotic 3 + m2

m1+m2
makespan optimal solution, with high

probability.

We now give the running time of RTM and RTH.

Proposition 14 (Running Time, RTH). For n ≤ m1m2

3 robots
on an m1 ×m2 grid, RTH runs in O(nm2

1m2) time.

Proof. The running time of RTM and RTH are domi-
nated by the matching computation and solving anonymous
MRPP. The matching part takes O(m2

1m2) in deterministic
time or O(m1m2 logm1) in expected time [14]. Anonymous
MRPP may be tackled using the max-flow algorithm [13] in
O(nm1m2T) = O(nm2

1m2) time, where T = O(m1 + m2)
is the expansion time horizon of a time-expanded graph that
allows a routing plan to complete.

B. Reducing Makespan via Optimizing Matching

Based on RTA, RTH has three simulated shuffle phases.
Eventually, the makespan is dominated by the robot that needs
the longest time to move, as a sum of moves for the robot in
all three phases. As a result, the optimality of Rubik Table
methods is determined by the first preparation phase. The
matchings determine the intermediate states in all three phases.
Finding arbitrary perfect matchings is fast but the process can
be improved to reduce the overall makespan.

For improving matching, we propose two heuristics; the
first is based on integer programming (IP). We create binary
variables {xri} where r represents the row number and i
the robot. robot i is assigned to row r if xri = 1. Define
single robot cost as Cri(λ) = λ|r− si.x|+ (1− λ)|r− gi.x|.
We optimize the makespan lower bound of the first phase by
letting λ = 0 or the third phase by letting λ = 1. The objective
function and constraints are given by

max
r,i

{Cri(λ = 0)xri}+max
r,i

{Cri(λ = 1)xri} (1)∑︂
r

xri = 1, for each robot i (2)∑︂
gi.y=t

xri ≤ 1, for each row r and each color t (3)

∑︂
si.y=c

xri = 1, for each column c and each row r (4)

Eq. (1) is the summation of makespan lower bound of the
first phase and the third phase. Note that the second phase
cannot be improved through optimizing the matching. Eq.
(2) requires that robot i be only present in one row. Eq.
(3) specifies that each row should contain robots that have
different goal columns. Eq. (4) specifies that each vertex (r, c)
can only be assigned to one robot. The IP model represents
a general assignment problem which is NP-hard in general.
It has limited scalability but provides a way to evaluate how
optimal the matching could be in the limit.

A second matching heuristic we developed is based on lin-
ear bottleneck assignment (LBA) [5], which takes polynomial
time. LBA differs from the IP heuristic in that the bipartite
graph is weighted. For the matching assigned to row r, the
edge weight of the bipartite graph is computed greedily. If
column c contains robots of color t, we add an edge (c, t) and
its edge cost is

Cct = min
gi.y=t

Cri(λ = 0) (5)

We choose λ = 0 to optimize the first phase. Optimizing
the third phase (λ = 1) would give similar results. After
constructing the weighted bipartite graph, an O(

m2.5
1

logm1
) LBA

algorithm [5] is applied to get a minimum bottleneck cost
matching for row r. Then we remove the assigned robots and
compute the next minimum bottleneck cost matching for next
row. After getting all the matchings Mr, we can further use
LBA to assign Mr to a different row r′ to get a smaller
makespan lower bound. The cost for assigning matching Mr

to row r′ is defined as

CMrr′ = max
i∈Mr

Cr′i(λ = 0) (6)

The total time-complexity of using LBA heuristic for matching
is O(

m3.5
1

logm1
).

We denote RTH with IP and LBA heuristics as RTH-IP and
RTH-LBA, respectively. We mention that RTM, which uses
the line swap motion primitive, can also benefit from these
heuristics to re-assign the goals within each group. This can
lower the bottleneck path length and improve the optimality.

V. NEAR-OPTIMALLY SOLVING MRPP AT HALF ROBOT
DENSITY

The key design philosophy behind RTM and RTH is to
effectively simulate row/column shuffles. With this in mind,
we further explored the case of 1

2 robot density. Using a
more sophisticated shuffle routine, 1

2 robot density can be
supported while retaining most of the guarantees for the 1

3
density setting; obstacles are no longer supported.

To best handle 1
2 robot density, we employ a new shuffle

routine called linear merge, based on merge sort, and denote
the resulting algorithm as Rubik Table with Linear Merge
heuristics or RTLM. The basic idea behind linear merge
(shuffle) is straightforward: for m robots on a 2×m grid, we
iteratively sort the robots first on 2×2 grids, then 2×4 grids,
and so on, much like how merge sort works. An illustration
of the process on a 2× 8 grid is shown in Fig. 7.

35 8 2 6 1 7 448 5 2 6 1 7 3

42 5 6 8 1 3 7 71 2 3 4 5 6 8

(a) (b)

(c) (d)

Fig. 7: A demonstration of the linear merge shuffle primitive on a
2 × 8 grid. Robots going to the left always use the upper channel
while robots going to the right always use the lower channel.

We now show that linear merge is always feasible and has
the desired properties.

Lemma 15 (Properties of Linear Merge). On a 2 ×m grid,
m robots, starting on the first row, can be arbitrarily ordered
using m + o(m) steps. The motion plan can be computed in
polynomial time.

Proof. We first show feasibility. The procedure takes ⌈logm⌉
phases; in a phase, let us denote a section of the 2 ×m grid
where robots are treated together as a block. For example, the
left 2× 4 grid in Fig. 7(b) is a block. It is clear that the first
phase, involving up to two robots per block, is feasible (i.e., no
collision). Assuming that phase k is feasible, we look at phase
k+1. We only need to show that the procedure is feasible on
one block of length up to 2k+1. For such a block, the left half
block of length up to 2k is already fully sorted as desired, e.g.,
in increasing order from left to right. For the k+ 1 phase, all
robots in the left half block may only stay in place or move
to the right. For these robots that stay, they must be all at the
leftmost positions of the half block and will not block motions

of any other robot. For the robots that do need to move to the
right, their relative orders do not need to change, and therefore
will not cause collisions among themselves. Because these
robots that move in the left half block will move down on the
grid by one edge, they will not interfere with any robot from
left from the right half block. Because the same arguments
hold for the right half block (except the direction change), the
overall process of merging a block occurs without collision.

Next, we examine the makespan. For any single robot r, at
phase k, suppose it belongs to block b and block b is to be
merged with block b′. It is clear that the robot cannot move
more than len(b′) + 2 steps, where len(b′) is the number of
columns of b′ and the 2 extra steps may be incurred because
the robot needs to move down and then up the grid by one
edge. This is because any move that r needs to do is to
allow robots from b′ to move toward b. Because there are
no collisions in any phase, adding up all the phases, no robot
moves more than m+ 2(logm+ 1) = m+ o(m) steps.

Finally, it is clear that the merge sort-like linear merge
shuffle primitive runs in O(m logm) time since it is a standard
divide-and-conquer routine with logm phases.

With linear merge, the asymptotic properties of RTH for 1
3

robot density mostly carries over to RTLM.

Theorem 16 (Random MRPP, 1
2 Robot Density). For random

MRPP instances on an m1 ×m2 grid, where m1 ≥ m2 are
multiples of two, for m1m2

3 ≤ n ≤ m1m2

2 robots, a solution
can be computed in polynomial time that has makespan m1+
2m2+o(m1) with high probability. As m1 → ∞, the solution
approaches an optimality of 1 + m2

m1+m2
∈ (1, 1.5], with high

probability.

VI. SIMULATION EXPERIMENTS

In this section, we evaluate Rubik Table based algorithms
and compare them with fast and near-optimal solvers, ECBS
(w=1.5) [3] and DDM [22]. These two methods are, to our
knowledge, two of the fastest near-optimal solvers for MRPP.
We considered a state-of-the-art polynomial algorithm, push-
and-swap [31], which gave fairly suboptimal results; the
makespan optimality ratio is often above 100 for densities we
examine. We also tested prioritized methods, e.g., [34, 36, 44],
which faced significant difficulties in resolving deadlocks.
Given the limited relevance and considering the amount of
results we are presenting, we omit these methods in our
comparison.

All experiments are performed on an Intel® CoreTM i7-
9700 CPU at 3.0GHz. Each data point is an average over
20 runs on randomly generated instances, unless otherwise
stated. A running time limit of 300 seconds is imposed over
all instances. The optimality ratio is estimated as compared
to conservatively estimated makespan lower bounds. The
Rubik Table based algorithms are implemented in Python.
The compared solvers are C++ based. As such, one can
expect additional significant running time reductions from our
algorithms implemented in C++. We choose Gurobi [20] as
the mixed integer programming solver and ORtools [37] as the

max-flow solver. The video of the simulations can be found
at https://youtu.be/aphCjWFwfss.

A. Optimality of RTM, RTLM, and RTH

We first evaluate the optimality achieved by RTM, RTLM,
and RTH over randomly generated instances on their maxi-
mum designed robot density. That is, for RTM, the grid is
fully occupied; for RTLM and RTH, the robot density is 1

2
and 1

3 , respectively. We test over three m1 : m2 ratios: 1 : 1,
3 : 2, and 5 : 1. The result is plotted in Fig. 8. Computation
time is not listed (because we list the computation time later
for RTH; the running times of RTM, RTLM, and RTH are
similar). The optimality ratio is computed as the ratio between
the solution makespan and the longest Manhattan distance
between any pair of start and goal. Therefore, the estimate
is an overestimate (i.e., the actual ratio may be lower/better).

100 200 300
Grid m2 length

1

3

5

7

9

11

O
pt

im
al

ity
ra

tio
100 200

1

3

5

7

9

11

20 40 60
1

3

5

7

9

11

RTM RTLM RTH

m1:m2=1:1 m1:m2=3:2 m1:m2=5:1

Fig. 8: Makespan optimality ratio for RTM, RTLM, and RTH for
their maximum designed robot density, for different grid sizes and
m1 : m2 ratios. We note that the largest problem has 90, 000 robots
on a 300× 300 grid.

We observe that RTM achieves 7–10.5+ makespan opti-
mality ratio, which justifies the correctness of Theorem 7.
Both RTLM and RTH achieve sub-2 optimality guarantee for
most of the test cases, with result for RTH dropping below
1.5 on large grids. For all settings, as the grid size increases,
there is a general trend of improvement of optimality across
all methods/grid aspect ratios. This is due to two reasons:
(1) the overhead in the shuffle operations becomes relatively
smaller as grid size increases, and (2) with more robots, the
makespan lower bound becomes closer to m1 + m2. Lastly,
as m1 : m2 ratio increases, the optimality ratio improves as
predicted. For many test cases, the optimality ratio for the
RTH for m1 : m2 = 5 setting is around 1.3.

We note that the performance of RTLM and RTH on opti-
mality can be further improved using the heuristics described
in Sec. IV-B. For the rest of the evaluations, we focus on RTH
and its variants with additional heuristics.

B. Evaluation and Comparative Study of RTH

1) Impact of grid size: For our first detailed comparative
study of the performance of RTH, we set m1 : m2 = 3 : 2 and
fix robot density at 1

3 . In Fig. 9, we compare the performance
of ECBS[3], DDM[22], RTH, RTH-IP, and RTH-LBA, in
terms of computation time and optimality ratio.

Despite the less efficient Python-based implementation,
RTM, RTH, and RTH-LBA are faster than ECBS and DDM,
due to their low polynomial running time guarantees. RTH and
RTH-LBA can solve very large instances, e.g., on 450× 300
grids with 45, 000 robots in about 100 seconds while neither

https://youtu.be/aphCjWFwfss

0 100 200 300
Grid m2 length

1.0

1.5

2.0

2.5

3.0

O
pt

im
al

ity
ra

tio

ECBS
DDM
RTH
RTH-IP
RTH-LBA

0 100 200 300
Grid m2 length

10−2

10−1

100

101

102
C

om
pu

ta
tio

n
tim

e
(s

)

Fig. 9: Computation time and optimality ratios on m1 × m2 grids
of varying sizes with m1 : m2 = 3 : 2 and robot density at 1

3
. One

standard deviation is shown as shaded regions.

ECBS nor DDM can. ECBS stopped working after m2 = 30,
though it shows better optimality on problems it can solve.
DDM could handle up to m2 = 90 but demonstrated poor
optimality under the 1

3 density setting. The optimality ratio of
RTH and RTH-LBA improves as the graph size increases,
as predicted by our theoretical analysis. The optimality ratios
of RTH and RTH-LBA reach as low as 1.49 and 1.26,
respectively, agreeing with the ratio predicted by Theorem 11;
here, the high probability asymptotic ratio is 1+ m2

m1+m2
= 1.4.

RTH-LBA is able to do better than 1.4 because of the
LBA heuristic. RTH-IP does slightly better on optimality
in comparison to RTH and RTH-LBA, but its scalability is
limited. On the other hand, RTH-LBA does nearly as well on
optimality and remains competitive in terms of running time
in comparison to RTH. As a consequence, we do not include
further evaluation of RTH-IP.

For each method, the one standard deviation range is
also shown in the figure. Because RTH and RTH-LBA are
mostly deterministic and there are many robots, the change
in optimality across different instances is small. We omit the
inclusion of standard deviations from other plots as they are
mostly similar in other tested settings.

We mention that we also evaluated ECBS with temporal
splitting heuristics [19], which did not show significant differ-
ence in comparison to ECBS at the density we tried; so we
did not include it here. We also evaluated push-and-swap [31],
which runs fast but yields very poor optimality ratios (> 100
for many instances). We further evaluated prioritized methods,
e.g., [36], which faced significant difficulties in resolving
deadlocks. Given these, we did not include results from these
methods in our comparatively study.

2) Impact of robot density: Next, we experiment the impact
of different robot density on a 180 × 120 grid (Fig. 10). At
density 1

3 , there are up to 7, 200 robots. For densities below 1
3 ,

we add “virtual robots” when the matching step is performed.
ECBS does not appear because it cannot solve problems at
this scale within 300 seconds.

RTH and RTH-LBA both return solutions around 10s
on this graph for all instances. Both computation time and
optimality ratio of DDM grow as the robot density increases,
while the robot density has little impact on RTH and RTH-
LBA. At lower density, DDM demonstrates better optimality.
In environments with high densities, however, robots are
highly coupled which causes more conflicts for structurally-
agnostic approaches like DDM (and ECBS). RTH and RTH-

0.10 0.15 0.20 0.25 0.30
Robot density

1.0

1.5

2.0

2.5

3.0

O
pt

im
al

ity
ra

tio

DDM
RTH
RTH-LBA

0.10 0.15 0.20 0.25 0.30
Robot density

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

Fig. 10: Computation time and optimality ratios on 180× 120 grids
with varying robot density.

LBA show improved optimality as the density increases,
reaching 1.4, mostly due to the makespan of the instances
getting larger.

3) Handling obstacles: RTH can also handle scattered ob-
stacles and are especially suitable for cases where obstacles are
regularly distributed. For instance, problems with underlying
graphs like that in Fig. 1(b), where each 3×3 cell has a hole in
the middle, can be natively solved without performance degra-
dation. Such settings find real-world applications in parcel
sorting facilities in large warehouses [50, 29]. For this parcel
sorting setup, we fix the robot density at 2

9 and test ECBS,
DDM, RTH and RTH-LBA on graphs with varying sizes.
The results are shown in Fig 11. Note that DDM can only
apply when there is no narrow passage. So we added additional
“borders” to the map to make it solvable for DDM. The results
are similar as earlier ones; RTH and RTH-LBA run very
fast and produce high-quality solutions, with conservatively
estimated optimality ratio approaching 1.27.

0 100 200 300
Grid m2 length

1.0

1.5

2.0

2.5

3.0

O
pt

im
al

ity
ra

tio

ECBS
DDM
RTH
RTH-LBA

0 100 200 300
Grid m2 length

10−2

10−1

100

101

102

C
om

pu
ta

tio
n

tim
e

(s
)

Fig. 11: Computation time and optimality ratios on environments of
varying sizes with regularly distributed obstacles at 1

9
density and

robots at 2
9

density. m1 : m2 = 3 : 2.

4) Impact of grid aspect ratios: In this section, we fix
m1m2 = 90000 and vary the m2 : m1 ratio between 0
(nearly one dimensional) and 1 (square grids). We evaluated
four algorithms, two of which are RTH and RTH-LBA. Now
recall that RTP on an m1 × m2 table can also be solved
using 2m2 column shuffles and m1 row shuffles. Adapting
RTH and RTH-LBA with m1 +2m2 shuffles gives the other
two variants which we denote as RTH-LL and RTH-LBA-LL
respectively, with “LL” suggesting two sets of longer shuffles
are performed (each set of column shuffle work with columns
of length m1). The result is summarized in Fig. 12.

Interestingly but not surprisingly, the result clearly demon-
strates the trade-offs between computation effort and solution
optimality. RTH and RTH-LBA achieve better optimality
ratio in comparison to RTH-LL and RTH-LBA-LL but re-
quire more computation time. Notably, the optimality ratios

0.0 0.2 0.4 0.6 0.8 1.0
m2/m1

1.0

1.2

1.4

1.6

1.8

2.0

O
pt

im
al

ity
ra

tio

0.0 0.2 0.4 0.6 0.8 1.0
m2/m1

102

2×102

3×102

4×102

C
om

pu
ta

tio
n

tim
e

(s
) RTH

RTH-LBA
RTH-LL
RTH-LBA-LL

Fig. 12: Computation time and optimality ratios on rectangular grids
of varying aspect ratio and 1

3
robot density.

for RTH and RTH-LBA are very close to 1 when m2 : m1

is close to 0. Because the LBA heuristic aims to reduce the
possible makespan of the first or third phase of RTA, as
m1/m2 increases, the optimality gap between LBA and non-
LBA variants of RTH increases, which clearly demonstrates
the advantage of the LBA heuristic.

C. Special Patterns

Besides random start and goal settings, we also test RTH-
LBA on many “special” instances; two are presented here
(Fig. 13). For both settings, m1 = m2. In the first, the
“squares” setting, robots form concentric square rings and
each robot and its goal are centrosymmetric. In the second,
the “blocks” setting, the grid is divided into smaller square
blocks (not necessarily 3 × 3) containing the same number
of robots. robots from one block need to move to another
random chosen block. RTH-LBA achieves optimality that is
fairly close to 1.0 in the square setting and 1.7 in the block
setting. The computation time is similar to that of Fig. 11;
ECBS does well on optimality but scales poorly (only works
on 30 × 30 grids). For some reason, DDM does very poorly
on optimality and is not included.

a b c

100 200 300
Grid side length m1 = m2

1.00

1.25

1.50

1.75

2.00

O
pt

im
al

ity
 ra

tio

ECBS-Square
ECBS-Blocks
RTH-LBA-Square
RTH-LBA-Blocks

Fig. 13: (a) An illustration of the “squares” setting. (b) An illustration
of the “blocks” setting. (c) Optimality ratios for the two settings for
ECBS and RTH-LBA.

VII. CONCLUSION AND DISCUSSION

In this study, we propose to apply Rubik Tables [48] to
solving MRPP. A basic adaptation of RTA, with a more
efficient line shuffle routine, enables solving MRPP on grids
at maximum robot density, in polynomial time, with previously
unachievable optimality guarantee. Then, combining RTA,
a highway heuristic, and additional matching heuristics, we
obtain novel polynomial time algorithms that are provably
asymptotically 1 + m2

m1+m2
makespan-optimal on m1 × m2

grids with up to 1
3 robot density, with high probability. Similar

guarantees are also achieved with the presence of obstacles and
at robot density up to one half. In practice, our methods can

solve problems on graphs with over 105 number of vertices
and 4.5 × 104 robots to 1.26 makespan-optimal (which can
be better with larger m1 : m2 ratio). To our knowledge,
no previous MRPP solvers provide dual guarantees on low-
polynomial running time and practical optimality.

Our study opens the door for many follow up research
directions; we discuss a few here.

New line shuffle routines. Currently, RTLM and RTH only
use two/three rows to perform a simulated row shuffle. Among
other restrictions, this requires that the sub-grids used for
performing simulated shuffle be well-connected (i.e. obstacle-
free or the obstacles are regularly spaced so that there are
at least two rows that are not blocked by static obstacles in
each motion primitive to simulate the shuffle). Using more
rows or even irregular rows in a simulated row shuffle, it is
potentially possible to accommodate larger obstacles and/or
support density higher than one half.

Better optimality at lower robot density. It is interesting
to examine whether further optimality gains can be realized
at lower robot density settings, e.g., 1

9 density or even lower,
which are still highly practical. We hypothesize that this can
be realized by somehow merging the different phases of RTA
so that some unnecessary robot travel can be eliminated, after
computing an initial plan.

Consideration of more realistic robot models. The current
study assumes a unit-cost model in which a robot takes a unit
amount of time to travel a unit distance and allow turning
at every integer time step. In practice, robots will need to
accelerate/decelerate and also need to make turns. Turning can
be especially problematic and can cause significant increase in
plan execution time, if the original plan is computed using the
unit-cost model mentioned above. We note that RTH returns
solutions where robots move in straight lines most of the time,
which is advantageous in comparison to all existing MRPP
algorithms, such as ECBS and DDM, which have large number
of directional changes in their computed plans. it would be
interesting to see whether the performance of RTA based
MRPP algorithms will further improve as more realistic robot
models are adapted.

Life-long MRPP settings. Currently, out RTA based
MRPP solves are limited to a static setting whereas e-
commerce applications of multi-robot motion planning often
require solving life-long setting [33]. The metric for evaluating
life-long MRPP is often the throughput, namely the number of
goals reached per time step. We note that RTH also provides
optimality guarantees for such settings, e.g., for the setting
where m1 = m2 = m, we have

Proposition 17 (Bound for Random Life-Long MRPP). The
direct application of RTH to large-scale life-long MRPP on
square grids yields an optimality ratio of 2

9 on throughput.

Proof. We may solve life-long MRPP using RTH in batches.
For each batch with n robots, RTH takes about 3m steps;
the throughput is then TRTH = n

3m . As for the lower bound
estimation of the throughput, the expected Manhattan distance
in an m × m square, ignoring inter-robot collisions, is 2m

3 .

Therefore, the lower bound throughput for each batch is Tlb =
3n
2m . The asymptotic optimality ratio is TRTH

Tlb
= 2

9 .

The 2
9 estimate is fairly conservative because RTH supports

much higher robot densities not supported by known life-
long MRPP solvers. Therefore, it appears very promising to
develop optimized Rubik Table inspired algorithms for solving
life-long MRPP problems.

ACKNOWLEDGMENTS

This work is supported in part by NSF awards IIS-1845888,
CCF-1934924, and IIS-2132972, and an Amazon Research
Award. We sincerely thank the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] Warehouse automation market with post-pandemic
(covid-19) impact by technology, by industry, by geogra-
phy - forecast to 2026. https://www.researchandmarkets.
com/r/s6basv. Accessed: 2022-01-05.

[2] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni.
Intractability of time-optimal multirobot path planning
on 2d grid graphs with holes. IEEE Robotics and
Automation Letters, 2(4):1941–1947, 2017.

[3] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner.
Suboptimal variants of the conflict-based search algo-
rithm for the multi-agent pathfinding problem. In Seventh
Annual Symposium on Combinatorial Search, 2014.

[4] Dina Bitton, David J DeWitt, David K Hsaio, and Jais-
hankar Menon. A taxonomy of parallel sorting. ACM
Computing Surveys (CSUR), 16(3):287–318, 1984.

[5] Rainer Burkard, Mauro Dell’Amico, and Silvano
Martello. Assignment problems: revised reprint. SIAM,
2012.

[6] Fernando Alfredo Auat Cheein and Ricardo Carelli.
Agricultural robotics: Unmanned robotic service units in
agricultural tasks. IEEE industrial electronics magazine,
7(3):48–58, 2013.

[7] Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guil-
laume Sartoretti. Primal 2: Pathfinding via reinforce-
ment and imitation multi-agent learning-lifelong. IEEE
Robotics and Automation Letters, 6(2):2666–2673, 2021.

[8] Boris De Wilde, Adriaan W Ter Mors, and Cees Wit-
teveen. Push and rotate: a complete multi-agent pathfind-
ing algorithm. Journal of Artificial Intelligence Research,
51:443–492, 2014.

[9] Ashutosh Dekhne, Greg Hastings, John Murnane, and
Florian Neuhaus. Automation in logistics: Big opportu-
nity, bigger uncertainty. McKinsey Q, pages 1–12, 2019.

[10] Erik D Demaine, Sándor P Fekete, Phillip Keldenich,
Henk Meijer, and Christian Scheffer. Coordinated motion
planning: Reconfiguring a swarm of labeled robots with
bounded stretch. SIAM Journal on Computing, 48(6):
1727–1762, 2019.

[11] Esra Erdem, Doga Gizem Kisa, Umut Oztok, and Peter
Schüller. A general formal framework for pathfinding

problems with multiple agents. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[12] Michael Erdmann and Tomas Lozano-Perez. On multiple
moving objects. Algorithmica, 2(1):477–521, 1987.

[13] Lester Randolph Ford and Delbert R Fulkerson. Maximal
flow through a network. Canadian journal of Mathemat-
ics, 8:399–404, 1956.

[14] Ashish Goel, Michael Kapralov, and Sanjeev Khanna.
Perfect matchings in o(n\logn) time in regular bipartite
graphs. SIAM Journal on Computing, 42(3):1392–1404,
2013.

[15] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon,
Nathan Sturtevant, Robert C Holte, and Jonathan Scha-
effer. Enhanced partial expansion a. Journal of Artificial
Intelligence Research, 50:141–187, 2014.

[16] Oded Goldreich. Finding the shortest move-sequence in
the graph-generalized 15-puzzle is np-hard. In Studies
in complexity and cryptography. Miscellanea on the
interplay between randomness and computation, pages
1–5. Springer, 2011.

[17] Teng Guo and Jingjin Yu. Sub-1.5 time-optimal multi-
robot path planning on grids in polynomial time. arXiv
preprint arXiv:2201.08976, 2022.

[18] Teng Guo, Shuai D. Han, and Jingjin Yu. Spatial and
temporal splitting heuristics for multi-robot motion plan-
ning. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 8009–8015, 2021. doi:
10.1109/ICRA48506.2021.9561899.

[19] Teng Guo, Shuai D Han, and Jingjin Yu. Spatial
and temporal splitting heuristics for multi-robot motion
planning. In IEEE International Conference on Robotics
and Automation, 2021.

[20] Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2021. URL https://www.gurobi.com.

[21] Philip Hall. On representatives of subsets. In Classic
Papers in Combinatorics, pages 58–62. Springer, 2009.

[22] Shuai D Han and Jingjin Yu. Ddm: Fast near-optimal
multi-robot path planning using diversified-path and op-
timal sub-problem solution database heuristics. IEEE
Robotics and Automation Letters, 5(2):1350–1357, 2020.

[23] Shuai D Han, Edgar J Rodriguez, and Jingjin Yu. Sear:
A polynomial-time multi-robot path planning algorithm
with expected constant-factor optimality guarantee. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1–9. IEEE, 2018.

[24] Wolfgang Hönig, James A Preiss, TK Satish Kumar,
Gaurav S Sukhatme, and Nora Ayanian. Trajectory
planning for quadrotor swarms. IEEE Transactions on
Robotics, 34(4):856–869, 2018.

[25] John E Hopcroft, Jacob Theodore Schwartz, and Micha
Sharir. On the complexity of motion planning for
multiple independent objects; pspace-hardness of the”
warehouseman’s problem”. The International Journal of
Robotics Research, 3(4):76–88, 1984.

[26] D. Kornhauser, G. Miller, and P. Spirakis. Coordinating
pebble motion on graphs, the diameter of permutation

https://www.researchandmarkets.com/r/s6basv
https://www.researchandmarkets.com/r/s6basv
https://www.gurobi.com

groups, and applications. In Proceedings IEEE Sympo-
sium on Foundations of Computer Science, pages 241–
250, 1984.

[27] Edward Lam, Pierre Le Bodic, Daniel Damir Harabor,
and Peter J Stuckey. Branch-and-cut-and-price for multi-
agent pathfinding. In IJCAI, pages 1289–1296, 2019.

[28] Tom Leighton and Peter Shor. Tight bounds for minimax
grid matching with applications to the average case
analysis of algorithms. Combinatorica, 9(2):161–187,
1989.

[29] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W
Durham, TK Satish Kumar, and Sven Koenig. Lifelong
multi-agent path finding in large-scale warehouses. In
AAMAS, pages 1898–1900, 2020.

[30] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. Eecbs: A
bounded-suboptimal search for multi-agent path finding.
In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2021.

[31] Ryan J Luna and Kostas E Bekris. Push and swap: Fast
cooperative path-finding with completeness guarantees.
In Twenty-Second International Joint Conference on Ar-
tificial Intelligence, 2011.

[32] Hang Ma and Sven Koenig. Optimal target assignment
and path finding for teams of agents. In AAMAS, 2016.

[33] Hang Ma, Jiaoyang Li, T. K. S. Kumar, and Sven Koenig.
Lifelong multi-agent path finding for online pickup and
delivery tasks. In AAMAS, 2017.

[34] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li,
and Sven Koenig. Searching with consistent prioritization
for multi-agent path finding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
7643–7650, 2019.

[35] Robert Mason. Developing a profitable online grocery
logistics business: Exploring innovations in ordering,
fulfilment, and distribution at ocado. In Contempo-
rary Operations and Logistics, pages 365–383. Springer,
2019.

[36] Keisuke Okumura, M. Machida, X. Défago, and Ya-
sumasa Tamura. Priority inheritance with backtracking
for iterative multi-agent path finding. In IJCAI, 2019.

[37] Laurent Perron and Vincent Furnon. Or-tools. URL https:
//developers.google.com/optimization/.

[38] S. Poduri and G. S. Sukhatme. Constrained coverage for
mobile sensor networks. In Proceedings IEEE Interna-
tional Conference on Robotics & Automation, 2004.

[39] James A Preiss, Wolfgang Hönig, Gaurav S Sukhatme,
and Nora Ayanian. Crazyswarm: A large nano-
quadcopter swarm. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2017.

[40] D. Rus, B. Donald, and J. Jennings. Moving furni-
ture with teams of autonomous robots. In Proceedings
IEEE/RSJ International Conference on Intelligent Robots
& Systems, pages 235–242, 1995.

[41] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn
Wagner, TK Satish Kumar, Sven Koenig, and Howie
Choset. Primal: Pathfinding via reinforcement and imita-

tion multi-agent learning. IEEE Robotics and Automation
Letters, 4(3):2378–2385, 2019.

[42] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel
Felner. The increasing cost tree search for optimal multi-
agent pathfinding. Artificial Intelligence, 195:470–495,
2013.

[43] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R
Sturtevant. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence, 219:40–66, 2015.

[44] David Silver. Cooperative pathfinding. Aiide, 1:117–122,
2005.

[45] Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven
Koenig, Hang Ma, Thayne T Walker, Jiaoyang Li, Dor
Atzmon, Liron Cohen, TK Satish Kumar, et al. Multi-
agent pathfinding: Definitions, variants, and benchmarks.
In Twelfth Annual Symposium on Combinatorial Search,
2019.

[46] Pavel Surynek. An optimization variant of multi-robot
path planning is intractable. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 24, 2010.

[47] Pavel Surynek. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In
Pacific Rim International Conference on Artificial Intel-
ligence, pages 564–576. Springer, 2012.

[48] Mario Szegedy and Jingjin Yu. On rearrangement of
items stored in stacks. In The 14th International Work-
shop on the Algorithmic Foundations of Robotics, 2020.

[49] Glenn Wagner. Subdimensional expansion: A framework
for computationally tractable multirobot path planning.
2015.

[50] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen,
Hejiao Huang, and Xiaohua Jia. Lifelong multi-agent
path finding in a dynamic environment. In 2018 15th In-
ternational Conference on Control, Automation, Robotics
and Vision (ICARCV), pages 875–882. IEEE, 2018.

[51] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz.
Coordinating hundreds of cooperative, autonomous vehi-
cles in warehouses. AI magazine, 29(1):9–9, 2008.

[52] Jingjin Yu. Intractability of optimal multirobot path plan-
ning on planar graphs. IEEE Robotics and Automation
Letters, 1(1):33–40, 2015.

[53] Jingjin Yu. Constant factor time optimal multi-robot rout-
ing on high-dimensional grids. 2018 Robotics: Science
and Systems, 2018.

[54] Jingjin Yu and M. LaValle. Distance optimal forma-
tion control on graphs with a tight convergence time
guarantee. In 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), pages 4023–4028, 2012.
doi: 10.1109/CDC.2012.6426233.

[55] Jingjin Yu and Steven M LaValle. Structure and
intractability of optimal multi-robot path planning on
graphs. In Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013.

[56] Jingjin Yu and Steven M LaValle. Optimal multirobot
path planning on graphs: Complete algorithms and ef-
fective heuristics. IEEE Transactions on Robotics, 32

https://developers.google.com/optimization/
https://developers.google.com/optimization/

(5):1163–1177, 2016.

	Introduction
	Preliminaries
	Multi-Robot Path Planning on Graphs
	The Rubik Table Problem (RTP)

	Solving MRPP up to Maximum Density w/ RTA
	Near-Optimally Solving MRPP with up to One Third Robot Density
	Rubik Table for MRPP with ``Highway'' Shuffle Primitive
	Reducing Makespan via Optimizing Matching

	Near-Optimally Solving MRPP at Half Robot Density
	Simulation Experiments
	Optimality of RTM, RTLM, and RTH
	Evaluation and Comparative Study of RTH
	Impact of grid size
	Impact of robot density
	Handling obstacles
	Impact of grid aspect ratios

	Special Patterns

	Conclusion and Discussion

