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We investigate residential property-price effects of the spread of the Hemlock wooly adelgid infestation north-
ward through central portions of Connecticut and Massachusetts, USA. We find that hemlock trees and the
accompanying adelgid infestation within 0.1 km buffers of properties affect sale prices, but the results do not
extend to buffers of 0.5 and 1.0 km's. Further, within the 0.1 km buffer, only the healthiest hemlock trees
contribute positively to property values. We investigated the robustness of the results to three data interpolation
methods, Kriging, Inverse Distance Weighting and Spline, and while there was some minor difference in out-
comes the results are robust to these interpolation methods. Two property-price models were estimated, a
traditional hedonic model with spatial fixed effects and a repeat sale model. The models provide substantially
different property-price impacts and care needs to be taken when interpreting these estimates. Both approaches
are limited but in different ways; the hedonic by potentially omitted variables and the repeat-sales by a limited
number of observations. Our results provide some support for the repeat-sale model as the hedonic model with

spatial fixed effects underperformed when both models were estimated using the same data.

1. Introduction

According to Lovett et al. (2016), ~2.5 non-native pests per year
have been established in U.S. forests over the last 150 years and have
“eliminated entire tree species or genera from United States forests
within decades” (p. 1437). Such infestations that many may be aware of
include, but not limited to, chestnut blight, Dutch elm disease, emerald
ash borer, European gypsy moth and mountain pine beetle. Aukema
et al. (2011) report that complete costs of these forest pest infestations
are unknown but, in the case of three categories of forest pest, the
greatest costs of the infestations are borne by homeowners. Beyond
economic costs, Jones (2017) finds that the emerald ash borer signifi-
cantly reduced the life satisfaction of residents of affected U.S. counties.
Although Holmes and Koch (2019) also found that geographically
extensive forest insect outbreaks substantially diminished life satisfac-
tion for residents in affected areas of Colorado, they highlighted the
challenges of using this modeling approach to estimate resultant
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changes in economic values. Given the paucity of data on the economic
impacts of forest pest and evidence the impacts may be greatest for
residential property owners, we investigate the property value impacts
of the rapidly expanding range of the hemlock wooly adelgid (Limbu
et al., 2018).

The Hemlock wooly adelgid (adelgid hereafter) is a forest pest that
defoliates and ultimately kills hemlock trees within about five years
(Brush, 1979; McClure, 1991; Orwig et al., 2012). First introduced into
Virginia from Japan in the early 1950s, the adelgid now threatens
Eastern hemlock forests in New England (McClure, 1991). The adelgid is
sensitive to temperature and precipitation, and climate change is ex-
pected to have favored the northward spread of the adelgid (Orwig et al.,
2012).

The Eastern hemlock (Tsuga canadensis) matures at a height of 40 to
70 ft with a canopy width of 25 to 35 ft. These trees can be a dominant
feature in the residential landscape providing shade, a scenic resource,
buffers between properties and more. On the other hand, as infested
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trees die, they can become a scenic blight and a risk to residences and
people from falling limbs. Information on the effect of hemlock trees on
residential property prices provides important economic information on
the benefits of removing infested trees and protecting healthy trees from
infestation.

Here we estimate a hedonic model to investigate the effect of
declining hemlock health on residential property values. The advent and
accessibility of spatial data has greatly advanced the richness of infor-
mation available to explore the impacts of spatially explicit features,
such as the adelgid infestation, on property sale prices (Bateman et al.,
2002; Geoghegan et al., 1997; Hamilton and Morgan, 2010; Lake et al.,
2000; Paterson and Boyle, 2002). We have two unique and comple-
mentary data sets that are merged with property sale data. The first is
spatial data documenting 6126 hemlock stands located in central Con-
necticut and central Massachusetts. Second, is entomological data from
sampled hemlock stands in this study area that records the damage
caused by the adelgid. Spatial interpolation is used to scale the ento-
mological sample data to all hemlock stands in the study area.

We also investigate the robustness of hedonic-coefficient estimates to
three common data interpolation procedures, adelgid defoliation of
hemlock stands within 0.1, 0.5 and 1.0 km of properties, and estimation
using a traditional hedonic model and a repeat-sales model. Different
spatial interpolation procedures use slightly different data smoothing
methods (Anselin and Le Gallo, 2006; Kuntz and Helbich, 2014). With
limited guidance from the literature on the best approach to use, we
consider the robustness of hedonic estimates to the use of Ordinary
Kriging, Inverse Distance Weighting, and Spline interpolation methods.
Likewise, there is limited guidance from the literature on how close
hemlock trees need to be to a property to have a price effect and we,
therefore, consider hemlock stands within three buffers around sold
properties. The repeat-sale model has a desirable identification property
for estimating the capitalized impact of the adelgid infestation of hem-
lock stands on property values, yet with a much smaller number of
property transactions available for estimation than with a traditional
hedonic model.

We found that infested hemlock stands within the 0.1 k buffer
reduced the capitalized values of single-family residences and this result
was robust to data interpolation method and estimation using the
traditional hedonic and repeat-sale estimation. Only hemlock stands
with limited defoliation due to the adelgid (0-25%) contribute posi-
tively to property values. When we consider the capitalized depreciation
of property values due to the adelgid infestation, the hedonic model
reveals a modest capitalized-value reduction of 0.2% or about $650 for
the average-valued property while the repeat-sale model reveals a
capitalized-value decrease of 15% or about $39,600 for a comparable
property. While the repeat-sale price impact may seem large, there is
some statistical support for this estimate as the hedonic model under-
performed when both models were estimated using the same data.
Further, hemlock trees are large trees that provide shade, privacy and
other amenities to property owners but can posed a significant risk to
people and nearby structures from falling branches as the trees die from
the adelgid infestation.

2. Previous research

We briefly discuss previous research applying hedonic models to
estimate the implicit value of tree cover in residential areas. Then we
move to data interpolation methods, which allow us to match adelgid,
hemlock and property sales data. We close with a discussion of tradi-
tional and repeat-sale hedonic models for identifying price effects.

2.1. Previous research on tree values
Considering landscape amenities, Geoghegan et al. (1997) calculated

measures of percent open space around residential properties and found
that land uses surrounding a parcel have a significant influence on
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property prices. Cho et al. (2008) calculated the distance to nearest
evergreen (conifer), deciduous and mixed forest patches for properties.
They concluded that proximity to evergreen forests is valued positively
in the rural-urban interface, while proximity to deciduous and mixed
forest types are valued positively in the urban area. In fact, multiple
papers are available in the literature that investigate the effects of trees
on property values and most indicate that (healthy) trees increase
property values (Mei et al., 2017; Siriwardena et al., 2016).

If trees increase property values, it is plausible that an invasive pest
that degrades tree quality and ultimately kills trees will diminish
property values. It has been predicted that changes in climate will in-
crease the frequency, severity, duration and geographical extent of
natural forest disturbances such as fires, insect and disease outbreaks,
droughts and severe storms (Bentz, 2008; Dale et al., 2001; Frankel,
2008) and these predictions have been generally upheld (Weed et al.,
2013). Advanced tree mortality can impact property values via the
diminishment of ecosystem services such as the provision of shade, vi-
sual aesthetics and regulation of the hydrological cycle. Dead and dying
trees also pose risks to residents and their homes. Associated property
value losses have been observed for the recent mountain pine beetle
infestation in the western U.S. (Cohen et al., 2016; Moeltner et al., 2017;
Price et al., 2010). In an adelgid application, Holmes et al. (2010) found
that severely-defoliated hemlock trees reduced the value of residential
properties.

The research we report expands what is known about the effects of
the adelgid on property values using site-specific measurements of the
infestation at three points in time. We also cover a much larger
geographic area than a single community or small region used in the
studies cited above by considering the northward migration of the
infestation through central portions of Connecticut and Massachusetts.

2.2. Spatial interpolation

Hedonic models typically use proximity to a property or the spatial
extent within a specified buffer around a property as the environmental
variables. Spatial interpolation is often used to extend known data to all
property sales and various interpolation methods have been used. For
example, Leggett and Bockstael (2000) used Inverse Distance Weighting,
Anselin and Lozano-Gracia (2008) used Ordinary Kriging and Fernan-
dez-Avilés et al. (2012) used CoKriging. Anselin and Le Gallo (2006)
compared four procedures to interpolate air quality (Inverse Distance
Weighting, Ordinary Kriging, Spline and Thiessen polygons) and
concluded that Ordinary Kriging worked best. Whereas, Kuntz and
Helbich (2014) considered Ordinary Kriging and CoKriging and found
evidence in favor of CoKriging. Such investigations of the effects of data
interpolation on hedonic estimation outcomes are rare in the published
literature. Anselin and Le Gallo (2006) conclude “... our findings suggest
that the quality of the spatial interpolation deserves the same type of
attention in the specification and estimation of hedonic house price
models as more traditional concerns” (p. 50). Thus, as a robustness
check, we consider three types of spatial data interpolation: Ordinary
Kriging, Inverse Distance Weighting, and Spline interpolation methods.

2.3. Hedonic estimation

Traditional hedonic models regress sale prices of properties on
property characteristics where the estimated coefficients provide the
basis for computing the effects of changes in property characteristics on
property prices (Taylor, 2017). This approach has been criticized
because omitted relevant variables might confound the estimation of
property-price effects (Bishop et al., 2020). As such, econometric and
quasi-experimental approaches have been used to control for this
concern so that the actual price effects can be identified.

As an econometric approach to address the potential for spatially
correlated omitted variables we estimate a hedonic model with time and
spatial fixed effects. The idea is that fixed effects that are matched with
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Fig. 1. Study Area Hemlock Stands.

property sale times and locations capture the influences of omitted
relevant variables. While Kuminoff et al. (2010) suggest that spatial
fixed effects may mitigate this concern, Abbott and Klaiber (2011) find
that this may not always be the case.

Thus, we also estimate a repeat-sale model where changes in the
adelgid infestation through time provide a “natural experiment” where
we can observe the sale of a property at two points in time for properties
that sell more than once in the study period. Thus, rather than simply
regressing sale prices on the extent of the adelgid infestation, we also
regress changes in sale prices on changes in the extent of the adelgid
infestation. Omitted variables that are invariant through time cancel out
of this model specification and thereby do not confound estimation/
identification of adelgid infestation price effects. However, there are
fewer observations available for estimating the repeat-sale model
because most properties transact once during the study period.

Neither the traditional hedonic nor the repeat-sale hedonic are per-
fect. The hedonic model has the advantage of more information from
more sales to use in the estimation and the repeat-sale has the advantage
of the identification strategy. We apply both estimation approaches in
this study.

3. Application

To understand and characterize hemlock stands at the local and
landscape levels in New England, ecologists at the Harvard Forest

identified, mapped and characterized hemlock stands in a 7500 km?
transect covering central portions of Connecticut and Massachusetts
(Orwig and Foster, 1998; Orwig et al., 2002). All stands of eastern
hemlock with land areas greater than 1.3 ha in size were identified using
high-resolution aerial photographs and digitally transferred into a GIS
overlay. A total of 6126 hemlock stands were identified (see Fig. 1).

Biological sampling to document the extent of the adelgid infestation
across the 6000 hemlock stands is expensive and logistically chal-
lenging. Consequently, 142 hemlock stands were randomly sampled
within the Connecticut/Massachusetts study area and samples of hem-
lock health were taken within each of these stands (Gomez et al., 2015;
Preisser et al., 2008). Field surveys were conducted in selected hemlock
stands (red dots in Fig. 1) to document hemlock health in terms of live
basal area and vigor in 2007, 2009 and 2011. Live basal area, measured
as square meters per hectare at 4.5 ft above the ground, provides a
systematic indication of the cross-sectional area occupied by living
hemlock trees in each plot. Vigor was measured as the average amount
of hemlock foliar decline in each plot. Four vigor categories were
recorded: 76-99% foliar loss, 51-75% foliar loss, 26-50% foliar loss,
and 0-25% foliar loss (coded as 1, 2, 3 and 4, respectively).

Both the mean and maximum value of hemlock live basal area
decreased from 2007 to 2009 to 2011 (Table 1); indicating that hemlock
trees were dying, or unhealthy trees were being removed during the
study period. Vigor also decreased throughout the study period, indi-
cating the adelgid infestation was increasing among the remaining
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Table 1
Live Basal Area and Vigor for Sampled Hemlock Stands.
2007 2009 2011
Live Basal Area (m?/ha) Mean 38.2 27.8 15.3
Standard Deviation 27.6 16.3 11.9
Min 0 0 0
Max 125.4 73.3 54.0
N* 140 138 122
Number of Stands
Vigor 76-99% 8 11 9
(% foliar loss) 51-75% 18 19 23
26-50% 33 37 44
0-25% 82 71 47
N 141 138 123

# The initial number of sampling plots was 142. In 2007, data are available on live basal area for 140 of the 142 plots and vigor for 141 of the 142 plots. The sample
sizes decrease over time due to some hemlock stands disappearing (trees in the stands died or unhealthy trees cut down), the land was cleared for development, or the

sampling crew was not allowed follow-up access to private-land parcels.

A B

Fig. 2. Hemlock Stand Spatial Relationships to Property Buffers.

C D

Note: S denotes a sampled hemlock stand, NS denotes a hemlock stand that was not sampled, and the black circle is the buffer around a property.

hemlock trees. The number of stands with the lowest foliar loss (0-25%)
declined through time as the infestation spread. The number of severely
damaged hemlock stands likely dropped in 2011 because dead trees
either fell over or were removed.

The hemlock stands and adelgid infestation data were merged with
property sale data from DataQuick, using circular buffers around the
centroid of each parcel.! There is limited guidance from the literature on
how close trees need to be to a property to have a price effect. Thus, as an
additional robustness check we consider how estimation results change
as the model reflects hemlock stands within 0.1, 0.5 and 1.0 km of
properties. Stands within 0.1 k might be on or adjacent to a property.
Stands within 0.5 k might be adjacent to a property or in a property's
view shed. Stands within 1.0 k might be visible in people's daily activ-
ities leaving and returning to their properties. Larger buffer sizes were
not considered because most hemlock stands in the study area are small
and on private property. The study area is also heavily forested so
landowners may not see or be aware of hemlock trees unless they are in
relatively proximity to their home and neighborhood.

There are four potential spatial relationships between properties and
hemlock stands (Fig. 2). In case A, the buffer only intersects sampled
hemlock stands. In case B, the buffer intersects both sampled and non-
sampled hemlock stands. In case C, the buffer only intersects non-
sampled hemlock stands. In case D, the buffer does not intersect any
hemlock stands.

Based on the sample data, we only have observed hemlock health
information for case A and the number of properties potentially

! Since properties are geolocated by parcel centroids and we do not have
property boundary data, the assigned property buffers can contain hemlock
trees on or adjacent to the owner's property. The property owner does not have
control of trees that are not located on their property and likely cannot apply
treatments to protect these hemlocks from the adelgid infestation.

impacted by the adelgid infestation is small. To make maximum use of
the Harvard Forest census of hemlock stands and our extensive property
sale data, we interpolate hemlock health (live basal area and foliar loss)
across the study area. Using interpolated hemlock health data, we are
then able to enlarge the economic analysis to include cases A, B and C in
Fig. 2, resulting in a much larger set of property sales for estimation.

Land cover in neighborhoods can also influence property values
(Irwin, 2002; Paterson and Boyle, 2002). We constructed land cover
variables from the National Land Cover Database (2006) using rasters of
30m? pixels. The six types of land cover variables used for analysis
include water, open space, developed, forest, agriculture, and wetland.
Variables were calculated as the percentage of the buffer area (0.1 km,
0.5 km, 1 km) around each property covered by each land cover type.

These environmental data were merged with property sale data for
the period 2007 to 2011. For years when adelgid sampling was not
conducted (2008 and 2010), live basal area and vigor were calculated as
the mean of the previous year and following year, 2007,/2009 and 2009/
2011. Land cover was assumed constant during the study period due to
the available data.

4. Spatial interpolation

Spatial data interpolation is a family of methods to extend observed
data spatially for locations where data are not available. Here we apply
Ordinary Kriging, Inverse Distance Weighting and Spline interpolation
methods (Chiles and Delfiner, 1999; Cressie, 1991; Franke, 1982; Goo-
vaerts, 1997; Isaaks and Srivastava, 1989; Mitas and Mitasova, 1988;
Schabenberger and Gotway, 2005; Shepard, 1968; Stein, 1999). Each of
these methods takes a slightly different approach to using known
neighbor values to interpolate an unknown value.

Ordinary Kriging (Kriging hereafter) is used as the base interpolation
method following the finding of Anselin and Le Gallo (2006) that this
method worked best in their comparison study and has been used in
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Table 2
Descriptive Statistics of Hemlock Health Variables in Hedonic Model and
Repeat-Sale Model Estimation (0.1 km buffers).

Mean SD Min Max
Sample Data
(n=148)
lba (m?/ha) 22.9 18.4 0 98.4
vigor 2.7 1.0 1 4.0
Iba*vigor 65.5 55.9 0 295.3

Hedonic Model Interpolation Data

(n = 2758)
Kriging
Iba (m?/ha) 30.3 12.8 5.8 79.6
vigor 3.4 0.5 1.4 4.1
Iba*vigor 106.4 55.3 13.1 314.2
IDW
lba (m*/ha) 30.3 13.0 3.0 87.6
vigor 3.4 0.6 1.1 4.0
Iba*vigor 106.4 55.4 6.0 346.1
Spline
Iba (m*/ha) 30.5 13.2 3.8 83.4
vigor 3.4 0.6 1.1 4.6
Iba*vigor 107.2 56.4 6.5 329.2
Repeat-Sale Model Interpolated Data

(n = 356)
Kriging
Iba (m*/ha) 31.2 12.4 7.3 70.6
vigor 3.4 0.6 1.4 4.1
Iba*vigor 111.6 53.2 13.3 283.0

other forest interpolation efforts (Freeman and Moisen, 2007; Gun-
narsson et al., 1998). We apply Inverse Distance Weighting (IDW here-
after) and Spline procedures for robustness comparisons. These
interpolation methods are readily available in the geo-statistical wizard
of the Geostatistical Analyst Tool in ArcGIS 10.1.

Spatial interpolation methods impose the assumption that values are
more similar for locations near to each other. There exists a strong south-
to-north trend in the adelgid infestation. First, a second-order poly-
nomial trend is removed, and Kriging is performed on the residuals
which satisfy to the stationary assumption of ordinary Kriging. After
removing the trend over space, the spatial correlation applied here is
assumed to be isotropic over the study area where the correlation de-
pends on the distance between two points but not the direction of their
separation.” Eastern hemlocks, occur in patches across the landscape
and are not contiguously dispersed through space. The adelgid infesta-
tion moves from patch to patch of hemlock, but the diffusion process is
not smooth as birds, prevailing winds, and humans may carry the insects
from an infested stand to healthy stands.

Values for hemlock live basal area and vigor were interpolated for all
non-sampled stands in the study area for each year of the study period,
2007-2011. The interpolated hemlock variables for the 6126 hemlock
stands were then extracted based on a 30 x 30 m grid to assign values for

2 Kriging assumes an isotropic distributions pattern and if the adelgid was
introduced in the center of the geographic extent of hemlocks in the U.S., then
the spread of the infestation would be expected to be isotropic, i.e., spread
equally in all direction. Due to the location where the adelgid was first intro-
duced into the U.S., Virginia, the spread was bound on the east by the Atlantic
Ocean and the spread has been in southwesterly and northeasterly directions
following the geographic extent of Hemlock habitat (Limbu et al., 2018; Morin
et al., 2009). Similarly, for the study area, the initial infestation was in southern
Connecticut and the spread was bound to south by Long Island Sound. How-
ever, as the infestation moved inland, dispersion from an infested stand could
be isotropic, spreading in any direction. Thus, in the Kriging the directional
trend is removed to allow for isotropic dispersion around each location of
hemlock infestation in the study area.
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the 0.1, 0.5 and 1.0 km buffers around each property (Table 2). The first
row in Table 2 shows summary statistics for the sample data on hemlock
health and the other rows are summary statistics for interpolated hem-
lock health based on model type (Hedonic and Repeat Sale) and inter-
polation method. Note, while observed vigor is an integer variable
ranging from 1 (lowest vigor—greatest foliar loss) to 4 (highest vig-
or—lowest foliar loss), the interpolation process predicts continuous
values for vigor that allows for minimum vigor to be less than 1 and
maximum vigor to exceed 4. This outcome is shown in Table 2 where
maximum vigor is greater than 4 for all the interpolated data sets. The
continuous interpolations of vigor are used in the estimation.

5. Model specification

For the traditional hedonic specification (Hedonic Model hereafter), a
fixed-effect model is estimated:

InPy = Zia + + Lif + Ibayy + (Iba; *vigor;, )0 + 1, + w; + 0y (¢}

where P; is the sale price for property i at time t, Z; is a vector of
property-specific characteristics, L; is the vector of property-specific land
cover characteristics, 7; is a vector of time fixed effects, wj is a vector of
spatial fixed effects delineated by zip code, and o; is the random error.”

For the hemlock variables, lba is live basal area, measured as a square
meter cross-section per hectare at 4.5 ft above the ground, provides a
systematic indication of the cross-sectional area occupied by living
hemlock trees in each plot. Vigor was measured as the average amount of
hemlock foliar decline in each plot, ranging from 1 (lowest vigor) to 4
(highest vigor).

Property-specific characteristics include lot size, living area, number
of bathrooms, number of bedrooms, house age, presence/absence of air
conditioning, presence/absence of a fireplace, and distance to the
nearest highway. The property-specific land cover characteristics
include the percentage of buffer area covered by water, open space,
development, forest, agricultural land and wetland. The hemlock vari-
ables are lba;; and vigory;, and are as defined above. The time fixed effects
are binary variables for each year, 2007 to 2011. Spatial fixed effects are
binary variables for zip codes.*

3 There could be concern that the hemlock variables are endogenous if, for
example, owners of higher-priced properties treat hemlock trees to prevent the
adelgid infestation and therefore protect property values, while owners of
lower-priced properties do not take such actions. However, all property owners
may treat their trees, remove infected trees, or let infected trees die in place.
The latter seems unlikely because of the risk to structures and people from
falling limbs. Considering treatment, a New York nursery reports costs to treat
100 in. of dbh (about four mature trees) ranges from $80 to $240 (http://www.
whiteoaknursery.biz/Hemlock%20HWA treatment.shtml). According to the US
Forest Service, a typical 160-year-old hemlock in New York (no data for Con-
necticut and Massachusetts) has a dbh of 61 cm (or 24 in.) (https://www.srs.fs.
usda.gov/pubs/misc/ag_654/volume_1/tsuga/canadensis.htm). Treatment of
four trees likely costs less than $250 for two to five years of protection (https:
//ag.umass.edu/landscape/fact-sheets/hemlock-woolly-adelgid). The median
household incomes in Connecticut and Massachusetts, where the study area is
located, are approximately $79,000 and $87,000 (https://www.statista.
com/statistics/233170/median-household-income-in-the-united-states-by-stat
e/), respectively. Thus, the treatment cost is much less than 1% of the median
incomes, and these data suggest many households have the financial means to
treat hemlock trees on their properties. Further, the cost to remove a mature
hemlock at a height of 31 m (102 ft) can range from $1100 to $1800 (https:
//homeguide.com/costs/tree-removal-cost). Thus, for owners of lower-priced
properties on a tight budget, it can be advantageous, cost wise, to treat
rather than remove infested hemlock trees. To treat or remove trees is a pref-
erence choice that can apply to owners of properties at all price points. These
considerations break the prima-facia link between higher-priced properties
having higher-quality hemlock trees.

4 The number of the spatial fixed-effect variables varies with the buffer sizes.
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Fig. 3. Kriging Live Basal Area Interpolation (m?/ha in study area defined in Fig. 1).

The repeat-sale specification (Repeat-Sale Model hereafter) is:
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where r denotes the most recent sale, p denotes the previous sale of a
property and aitripr is the random error term.”

We differentiate between the hemlock coefficients (y and 6 versus 5™
and ). If there is no omitted variable bias, one might expect the
following relationships to hold, E(7) = E(7/) = y and E(6) = E(67’ ) =7.
Omitted relevant variables that would cause these relationships to not
hold are variables that would be correlated with lba and vigor. For
example, if property owners' response to the adelgid infestation is to
remove hemlock trees and they have other species of trees removed at
the same time, then the additional reduction in tree canopy would be
correlated with lba and would be an omitted relevant variable. We do
not have any evidence that such actions are occurring, and the essence of
omitted relevant variables is that the investigator does not know of their
existence or cannot obtain observational data. This is the reason for
using quasi-experimental methods like repeat-sale modeling. While
omitted relevant variables is the common explanation for the equalities
above not holding, available samples for hedonic estimation are larger
than for repeat-sale estimation as not all properties in an area will sell
more than once. Thus, in the estimation we first estimate the Hedonic
Model with all interpolated data and, second, using just the data

5 The repeat-sale specification not only removes regressors that are constant
through time but removes the decisions on the functional specifications of these
variables (Bishop et al., 2020; Humphreys and Nowak, 2017). The repeat-sale
model is also capable of addressing endogeneity that might occur in the he-
donic (Heintzelman and Tuttle, 2012; Linden and Rockoff, 2008). Suppose a
property sold in 2007 with no adelgid effects and then resold in 2009 or 2011. If
the property owner treated the hemlocks on the property to “preserve” the
properties' value, then the model is being estimated based on between-sale
comparisons and not between-property comparisons which the traditional he-
donic relies on.

included for the Repeat-Sales Model.

In addition to the significance and signs of the hemlock variables, the
derivatives of the Hedonic and Repeat-Sale Models, respectively, can be
used to evaluate the comparability of different estimation outcomes:

olnP; /dlba = y" + vigor,0" 3

where m denotes the model that provides the coefficient estimates, e.
g., hedonic or repeat sale. Several patterns can arise for the hemlock
variables. For example, if ™ and y™ are both significant and positive,
property values increase with the size and health of hemlock stands.
Alternatively, if the coefficients are significant but differ in sign, then
only hemlock stands of a certain vigor will positively contribute to
property values. Comparison across model estimates can become
muddled when this latter condition occurs so we set the derivative equal
to zero and solve for the level of vigor that defines whether hemlock
stands contribute positively or negatively to property values:

vigor™/~ = ?//9\ 4)

Hemlock stands with vigor greater than vigor'™/~ positively
contribute to property values. This provides a consistent metric to
compare estimation outcomes across models.

6. Results

Summary statistics are reported in Table 2 for the hemlock variables
at the 0.1 k buffer. The sample sizes are the number of property sales
available for estimation with each type of data. Similar patterns of re-
sults hold for the 0.5- and 1.0-km buffers so summary statistics are not
reported for these buffers here.®

In the econometric results reported below, we report coefficient es-
timates for the two hemlock variables for parsimony of exposition.
Descriptive statistics for non-hemlock explanatory variables, excluding

6 Outliers for the property sale price were removed prior to estimation
removing observations in the 0.05% and 99.95% tails of the sale-price distri-
bution of the 1 km buffer.
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Fig. 4. Kriging Vigor Interpolation (2007-2011).

fixed effects, are reported in Appendix Table A and their respective
coefficient estimates are reported in Appendix Tables B, C, D and E.
Between the Hedonic and Repeat-sale data, only three of 15 character-
istics show significant differences and the magnitudes of those with
significant differences are so small they are inconsequential.

As a baseline for comparison, we use the traditional hedonic model
applied to the observed data and the Kriged data.’,® For properties that
sold more than once, the most recent sales were used in the estimation to
avoid correlation between multiple sales of the same property.

6.1. Spatial interpolation

In Table 2 the first three rows show summary statistics for property
sales whose buffers intersect a sampled plot with a 0.1 k buffer. The next
three sets of rows show summary statistics for the interpolated data to
support estimation of the Hedonic Model with a 0.1 buffer. The last three
rows show summary statistics for the interpolated used to estimate the
Repeat-Sale Model. Sample sizes reflect the number of property sales
available to estimate each model with the respective data.’

Live basal area and vigor were decreasing, on average, through time

7 If neighbors encourage neighbors to treat healthy hemlock trees or remove
dead and dying trees, this could lead to spatial correlation of property trans-
action values. We ran spatial lag, spatial error and spatial auto correlation
models using properties within 8 km of a subject property and that sold within
one year before or after the subject property sold. All three approaches indi-
cated a spatial effect, but the coefficient estimates were robust to the Hedonic
Model using Kriged data with a 0.1 km buffer. The coefficient on lba ranged
from —0.0064 (spatial lag and spatial auto correlation) to —0.0071 (Hedonic
Model) and the lba*vigor ranged from 0.0017 (spatial lag and spatial auto cor-
relation) to 0.0018 (Hedonic Model and spatial error).

8 The estimation may be missing neighborhood variables that represent the
social pressure by neighbors to protect hemlocks or remove dying and dead
hemlocks. The zip-code, spatial fixed effects in our estimation follow the finding
of Kuminoff et al. (2010) of removing bias.

9 Because of the small sample of properties with buffers that include observed
hemlock sample sites it is not possible to estimate the Repeat-Sale Model using
these data.

in the observed data and this decreasing trend is observed in the inter-
polated data (see Figs. 3 and 4 for the Kriging results as an example). The
adelgid infestation was primarily located in southern Connecticut in
2007 and the extensive infestation progressed north into Massachusetts
by 2011. The pattern of decline in hemlock vigor follows the pattern of
live basal area decline.

Based on the 0.1 km buffer data used to estimate the Hedonic Model,
mean values and standard deviations for live basal area (Iba) and vigor
are quite similar across Kriging, IDW and Spline interpolations (Table 2).
However, the interpolation means are somewhat larger than the sample
data (~30 vs. ~23 for lba and ~ 3.4 versus ~2.7 for vigor) and the
comparable standard deviations are smaller (~13 vs. ~18 for lba and ~
0.6 versus ~1.0 for vigor). For the Repeat-Sale Model, the Kriging sum-
mary statistics are like those for the Hedonic Model.

6.2. Hedonic regression results

To provide a baseline for comparisons, we first report estimates for
the Hedonic Model with fixed effects (eq. 1) using data from sampled
hemlock stands (Table 3). The model estimated for the 0.1 km buffer
indicates that both hemlock variables are significant in explaining var-
iations in housing prices and vigor™ ™ is 2.9, indicating hemlock stands
positively impact property values if vigor is class 4 (25% or less foliar
loss). At lower levels of vigor, hemlock stands negatively impact prop-
erty values.

Increasing the size of the buffers around properties to 0.5 km and 1.0
km increases the number of potentially affected properties included in
the estimation from about 500 and over 1600. The coefficients are
insignificant for the 0.5 km buffer but are significant for the 1.0 km
buffer. However, the interaction variable has the wrong sign,; it indicates
that increasing vigor reduces property values.

One might question the baseline results because the small number of
sampled hemlock stands limits the numbers of property transactions in
the estimation and thereby does not make use of the full spatial extent of
study area information. We note that spatial interpolation allows for
potential consideration of all 6126 hemlock stands in the study area and
substantially increases the observations available for analysis to nearly
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Table 3
Hemlock Coefficient Estimates Based on Sample Data and Kriged Interpolation
Data.

Buffers
<0.1 km <0.5 km <1 km
Sample Data
Hedonic Model
Iba (m?/ha) —0.0059%** 0.0017 0.0020%*
(0.0032)" (0.0022) (0.0012)
Iba*vigor 0.0020%* —0.0005 —0.0006*
(0.0010) (0.0007) (0.0004)
vigor™/~ 2.9 nc* nc
N 148 484 1651
Kriging Interpolation Data
Hedonic Model
Iba (m*/ha) —0.0071** —0.0054*** —0.0030**
(0.0037) (0.0022) (0.0016)
Iba*vigor 0.0018%** 0.0015%** 0.0009**
(0.0008) (0.0005) (0.0004)
vigor*/~ 3.8 3.6 3.4
N 2758 13,076 23,244
Repeat-Sale Model
lba (m*/ha) —0.0322%** —0.0048 0.0024
(0.0116) (0.0066) (0.0058)
Iba*vigor 0.0097*** 0.0007 —0.0016
(0.0035) (0.0017) (0.0014)
vigor™/~ 3.3 nc nc
N 178 816 1420
Hedonic Model with Repeat-Sale Sample®
Iba (m?/ha) 0.0299 —0.0124* —0.0020
(0.0243) (0.0077) (0.0047)
Iba*vigor —0.0009 0.0032%* 0.0008
(0.0047) (0.0016) (0.0011)
vigor™/~ ne 3.9 ne
N 178 816 1420

@ Asterisks denote significance at the 1% (***), 5% (**) and 10% (*) levels for
one-tailed tests.

Y Standard errors in parentheses.

¢ Denotes no calculation because coefficient estimates are insignificant or
have counterintuitive signs.

3000 with the 0.1 km buffers, about 13,000 with 0.5 km buffers, and
over 23,000 with 1 km buffers.

Using the Kriged data, lba and lba*vigor are significant in the Hedonic
Model and have plausible signs for all three buffers (Table 3).1 The
magnitudes of coefficient estimates vary across buffers, but vigor™ ™
remains relatively constant, ranging from 3.4 (in the 1 km buffer) to 3.8
(in the 0.1 km buffer), indicating that only the healthiest stands (0-25%
foliar loss) contribute positively to property values (and greater foliar
losses reduce property values).' This is a more restrictive condition
than observed for the Sample Data where vigor+/— is 2.9. The difference

10 Kriging results in some projections of vigor that are less than 1 and greater

than 4. We ran the Kriged models with the <0.1 km buffer limiting vigor to the
[1,4] interval and the estimation results were essentially identical. For the
hedonic model, the coefficient estimate changes were: lba — 0.0071->-0.0068
and Ilba*vigor 0.0018-0.0018. Similarly, for the repeat-sale model: lba —
0.032-0.033 and Iba*vigor 0.0097->0.0099).

1 We also ran Hedonic and Repeat-Sale Models using the <0.1 km buffer where
vigor was a binary variable; lba*v1 (76-99% foliar loss), lba*v2 (51-75% foliar
loss) and lba*v3 (26-50% foliar loss) where v4 (0-25% foliar loss). In these
models the qualitative results hold, lower vigor reduces property values. In both
models, lba became insignificant. However, for the Hedonic Model lba*v1 and
Iba*v3 were significant and negative while lba*v2 was insignificant. Further, the
coefficient for lba*v1 (—0.093) was larger in absolute value than the coefficient
for lba*v3 (—0.001). For the Repeat-Sale Model, there were no observations for
v1, Iba*v2 was negative and significant (—0.01) and lba*v3 was negative but
insignificant. It is noted that the coefficients for lba*v1 in the Hedonic Model and
Iba*v2 in the Repeat-Sale Model are nearly identical.
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is driven by the larger coefficient estimate on lba in the Kriged-data
Hedonic Model.

Increasing the number of observations still leaves questions about
whether the Hedonic Model is fully identified, and one might wonder if
the fixed effects fully account for potentially correlated omitted vari-
ables. Turning to the Repeat-Sale Model that imposes a quasi-
experimental design on the estimation, the number of observations
decline to a range of a little less than 200 and a little over 1400 across the
three buffers, but the advantage is that time-invariant variables that are
potentially correlated with the hemlock variables cancel out of the
estimation.

Only the 0.1 km buffer has significant hemlock coefficients for the
Repeat-Sale Model (Table 3).'% The magnitudes of the coefficient esti-
mates are much larger in the Repeat-Sale Model relative to both previ-
ously discussed Hedonic Models (—0.0322 versus —0.0059 and — 0.0071
for Iba and 0.0097 versus 0.0020 and 0.0018 for lba*vigor). It is inter-
esting that vigor/~ is 3.3, splitting the difference between the Hedonic
Models for the Sample and Kriging Data (2.9 and 3.8, respectively). This
relationship occurs because only the coefficient on lba increased moving
from the Sample-Data to Kriging Data Hedonic Models, while both co-
efficients increased in magnitude moving to the Repeat-Sale Model.

For the variables included in hedonic model, their descriptive sta-
tistics were not significantly different from those for the repeat-sale
model sample with two exceptions, Fireplace (hedonic 48% vs. repeat-
sale 41%) and Developed area (hedonic 0.08% vs. repeat-sale 0.002%)
(see Appendix Table A). Thus, estimation differences between the he-
donic and repeat-sales coefficient estimates may be more likely driven
by the modeling approaches with the hedonic estimation potentially
having omitted relevant variables that cancel out in the repeat-sale
estimation.

To directly compare the Hedonic and Repeat-Sale models, we estimate
the Hedonic Model using the same data used to estimate the Repeat-Sale
Model."® The Hedonic Model with Repeat-Sale Sample estimation results in
significant coefficients for the 0.5 km buffer and vigor™ ™ is 3.9, which is
consistent with the results from the Kriged Data estimation results for
the Hedonic Model with a 0.1 km buffer. These results suggest that the
differences between the Hedonic Model and the Repeat-Sale Model arise
from the different model specifications.

6.3. Spatial interpolation robustness

The 0.1 km buffer is used in these comparisons as it provided sig-
nificant hemlock coefficient estimates for the Hedonic and Repeat-Sale
Models using the Kriged data and was the only buffer with significant
coefficients in the Repeat-Sale Model estimation. The Hedonic Model and
Repeat-Sale Model estimation results from Table 3 based on the Kriged
Data are included in first column of Table 4 to facilitate comparisons. All
the hemlock coefficient estimates based the IDW and Spline data in-
terpolations have the same signs as the Kriged interpolation estimates
and all are significant except the coefficient for lba in the Hedonic Model
using the Spline interpolation data for estimation.

Coefficient estimates based on the IDW and Spline interpolations are
more like each other than they are to the Kriging interpolation.
Consider, vigor™ ™ is 3.1 for IDW and Spline but 3.8 and 3.3 for the
Kriging interpolation estimations, which all suggest that only the
heathiest trees contribute positively to property values.

12 Given that our study time frame, 2007-2009 overlapped with the great
recession, we also estimated a model including dummy variables to indicate the
year of the second sale using the <0.1 km buffer. We found that the coefficients
for Iba and lba*vigor remained significant and changed very little in magnitude
(—0.032->-0.028 and 0.0097 - 0.0092, respectively).

13 We employ the most recent sale of each property in the Hedonic Model
estimation.
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Table 4
Hemlock Coefficient Estimates Based on Alternative Interpolation Methods (0.1
km buffers).

Kriging IDW Spline
Hedonic Model (N = 2758)
Lba (m?/ha) —0.0071%** —0.0035* —0.0025
(0.0037)" (0.0027) (0.0024)
Iba*vigor 0.0018** 0.0011* 0.0008*
(0.0008) (0.0007) (0.0006)
vigort/ 3.8 3.3 nc
Repeat-Sale Model (N = 178)
Iba (m?/ha) —0.0322%** —0.0245* —0.0228**
(0.0116) (0.0152) (0.0129)
Iba*vigor 0.0097*** 0.0079* 0.0075%*
(0.0035) (0.0039) (0.0034)
vigort/ 3.3 3.1 3.1

@ Asterisks denote significance at the 1% (***), 5% (**) and 10% (*) levels for
one-tailed tests.

b Standard errors in parentheses.

¢ Denotes no calculation because coefficient estimates are insignificant or
have counterintuitive signs.

6.4. Values for improvements in Live Basal Area (lba)

Here we report values based on the 0.1 km buffer, which is the only
buffer to provide consistently significant estimates with the expected
coefficient signs. We consider a change moving from the 2007 level of 38
m?/ha to the 2011 mean Iba of 15 m?/ha at the highest level of vigor, 4.
This vigor level is supported by the Hedonic Model and the Repeat-Sale
Model as contributing positively to property values.

As the parameter estimates in a log-linear hedonic can be used to
calculate percentage changes in the dependent variable, the percentage
change in housing price is computed as:

%AP = (Pys — Psg)/Pis
= exp(7(lbays — lbass) + (a(lbam*vigor4 — Ibazs*vigor, ) —1 5)

The capitalized decrease in value for the average priced house in

2007 is then calculated by multiplying %AP by the average sale price of
$281,358 (Kriging interpolation sample for the 1 km buffer).

The Hedonic Model reveals a modest capitalized-value reduction of
0.2% or about $650 for the average-valued property. A much larger
impact is found with the Repeat-Sale model with a capitalized-value
decrease of 15% or about $39,600. This is a dramatic difference in
property value impacts and might be due to several reasons. The Hedonic
Model estimate may be lower because there are other confounding fac-
tors that ameliorate the impact the are not captured by the fixed ef-
fects. Conversely, the restricted sample of properties that sold more
than once may not be representative of all properties in the study area
and the Repeat-Sale model provides an overestimate of the price impact.

7. Discussion

Differences in implicit prices across hedonic and repeat-sale, or other
quasi-experimental, estimation is not unique to this study (e.g.,
Kuminoff and Pope, 2014). We found the Repeat-Sale coefficient esti-
mate is more than four times larger in absolute value than the Hedonic
estimate (4.57 = —0.032/-0.007, Kriging with 0.1-km buffer). Joshi
et al. (2020) found a ratio of Repeat-Sale to Hedonic coefficient estimates
of 0.57 and 0.56 for condominiums in Seattle within a 0.5-mile buffer,
and 1.05 and 1.04 for condominiums within a 0.5-1-mile buffer. In
comparison, Humphreys and Nowak (2017) found Repeat-Sale coeffi-
cient estimates for single family homes in Charlotte, NC were compa-
rable to a Hedonic model with fixed effects for a 1-mile buffer (0.97 ratio)
and slightly smaller for a 1-2-mile buffer (0.77 ratio).

One might expect differences between repeat-sale and hedonic esti-
mation if there are omitted relevant variables that are time constant and
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cancel out in the repeat-sale estimation but not for the hedonic esti-
mation. Differences could also be driven by the repeat-sale and hedonic
samples differing in terms of the key policy variable(s) or the houses that
sold twice versus once. Thus, a key insight relates to the number of
observations available for estimation. Humphreys and Nowak had
12,989 observations to support their Repeat-Sale estimation and 41,417
for the Hedonic estimation, and Joshi et al. (2020) had 10,398 and 7697
for their Repeat-Sale estimation and 27,427 and 20,060 for the Hedonic.
These are far more than the 178 and 2758 observations we have,
respectively, for the Repeat-Sale and Hedonic estimation. These differ-
ences arise because the Humphreys and Nowak and Joshi et al. studies
were conducted in urban areas, Charlotte, NC and Seattle, WA, whereas
our study was conducted in largely rural areas of Connecticut and
Massachusetts. Thus, the larger coefficient-estimate difference in our
study may be driven by the small number of repeat-sale observations
and the larger difference in repeat sales relative to single sales. Noting
the summary statistics on live basal area and vigor in Table 2, which are
nearly identical for the for the kriged repeat-sale and hedonic data, the
larger difference observed in our study may be due to the repeat-sale
sample differing from the hedonic sample in terms of properties sold
in terms of features we could not control for in the hedonic. However, it
is worth repeating that the hedonic and repeat-sales descriptive statistics
for the variables included in the models were statistically identical with
two minor differences (see Appendix Table A).

Differences might also be driven by endogeneity in the hedonic
model. Heintzelman and Tuttle (2012) attributed larger effects in a
hedonic model of wind farms, relative to a repeat-sale model, to the
presence of endogeneity in the hedonic. Note, both models were esti-
mated with the same number of observations. We observed the opposite
relationship between the hedonic and repeat-sale estimation. While
endogeneity may be a contributing factor, we suspect the observed
difference are due to multiple confounding factors that include endo-
geneity, different samples of properties and differing sample sizes.

There are other estimation approaches that might be used in future
comparisons to help explain or reduce differences in estimation out-
comes between repeat-sale and hedonic estimation such as pooling
single and repeat-sales data (e.g., Case and Quigley, 1991) and matching
properties with differing levels of the policy variable of interest (e.g.,
Guntermann et al., 2016; Klaiber and Smith, 2013). Joshi et al. (2020)
use one matching approach and found the ratio of repeat-sale to hedonic
coefficients of about 0.70 for both their 0.5- and 0.05-1-mile buffers:
reducing the difference for the smaller buffer and increasing the dif-
ference for the larger buffer.

8. Conclusions

Using spatial data interpolation allowed for the extrapolation of on-
site sampling data, limited due to expense and limited access to private
lands, to a large geographical area based on high resolution data on
hemlock stands. This expansion of the data has important implications
for the economic analysis as it allows for much larger sample sizes to
support estimation of traditional hedonic models and allows for the
estimation of a repeat-sale model.

Our results show that hemlock trees within 0.1 k of a property and
infected by the adelgid, in central portions of Connecticut and Massa-
chusetts, reduce property values and only the healthiest trees contribute
positively to property values. This outcome is consistent with the study
by (Holmes et al., 2010), conducted in New Jersey, that also found a
threshold of hemlock stand health below which hemlock stands reduce
property values.

The robustness analyses found that estimation results are sensitive to
investigator modeling decisions. This lack of robustness is not an
inherently negative outcome as important information is revealed about
the extent of the adelgid's effects on property values and economic
modeling choices. The results support that there is a property impact for
hemlock tress located near a property (0.1 km here) but not beyond. In
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context, 0.1 k is 328 ft, which suggests the trees are located on subject
properties or on an adjacent property; more distant trees do not have an
effect.

The capitalized property value impacts are not robust between the
Hedonic and Repeat-Sale models. The challenge here is that this model
robustness comparisons is an imperfect investigation of convergent
validity where the truth is unknown (Bishop and Boyle, 2019). The
Hedonic and Repeat-Sale models are designed to measure the same im-
plicit price. If there are no omitted relevant variables in the Hedonic
estimation, and this is a big if, the two estimation approaches should
provide similar implicit price estimates. Even if this strict omitted-
variable condition holds, one does not know which is unbiased or if
both are biased. Based on theoretical considerations, the Repeat-Sale
Model is preferred for identifying the price effect because time-invariant
explanatory variables cancel out of the estimation. However, this
advantage may be offset by the limited number of properties that sell
more than once, which may be systematically different from all prop-
erties that sold once during the study period.

Thus, careful consideration of the empirical evidence is required.
Our results provide some support for the quasi-experimental Repeat-Sale
Model over the Hedonic Model with spatial fixed effects. When both
models were estimated using the same data, the Hedonic Model

Appendix
Appendix Table A

Descriptive Statistics of Property Characteristic Variables (0.1 km buffers).
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underperformed.

In closing, we report losses in capitalized property values due to the
adelgid infestation. However, another perspective might be how prop-
erty values might recover post infestation. Our model is not equipped to
answer this question in that the adelgid “rapidly” decreases hemlock
health over several years while it would take hundreds of years for a
replanted hemlock tree to reach maturity. Further, we do not know what
action a landowner might take; nothing, planting a new hemlock,
planting a different species or other. The recovery of diminished prop-
erty values in the face of tree disease and pest infestation is a question
that has yet to be addressed in the literature.
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Hedonic Model

Repeat-Sale Model

Mean Standard Deviation Mean Standard Deviation
Sample Data
Sale price ($2003) $384,246 $250,960
Living area (ft%) 2289 910
Lot size (ft%) 86,936 133,246
Baths 2.0 0.8
Bedrooms 3.4 0.9
Age (years) 42 49
Air conditioning (%) 39 49
Fireplace (%) 54 50
Distance to highway (m) 937 845
Water (%) 0.3 2.5
Open space (%) 24 22
Developed area (%) 0.4 3.2
Forest (%) 52 30
Agricultural (%) 2 9
Wetland (%) 2 7
N 148 148
Interpolation Data
Sale price ($2003) $311,888 $176,061 $299,834 $183,692
Living area (ftz) 1912 840 1868 874
Lot size (ft?) 93,253 213,342 81,288 149,281
Baths 1.8 0.8 1.8 0.7
Bedrooms 3.2 0.8 3.2 0.8
Age (years) 39 41 41 40
Air conditioning (%) 31 46 28 45
Fireplace (%) 48+%* 50 41* 49
Distance to highway (m) 1068 1068 1016 1163
Water (%) 53 3.4 69 3.4
Open space (%) 22 20 22 18
Developed area (%) 0.1 %%* 1.2 0.0%*%* 0.0
Forest (%) 47 30 48 29
Agricultural (%) 5 13 5 12
Wetland (%) 3% 8 2% 6
N 2758 2758 178 178

& * and *** denote significant differences at the 10% and 1% levels.

10
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Appendix Table B

Hedonic Coefficient Estimates for Different Data Sets with the 0.1 km Buffers.
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Variables Sample Data Kriging Interpolation Data
Hedonic Model Hedonic Model Repeat-Sale Model
Living area (1000 ft2) 0.242 *** 0.242%%%? 0.207 ***
(0.014) 0.014)° (0.046)
Lot size (1000 ft2) 1.102 x 1073 1.70 x 10~ 4w+ -0.838 x 107*
(3.04 x 1074 (4.24 x 107°) (1.731 x 1074
Baths 0.089 0.092%%* 0.104 **
(0.059) 0.011) (0.049)
Bedrooms —0.091** 0.015* 0.018
(0.044) (0.008) (0.037)
Age ~1.764 x 107 3#** —0.002%** —2.311 x 1073 xxx
0.621 x 1073 (0.0002) 0.636 x 1073
Air conditioning 0.064 0.125%** 0.086 *

Fireplace

Distance to highway (km)

Water (%)

Open space (%)
Developed area (%)
Forest (%)
Agricultural (%)
Wetland (%)

Iba

Iba*Vigor

N
Adjusted-R2

(0.072)
—0.080
(0.083)

0.082

(0.079)

0.017 ***
(0.004)

2.066 x 1073
(1.257 x 107%)
2.710 x 1073
(2.166 x 1073)
1.097 x 1073
(1.258 x 107%)
2.814 x 1072
(2.643 x 107)
—0.010%*
(5.144 x 1073)
—0.0059*
(0.0032)
0.0020%*
(0.0010)

148

0.521

(0.015

0.010
(7.62 x 107%)
5.439 x 1073
(2.269 x 107%)
1.642 x 10°*
(4.389 x 1074
—9.410 x 1073
(5.487 x 1079)
5.320 x 10~
(2.795 x 1074
1.585 x 10 3#**
(4.169 x 1074
1.445 x 107
(7.211 x 1074
~0.0071*
(0.0037)
0.0018%*
(0.0008)

2758

0.5538

(0.050)
0.081

(0.070)
-0.027
(0.027)
—-8.054 x 1073
(5.192 x 107%)
0.639 x 1073
(1.825 x 107%)
—1.406 ***
(0.404)
—0.142 x 1072
(0.853 x 1073
~0.114 x 1073
(1.207 x 107%)
1.845 x 1073
(2.037 x 1073
0.0299
(0.0243)
—0.0009
(0.0047)

178

0.326

a *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level.

b Standard errors in parentheses.

Appendix Table C

Hedonic Coefficient Estimates for Different Data Sets with the 0.5 km Buffers.

Variables Sample Data Kriging Interpolation Data
Hedonic Model Hedonic Model Repeat-Sale Model
Living area (1000 ft2) 0.274%%% 0.266 *** ° 0.241 ***
(0.025) 0.007) ° (0.020)
Lot size (1000 ft2) 9.156 x 10 s+ 1.65 x 1074 #** 1.42 x 1074
(3.417 x 1074 (2.69 x 107°) (1.77 x 1074
Baths 0.010 0.073 *** 0.053 **
(0.026) (0.007) (0.022)
Bedrooms —0.022 2.816 x 1072 0.010
(0.022) (5.109 x 1079) (0.015)
Age ~1.535 x 107 3** —1.617 x 1073 xxx ~1.760 x 1073 xxx
(0.594 x 107%) (1.560 x 104 (2.427 x 1074
Air conditioning 0.098 *** 0.108 *** 0.123 ***
(0.032) (0.007) (0.027)
Fireplace 0.154%%* 0.078 *** 0.123 ***
(0.039) (0.009) (0.030)
Distance to highway (km) 0.035 0.011%** —0.008
(0.032) (0.007) 0.011)
Water (%) 3.523 x 1073 2.891 x 1073 ##* 3.970 x 1073
(3.948 x 1073) (0.863 x 1073) (2.955 x 107%)
Open space (%) 3.192 x 10 3xxx 2.584 x 1073 *** 6.057 x 1073 ***
(0.790 x 107%) (0.566 x 1073%) (1.383 x 107%)
Developed area (%) —4.509 x 1073 —8.596 x 1073 wwx —0.016 ***
(3.328 x 107%) (2.391 x 107%) (6.146 x 1073)
Forest (%) 1.780 x 1073+ 1.307 x 1073 #xx 3.364 x 1073 *xx
(0.909 x 107%) (0.289 x 107%) (0.814 x 107%)
Agricultural (%) 6.420 x 1073 #xx 2.450 x 1073 #xx 2124 x 1073
(2.198 x 107%) (0.431 x 1073 (1.572 x 107%)
Wetland (%) —0.660 x 1072 1.472 x 1073 #*x 3.090 x 1073 *

(3.131 x 1073)

11

(0.423 x 107)

(1.829 x 1079)
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Variables Sample Data Kriging Interpolation Data
Hedonic Model Hedonic Model Repeat-Sale Model

Iba 0.0017 —0.0054** —0.0124

(0.0022) (0.0022) (0.0077)
Iba*Vigor —0.0005 0.0015%** 0.0032 **

(0.0007) (0.0005) (0.0016)
N 484 13,076 816
Adjust-R2 0.554 0.582 0.481

a *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level.

b Standard errors in parentheses.

Appendix Table D

Hedonic Coefficient Estimates for Different Data Sets with the 1.0 km Buffers.

Variables Sample Data Interpolation Data
Hedonic Model Hedonic Model Repeat-Sale
Living area (1000 ft2) 0.274 0.266 *** ? 0.223 ***
(0.016) 0.007) ® (0.015)
Lot size (1000 ft2) 2.81 x 10 4xxx 1.89 x 1074 #xx 2.94 x 107**
(1.03 x 1079 (3.00 x 107°) (1.78 x 1074
Baths 0.051 %%+ 0.065 *** 0.074 ***
(0.019) (0.006) (0.014)
Bedrooms —0.028%* 4,082 x 1073 3.684 x 1073
(0.011) (4.142 x 107%) (1.169 x 1072
Age —0.879 x 10 3#* ~1.650 x 1073 xxx ~1.760 x 1073 w¥*
(0.365 x 107%) (1.566 x 104 (2.427 x 1074
Air conditioning 0.115 *** 0.109 *** 0.123 ***
(0.018) (0.006) (0.022)
Fireplace 0.093%%* 0.077 **x 0.112 ***
(0.015) (0.008) (0.024)
Distance to highway (km) 0.020 0.014%** —-0.004
(0.014) (0.004) (0.010)
Water (%) 0.559 x 10w+ 2.211 x 1073 #xx 6.401 x 1074

Open space (%)
Developed area (%)
Forest (%)

Agricultural (%)

(0.157 x 104
0.040 x 10~ 3+
(0.200 x 1074
—0.151 x 107 3#*=*
0.036 x 107%)
0.265 x 10~ 4w
(8.65 x 107%)
0.729 x 10~ % #xx
(0.136 x 1074

(0.854 x 1073
3.805 x 1073 #xx
(0.870 x 1073)
—~10.253 x 1073 #**
(2.252 x 107%)
1.556 x 1073 *¥*
0.351 x 107%)
3.272 x 1073 #xx
0.535 x 107%)

(2.491 x 107%)
9.457 x 1073 ***
(2.005 x 1073)
—2.633 x 1073
(4.155 x 1073)
4.447 x 1073 #xx
0.851 x 107%)
5.035 x 1073 **
(2.053 x 1073)

Wetland (%) 0.222 x 107* 1.636 x 1073 *¥* 5.226 x 1073 #**
0.024 x 1073 (0.528 x 107%) (1.618 x 107%)

Iba 0.0020 —0.0030* —0.0020
(0.0012) (0.0016) (0.0047)

Iba*Vigor —0.0006 0.0009** 0.0008
(0.0004) (0.0004) (0.0011)

N 1651 23,244 1420

Adjust-R2 0.5406 0.5786 0.4691

a xx

* denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level.
b Standard errors in parentheses.

Appendix Table E
Hedonic Coefficient Estimates Based on Alternative Interpolation Methods with 0.1 km Buffers.
Variables Kriging IDW Spline
Living area (1000 ft%) 0.2427%**% 0.242%** 0.242%%*
(0.014)° (0.014) (0.014)
Lot size 1.70 x 10~ #*x 1.70 x 104 1.71 x 10 %#x
(1000 £t%) (4.24 x 1079 (4.24 x 107%) (4.25 x 1079
Baths 0.092%** 0.092%** 0.092%**
(0.011) (0.011) (0.011)
Bedrooms 0.015* 0.015* 0.015*
(0.008) (0.008) (0.008)
Age —0.002%** —0.002%** —0.002%**
(0.0002) (0.0002) (0.0002)
Air conditioning 0.125%** 0.125%** 0.125%**
(0.013) (0.013) (0.013)
Fireplace 0.064*** 0.063*** 0.063***
(0.015) (0.015) (0.015)

12
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Appendix Table E (continued)
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Variables Kriging IDW Spline
Distance to highway (km) 0.010 0.010 0.010
(7.62 x 107%) (7.65 x 107%) (7.65 x 107%)

5.439 x 10 3#*
(2.269 x 1073)

Water (%)

Open space (%) 1.642 x 1074
(4.389 x 1074

Developed area (%) —9.410 x 1073+
(5.487 x 107%)

Forest (%) 5.320 x 10~**

(2.795 x 1074
1.585 x 10 3wwx
(4.169 x 1074

Agricultural (%)

Wetland (%) 1.445 x 1074
(7.211 x 1074

Iba —0.0071*
(0.0037)

Iba*Vigor 0.0018**
(0.0008)

N 2758

Adj-R2 0.5538

5.351 x 10~ 3#*
(2.250 x 1073)

5.370 x 10 3+
(2.250 x 1073)

1.686 x 10~* 1.749 x 107*
(4.421 x 1074 (4.414 x 1074
—9.412 x 1073+ —9.345 x 1073+
(5.474 x 1073) (5.484 x 107%)
5.460 x 10~ 5.507 x 10~**

(2.808 x 1074
1.578 x 10 3##*
(4.161 x 1074

(2.816 x 1074
1.572 x 10~ 3w
(4.167 x 1074

1.830 x 1074 1.827 x 107*
(7.287 x 1079 (7.308 x 1074
—0.0035 —0.0025
(0.0027) (0.0024)
0.0011 0.0008
(0.0007) (0.0006)

2758 2758

0.5534 0.5533

@ *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level.

b Standard errors in parentheses.
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