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Abstract— We propose a novel Parallel Monte Carlo tree
search with Batched Simulations (PMBS) algorithm for accel-
erating long-horizon, episodic robotic planning tasks. Monte
Carlo tree search (MCTS) is an effective heuristic search
algorithm for solving episodic decision-making problems whose
underlying search spaces are expansive. Leveraging a GPU-based
large-scale simulator, PMBS introduces massive parallelism
into MCTS for solving planning tasks through the batched
execution of a large number of concurrent simulations, which
allows for more efficient and accurate evaluations of the
expected cost-to-go over large action spaces. When applied to
the challenging manipulation tasks of object retrieval from
clutter, PMBS achieves a speedup of over 30x with an
improved solution quality, in comparison to a serial MCTS
implementation. We show that PMBS can be directly applied
to real robot hardware with negligible sim-to-real differences.
Supplementary material, including video, can be found at
https://github.com/arc-1/pmbs.

I. INTRODUCTION

The past decade has witnessed dramatic leaps in robot
motion planning for solving problems that involve sophis-
ticated interaction between the robot and its environment,
with milestones including teaching quadrupeds to perform
impressive tricks [1], [2] and navigate challenging terrains
[3], enabling high-DOF robot hands to solve the Rubik’s
cube [4], and so on. Whereas some of the success can be
attributed to the rapid advancement in deep learning [5] and
deep reinforcement learning [6], another undeniable factor is
the availability of fast high-fidelity physics engines, including
PyBullet [7] and MoJuCo [8]. These physics engines allow
the simulation of the physics of complex rigid-body systems,
sometimes faster than real-time, which enables the collection
of large amounts of realistic system behavior data without
even touching the actual robot hardware. Nevertheless, most
physics simulators are CPU-based, which can only simulate
a limited number of robots simultaneously; this has led to
some studies seeking parallelism by using a massive amount
of computing resources. For example, the OpenAl hand study
[4] used a total of 6,144 CPU cores to train their model for
over 40 hours, which is costly and time-consuming.

As physics simulation starts to become a bottleneck in
solving robotic tasks, GPU-based physics engines have
recently begun to emerge, including Isaac Gym [9] and Brax
[10], to address the issue by enabling large-scale rigid body
simulation. Early results are fairly promising; for example,
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Fig. 1: (a) The hardware setup includes a Universal Robots UR-5¢ with
a Robotiq 2F-85 two-finger gripper and an Intel RealSense D455 RGB-D
camera. (b) Planning and simulation carried in physics simulator where
thousands of virtual robots operate in parallel. (c) Overview of our system;
the small blue cylinder at the center is the target object to be retrieved.
the training of the OpenAl hand using Isaac Gym can be
done on a single GPU in one hour, translating to a combined
resource-time saving of several magnitudes. Similar success
has also been realized in applying reinforcement learning on
quadrupeds, robotic arms, and so on [9].

In this work, we exploit the power of large-scale rigid
body simulation for optimally solving long-horizon episodic
robotic planning tasks, such as multi-step object retrieval
from clutter, leveraging the strength of another powerful tool
that has attracted a great deal of attention — Monte Carlo tree
search (MCTS) [11]. MCTS demonstrates clear advantages
in solving long-horizon optimization problems without the
need of significant domain knowledge [12], and was already
employed for solving challenging manipulation tasks [13],
[14]. However, even with significant guidance using domain
knowledge [14], MCTS incurs fairly long planning times due
to its need of carrying out numerous rounds of sequential
selection-expansion-simulation-backpropagation cycles. The
long planning time, sometimes several minutes per decision
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step, limits the applicability of the methods from [13], [14]
toward real-time decision making.

Through combining MCTS and large-scale rigid-body
simulation with Isaac Gym [9], and carefully introducing
parallelism into the mix, we have developed a new line
of parallel MCTS algorithms for efficiently solving long-
horizon episodic robotic planning tasks. The development
of the large-scale rigid-body simulation enabled parallel
MCTS is the key contribution of this research, which is
highly non-trivial. This is because MCTS has an inherently
serial characteristic; as will be explained in more detail,
the selection phase of an MCTS iteration depends on the
completion of the previous selection-expansion-simulation-
backpropagation iteration. Fusing MCTS and Isaac Gym
for solving long-horizon manipulation planning tasks also
brings significant technical integration challenges because
many computational bottlenecks must be addressed for the
parallel MCTS implementation to be efficient.

We call our algorithm Parallel Monte Carlo tree search with
Batched Simulation (PMBS). As its name suggests, PMBS
realizes parallel MCTS computation through batched rigid-
body simulation enabled by Isaac Gym. Efficiently combining
MCTS and Isaac Gym, PMBS achieves over 30x speedups
in planning efficiency for solving the task of object retrieval
in clutter, while still achieving better solution quality, as
compared to an optimized serial MCTS implementation, using
identical computing hardware. PMBS drops the single-step
decision making time to a few seconds on average, which is
close to being able to solve the task in real-time. We further
demonstrate that PMBS can be directly applied to real robot
hardware with negligible sim-to-real differences.

II. RELATED WORK

Task and Motion Planning. Our investigation of long-
horizon episodic planning tasks falls under the general
umbrella of task and motion planning (TAMP) [15]-[18].
A characteristic that differentiates TAMP and other episodic
tasks, e.g., playing rule-based games [12], is the inherently
uncountable infinite decision space induced by physical
interactions (e.g., pushing, grasping, and so on). The vast
search space suggests that the injection of domain knowledge
is likely necessary to enable effective planning, e.g., using
a combination of symbolic reasoning and sampling-based
motion planning techniques [19], [20]. More recently, data-
driven methods have also seen increased application to solving
TAMP, e.g., using learning to guide the search process [21],
[22], predicting the outcome of actions [23]-[25], directly
predicting feasibility [26], combining neuro-symbolic task
planning and motion primitives [27], and so on.

Object Retrieval. Object retrieval from clutter, the long-
horizon task that we focus on in this study, can be viewed as
a form of rearrangement planning [28], [29]. Online planning
for object search with partial observations has been discussed
in [30]. Retrieving objects under occlusion was also recently
considered in [31] where parallel-jaw and suction grasping
were used along with pushing to de-clutter surroundings of
target objects. A model-free reinforcement learning technique

has also been used for searching for objects in [32]. In [33],
an agent was trained to find a continuous trajectory of a
gripper that pushes away clutter or pushes the target object to
free space, mimicking human-like behavior. A human in-the-
loop solution was proposed in [34] to help with searching for
objects in clutter. A deep Q-Learning method [35] considers
a similar task and setup but uses additional primitives such
as sliding objects from the top. Our work partially builds

n [13], [14], which used MCTS for object retrieval, but with
the goal of significantly accelerating the planning process.
Grasping and Singulation. The retrieval task that we tackle is
closely related to other manipulation tasks including grasping
and singulation. Challenges including friction modeling and
inertia estimation has led to the arise of data-driven grasping
methods [36], [37]. Recently, grasping in clutter has received
more attention [38]-[41]. Convolutional Neural Networks
are widely used to construct grasp proposal networks such
as Dex-net 4.0 [42], which are trained to detect 6D grasp
poses in point clouds [43]. Singulation, i.e., isolating specific
object(s) from the rest [44], is necessary for object retrieval.
Usually, a sequence of pushing and grasping actions is used
to clear the clutter that surrounds the target object. In [45],
a model-free method was used to learn a reactive pushing
policy without long-horizon reasoning. Later, other model-
free reinforcement learning algorithms [46], [47] used learned
push policies to improve grasping.

III. PRELIMINARIES
A. Problem Formulation

In this paper, we task a robot equipped with a camera and
a two-finger gripper to grasp a desired object from a densely
packed clutter, as a concrete instance of long-horizon episodic
robot planning problems. The workspace is a confined planar
surface. Two types of primitive actions are allowed: pushing
and grasping. All objects are rigid; the target object has a
different color to facilitate its detection. The only observation
available to the robot is an RGB-D image that is taken by
a top-down fixed camera, as shown in Fig. 1. Every time
the robot executes a push or a grasp action, a new image is
taken. A similar problem has been previously defined in [13],
[14], [24]. Compared to [13], [14], the problem addressed in
the present work is significantly more challenging to solve
because the workspace is confined to a substantially smaller
area, while keeping the number and sizes of objects the same.
Consequently, the free space between the objects is reduced,
and the robot needs to find a larger number of shorter surgical
push actions in order to free the target object and grasp it.
In fact, we found from our experiments (Sec. V) that the
original setup considered in [13], [14] can be solved using a
brute-force parallel search in a GPU-based physics simulator,
without a Monte Carlo tree search.

The object-retrieval-from-clutter task can be formal-
ized as a Markov Decision Process (MDP) defined as
(S, A, T,R,O,~), to minimize the number of pushes needed
for retrieving the target. v € [0, 1] is a discount factor. This
MDP is described in the following.



State space (S) is a bounded workspace W con-
taining n objects. A state s; at time t is defined as
(roboty, objt, 0bj?, ..., o0bji*) wherein robot, is a vector of
the robot’s joint angles and obj; is a vector of the object
i’s pose and geometry. Action space (A) is the union
of two subsets: push actions AP and grasp actions AY9. A
push a? € AP is a quasi-static planar motion defined as
aP = (s, Ys, Te, Ye) Where (zs,ys) and (x,,y.) are the start
and end points of the gripper tip in a straight line motion. A
grasping action a9 € AY is a parallel jaw grasp defined as
ad = (z,y,2,0), where (z,vy, z) is the center point between
the gripper’s two fingers, and 6 is the rotation angle in the
z-axis of the workspace. The opening distance of two fingers
is fixed. Transition function (7) maps a state s; to S¢41
given action a; according to laws of quasi-static motion
and friction, while tacking into account collisions. Reward
function (R) returns a scalar r = {0, 1} given input state
s¢. If a target object is grasped, then r; = 1, otherwise
r¢ = 0. All push actions are given a zero immediate reward.
Observation space (O) contains RGB-D images o; taken
from the top-down camera.

B. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) [11] was notably em-
ployed for playing turn-based games like chess and go.
As a result, MCTS is clearly applicable to long-horizon
episodic planning tasks. MCTS builds a search tree, bal-
ancing exploration and exploitation, by iteratively performing
selection-expansion-simulation-backpropagation operations.
In the selection phase, MCTS selects a best node to grow
the tree. A popular node selection criterion is based on the
upper confidence bound (UCB) [48], [49],
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where Q(n) is the sum of rewards collected starting from
the state corresponding to node n, N(n) is the number of
times n was selected so far. The selection process continues
until it finds a node that corresponds to a terminal state or a
node that has never-explored children. We note that a node
n is always associated with a state s and an observation o;
sometimes a node n and the corresponding state s are used
interchangeably.

After a node n is selected, if it is not a terminal node, it
will be expanded and its new child, say n’, will be added
to the search tree. Subsequently, a simulation will be carried
out at n’. This selection-expansion-simulation process is
repeated until a terminal state (or a stopping condition) is
reached, which yields a reward. The obtained terminal reward
is propagated back from n’ all the way to the root node,
while updating the sum of reward (Q(n)) and incrementing
the number of visits (/N (n)) for all the nodes along the path.

The entire selection-expansion-simulation-backpropagation
procedure is repeated for several rounds, after which MCTS
selects the action at the root node that yields the child with
the best average reward to execute on the real robot. The
operations of MCTS are visualized in Fig. 2 (the upper box).
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Fig. 2: Outline of Monte Carlo tree search as adapted for object retrieval.

IV. METHODOLOGY

Effectively employing MCTS to tackle long-horizon
episodic robot planning requires a highly non-trivial adapta-
tion of MCTS. In this section, we first describe the necessary
preparation for integrating MCTS and physics simulation for
object retrieval, then augmentations to the architecture for
GPU-based processing, and then outline our key ideas and
design choices in our parallelization effort.

A. Serial MCTS for Object Retrieval from Clutter

To use MCTS for the object retrieval task and solve real
instances, we integrate it in a process that alternates between
search in simulation and execution on the real system. Our
MCTS process takes in a scene that is segmented into objects,
and uses physics simulation to reason about the proper push
actions to facilitate the final retrieval of the target object.
An overview of the MCTS process is provided in Fig. 1.
In other words, we first replicate in the simulator the real
perceived scene at the beginning of each episode, perform
computation and simulation, and then execute with the real
robot the action that results from the simulation to guide the
resolution of the retrieval task on the real objects.

We now describe the details of our basic serial MCTS
adaptation. For the selection step, the standard UCB formula,
Eq. (1), is used. For the expansion step, for a selected node n
that has not been expanded, we sample many potential push
directions by examining the contour of the objects. These
sampled pushes become the candidate actions under n for
expansion. After a sampled push action is chosen, the action
is executed in the physics simulation and a new node is added
to the tree. The MCTS simulation step is then carried out
with additional consecutive random pushes to obtain a reward
for the newly added node. Note that for each simulation step,
we must decide whether the resulting state is a terminal state;
this is done using a grasp classifier, to be explained later.

An important design decision we make here, to render
MCTS computation more tractable, is to limit the depth of
the tree. We limit the depth of the overall tree to be no more
than some dr. The simulation can be carried out for at least
ds steps. This means that the maximum depth reached by
MCTS does not exceed dr + ds. If expansion happens at
depth dr, we allow the state to be simulated further until
dr +ds. Given our goal of finding the least number of pushes



for retrieving the target object, dr and ds can potentially be
dynamically updated when an identified terminal node has
a depth d smaller than dr. In this case, we set dr = d
and ds = 0. We terminate an MCTS process if: (1) the
elapsed time exceeds a preset budget T, (2) the tree is
fully explored, or (3) the target can be grasped in an explored
node and all nodes at its parent’s level have been explored.

After each full MCTS run, we execute the best action it
returns on the actual scene (simulated or real), and then use
a grasp network (GN) [13], [14] to tell us whether the target
object is retrievable. If it is, GN further tells us how to grasp
it; the task is then completed. Details of GN, for replication

purposes, can be found in the online supplementary material.

B. Adaptions for GPU

Besides simulation, which can be sped up using GPU-based
physic engines, there are three additional bottlenecks in the
process to parallelize MCTS for object retrieval. One of these
these is the parallelization of MCTS itself and the other two
are specific to the object retrieval problem: action sampling
and grasp feasibility prediction. We leave the first bottleneck
for Sec. IV-C and address the latter two here.

Speeding up Action Sampling. Be-
cause the number of push action choices
is uncountably infinite, action sampling
is necessary. We modified the action
sampler from [13], [14] with slight
changes and a more efficient implemen-
tation. . As shpown in Fig. 3, for a given Fig, 3: Sampled push
0, actions a; are sampled around the  ,ctions.

clutter. N, actions are evenly sampled around the contour
of each object, from edge to center. Actions that cannot be
executed due to collisions are discarded. Further speedups
are obtained by pre-computing the sampled actions for each
object and only performing collision checking between the
robot’s start pose of push and objects at runtime.

Grasp Evaluation. Previous
learning-based methods for ob-
ject retrieval use a grasp network
(GN) to evaluate the feasibility
of grasping the target object [13],
[14], which becomes a time-
consuming bottleneck when par-
allelized directly. GN is rela-
tively slow because it evaluates
a large number of possible grasp
poses. However, knowing the
best grasp pose is unnecessary if we only want to know how
“graspable” a state is. Given this observation, we develop
a simplified grasp classifier (GC) that only returns a grasp
probability (Fig. 4). GC is an EfficientNet-b0 [50] that takes
a depth image as input and outputs a logit between 0 and
1. Given a depth image and a target object, we can query
GC whether the target object is graspable by comparing
its output to a preset threshold R}. Details about GC’s
implementation and training in simulation can be found in
the online supplementary material. Note that GN is still used

Grasp

Grasp
probability: 0.57 probability: 0.99

Fig. 4: Examples of using
the grasp classifier to produce
probabilities to grasp the object

Here we used an RGB image
for illustration purpose (input
should be a depth image).

at center (blue in this case).

after each full MCTS run for potentially grasping the target
object, as described in Sec. IV-A.

C. Parallel MCTS with Batched Simulation

Given the availability of powerful GPU-based physics
simulators including Isaac Gym [9] and Brax [10], which
enables the simulation of a large number of systems inde-
pendently and simultaneously, a natural route for speeding
up long-horizon episodic robot planning tasks is to introduce
parallelism into the MCTS pipeline outlined in Sec. IV-A,
to perform many simultaneous simulations. However, it is
challenging to introduce parallelism into MCTS because
optimal node selection depends on the reward of all previous
rounds. To enable parallelism in MCTS for object retrieval
from clutter and harness GPU-based simulation, we introduce
the following modifications to the MCTS procedure outlined
in Sec. IV-A. We assume the number of parallel environments
in the simulator is fixed to some number N.. Each parallel
environment contains an identical virtual robot and objects.
Selection with Virtual Loss. By observing the operations
of MCTS, it is not difficult to see that the parallelism of
MCTS requires modifying the UCB formula. Otherwise, the
same node in a search tree will be selected for expansion in
multiple parallel environments, leading to redundancy and
poor performance. To address this issue, we borrow the idea
of virtual loss [51], which has shown to give good results in
multiple application domains [52]-[54]. Virtual loss is used
to adjust the calculation of UCB values for the nodes that
have been selected but not yet expanded [51], [55],
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where the N(n) is the number of selected but not yet
expanded nodes under node n. N(n) will be reset to zero
once the selection phase of parallel MCTS is completed.
Basically, Eq. (2) penalizes selecting nodes that have already
been selected in some other parallel environment but for
which expansion and simulation have not yet been completed.
With Eq. (2), it is still possible for a node n to be selected
multiple times, which may lead to redundant simulations.
To avoid this and ensure that no redundant simulations are
carried out, we mark all selected actions of node n and share
this information across all the parallel environments.

A collection of state-action pairs is returned from the selec-
tion phase. The same state could be selected many times, but
all state-action pairs in the selected collection are unique. For
example, in Fig. 5, upper left, (s{ 5, a'),...,(s{,1,a*) are
four such state-action pairs. Batch-mode expansion/simulation
on this collection is then performed in parallel using GPU.
Batch Expansion. After a batch of state-action pairs
({(s,a)}) has been selected, the expansion step is carried
out for all of these pairs simultaneously. For this purpose,
environments in the simulator (Isaac Gym) will be loaded
with the appropriately selected states, after which expansion
(transition) is carried out in parallel. A batch expansion creates
a set of new nodes added to the tree, each of which is different.
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Fig. 5: Steps in PMBS, our parallel MCTS with batch operation.

In Fig. 5, lower left, s}, ..., s}, 5 are the result of expanding
(st49,a'), ..., (styq,a*), respectively.

Algorithm 1: Parallel MCTS with Batched Simulation

1 Function Main (s¢, 0¢)

2 while there is a target object in workspace do

3 if the target object can be grasped (query GN) then

4 ‘ Execute grasp the target object

5 else Execute Parallel-MCTS (s¢) // Push

6 Function Parallel-MCTS (s)

7 Create root node ng with state s

8 es_level < 1 // Early stop level

9 graspable_nodes <— &

10 while (within time budget) and (depths of all

graspable_nodes are greater than es_level) do

1 [(n*,a'),..., (n",a™*)] « Selection(no)

12 Reset all N(n) to 0

13 't 0]
Expansion([(nt,a'),..., (n", a™*)])

14 for n’ in [n'",...,n'™] do

15 if GC(n'(0)) > R then

16 | graspable_nodes <— graspable_nodes U {n'}

17 if all nodes at es_level — 1 are fully expanded or
terminal then

18 | eslevel « es_level +1

19 [r',...,7™] < simulation(n},...,n},])

20 Backpropagation ([(n'l,rl), e (n/N", ™))

21 return the a” that leads to best child node of root,
ranked by Eq. 2

Batch Simulation. The batch simulation step of our parallel
MCTS implementation is similar to the batch expansion step,
but with additional steps inserted before and after. Before a
push simulation, random actions must first be selected, using
the action sampling method outlined in Sec. IV-B. After each
push simulation, GC, as described in Sec. IV-B is applied
to evaluate the outcome. As we can see, to best exploit
the parallelism from the simulator, action sampling and GC
should be carried out as efficiently as possible, so that they

do not become significant computational bottlenecks.

During simulation, we also perform leaf parallelization
[51] when the number of simulation environments is more
than the number of states for which MCTS simulations are to
be carried out. This is reflected in Fig. 5, upper right, where
the first two states each are simulated twice initially. If some
environments, after a push, are predicted by GC as graspable,
then further simulation on these environments will not be
carried out, and these environments can be re-purposed. For
example, in Fig. 5, upper right, a simulation under the second
state terminates early, and the associated environment can be
used to perform additional simulation for the first state.
Backpropagation. The backpropagation phase is straightfor-
ward to execute, as it simply backpropagates the rewards to
the root of the tree. We note that, for a single state for which
multiple simulations are carried out, it is natural to select the
maximum reward obtained instead of taking averages (see
Fig. 5, lower right).

The pseudo-code of PMBS is given in Alg. 1 with the
selection subroutine given in Alg. 2. Other subroutines of
PMBS are mostly straightforward.

Algorithm 2: Selection with Virtual Loss)

1 Function Selection (ng)
Pairs <~ @
while len(Pairs) < N, do
n' « traverse tree until a leaf node using Eq. 2
a’ + one sampled action of n’
Remove a’ from the sampled actions of n’
Pairs <— Pairs U {(n’, ")}
N(n') « N(n') +1
increment virtual counts of ancestor nodes of n’
return Pairs

(RS - 7 N )

—
<

V. EXPERIMENTAL EVALUATION

We evaluated the proposed system (PMBS) in a physics
simulator (Isaac Gym) and on a real robot on adversarial
test cases. In comparisons to baseline and ablation studies,
we observe significant improvements using the GPU-based
physics simulator together with parallel MCTS, which brings
episodic decision making for real robots closer to real-time,
i.e., a single complex decision is made in a few seconds. All
experiments are evaluated on a desktop with an Nvidia RTX
2080Ti GPU, an Intel i7-9700K CPU, and 32GB of memory.

A. Simulation Studies

In this work, the simulated environment is built with Isaac
Gym [9], consisting of a Universal Robot URSe with a two-
finger gripper Robotiq 2F-85, and an Intel RealSense D455
RGB-D camera overlooking a tabletop workspace as shown in
Fig. 1. The robot is in position-control mode, push and grasp
actions are controlling the position of the end-effector, inverse
kinematic [56], [57] is applied to convert to joint space. The
effective workspace is at a size of 0.288 x 0.288m, discretized
as a grid of 144 x 144 cells where each cell is one pixel
in the image (orthographic projection) taken by the camera.
The workspace, in comparison to previous studies [13], [14],
is significantly smaller (only about 45% in terms of area),



making the setting much more challenging. We intentionally
selected the setting to demonstrate the power of PMBS.
All objects should reside in the workspace. 20 cases [13]
used for evaluation can be found in Fig. 6, where the red
lines denote the boundary to which objects centers must be
confined at all times. The push distance of a push action is

Fig. 6: 20 cases [13] used in simulation experiments, where the target
object has a blue mask. No object should exceed the boundary (red lines).

fixed at 5cm (10cm in previous work [13], [14]), the effective
push distance is around 3cm (the distance objects are moved).
Metrics. Four metrics are used to evaluate our systems: 1)
the number of actions used to retrieve the target object, 2)
the total planning time used for retrieving the target object
(build the tree), 3) the completion rate in retrieving the target
object within 16 actions, 4) the grasp success rate, which is
the number of successful grasps divided by the total number
of grasping attempts.

Baseline. We use an optimized serial MCTS implementation
as the baseline, where the number of environments used
for MCTS is one. The following hyperparameters are used
across all methods in benchmark unless otherwise mentioned.
The discount factor v = 0.8. The default max depth of
tree dr = 7, and the default simulation depth d; = 3. The
threshold of GC is R} = 0.9. The UCB exploration term c in
Eq. 1 and 2 is 0.3. The time limit (budget) 71y, for one step
planning is 60 seconds. 1000 robots (environments) in Isaac
Gym are used in our PMBS; it takes around 2.2 seconds for
all robots to complete one push action.

We evaluate the performance of PMBS and the baseline
serial MCTS over all 20 cases, running each case five
times. For the evaluation, we set a time budget Ti,,x = 60
and denoted the two methods as PMBS-60 and MCTS-60,
respectively. The summary benchmark for these two methods
can be found in the first two rows of Table. I; individual
results for each case can be found in Figs. 7 and 8.

We make some observations based on the result. First,
PMBS outperforms the serial MCTS version in terms of
number of actions and computation time across all cases,
which is as expected because PMBS engages many environ-
ments to facilitate its search effort. On the other hand, when
we view the solution quality and computation time together,
the advantage of PMBS over serial MCTS is significant:
PMBS-60 uses 35 seconds on average for planning, whereas
MCTS-60 uses over 300 seconds. This along translates to an
8.6x speedup. At the same time, PMBS-60 uses 70% fewer
actions in solving the tasks. A further data point regarding
the speedup at the same solution is given a bit later in Fig. 9.

A second observation is that, despite the fact that we
are dealing with a difficult long-horizon planning problem,
PMBS is able to achieve planning that is close to being able
to perform reasoning in real-time, as it takes an average
of 35/3.91 < 9 seconds to make a single decision. With
further optimization and/or better hardware, we believe that
PMBS will achieve real-time decision-making capability for
the current set of object retrieval tasks.

I PMBS-60

8 s MCTS-60

15 16 17 18 19 20

Indcx of cases
Fig. 7: The average number (over five independent trials) of actions per
case needed for solving the twenty cases, given a time budget of 60 seconds.
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Fig. 8: The average time (over five independent trials) per case needed for
solving the twenty cases, given a time budget of 60 seconds.

Num. of Actions | Time | Completion | Grasp Success
PMBS-60 3.91 35s 100% 98.3%
MCTS-60 6.67 301s | 93.0% 96.4%
PMBS-60 (c = 0) 4.03 113s | 100.0% 99.2%
PMBS-60 (¢ = oco) 12.71 147s | 42.0% 96.7%

TABLE I: Simulation experiment results for 20 cases. Time budgets are
limited up to 60 seconds.

Ablation Study. The time budget Tp,,«x is one of the main
factors that influence the solution quality and planning time.
To understand its role, several time budgets are used to
evaluate our method, as shown in Fig. 9. Given more time
for tree search, serial MCTS and PMBS could improve the
solution quality, leading to fewer required actions. The trends
of serial MCTS (number of action) are steep, as it is highly
possible that it could not find a solution given a limited
time. The trend of PMBS (planning time) is more gradual,
as the most time-consuming search happens in the first few
iterations, which usually uses all the time budget. While serial
MCTS never achieves the same solution quality as PMBS,
comparing the first PMBS data point and the last serial MCTS
data point, we observe a 855/28 = 30x speedup with PMBS
still has some quality advantage.

On the flip side, we note that the speedup of 30x seems
small considering that we used 1000 environments. This is
due to two factors. First, MCTS is itself a serial process;
parallelization will incur performance loss. Second, while we
have improved many bottlenecks, e.g., on action sampling
and grasp classification, the object retrieval task contains
many elements that cannot be readily parallelized.

We also evaluated the impact of the exploration and exploit
trade-off on PMBS. If the c in Eq. (2) is set to 0, i.e., pure



exploitation, PMBS-60 uses 4.03 actions and 113 seconds
(planning time) in average on 20 cases. The performance
is worse than when ¢ = 0.3, as shown in Table. I. This is
expected as the greedy approach could be stuck in a local
optimum. PMBS-60 is also tested by setting ¢ to be a large
number in Eq. (2), i.e., pure exploration, which uses 12.71
actions and 147 seconds (planning time) on averages; the
completion rate has a steep drop to 42.0%.
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Fig. 9: PMBS and serial MCTS evaluated with different time budgets. The
reported values are averages over all 20 cases.

B. Real Robot Experiments

For experiments on the physical UR-5e, the input to PMBS
is a single RGB-D image. A 1280 x 720 RGB-D image is
taken, then it is orthogonally projected over the workspace
of resolution of 144 x 144 (with cropping). Since the same
robot and objects are used in both simulation and the real
world, we can observe and act on a real robot but plan
in a simulator. For each object, simple pose estimation is
performed to load objects from real images to the physics
simulator environments. The pose estimation is done by firstly
extracting masks for objects from the image, then a brute-
force matching between detected mask and recorded mask is
performed for each object. We could achieve it at 0.15 seconds
for one image (around 10 objects). Serial MCTS and PMBS
are evaluated the same way as in simulation experiments,
except we only run tests on the six most challenging cases.
Individual benchmark on six cases can be found in Fig. 10.
Average statistics are listed in Table. II. We observe minimal
sim-to-real performance loss; A small gap exists between
the real and the simulation experiments, mainly due to pose
estimation errors and mismatch of physics properties.
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Fig. 10: The number of actions and time used for solving the six most
challenging cases on the physical robot. The time budget is 60 seconds.

Num. of Actions | Time | Completion | Grasp Success
PMBS-60 5.72 73s 100% 100%
MCTS-60 10.45 529s | 83.3% 87.0%
PMBS-60 (sim) 5.03 81s 100% 97.2%
MCTS-60 (sim) 10.77 587s | 76.7% 96.6%

TABLE II: Real robot experiment results on the six most difficult cases.
Time budgets are limited to 60 seconds per case.

Additional Experimental Details. Curious readers may
find in the online supplementary material additional experi-
mental details including complete, actual execution snapshots
of PMBS and MCTS for all 20 cases, as well as the execution
snapshots for real robot experiments.

VI. CONCLUSION

In this work, we propose PMBS, a novel parallel Monte
Carlo tree search technique with GPU-enabled batched
simulations for accelerating long-horizon, episodic robotic
planning tasks. Through carefully making a series of design
choices to overcome multiple major bottlenecks resisting the
parallelization effort, PMBS achieves over 30x speedups
compared to a decent serial MCTS implementation while still
delivering better solution quality, using the same computing
hardware. Real robot experiments show that PMBS directly
transfers from simulation to the real physical world to achieve
near real-time planning performance in solving complex long-
horizon episodic robot planning tasks.

REFERENCES

[1] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” in
Robotics: Science and Systems, 07 2020.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,

and M. Hutter, “Learning agile and dynamic motor skills for legged

robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[3] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: Rapid Motor
Adaptation for Legged Robots,” in Proceedings of Robotics: Science
and Systems, Virtual, July 2021.

[4] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning
dexterous in-hand manipulation,” The International Journal of Robotics
Research, vol. 39, no. 1, pp. 3-20, 2020.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-

tion with deep convolutional neural networks,” Advances in neural

information processing systems, vol. 25, 2012.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,

D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement

learning,” arXiv preprint arXiv:1312.5602, 2013.

[7]1 E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.
org, 2016-2021.

[8] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for

model-based control,” in 2012 IEEE/RSJ international conference on

intelligent robots and systems. 1EEE, 2012, pp. 5026-5033.

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,

D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym: High

performance gpu-based physics simulation for robot learning,” arXiv

preprint arXiv:2108.10470, 2021.

[10] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch,
and O. Bachem, “Brax - a differentiable physics engine for
large scale rigid body simulation,” 2021. [Online]. Available:
http://github.com/google/brax

[11] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72-83.

[12] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[13] B. Huang, S. D. Han, J. Yu, and A. Boularias, “Visual foresight trees
for object retrieval from clutter with nonprehensile rearrangement,”
IEEE Robotics and Automation Letters, vol. 7(1), pp. 231-238, 2022.

[14] B. Huang, T. Guo, A. Boularias, and J. Yu, “Interleaving monte carlo
tree search and self-supervised learning for object retrieval in clutter,”
in 2022 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2022.

[2

—

[6

=

[9

—


http://pybullet.org
http://pybullet.org
http://github.com/google/brax

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation. 1EEE, 2011, pp. 1470-1477.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE international conference
on robotics and automation (ICRA). 1EEE, 2014, pp. 639-646.

M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in Robotics: Science and systems, vol. 12.  Ann Arbor, MI, USA,
2016, p. 00052.

C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in Proceedings of the International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 440-448.

T. Migimatsu and J. Bohg, “Object-centric task and motion planning in
dynamic environments,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 844-851, 2020.

R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev,
C. Lin, and P. Abbeel, “Guided search for task and motion plans using
learned heuristics,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2016, pp. 447-454.

B. Kim, Z. Wang, L. P. Kaelbling, and T. Lozano-Pérez, “Learning
to guide task and motion planning using score-space representation,”
The International Journal of Robotics Research, vol. 38, no. 7, pp.
793-812, 2019.

D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning: Learning
to predict action sequences for task and motion planning from an initial
scene image,” arXiv preprint arXiv:2006.05398, 2020.

B. Huang, S. D. Han, A. Boularias, and J. Yu, “Dipn: Deep interaction
prediction network with application to clutter removal,” in 2021 IEEE
International Conference on Robotics and Automation, 2021, pp. 4694—
4701.

L. Ren and Z. Xi, “Bias learning based model predictive controller
design for reliable path tracking of autonomous vehicles under model
and environmental uncertainty,” Journal of Mechanical Design, pp.
1-22.

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learn-
ing feasibility for task and motion planning in tabletop environments,”
IEEFE robotics and automation letters, vol. 4(2), pp. 1255-1262, 2019.
Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning
for long-horizon manipulation with geometric and symbolic scene
graphs,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2021, pp. 6541-6548.

H. Song, J. A. Haustein, W. Yuan, K. Hang, M. Y. Wang, D. Kragic,
and J. A. Stork, “Multi-object rearrangement with monte carlo tree
search: A case study on planar nonprehensile sorting,” CoRR, vol.
abs/1912.07024, 2019.

K. Gao, S. W. Feng, and J. Yu, “On minimizing the number of running
buffers for tabletop rearrangement,” in Robotics: Sciences and Systems,
2021.

Y. Xiao, S. Katt, A. t. Pas, S. Chen, and C. Amato, “Online planning
for target object search in clutter under partial observability,” in
International Conference on Robotics and Automation, 2019.

M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, D. Wang,
R. Martin-Martin, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Multi-step retrieval of a target object occluded by clutter,”
CoRR, vol. abs/1903.01588, 2019.

T. Novkovic, R. Pautrat, F. Furrer, M. Breyer, R. Siegwart, and J. L.
Nieto, “Object finding in cluttered scenes using interactive perception,”
CoRR, vol. abs/1911.07482, 2019.

A. Kurenkov, J. Taglic, R. Kulkarni, M. Dominguez-Kuhne, R. Martin-
Martin, A. Garg, and S. Savarese, “Visuomotor mechanical search:
Learning to retrieve target objects in clutter,” in IEEE/RSJ Int.
Conference. on Intelligent Robots and Systems (IROS), 2020.

R. Papallas and M. R. Dogar, “Non-prehensile manipulation in clutter
with human-in-the-loop,” CoRR, vol. abs/1904.03748, 2019.

K. Xu, H. Yu, Q. Lai, Y. Wang, and R. Xiong, “Efficient learning of
goal-oriented push-grasping synergy in clutter,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6337-6344, 2021.

A. Boularias, O. Kroemer, and J. Peters, “Learning robot grasping from

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

(501

[51]

[52]

(53]

[54]

[55]

[56]

(571

3-d images with markov random fields,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011, pp. 1548-1553.
Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans,
“Multifingered grasp planning via inference in deep neural networks:
Outperforming sampling by learning differentiable models,” IEEE
Robotics & Automation Magazine, vol. 27, no. 2, pp. 55-65, 2020.
A. Boularias, J. A. Bagnell, and A. Stentz, “Efficient optimization for
autonomous robotic manipulation of natural objects,” in Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, Québec City, Québec, Canada., 2014, pp. 2520-2526.
——, “Learning to manipulate unknown objects in clutter by rein-
forcement,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., 2015,
pp. 1336-1342.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” 2018.

B. Wen, W. Lian, K. Bekris, and S. Schaal, “Catgrasp: Learning
category-level task-relevant grasping in clutter from simulation,” arXiv
preprint arXiv:2109.09163, 2021.

J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley,
and K. Goldberg, “Learning ambidextrous robot grasping policies,”
Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.

A. ten Pas, M. Gualtieri, K. Saenko, and R. P. Jr., “Grasp pose
detection in point clouds,” CoRR, vol. abs/1706.09911, 2017. [Online].
Available: http://arxiv.org/abs/1706.09911

L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in 2012 IEEE International Conference on Robotics and
Automation, 2012, pp. 3875-3882.

A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects
using a push proposal network,” in Robotics Research, N. M. Amato,
G. Hager, S. Thomas, and M. Torres-Torriti, Eds. Cham: Springer
International Publishing, 2020, pp. 405-419.

A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning,” in 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 1EEE, 2018, pp.
4238-4245.

M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking,” in 20/8 IEEE
14th International Conference on Automation Science and Engineering
(CASE), 2018, pp. 1249-1256.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp.
235-256, 2002.

L. Kocsis and C. Szepesvari, “Bandit based monte-carlo planning,”
in European conference on machine learning. Springer, 2006, pp.
282-293.

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105-6114.

G. M.-B. Chaslot, M. H. Winands, and H. Herik, ‘“Parallel monte-carlo
tree search,” in International Conference on Computers and Games.
Springer, 2008, pp. 60-71.

A. Liu, J. Chen, M. Yu, Y. Zhai, X. Zhou, and J. Liu, “Watch the
unobserved: A simple approach to parallelizing monte carlo tree search,”
in International Conference on Learning Representations, 2020.

X. Yang, T. Aasawat, and K. Yoshizoe, “Practical massively parallel
monte-carlo tree search applied to molecular design,” in International
Conference on Learning Representations, 2021.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140-1144, 2018.
C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43,
2012.

K. P. Hawkins, “Analytic inverse kinematics for the universal robots
ur-5/ur-10 arms,” Georgia Institute of Technology, Tech. Rep., 2013.
S. W. Feng, T. Guo, K. E. Bekris, and J. Yu, “Team rubot’s
experiences and lessons from the ariac,” Robotics and computer-
integrated manufacturing, vol. 70, p. 102126, 2021.


http://arxiv.org/abs/1706.09911

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Monte Carlo Tree Search

	Methodology
	Serial MCTS for Object Retrieval from Clutter
	Adaptions for GPU
	Parallel MCTS with Batched Simulation

	Experimental Evaluation
	Simulation Studies
	Real Robot Experiments

	Conclusion
	References

