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Abstract— We investigate the problem of coordinating two
robot arms to solve non-monotone tabletop multi-object re-
arrangement tasks. In a non-monotone rearrangement task,
complex object-object dependencies exist that require moving
some objects multiple times to solve an instance. In working
with two arms in a large workspace, some objects must be
handed off between the robots, which further complicates
the planning process. For the challenging dual-arm tabletop
rearrangement problem, we develop effective task planning
algorithms for scheduling the pick-n-place sequence that can
be properly distributed between the two arms. We show that,
even without using a sophisticated motion planner, our method
achieves significant time savings in comparison to greedy
approaches and naive parallelization of single-robot plans.

I. INTRODUCTION

In solving multi-object rearrangement problems, employ-
ing multiple arms is a straightforward way to expand the
workspace [1] and increase overall system throughput [2].
Toward enabling effective dual-arm (and multi-arm) coor-
dination, a difficult challenge at present, we investigate
the cooperative dual-arm rearrangement (CDAR) problem,
where two robot arms’ workspaces partially overlap and
each robot is responsible for a portion of the workspace
(Fig. 1[Left]). In CDAR, robot-robot collaboration must be
considered for realizing higher throughput. Certain settings
benefit from having more robots, e.g., one arm may hold an
object while other arms make the goal pose of the object
available. This will lead to efficiency gain as compared
with using a single robot. There are also added challenges,
however, e.g., some objects must be handed off from one
robot to another which requires careful synchronization.

Rearrangement using a single robot is already challenging
to optimally solve due to complex object-object dependen-
cies [3]. CDAR is more involved with an additional arm
coordination element. To tackle CDAR and minimize task
completion makespan, we adopt a lazy buffer allocation
approach [4] and solve a rearrangement task in two phases.
In the first phase, we compute a sequence or schedule of
“primitive rearrangement actions” without carefully checking
feasibility using heuristic search algorithms. In particular, it
may be infeasible to relocate certain object as planned due
to insufficient free space in the workspace. In the second
phase, based on the computed schedule, we then allocate
intermediate object poses while carefully consider potential
object-object collisions. The heuristic search algorithms are
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Fig. 1: [Left] PyBullet setup for the Cooperative Multi-Robot Rear-
rangement problem, where only a portion of the environment (the
region between two white lines) is reachable by both arms. [Right]
Handoff operation at a pre-computed pose above the environment.

guided by object dependency graphs [3], [5], which is pre-
constructed based on the inherent combinatorial constraints
induced by start and goal object arrangements. With the
dependency graph, there is no additional collision checking
needed during the scheduling of primitive actions.

This study brings forth several contributions. Our method
for solving CDAR, employing lazy or delayed verifica-
tion, can efficiently compute high-quality solutions for non-
monotone instances in a cluttered environment. As a key
component of our algorithmic solution, we propose depen-
dency graph guided heuristic search procedure for coordinat-
ing robot-robot object handoffs and individual pick-n-places
that supports multiple makespan evaluation metrics. Exten-
sive experiments are conducted to evaluate the performance
of proposed algorithms and the quality of CDAR plans in a
PyBullet environment with different overlap ratio of robot
reachable regions, which, in addition to demonstrating the
effectiveness of our method, provides insights for dual-arm
manipulation system design.

Paper Organization. The rest of the paper is organized
as follows. We provide an overview of related literature in
Sec. II. In Sec. III, we formally define CDAR problems,
discuss the inherent object dependencies and temporary
displacements (buffers). Then we describe our proposed
heuristic search algorithms guided by the pre-computed
dependency graph in Sec. IV. The algorithms efficiently
compute task schedules minimizing makespan under two dif-
ferent metrics. In Sec V, we outline the lazy buffer allocation
approach. Evaluation follows in Sec. VI. We conclude with
Sec. VII.

II. RELATED WORK

Multi-Object Rearrangement: Single arm object rear-
rangement lies within the broader area of Task and Motion
Planning (TAMP). Typical problems in this domain [4], [6]–
[9] involve arranging multiple objects to assume specific goal



poses. Certain variations, however, such as NAMO (Navi-
gation among Movable Obstacles) [10], [11], and retrieval
problems [12]–[15], focus on clearing out a path for a target
object or robot. During the process, obstacles that need to be
displaced are identified. Rearrangement may be approached
either via simple but inaccurate non-prehensile actions, e.g.,
pushes [6], [14], [16], [17], or more purposeful prehensile
actions, such as grasps [9], [18], [19].

Focusing on inherent combinatorial challenges associated
with rearrangement tasks, some planners assume external
space for temporary object storage [3], [8], [12], [20], while
others exploit problem linearity to simplify the search [10],
[11], [21], [22]. By linking multi-object rearrangement to
established graph-based problems, efficient algorithms have
been obtained for various tasks and objectives [3], [8], [20].
When external free space is not available, the robot arm
needs to allocate collision-free locations for temporary object
displacements [4], [19], [23]. In our work, we adopt the idea
of “lazy buffer allocation” [4] to the dual-arm scenario.

Multi-robot rearrangement requires additional computa-
tion on task assignment and coordination. Ahn et al. [24]
coordinate robots by maximizing the number of “turn-taking”
moments when one arm is picking an obstacle from the
workspace while the other arm is placing the previous
obstacle at the external space. Shome et al. [2] assume
robot arms pick-n-places simultaneously and only solve
monotone rearrangement problems, where each object can
move directly to the goal pose. For objects that need to be
moved to a pose outside the reachable region of a robot
arm, the task can be accomplished by coordinating multiple
arms to handoff the objects around [1]. Cooperative pick-n-
place, a problem related to multi-arm rearrangement, is well-
studied in the area of printed circuit board assembly tasks
[25], [26]. These problems do not have ordering constraints
on pick-n-place tasks, i.e. all the items can move directly to
goal poses in any ordering. Research in these topics tends to
consider multiple grippers equipped on a single arm rather
than multiple arms, which reduces system flexibility. In our
work, we compute dual-arm rearrangement plans for dense
non-monotone instances without external storage space.

Dependency Graph: Dependencies between objects in
rearrangement tasks can be naturally represented as a de-
pendency graph, which was first applied to general multi-
body planning problems [5] and then rearrangement [18],
[19]. In rearrangement, different choices of grasp poses and
paths give rise to multiple dependency graphs for the same
problem instance, which limits the scalability in computing a
solution via such representations. Prior work [3] has applied
full dependency graphs to address TORO (Tabletop Object
Rearrangement with Overhand Grasps), showing that the
problem embeds a NP-hard Feedback Vertex Set problem
[27] and a Traveling Salesperson Problem [28].

More recently, some of the authors [8] examined another
optimization objective, running buffers, which is the size of
the external space needed for temporary object displacements
in the rearrangement task, and also examined an unlabeled
setting, where goal poses of objects are interchangeable.

Similar graph structures are also used in other robotics prob-
lems, such as packing problems [29]. Deep neural networks
have been also applied to detect the embedded dependency
graph of objects in a cluttered environment to determine the
ordering of object retrieval [13].

III. PRELIMINARIES

A. Problem Statement

Consider a 2D bounded workspace W ⊂ R2 containing a
set of n cylindrical objects O = {o1, ..., on}. An arrangement
A of these objects is a set of poses {p1, ..., pn} with each
pose pi = (xi, yi) ∈ W . A is feasible if the footprints
of objects are inside W and pair-wise disjoint. Outside the
workspace, two robot arms R = {r1, r2} are tasked to
manipulate objects from a feasible start arrangement As to
another feasible goal arrangement Ag (e.g., Fig. 1[Left]).
Each robot arm ri has a connected reachable region S(ri) ⊆
W . Robot ri can only manipulate within S(ri).

It is assumed that S(r1) ∪ S(r2) = W . The overlap ratio

ρ is defined as ρ =
|S(r1) ∩ S(r2)|

|W| , which is the proportion

of the environment that can be reached by both robots. In
Fig. 2[Left], we show a workspace with ρ = 0.3. Robot
arm r1 can reach objects whose centers are on the left of
the red dashed line, which include all the objects at start
poses(O1, O2, O3) and o1, o2 at goal poses(G1, G2). Robot
arm r2 can reach objects whose centers are on the right of
the blue dashed line, which include all the objects at goal
poses(G1, G2, G3) and o1, o2 at start poses(O1, O2). Objects
with centers between the dashed lines can be reached by
both.
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Fig. 2: [Left] A working example of CDAR instance with ρ = 0.3.
For each object oi, the start and goal poses are represented by green
disc Oi and orange disc Gi respectively. [Right] A CDRF instance
and its corresponding dependency graph.

We consider two manipulation primitives: (overhand) pick-
n-place and handoff. In each pick-n-place, an arm moves
above an object oj , grasps it from W , transfers it atop the
workspace, and places it at a collision-free pose inside W .
We allow a handoff operation when an object needs to cross
between S(r1)\S(r2) and S(r2)\S(r1). In each handoff, an
arm, say r1, grasps an object oj from W , passes the object
to the other arm r2 at the predefined handoff pose above the
environment. r2 receives oj and places it at a collision-free
pose in W . A handoff is shown in Fig. 1[Right].

As for the motion of each arm ri, Ci
free is a set of

collision-free configurations for ri without considering col-
lisions with workspace objects or the other robot arm.
Throughout the rearrangement, each arm has n + 1 motion
modes: transit mode TS (moving on its own) and transfer



modes TFj (transferring the object oj), ∀j = 1, ..., n.
Therefore, the state space Γi of an arm ri is the Cartesian
product Ci

free × M , where M is the motion mode set. A
path of a robot arm ri is defined as πi : [0, T ] → Γi with
πi[0] = πi[T ] = (q∗i , TS), where T is the makespan of the
rearrangement plan and q∗i is the rest pose of arm ri.

The rearrangement problem we study seeks a path set Π =
{π1, π2}, such that robot paths are collision-free: for all t ∈
[0, T ], arm r1 at state π1[t] does not collide with arm r2 at
state π2[t]. Additionally, the solution quality is evaluated by
the makespan under two levels of fidelity:

1) (MC) manipulation cost based makespan;
2) (FC) estimated execution time based makespan.

In MC (manipulation cost) makespan, we assume the ma-
nipulation time dominates the execution time, which is often
the case in today’s systems. MC makespan is defined as the
number of steps for the rearrangement task. In each step, each
robot arm can complete an individual pick-n-place, execute
a coordinated handoff, or idle.

In FC (full cost) makespan, solution quality is measured
by the estimated complete time based on four parameters:
maximum horizontal speed s of the end-effectors, the execu-
tion time of each pick (tg), place (tr), and handoff (th). The
details of FC metric and its corresponding heuristic search
method is presented on the extended version of this paper
[30].

Given the setup, the problem studied in this paper can be
summarized as:

Problem 1 (CDAR: Collaborative Dual-Arm Rearrangement).
Given feasible arrangements As, Ag , and makespan metric
(MC/FC), determine a collision-free path set Π for R moving
objects from As to Ag minimizing the makespan T .

We also investigate two special cases of CDAR. On one
hand, when ρ = 1, S(r1) = S(r2) = W , which yields to
Collaborative Dual-Arm Rearrangement with Full Overlap
(CDRF). In this case, handoff is not needed since each robot
can execute pick-n-place operations individually inside the
workspace. On the other hand, when ρ = 0, S(r1)

⨆︁S(r2) =
W , which yields to Collaborative Dual-Arm Rearrangement
with no Overlap (CDRN).

B. Dependency Graph and Object Displacement

In multi-object rearrangement, minimizing the number of
pick-n-places directly leads to increased throughput. Previ-
ous works [3] [8] treat the combinatorial challenge in the
single robot rearrangement problem with a dependency graph
structure G. oi depends on oj when oi’s goal pose overlaps
with oj’s start pose. In this case, oj needs to be moved away
before oi is moved to the goal. G is constructed with vertices
representing objects and arcs representing the dependencies.

If G is acyclic, then the rearrangement problem is mono-
tone, where objects can be directly moved to goal poses
based on the topological ordering implied by G. On the other
hand, if there are cycles in the dependency graph, then the
problem is non-monotone; some object(s) in the cycles need
to be displaced to “break” the cycles. For a single arm, the

displaced object must be placed down at some temporary
pose. In a dual-arm system, the extra arm can temporarily
hold an object to be displaced. For example, Fig. 2[Right]
shows a CDRF instance and its corresponding dependency
graph G. In this case, the cycle of o1 and o2 can be broken
by letting r1 move o1 and r2 move o2 at the same time to the
goal poses. However, the cycle among object o3, o4 and o5
cannot be broken without an extra action moving an object
(e.g. o3) to some temporary pose.

The free space for a temporary object displacement is
called a buffer; the planner must allocate buffers inside the
workspace. We apply a lazy buffer allocation [4] which is
shown to be efficient in computing high quality rearrange-
ment plans for a single arm. In the framework, we first
compute a valid schedule of primitive actions, which only
indicates whether the objects are handed off, moved to goal
poses, or to buffers. And then based on the primitive plan,
we allocate proper buffer locations as needed. The scheduling
problem of primitive actions is discussed in Sec. IV, and the
buffer allocation process is discussed in Sec. V.

IV. TASK SCHEDULING FOR CDAR

In this section, we study the scheduling problem of prim-
itive actions in CDAR. A primitive action can be represented
by a tuple (ri, oj , v) indicating that ri is tasked to transfer
oj to new status v, where v is one kind of the object status
in {S,G,H,B(r1),B(r2)}. S, G, H , B(r1), and B(r2) rep-
resent that the object is at the start pose, goal pose, handoff
pose, a buffer in S(r1), and a buffer in S(r2) respectively.
For each primitive action a, the schedule provides the starting
time and estimated ending time of a. Noting that buffer
locations are not determined in the task scheduling process,
they are categorized into B(r1) and B(r2) to indicate the
arm that they are reachable by. The buffer allocation is
discussed in Sec. V. Since the scheduling problem only
depends on the availability of goal poses and reachability
of robot arms to the start and goal poses, the constraints can
be fully expressed by the dependency graph. We describe a
dependency graph guided heuristic search method for CDAR
under MC makespan metrics (Sec. IV-A). Its variant for FC
makespan is shown in the extended version of this paper
[30].

A. Arrangement Space Heuristic Search for CDAR in MC
Makespan (MCHS)

When the makespan is counted in MC metric, we can
assume primitive actions are executed simultaneously in the
task scheduling process without loss of generality and the
makespan is counted as the number of action steps in the
schedule. Each action at action step t is scheduled to start at
time t and end at time t+ 1. Similar to the single arm rear-
rangement problem, we search for a plan by maintaining a
search tree in the arrangement state space. Each arrangement
state in the tree represents an object arrangement, which can
be expressed as a mapping L : O → {S,G,B(r1),B(r2)}.
The arrangement state represents a moment when all objects
are stably located in the workspace and both arms are empty.



Arrangements are connected by primitive actions of two
arms, which consist of one out of the three possible options:
(1) individual pick-n-places: one or both arms move objects
to poses that are currently collision-free; (2) coordinated
pick-n-places: move an object to the goal pose while the
other arm tries to clear away the last obstacle at its goal
pose, e.g. swapping poses of o1 and o2 in Fig. 2[Left];
(3) a coordinated handoff for an object when its start and
goal poses are not both reachable by either arm. We ignore
primitive actions that hold an object for more than one action
step due to the unnecessary loss of efficiency.

Fig. 3 shows the flow charts indicating the decision process
of generating possible primitive actions in each arrangement
state. Fig. 3[Upper] shows the decision process for r1 to
pick-n-place o ∈ O without cooperation with the other arm.
That for r2 is equivalent. Fig. 3[Middle] shows the decision
process for r1 to manipulate an object o ∈ O when only one
object o′ is blocking the goal pose of o. In this case, two arms
cooperate to send o to the goal. That for r2 is equivalent.
Fig. 3[Below] shows the decision process when an object o ∈
O needs handoff. In the process, the availability of goal poses
can be checked in the precomputed dependency graph and
the reachability of arms is indicated by the object status in
the arrangements. Therefore, with the dependency graph, no
additional collision-checking is needed in the task scheduling
process of CDAR.

For the working example in Fig. 2[Left], a corresponding
rearrangement plan, in the form of a path in the arrangement
state space is presented in Fig. 4[Left]. At the start arrange-
ment state s1, r1 and r2 move o2 and o1 respectively to
the goal poses, which yields the next arrangement state s2.
At s2, two arms coordinate to execute a handoff delivering
o3 to the goal and reach the goal arrangement state s3. By
concatenating primitive actions from s1 to s3, we obtain a
corresponding task schedule for the instance (Fig. 4).

The arrangement state heuristic search based on MC
makespan (MCHS) explores the arrangement state space in
a best-first manner, always developing the arrangement state
s with the lowest f(s) = g(s) + h(s). The g function is
number of action steps from the start arrangement state to the
current arrangement state. For example, in Fig. 4, g(s3) = 2.
For each state s, we define the heuristic function h(s) based
on the needed cost to move all objects directly to goals.

The details are presented in Algo.1. In CDAR, costs can
be either exclusive cost of r1, or exclusive cost of r2, or
shared cost of r1 and r2. For example, on one hand, a pick-
n-place in region S(r1)\S(r2) can only be executed by r1,
so it leads to an exclusive cost of r1. On the other hand,
a pick-n-place in the overlapping region S(r1)

⋂︁S(r2) can
be executed by either arm so the cost can be shared by both
arms. Based on this observation, we count the costs cost[r1],
cost[r2], and sharedCost in the heuristic and initialize them
as 0 (Line 1). We ignore the objects at the goal poses (Line
3). For the remaining objects, the cost category is determined
by r1, r2’s reachability to the current pose (buffer or start
pose) and goal pose of the object. ArmSet is the set of arms
able to reach both the current pose and goal pose (Line 4). If
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Fig. 3: Decision process of generating possible primitive actions.
[Upper] The decision process for r1 to manipulate o ∈ O without
cooperation with the other arm. That for r2 is equivalent. [Middle]
The decision process for r1 to manipulate an object o ∈ O when
only one object o′ is blocking the goal pose of o. That for r2 is
equivalent. [Bottom] The decision process when an object o ∈ O
needs handoff.
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Fig. 4: [Left] A path on the arrangement state space for the in-
stance in Fig. 2[Left] under MC metric. [Right] The corresponding
schedule of the example instance in Fig. 2[Left].

both arms are in armSet (Line 5), then the cost of moving oi
to the goal will be added to sharedCost, which means that
it is a pick-n-place in the overlapping region. If only one
arm is in armSet (Line 6-7), then the cost of moving oi to
the goal will be added to the cost of the specific arm, which
means that this action happens out of reach of the other
arm. If neither arm is in armSet (Line 8-10), then the object
needs a handoff to the destination. In this case, both arms
need to take one action for the handoff operation. Finally, on
one hand, if the difference of the exclusive costs is smaller
than sharedCost (Line 11), then h(s) is half of the total cost
(Line 12). In other words, the cost of two arms may be
balanced by splitting the sharedCost. On the other hand, if
the difference of the exclusive costs is too large (Line 13),
then the unoccupied arm bears all the shared cost, and h(s)
equals the cost of the busy arm.

Since cost[r1] and cost[r2] provide lower bounds of neces-
sary manipulations for each arm, h(s) is a lower bound of the



Algorithm 1: Manipulation Cost Search Heuristic
Input : s: current state
Output: h: heuristic value of s

1 cost[r1], cost[r2], sharedCost ← 0, 0, 0
2 for oi ∈ O do
3 if L(oi) is G then continue;
4 armSet ← ReachableArms(s, oi, {L(oi), G})
5 if armSet is {r1, r2} then sharedCost++;
6 else if armSet is {r1} then cost[r1]++;
7 else if armSet is {r2} then cost[r2]++;
8 else
9 cost[r1] ++;

10 cost[r2] ++;
11 if ∥cost[r1]-cost[r2] ∥ ≤ sharedCost then
12 return (cost[r1]+cost[r2]+sharedCost)/2 ;
13 else return max(cost[r1], cost[r2]) ;
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Fig. 5: [Top] A CDAR instance that needs a buffer. [Bottom] An
rearrangement plan for the example.

manipulation cost from the state s to the goal arrangement.
Therefore, we have:

Proposition IV.1. The manipulation cost based heuristic
h(s) is consistent and admissible.

V. BUFFER ALLOCATION

In this section, we allocate feasible buffer locations based
on the primitive plan computed in Sec. IV following the
idea of lazy buffer allocation [4]. Given the primitive plan,
we know not only the specific timespans that objects stay
in buffers, but also the staying poses of the other objects
in the timespans, which are treated as fixed obstacles that
the buffer location needs to avoid. Besides the obstacles, the
buffer location of an object moved to B(r) in the primitive
plan is restricted to be inside S(r), the reachable region of
r.

We illustrate the buffer allocation process with a CDAR
instance in Fig. 5[Top], which is a variant of the example in
Fig. 2[Left]. When o1 and o2 are in S2\S1, at least one
of them needs to be moved to buffer locations to break
the cycle in the dependency graph. A rearrangement plan
is shown in Fig. 5[Bottom]. In this plan, o1 is moved to a
buffer when o2 is at As(o2), and o3 waits for a handoff.
And o1 leaves the buffer when o2 and o3 are both at goal
positions. Therefore, the buffer location of o1 needs to be

collision-free with o2 at As(o2), Ag(o2) and o3 at Ag(o3).
Additionally, it is restricted in S(r2). When multiple objects
stay in buffers at the same time, the buffer locations need to
be allocated disjointedly. In this paper, we search for feasible
buffer locations by sampling candidates in the reachable
region and check collisions with the fixed obstacles indicated
by the primitive plan. The same as TRLB [4], when buffer
allocation fails, we accept partial plans and conduct a bi-
directional search in the arrangement state to connect the
start and goal arrangement.

VI. EXPERIMENTAL STUDIES

To evaluate the effectiveness of our dual-arm task planning
algorithms, we integrate them with a simple priority-based
motion planner. Essentially, in the presence of potential arm-
arm conflict in the workspace, the motion planner will give
the arm that is moving first priority while the second arm
yields. The yielding arm will either take a detour to the
target pose or go back to the rest pose and wait for the
execution of the other arm. We make this choice, instead
of using more sophisticated sampling-based asymptotically
optimal planners, to highlight the benefit of our task planner.

The proposed algorithms are implemented in Python; we
choose objects to be uniform cylinders. In each instance,
robot arms move objects from a randomly sampled start ar-
rangement to an ordered goal arrangement (see, e.g., Fig. 6).
Besides different overlap ratios ρ, we test our algorithms in
environments with different density levels D, defined as the
proportion of the tabletop surface occupied by objects, i.e.,
D := (Σoi∈OSoi)/SW , where Soi is the base area of oi and
SW is the area of W . The computed rearrangement plans
are executed in PyBullet with UR-5e robot arms.

For the FC makespan, we show the performance of an
interval state space heuristic search algorithm (FCHS) [30].
In experiments, we let the execution time of a pick tg ,
a place tr, and a handoff th equal to the time spent for
an arm traveling across the diameter of the workspace td,
i.e. tg = tr = th = td. This setting mimics general
manipulation scenarios in the industry, where a successful
pick-n-place relies on accurate pose estimation of the target
object, a careful picking to firmly hold the object, and a
careful placing to stabilize the object at the desired pose.
The experiments are executed on an Intel® Xeon® CPU at
3.00GHz. Each data point is the average of 20 test cases
except for unfinished trials, if any, given a time limit of 300
seconds for each test case.

Fig. 6: A 20-cylinder example of rearrangement instance with D =
0.4 and ρ = 0.5, moving object from a randomly sampled start
arrangement [Left], to an organized goal arrangement [Right].



Manipulation versus Full Cost as Proxies. In Fig.7, we
first compare optimal task schedules in both MC and FC
makespans in instances with ρ = 0.5, D = 0.3. While
FCHS shows slight advantage in actual execution time, it
incurs significantly more computation time and is more
prone to planning failure. The results suggest that MC is
more suitable as a proxy for optimizing CDAR planning
process. We also compare the execution time of MC-optimal
and FC-optimal plans in instances under different density
levels and overlap ratios and observe similar outcome. Based
on the observation, for later experiments, MCHS is used
exclusively.
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Fig. 7: Performance of FCHS and MCHS in instances with ρ = 0.5,
D = 0.3. The x-axis represents the number of objects.

Comparison with Baselines. We compare the proposed
algorithms with two baseline methods:

1) Single-MCHS-Split: A schedule of primitive actions for
a single arm is first computed, minimizing the MC
makespan, i.e. the total number of actions. Then, the
tasks are assigned to the two arms as evenly as possible.
A handoff is coordinated if the manipulating object is
moving between S(r1) and S(r2).

2) Greedy: Each arm prioritizes the manipulations moving
objects from buffers to goals. When there is no such
manipulation available, the arm will choose the object
closest to the current end-effector position.

In Fig. 8, we compare MCHS to the baseline algorithms
in the environments with ρ = 0.5 and different density levels
D. Comparing with Single-MCHS-Split, MCHS saves up to
10% execution time, which is fairly significant for logistic
applications. We note that Single-MCHS-Split, guided by
dependency graph, already performs quite well in dense
environments. The execution time gap comes from failures in
coordinating Single-MCHS-Split plans, e.g. an arm idles for
a few action steps waiting for a handoff or an arm holds an
object for a few action steps waiting for obstacle clearance.
Comparing with the greedy method, MCHS saves more
execution time as D increases. Specifically, in 20-cylinder
instances with D = 0.4, the execution time of MCHS
plans is 35% shorter than greedy plans. Without a long-term
plan in mind, greedy planning incurs more temporary object
displacements.

In instances with D = 0.3, we also evaluate the tendency
of the makespan and execution time as ρ varies. The conflict
proportion shows the proportion of execution time for an arm
to yield to the other arm during the execution. The results
are shown in Fig. 9. As ρ increases, the shared area of robot
arms expands. On one hand, the number of objects that need
handoffs decreases. So does the number of action steps in
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Fig. 8: Algorithm comparison in environments with different density
levels D. The x-axis represents the number of objects.

the schedule. On the other hand, we see an increase of path
conflicts. In instances with larger ρ, robot arms spend more
time on yielding. Based on the two factors, there is a shallow
“U” shape in execution time as ρ increases.
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Fig. 9: Evaluation of instances with different ρ. The x-axis repre-
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Fully Overlapping Workspaces. MCHS can also com-
pute CDAR plans with full overlap (CDRF), i.e., ρ = 1.0. As
shown in Fig. 10, due to the reachability limit of UR-5e, the
workspace is a bounded square with sides of length 0.6m. In
this case, each arm can reach every corner of the workspace
but its manipulation is likely to be blocked by the other arm.
We compare dual-arm MCHS plans to the single-arm MCHS
plans, where r1 take responsibility of all rearrangement tasks
and the number of total actions is minimized. The results
(Fig. 11) indicate that each arm in the dual-arm system
spends around 18% of execution time yielding or making
detours due to the blockage of the other arm. Therefore,
even though MCHS saves 50% action steps, the execution
of the plans is only around 10% faster than that of the single-
arm rearrangement plans. However, the efficiency gain shown
in action steps also suggests that the dual-arm system has
the potential to save up to half of the execution time with
specially designed arms for CDRF problems.



Fig. 10: An instance of CDAR with full overlap (CDRF), where each
arm can reach every corner of the workspace but its manipulation
is likely to be blocked by the other arm.
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Fig. 11: Algorithm performance in CDAR instances with ρ = 1.0.
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VII. CONCLUSION

In this work, we investigate the cooperative dual-arm rear-
rangement (CDAR) problem in a partially shared workspace.
We employ a lazy strategy for buffer allocation in the dual-
arm rearrangement system. To coordinate manipulations of
the arms, we develop dependency graph guided heuristic
search algorithms computing optimal primitive task sched-
ules under two makespan evaluation metrics. The effec-
tiveness of the proposed procedure is demonstrated with
extensive simulation studies in the PyBullet environment
with two UR-5e robot arms. Specifically, plans computed
by our algorithms are up to 35% shorter than greedy ones in
execution time in dense rearrangement instances. Moreover,
we observe a tradeoff between the number of needed hand-
offs and the occurrence of path conflicts in CDAR problems
as the overlap ratio of the workspace varies.
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