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A B S T R A C T   

We investigate residential property-price effects of the spread of the Hemlock wooly adelgid infestation north
ward through central portions of Connecticut and Massachusetts, USA. We find that hemlock trees and the 
accompanying adelgid infestation within 0.1 km buffers of properties affect sale prices, but the results do not 
extend to buffers of 0.5 and 1.0 km's. Further, within the 0.1 km buffer, only the healthiest hemlock trees 
contribute positively to property values. We investigated the robustness of the results to three data interpolation 
methods, Kriging, Inverse Distance Weighting and Spline, and while there was some minor difference in out
comes the results are robust to these interpolation methods. Two property-price models were estimated, a 
traditional hedonic model with spatial fixed effects and a repeat sale model. The models provide substantially 
different property-price impacts and care needs to be taken when interpreting these estimates. Both approaches 
are limited but in different ways; the hedonic by potentially omitted variables and the repeat-sales by a limited 
number of observations. Our results provide some support for the repeat-sale model as the hedonic model with 
spatial fixed effects underperformed when both models were estimated using the same data.   

1. Introduction 

According to Lovett et al. (2016), ~2.5 non-native pests per year 
have been established in U.S. forests over the last 150 years and have 
“eliminated entire tree species or genera from United States forests 
within decades” (p. 1437). Such infestations that many may be aware of 
include, but not limited to, chestnut blight, Dutch elm disease, emerald 
ash borer, European gypsy moth and mountain pine beetle. Aukema 
et al. (2011) report that complete costs of these forest pest infestations 
are unknown but, in the case of three categories of forest pest, the 
greatest costs of the infestations are borne by homeowners. Beyond 
economic costs, Jones (2017) finds that the emerald ash borer signifi
cantly reduced the life satisfaction of residents of affected U.S. counties. 
Although Holmes and Koch (2019) also found that geographically 
extensive forest insect outbreaks substantially diminished life satisfac
tion for residents in affected areas of Colorado, they highlighted the 
challenges of using this modeling approach to estimate resultant 

changes in economic values. Given the paucity of data on the economic 
impacts of forest pest and evidence the impacts may be greatest for 
residential property owners, we investigate the property value impacts 
of the rapidly expanding range of the hemlock wooly adelgid (Limbu 
et al., 2018). 

The Hemlock wooly adelgid (adelgid hereafter) is a forest pest that 
defoliates and ultimately kills hemlock trees within about five years 
(Brush, 1979; McClure, 1991; Orwig et al., 2012). First introduced into 
Virginia from Japan in the early 1950s, the adelgid now threatens 
Eastern hemlock forests in New England (McClure, 1991). The adelgid is 
sensitive to temperature and precipitation, and climate change is ex
pected to have favored the northward spread of the adelgid (Orwig et al., 
2012). 

The Eastern hemlock (Tsuga canadensis) matures at a height of 40 to 
70 ft with a canopy width of 25 to 35 ft. These trees can be a dominant 
feature in the residential landscape providing shade, a scenic resource, 
buffers between properties and more. On the other hand, as infested 
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trees die, they can become a scenic blight and a risk to residences and 
people from falling limbs. Information on the effect of hemlock trees on 
residential property prices provides important economic information on 
the benefits of removing infested trees and protecting healthy trees from 
infestation. 

Here we estimate a hedonic model to investigate the effect of 
declining hemlock health on residential property values. The advent and 
accessibility of spatial data has greatly advanced the richness of infor
mation available to explore the impacts of spatially explicit features, 
such as the adelgid infestation, on property sale prices (Bateman et al., 
2002; Geoghegan et al., 1997; Hamilton and Morgan, 2010; Lake et al., 
2000; Paterson and Boyle, 2002). We have two unique and comple
mentary data sets that are merged with property sale data. The first is 
spatial data documenting 6126 hemlock stands located in central Con
necticut and central Massachusetts. Second, is entomological data from 
sampled hemlock stands in this study area that records the damage 
caused by the adelgid. Spatial interpolation is used to scale the ento
mological sample data to all hemlock stands in the study area. 

We also investigate the robustness of hedonic-coefficient estimates to 
three common data interpolation procedures, adelgid defoliation of 
hemlock stands within 0.1, 0.5 and 1.0 km of properties, and estimation 
using a traditional hedonic model and a repeat-sales model. Different 
spatial interpolation procedures use slightly different data smoothing 
methods (Anselin and Le Gallo, 2006; Kuntz and Helbich, 2014). With 
limited guidance from the literature on the best approach to use, we 
consider the robustness of hedonic estimates to the use of Ordinary 
Kriging, Inverse Distance Weighting, and Spline interpolation methods. 
Likewise, there is limited guidance from the literature on how close 
hemlock trees need to be to a property to have a price effect and we, 
therefore, consider hemlock stands within three buffers around sold 
properties. The repeat-sale model has a desirable identification property 
for estimating the capitalized impact of the adelgid infestation of hem
lock stands on property values, yet with a much smaller number of 
property transactions available for estimation than with a traditional 
hedonic model. 

We found that infested hemlock stands within the 0.1 k buffer 
reduced the capitalized values of single-family residences and this result 
was robust to data interpolation method and estimation using the 
traditional hedonic and repeat-sale estimation. Only hemlock stands 
with limited defoliation due to the adelgid (0–25%) contribute posi
tively to property values. When we consider the capitalized depreciation 
of property values due to the adelgid infestation, the hedonic model 
reveals a modest capitalized-value reduction of 0.2% or about $650 for 
the average-valued property while the repeat-sale model reveals a 
capitalized-value decrease of 15% or about $39,600 for a comparable 
property. While the repeat-sale price impact may seem large, there is 
some statistical support for this estimate as the hedonic model under
performed when both models were estimated using the same data. 
Further, hemlock trees are large trees that provide shade, privacy and 
other amenities to property owners but can posed a significant risk to 
people and nearby structures from falling branches as the trees die from 
the adelgid infestation. 

2. Previous research 

We briefly discuss previous research applying hedonic models to 
estimate the implicit value of tree cover in residential areas. Then we 
move to data interpolation methods, which allow us to match adelgid, 
hemlock and property sales data. We close with a discussion of tradi
tional and repeat-sale hedonic models for identifying price effects. 

2.1. Previous research on tree values 

Considering landscape amenities, Geoghegan et al. (1997) calculated 
measures of percent open space around residential properties and found 
that land uses surrounding a parcel have a significant influence on 

property prices. Cho et al. (2008) calculated the distance to nearest 
evergreen (conifer), deciduous and mixed forest patches for properties. 
They concluded that proximity to evergreen forests is valued positively 
in the rural–urban interface, while proximity to deciduous and mixed 
forest types are valued positively in the urban area. In fact, multiple 
papers are available in the literature that investigate the effects of trees 
on property values and most indicate that (healthy) trees increase 
property values (Mei et al., 2017; Siriwardena et al., 2016). 

If trees increase property values, it is plausible that an invasive pest 
that degrades tree quality and ultimately kills trees will diminish 
property values. It has been predicted that changes in climate will in
crease the frequency, severity, duration and geographical extent of 
natural forest disturbances such as fires, insect and disease outbreaks, 
droughts and severe storms (Bentz, 2008; Dale et al., 2001; Frankel, 
2008) and these predictions have been generally upheld (Weed et al., 
2013). Advanced tree mortality can impact property values via the 
diminishment of ecosystem services such as the provision of shade, vi
sual aesthetics and regulation of the hydrological cycle. Dead and dying 
trees also pose risks to residents and their homes. Associated property 
value losses have been observed for the recent mountain pine beetle 
infestation in the western U.S. (Cohen et al., 2016; Moeltner et al., 2017; 
Price et al., 2010). In an adelgid application, Holmes et al. (2010) found 
that severely-defoliated hemlock trees reduced the value of residential 
properties. 

The research we report expands what is known about the effects of 
the adelgid on property values using site-specific measurements of the 
infestation at three points in time. We also cover a much larger 
geographic area than a single community or small region used in the 
studies cited above by considering the northward migration of the 
infestation through central portions of Connecticut and Massachusetts. 

2.2. Spatial interpolation 

Hedonic models typically use proximity to a property or the spatial 
extent within a specified buffer around a property as the environmental 
variables. Spatial interpolation is often used to extend known data to all 
property sales and various interpolation methods have been used. For 
example, Leggett and Bockstael (2000) used Inverse Distance Weighting, 
Anselin and Lozano-Gracia (2008) used Ordinary Kriging and Fernán
dez-Avilés et al. (2012) used CoKriging. Anselin and Le Gallo (2006) 
compared four procedures to interpolate air quality (Inverse Distance 
Weighting, Ordinary Kriging, Spline and Thiessen polygons) and 
concluded that Ordinary Kriging worked best. Whereas, Kuntz and 
Helbich (2014) considered Ordinary Kriging and CoKriging and found 
evidence in favor of CoKriging. Such investigations of the effects of data 
interpolation on hedonic estimation outcomes are rare in the published 
literature. Anselin and Le Gallo (2006) conclude “... our findings suggest 
that the quality of the spatial interpolation deserves the same type of 
attention in the specification and estimation of hedonic house price 
models as more traditional concerns” (p. 50). Thus, as a robustness 
check, we consider three types of spatial data interpolation: Ordinary 
Kriging, Inverse Distance Weighting, and Spline interpolation methods. 

2.3. Hedonic estimation 

Traditional hedonic models regress sale prices of properties on 
property characteristics where the estimated coefficients provide the 
basis for computing the effects of changes in property characteristics on 
property prices (Taylor, 2017). This approach has been criticized 
because omitted relevant variables might confound the estimation of 
property-price effects (Bishop et al., 2020). As such, econometric and 
quasi-experimental approaches have been used to control for this 
concern so that the actual price effects can be identified. 

As an econometric approach to address the potential for spatially 
correlated omitted variables we estimate a hedonic model with time and 
spatial fixed effects. The idea is that fixed effects that are matched with 

X. Li et al.                                                                                                                                                                                                                                        



Ecological Economics 194 (2022) 107354

3

property sale times and locations capture the influences of omitted 
relevant variables. While Kuminoff et al. (2010) suggest that spatial 
fixed effects may mitigate this concern, Abbott and Klaiber (2011) find 
that this may not always be the case. 

Thus, we also estimate a repeat-sale model where changes in the 
adelgid infestation through time provide a “natural experiment” where 
we can observe the sale of a property at two points in time for properties 
that sell more than once in the study period. Thus, rather than simply 
regressing sale prices on the extent of the adelgid infestation, we also 
regress changes in sale prices on changes in the extent of the adelgid 
infestation. Omitted variables that are invariant through time cancel out 
of this model specification and thereby do not confound estimation/ 
identification of adelgid infestation price effects. However, there are 
fewer observations available for estimating the repeat-sale model 
because most properties transact once during the study period. 

Neither the traditional hedonic nor the repeat-sale hedonic are per
fect. The hedonic model has the advantage of more information from 
more sales to use in the estimation and the repeat-sale has the advantage 
of the identification strategy. We apply both estimation approaches in 
this study. 

3. Application 

To understand and characterize hemlock stands at the local and 
landscape levels in New England, ecologists at the Harvard Forest 

identified, mapped and characterized hemlock stands in a 7500 km2 

transect covering central portions of Connecticut and Massachusetts 
(Orwig and Foster, 1998; Orwig et al., 2002). All stands of eastern 
hemlock with land areas greater than 1.3 ha in size were identified using 
high-resolution aerial photographs and digitally transferred into a GIS 
overlay. A total of 6126 hemlock stands were identified (see Fig. 1). 

Biological sampling to document the extent of the adelgid infestation 
across the 6000+ hemlock stands is expensive and logistically chal
lenging. Consequently, 142 hemlock stands were randomly sampled 
within the Connecticut/Massachusetts study area and samples of hem
lock health were taken within each of these stands (Gómez et al., 2015; 
Preisser et al., 2008). Field surveys were conducted in selected hemlock 
stands (red dots in Fig. 1) to document hemlock health in terms of live 
basal area and vigor in 2007, 2009 and 2011. Live basal area, measured 
as square meters per hectare at 4.5 ft above the ground, provides a 
systematic indication of the cross-sectional area occupied by living 
hemlock trees in each plot. Vigor was measured as the average amount 
of hemlock foliar decline in each plot. Four vigor categories were 
recorded: 76–99% foliar loss, 51–75% foliar loss, 26–50% foliar loss, 
and 0–25% foliar loss (coded as 1, 2, 3 and 4, respectively). 

Both the mean and maximum value of hemlock live basal area 
decreased from 2007 to 2009 to 2011 (Table 1); indicating that hemlock 
trees were dying, or unhealthy trees were being removed during the 
study period. Vigor also decreased throughout the study period, indi
cating the adelgid infestation was increasing among the remaining 

Fig. 1. Study Area Hemlock Stands.  
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hemlock trees. The number of stands with the lowest foliar loss (0–25%) 
declined through time as the infestation spread. The number of severely 
damaged hemlock stands likely dropped in 2011 because dead trees 
either fell over or were removed. 

The hemlock stands and adelgid infestation data were merged with 
property sale data from DataQuick, using circular buffers around the 
centroid of each parcel.1 There is limited guidance from the literature on 
how close trees need to be to a property to have a price effect. Thus, as an 
additional robustness check we consider how estimation results change 
as the model reflects hemlock stands within 0.1, 0.5 and 1.0 km of 
properties. Stands within 0.1 k might be on or adjacent to a property. 
Stands within 0.5 k might be adjacent to a property or in a property's 
view shed. Stands within 1.0 k might be visible in people's daily activ
ities leaving and returning to their properties. Larger buffer sizes were 
not considered because most hemlock stands in the study area are small 
and on private property. The study area is also heavily forested so 
landowners may not see or be aware of hemlock trees unless they are in 
relatively proximity to their home and neighborhood. 

There are four potential spatial relationships between properties and 
hemlock stands (Fig. 2). In case A, the buffer only intersects sampled 
hemlock stands. In case B, the buffer intersects both sampled and non- 
sampled hemlock stands. In case C, the buffer only intersects non- 
sampled hemlock stands. In case D, the buffer does not intersect any 
hemlock stands. 

Based on the sample data, we only have observed hemlock health 
information for case A and the number of properties potentially 

impacted by the adelgid infestation is small. To make maximum use of 
the Harvard Forest census of hemlock stands and our extensive property 
sale data, we interpolate hemlock health (live basal area and foliar loss) 
across the study area. Using interpolated hemlock health data, we are 
then able to enlarge the economic analysis to include cases A, B and C in 
Fig. 2, resulting in a much larger set of property sales for estimation. 

Land cover in neighborhoods can also influence property values 
(Irwin, 2002; Paterson and Boyle, 2002). We constructed land cover 
variables from the National Land Cover Database (2006) using rasters of 
30m2 pixels. The six types of land cover variables used for analysis 
include water, open space, developed, forest, agriculture, and wetland. 
Variables were calculated as the percentage of the buffer area (0.1 km, 
0.5 km, 1 km) around each property covered by each land cover type. 

These environmental data were merged with property sale data for 
the period 2007 to 2011. For years when adelgid sampling was not 
conducted (2008 and 2010), live basal area and vigor were calculated as 
the mean of the previous year and following year, 2007/2009 and 2009/ 
2011. Land cover was assumed constant during the study period due to 
the available data. 

4. Spatial interpolation 

Spatial data interpolation is a family of methods to extend observed 
data spatially for locations where data are not available. Here we apply 
Ordinary Kriging, Inverse Distance Weighting and Spline interpolation 
methods (Chilès and Delfiner, 1999; Cressie, 1991; Franke, 1982; Goo
vaerts, 1997; Isaaks and Srivastava, 1989; Mitáš and Mitášová, 1988; 
Schabenberger and Gotway, 2005; Shepard, 1968; Stein, 1999). Each of 
these methods takes a slightly different approach to using known 
neighbor values to interpolate an unknown value. 

Ordinary Kriging (Kriging hereafter) is used as the base interpolation 
method following the finding of Anselin and Le Gallo (2006) that this 
method worked best in their comparison study and has been used in 

Table 1 
Live Basal Area and Vigor for Sampled Hemlock Stands.    

2007 2009 2011 

Live Basal Area (m2/ha) Mean 38.2 27.8 15.3 
Standard Deviation 27.6 16.3 11.9  

Min 0 0 0  
Max 125.4 73.3 54.0  
Na 140 138 122   

Number of Stands 
Vigor 76–99% 8 11 9 
(% foliar loss) 51–75% 18 19 23  

26–50% 33 37 44  
0–25% 82 71 47  

N 141 138 123  

a The initial number of sampling plots was 142. In 2007, data are available on live basal area for 140 of the 142 plots and vigor for 141 of the 142 plots. The sample 
sizes decrease over time due to some hemlock stands disappearing (trees in the stands died or unhealthy trees cut down), the land was cleared for development, or the 
sampling crew was not allowed follow-up access to private-land parcels. 

Fig. 2. Hemlock Stand Spatial Relationships to Property Buffers. 
Note: S denotes a sampled hemlock stand, NS denotes a hemlock stand that was not sampled, and the black circle is the buffer around a property. 

1 Since properties are geolocated by parcel centroids and we do not have 
property boundary data, the assigned property buffers can contain hemlock 
trees on or adjacent to the owner's property. The property owner does not have 
control of trees that are not located on their property and likely cannot apply 
treatments to protect these hemlocks from the adelgid infestation. 
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other forest interpolation efforts (Freeman and Moisen, 2007; Gun
narsson et al., 1998). We apply Inverse Distance Weighting (IDW here
after) and Spline procedures for robustness comparisons. These 
interpolation methods are readily available in the geo-statistical wizard 
of the Geostatistical Analyst Tool in ArcGIS 10.1. 

Spatial interpolation methods impose the assumption that values are 
more similar for locations near to each other. There exists a strong south- 
to-north trend in the adelgid infestation. First, a second-order poly
nomial trend is removed, and Kriging is performed on the residuals 
which satisfy to the stationary assumption of ordinary Kriging. After 
removing the trend over space, the spatial correlation applied here is 
assumed to be isotropic over the study area where the correlation de
pends on the distance between two points but not the direction of their 
separation.2 Eastern hemlocks, occur in patches across the landscape 
and are not contiguously dispersed through space. The adelgid infesta
tion moves from patch to patch of hemlock, but the diffusion process is 
not smooth as birds, prevailing winds, and humans may carry the insects 
from an infested stand to healthy stands. 

Values for hemlock live basal area and vigor were interpolated for all 
non-sampled stands in the study area for each year of the study period, 
2007–2011. The interpolated hemlock variables for the 6126 hemlock 
stands were then extracted based on a 30 × 30 m grid to assign values for 

the 0.1, 0.5 and 1.0 km buffers around each property (Table 2). The first 
row in Table 2 shows summary statistics for the sample data on hemlock 
health and the other rows are summary statistics for interpolated hem
lock health based on model type (Hedonic and Repeat Sale) and inter
polation method. Note, while observed vigor is an integer variable 
ranging from 1 (lowest vigor—greatest foliar loss) to 4 (highest vig
or—lowest foliar loss), the interpolation process predicts continuous 
values for vigor that allows for minimum vigor to be less than 1 and 
maximum vigor to exceed 4. This outcome is shown in Table 2 where 
maximum vigor is greater than 4 for all the interpolated data sets. The 
continuous interpolations of vigor are used in the estimation. 

5. Model specification 

For the traditional hedonic specification (Hedonic Model hereafter), a 
fixed-effect model is estimated: 

lnPit = Ziα + + Liβ + lbaitγ + (lbait*vigorit)θ + τt + ωj + σit (1)  

where Pit is the sale price for property i at time t, Zi is a vector of 
property-specific characteristics, Li is the vector of property-specific land 
cover characteristics, τt is a vector of time fixed effects, ωj is a vector of 
spatial fixed effects delineated by zip code, and σit is the random error.3 

For the hemlock variables, lba is live basal area, measured as a square 
meter cross-section per hectare at 4.5 ft above the ground, provides a 
systematic indication of the cross-sectional area occupied by living 
hemlock trees in each plot. Vigor was measured as the average amount of 
hemlock foliar decline in each plot, ranging from 1 (lowest vigor) to 4 
(highest vigor). 

Property-specific characteristics include lot size, living area, number 
of bathrooms, number of bedrooms, house age, presence/absence of air 
conditioning, presence/absence of a fireplace, and distance to the 
nearest highway. The property-specific land cover characteristics 
include the percentage of buffer area covered by water, open space, 
development, forest, agricultural land and wetland. The hemlock vari
ables are lbait and vigorit, and are as defined above. The time fixed effects 
are binary variables for each year, 2007 to 2011. Spatial fixed effects are 
binary variables for zip codes.4 

Table 2 
Descriptive Statistics of Hemlock Health Variables in Hedonic Model and 
Repeat-Sale Model Estimation (0.1 km buffers).   

Mean SD Min Max 

Sample Data 
(n = 148) 

lba (m2/ha) 22.9 18.4 0 98.4 
vigor 2.7 1.0 1 4.0 
lba*vigor 65.5 55.9 0 295.3       

Hedonic Model Interpolation Data 
(n = 2758) 

Kriging     
lba (m2/ha) 30.3 12.8 5.8 79.6 
vigor 3.4 0.5 1.4 4.1 
lba*vigor 106.4 55.3 13.1 314.2      

IDW     
lba (m2/ha) 30.3 13.0 3.0 87.6 
vigor 3.4 0.6 1.1 4.0 
lba*vigor 106.4 55.4 6.0 346.1      

Spline     
lba (m2/ha) 30.5 13.2 3.8 83.4 
vigor 3.4 0.6 1.1 4.6 
lba*vigor 107.2 56.4 6.5 329.2  

Repeat-Sale Model Interpolated Data 
(n = 356) 

Kriging     
lba (m2/ha) 31.2 12.4 7.3 70.6 
vigor 3.4 0.6 1.4 4.1 
lba*vigor 111.6 53.2 13.3 283.0  

2 Kriging assumes an isotropic distributions pattern and if the adelgid was 
introduced in the center of the geographic extent of hemlocks in the U.S., then 
the spread of the infestation would be expected to be isotropic, i.e., spread 
equally in all direction. Due to the location where the adelgid was first intro
duced into the U.S., Virginia, the spread was bound on the east by the Atlantic 
Ocean and the spread has been in southwesterly and northeasterly directions 
following the geographic extent of Hemlock habitat (Limbu et al., 2018; Morin 
et al., 2009). Similarly, for the study area, the initial infestation was in southern 
Connecticut and the spread was bound to south by Long Island Sound. How
ever, as the infestation moved inland, dispersion from an infested stand could 
be isotropic, spreading in any direction. Thus, in the Kriging the directional 
trend is removed to allow for isotropic dispersion around each location of 
hemlock infestation in the study area. 

3 There could be concern that the hemlock variables are endogenous if, for 
example, owners of higher-priced properties treat hemlock trees to prevent the 
adelgid infestation and therefore protect property values, while owners of 
lower-priced properties do not take such actions. However, all property owners 
may treat their trees, remove infected trees, or let infected trees die in place. 
The latter seems unlikely because of the risk to structures and people from 
falling limbs. Considering treatment, a New York nursery reports costs to treat 
100 in. of dbh (about four mature trees) ranges from $80 to $240 (http://www. 
whiteoaknursery.biz/Hemlock%20HWA_treatment.shtml). According to the US 
Forest Service, a typical 160-year-old hemlock in New York (no data for Con
necticut and Massachusetts) has a dbh of 61 cm (or 24 in.) (https://www.srs.fs. 
usda.gov/pubs/misc/ag_654/volume_1/tsuga/canadensis.htm). Treatment of 
four trees likely costs less than $250 for two to five years of protection (https: 
//ag.umass.edu/landscape/fact-sheets/hemlock-woolly-adelgid). The median 
household incomes in Connecticut and Massachusetts, where the study area is 
located, are approximately $79,000 and $87,000 (https://www.statista. 
com/statistics/233170/median-household-income-in-the-united-states-by-stat 
e/), respectively. Thus, the treatment cost is much less than 1% of the median 
incomes, and these data suggest many households have the financial means to 
treat hemlock trees on their properties. Further, the cost to remove a mature 
hemlock at a height of 31 m (102 ft) can range from $1100 to $1800 (https: 
//homeguide.com/costs/tree-removal-cost). Thus, for owners of lower-priced 
properties on a tight budget, it can be advantageous, cost wise, to treat 
rather than remove infested hemlock trees. To treat or remove trees is a pref
erence choice that can apply to owners of properties at all price points. These 
considerations break the prima-facia link between higher-priced properties 
having higher-quality hemlock trees.  

4 The number of the spatial fixed-effect variables varies with the buffer sizes. 
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https://www.statista.com/statistics/233170/median-household-income-in-the-united-states-by-state/
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https://homeguide.com/costs/tree-removal-cost
https://homeguide.com/costs/tree-removal-cost
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The repeat-sale specification (Repeat-Sale Model hereafter) is: 

lnPitr − lnPitp =
(
lbaitr − lbaitp

)
γrs +

((
lbaitr *vigoritr

)
−

(
lbaitp *vigoritp

) )
θrs

+ τr
tr − τr

tp + ωr
j + σr

itr−p

(2)  

where r denotes the most recent sale, p denotes the previous sale of a 
property and σitr−p

r is the random error term.5 

We differentiate between the hemlock coefficients (γ and θ versus γrs 

and θrs). If there is no omitted variable bias, one might expect the 
following relationships to hold, E(γ̂) = E(γ̂r ) = γ and E(θ) = E(θ̂r ) = γ. 
Omitted relevant variables that would cause these relationships to not 
hold are variables that would be correlated with lba and vigor. For 
example, if property owners' response to the adelgid infestation is to 
remove hemlock trees and they have other species of trees removed at 
the same time, then the additional reduction in tree canopy would be 
correlated with lba and would be an omitted relevant variable. We do 
not have any evidence that such actions are occurring, and the essence of 
omitted relevant variables is that the investigator does not know of their 
existence or cannot obtain observational data. This is the reason for 
using quasi-experimental methods like repeat-sale modeling. While 
omitted relevant variables is the common explanation for the equalities 
above not holding, available samples for hedonic estimation are larger 
than for repeat-sale estimation as not all properties in an area will sell 
more than once. Thus, in the estimation we first estimate the Hedonic 
Model with all interpolated data and, second, using just the data 

included for the Repeat-Sales Model. 
In addition to the significance and signs of the hemlock variables, the 

derivatives of the Hedonic and Repeat-Sale Models, respectively, can be 
used to evaluate the comparability of different estimation outcomes: 

∂lnPit/∂lba = γm + vigoritθ
m (3) 

where m denotes the model that provides the coefficient estimates, e. 
g., hedonic or repeat sale. Several patterns can arise for the hemlock 
variables. For example, if θm and γm are both significant and positive, 
property values increase with the size and health of hemlock stands. 
Alternatively, if the coefficients are significant but differ in sign, then 
only hemlock stands of a certain vigor will positively contribute to 
property values. Comparison across model estimates can become 
muddled when this latter condition occurs so we set the derivative equal 
to zero and solve for the level of vigor that defines whether hemlock 
stands contribute positively or negatively to property values: 

vigor+/− = γ̂
/

θ̂. (4) 

Hemlock stands with vigor greater than vigor+/− positively 
contribute to property values. This provides a consistent metric to 
compare estimation outcomes across models. 

6. Results 

Summary statistics are reported in Table 2 for the hemlock variables 
at the 0.1 k buffer. The sample sizes are the number of property sales 
available for estimation with each type of data. Similar patterns of re
sults hold for the 0.5- and 1.0-km buffers so summary statistics are not 
reported for these buffers here.6 

In the econometric results reported below, we report coefficient es
timates for the two hemlock variables for parsimony of exposition. 
Descriptive statistics for non-hemlock explanatory variables, excluding 

Fig. 3. Kriging Live Basal Area Interpolation (m2/ha in study area defined in Fig. 1).  

5 The repeat-sale specification not only removes regressors that are constant 
through time but removes the decisions on the functional specifications of these 
variables (Bishop et al., 2020; Humphreys and Nowak, 2017). The repeat-sale 
model is also capable of addressing endogeneity that might occur in the he
donic (Heintzelman and Tuttle, 2012; Linden and Rockoff, 2008). Suppose a 
property sold in 2007 with no adelgid effects and then resold in 2009 or 2011. If 
the property owner treated the hemlocks on the property to “preserve” the 
properties' value, then the model is being estimated based on between-sale 
comparisons and not between-property comparisons which the traditional he
donic relies on. 

6 Outliers for the property sale price were removed prior to estimation 
removing observations in the 0.05% and 99.95% tails of the sale-price distri
bution of the 1 km buffer. 
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fixed effects, are reported in Appendix Table A and their respective 
coefficient estimates are reported in Appendix Tables B, C, D and E. 
Between the Hedonic and Repeat-sale data, only three of 15 character
istics show significant differences and the magnitudes of those with 
significant differences are so small they are inconsequential. 

As a baseline for comparison, we use the traditional hedonic model 
applied to the observed data and the Kriged data.7,8 For properties that 
sold more than once, the most recent sales were used in the estimation to 
avoid correlation between multiple sales of the same property. 

6.1. Spatial interpolation 

In Table 2 the first three rows show summary statistics for property 
sales whose buffers intersect a sampled plot with a 0.1 k buffer. The next 
three sets of rows show summary statistics for the interpolated data to 
support estimation of the Hedonic Model with a 0.1 buffer. The last three 
rows show summary statistics for the interpolated used to estimate the 
Repeat-Sale Model. Sample sizes reflect the number of property sales 
available to estimate each model with the respective data.9 

Live basal area and vigor were decreasing, on average, through time 

in the observed data and this decreasing trend is observed in the inter
polated data (see Figs. 3 and 4 for the Kriging results as an example). The 
adelgid infestation was primarily located in southern Connecticut in 
2007 and the extensive infestation progressed north into Massachusetts 
by 2011. The pattern of decline in hemlock vigor follows the pattern of 
live basal area decline. 

Based on the 0.1 km buffer data used to estimate the Hedonic Model, 
mean values and standard deviations for live basal area (lba) and vigor 
are quite similar across Kriging, IDW and Spline interpolations (Table 2). 
However, the interpolation means are somewhat larger than the sample 
data (~30 vs. ~23 for lba and ~ 3.4 versus ~2.7 for vigor) and the 
comparable standard deviations are smaller (~13 vs. ~18 for lba and ~ 
0.6 versus ~1.0 for vigor). For the Repeat-Sale Model, the Kriging sum
mary statistics are like those for the Hedonic Model. 

6.2. Hedonic regression results 

To provide a baseline for comparisons, we first report estimates for 
the Hedonic Model with fixed effects (eq. 1) using data from sampled 
hemlock stands (Table 3). The model estimated for the 0.1 km buffer 
indicates that both hemlock variables are significant in explaining var
iations in housing prices and vigor+/− is 2.9, indicating hemlock stands 
positively impact property values if vigor is class 4 (25% or less foliar 
loss). At lower levels of vigor, hemlock stands negatively impact prop
erty values. 

Increasing the size of the buffers around properties to 0.5 km and 1.0 
km increases the number of potentially affected properties included in 
the estimation from about 500 and over 1600. The coefficients are 
insignificant for the 0.5 km buffer but are significant for the 1.0 km 
buffer. However, the interaction variable has the wrong sign; it indicates 
that increasing vigor reduces property values. 

One might question the baseline results because the small number of 
sampled hemlock stands limits the numbers of property transactions in 
the estimation and thereby does not make use of the full spatial extent of 
study area information. We note that spatial interpolation allows for 
potential consideration of all 6126 hemlock stands in the study area and 
substantially increases the observations available for analysis to nearly 

Fig. 4. Kriging Vigor Interpolation (2007–2011).  

7 If neighbors encourage neighbors to treat healthy hemlock trees or remove 
dead and dying trees, this could lead to spatial correlation of property trans
action values. We ran spatial lag, spatial error and spatial auto correlation 
models using properties within 8 km of a subject property and that sold within 
one year before or after the subject property sold. All three approaches indi
cated a spatial effect, but the coefficient estimates were robust to the Hedonic 
Model using Kriged data with a 0.1 km buffer. The coefficient on lba ranged 
from −0.0064 (spatial lag and spatial auto correlation) to −0.0071 (Hedonic 
Model) and the lba*vigor ranged from 0.0017 (spatial lag and spatial auto cor
relation) to 0.0018 (Hedonic Model and spatial error).  

8 The estimation may be missing neighborhood variables that represent the 
social pressure by neighbors to protect hemlocks or remove dying and dead 
hemlocks. The zip-code, spatial fixed effects in our estimation follow the finding 
of Kuminoff et al. (2010) of removing bias.  

9 Because of the small sample of properties with buffers that include observed 
hemlock sample sites it is not possible to estimate the Repeat-Sale Model using 
these data. 
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3000 with the 0.1 km buffers, about 13,000 with 0.5 km buffers, and 
over 23,000 with 1 km buffers. 

Using the Kriged data, lba and lba*vigor are significant in the Hedonic 
Model and have plausible signs for all three buffers (Table 3).10 The 
magnitudes of coefficient estimates vary across buffers, but vigor+/−

remains relatively constant, ranging from 3.4 (in the 1 km buffer) to 3.8 
(in the 0.1 km buffer), indicating that only the healthiest stands (0–25% 
foliar loss) contribute positively to property values (and greater foliar 
losses reduce property values).11 This is a more restrictive condition 
than observed for the Sample Data where vigor+/− is 2.9. The difference 

is driven by the larger coefficient estimate on lba in the Kriged-data 
Hedonic Model. 

Increasing the number of observations still leaves questions about 
whether the Hedonic Model is fully identified, and one might wonder if 
the fixed effects fully account for potentially correlated omitted vari
ables. Turning to the Repeat-Sale Model that imposes a quasi- 
experimental design on the estimation, the number of observations 
decline to a range of a little less than 200 and a little over 1400 across the 
three buffers, but the advantage is that time-invariant variables that are 
potentially correlated with the hemlock variables cancel out of the 
estimation. 

Only the 0.1 km buffer has significant hemlock coefficients for the 
Repeat-Sale Model (Table 3).12 The magnitudes of the coefficient esti
mates are much larger in the Repeat-Sale Model relative to both previ
ously discussed Hedonic Models (−0.0322 versus −0.0059 and − 0.0071 
for lba and 0.0097 versus 0.0020 and 0.0018 for lba*vigor). It is inter
esting that vigor+/− is 3.3, splitting the difference between the Hedonic 
Models for the Sample and Kriging Data (2.9 and 3.8, respectively). This 
relationship occurs because only the coefficient on lba increased moving 
from the Sample-Data to Kriging Data Hedonic Models, while both co
efficients increased in magnitude moving to the Repeat-Sale Model. 

For the variables included in hedonic model, their descriptive sta
tistics were not significantly different from those for the repeat-sale 
model sample with two exceptions, Fireplace (hedonic 48% vs. repeat- 
sale 41%) and Developed area (hedonic 0.08% vs. repeat-sale 0.002%) 
(see Appendix Table A). Thus, estimation differences between the he
donic and repeat-sales coefficient estimates may be more likely driven 
by the modeling approaches with the hedonic estimation potentially 
having omitted relevant variables that cancel out in the repeat-sale 
estimation. 

To directly compare the Hedonic and Repeat-Sale models, we estimate 
the Hedonic Model using the same data used to estimate the Repeat-Sale 
Model.13 The Hedonic Model with Repeat-Sale Sample estimation results in 
significant coefficients for the 0.5 km buffer and vigor+/− is 3.9, which is 
consistent with the results from the Kriged Data estimation results for 
the Hedonic Model with a 0.1 km buffer. These results suggest that the 
differences between the Hedonic Model and the Repeat-Sale Model arise 
from the different model specifications. 

6.3. Spatial interpolation robustness 

The 0.1 km buffer is used in these comparisons as it provided sig
nificant hemlock coefficient estimates for the Hedonic and Repeat-Sale 
Models using the Kriged data and was the only buffer with significant 
coefficients in the Repeat-Sale Model estimation. The Hedonic Model and 
Repeat-Sale Model estimation results from Table 3 based on the Kriged 
Data are included in first column of Table 4 to facilitate comparisons. All 
the hemlock coefficient estimates based the IDW and Spline data in
terpolations have the same signs as the Kriged interpolation estimates 
and all are significant except the coefficient for lba in the Hedonic Model 
using the Spline interpolation data for estimation. 

Coefficient estimates based on the IDW and Spline interpolations are 
more like each other than they are to the Kriging interpolation. 
Consider, vigor+/− is 3.1 for IDW and Spline but 3.8 and 3.3 for the 
Kriging interpolation estimations, which all suggest that only the 
heathiest trees contribute positively to property values. 

Table 3 
Hemlock Coefficient Estimates Based on Sample Data and Kriged Interpolation 
Data.   

Buffers  

<0.1 km <0.5 km <1 km 

Sample Data 
Hedonic Model    
lba (m2/ha) −0.0059**a 

(0.0032)b 
0.0017 
(0.0022) 

0.0020** 
(0.0012) 

lba*vigor 0.0020** 
(0.0010) 

−0.0005 
(0.0007) 

−0.0006* 
(0.0004) 

vigor+/− 2.9 ncc nc 
N 148 484 1651  

Kriging Interpolation Data 
Hedonic Model   
lba (m2/ha) −0.0071** 

(0.0037) 
−0.0054*** 
(0.0022) 

−0.0030** 
(0.0016) 

lba*vigor 0.0018** 
(0.0008) 

0.0015*** 
(0.0005) 

0.0009** 
(0.0004) 

vigor+/− 3.8 3.6 3.4 
N 2758 13,076 23,244 
Repeat-Sale Model    
lba (m2/ha) −0.0322*** 

(0.0116) 
−0.0048 
(0.0066) 

0.0024 
(0.0058) 

lba*vigor 0.0097*** 
(0.0035) 

0.0007 
(0.0017) 

−0.0016 
(0.0014) 

vigor+/− 3.3 nc nc 
N 178 816 1420  

Hedonic Model with Repeat-Sale Samplee 

lba (m2/ha) 0.0299 
(0.0243) 

−0.0124* 
(0.0077) 

−0.0020 
(0.0047) 

lba*vigor −0.0009 
(0.0047) 

0.0032** 
(0.0016) 

0.0008 
(0.0011) 

vigor+/− nc 3.9 nc 
N 178 816 1420  

a Asterisks denote significance at the 1% (***), 5% (**) and 10% (*) levels for 
one-tailed tests. 

b Standard errors in parentheses. 
c Denotes no calculation because coefficient estimates are insignificant or 

have counterintuitive signs. 

10 Kriging results in some projections of vigor that are less than 1 and greater 
than 4. We ran the Kriged models with the <0.1 km buffer limiting vigor to the 
[1,4] interval and the estimation results were essentially identical. For the 
hedonic model, the coefficient estimate changes were: lba − 0.0071➔-0.0068 
and lba*vigor 0.0018➔0.0018. Similarly, for the repeat-sale model: lba −

0.032➔0.033 and lba*vigor 0.0097➔0.0099).  
11 We also ran Hedonic and Repeat-Sale Models using the <0.1 km buffer where 

vigor was a binary variable; lba*v1 (76–99% foliar loss), lba*v2 (51–75% foliar 
loss) and lba*v3 (26–50% foliar loss) where v4 (0–25% foliar loss). In these 
models the qualitative results hold, lower vigor reduces property values. In both 
models, lba became insignificant. However, for the Hedonic Model lba*v1 and 
lba*v3 were significant and negative while lba*v2 was insignificant. Further, the 
coefficient for lba*v1 (−0.093) was larger in absolute value than the coefficient 
for lba*v3 (−0.001). For the Repeat-Sale Model, there were no observations for 
v1, lba*v2 was negative and significant (−0.01) and lba*v3 was negative but 
insignificant. It is noted that the coefficients for lba*v1 in the Hedonic Model and 
lba*v2 in the Repeat-Sale Model are nearly identical. 

12 Given that our study time frame, 2007–2009 overlapped with the great 
recession, we also estimated a model including dummy variables to indicate the 
year of the second sale using the <0.1 km buffer. We found that the coefficients 
for lba and lba*vigor remained significant and changed very little in magnitude 
(−0.032➔-0.028 and 0.0097 ➔ 0.0092, respectively).  
13 We employ the most recent sale of each property in the Hedonic Model 

estimation. 
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6.4. Values for improvements in Live Basal Area (lba) 

Here we report values based on the 0.1 km buffer, which is the only 
buffer to provide consistently significant estimates with the expected 
coefficient signs. We consider a change moving from the 2007 level of 38 
m2/ha to the 2011 mean lba of 15 m2/ha at the highest level of vigor, 4. 
This vigor level is supported by the Hedonic Model and the Repeat-Sale 
Model as contributing positively to property values. 

As the parameter estimates in a log-linear hedonic can be used to 
calculate percentage changes in the dependent variable, the percentage 
change in housing price is computed as: 

%ΔP̂ = (P15 − P38)/P15

= exp(γ̂(lba15 − lba38) + (θ̂(lba15*vigor4 − lba38*vigor4 ) − 1 (5) 

The capitalized decrease in value for the average priced house in 
2007 is then calculated by multiplying %ΔP̂ by the average sale price of 
$281,358 (Kriging interpolation sample for the 1 km buffer). 

The Hedonic Model reveals a modest capitalized-value reduction of 
0.2% or about $650 for the average-valued property. A much larger 
impact is found with the Repeat-Sale model with a capitalized-value 
decrease of 15% or about $39,600. This is a dramatic difference in 
property value impacts and might be due to several reasons. The Hedonic 
Model estimate may be lower because there are other confounding fac
tors that ameliorate the impact the are not captured by the fixed ef
fects. Conversely, the restricted sample of properties that sold more 
than once may not be representative of all properties in the study area 
and the Repeat-Sale model provides an overestimate of the price impact. 

7. Discussion 

Differences in implicit prices across hedonic and repeat-sale, or other 
quasi-experimental, estimation is not unique to this study (e.g., 
Kuminoff and Pope, 2014). We found the Repeat-Sale coefficient esti
mate is more than four times larger in absolute value than the Hedonic 
estimate (4.57 = −0.032/−0.007, Kriging with 0.1-km buffer). Joshi 
et al. (2020) found a ratio of Repeat-Sale to Hedonic coefficient estimates 
of 0.57 and 0.56 for condominiums in Seattle within a 0.5-mile buffer, 
and 1.05 and 1.04 for condominiums within a 0.5–1-mile buffer. In 
comparison, Humphreys and Nowak (2017) found Repeat-Sale coeffi
cient estimates for single family homes in Charlotte, NC were compa
rable to a Hedonic model with fixed effects for a 1-mile buffer (0.97 ratio) 
and slightly smaller for a 1–2-mile buffer (0.77 ratio). 

One might expect differences between repeat-sale and hedonic esti
mation if there are omitted relevant variables that are time constant and 

cancel out in the repeat-sale estimation but not for the hedonic esti
mation. Differences could also be driven by the repeat-sale and hedonic 
samples differing in terms of the key policy variable(s) or the houses that 
sold twice versus once. Thus, a key insight relates to the number of 
observations available for estimation. Humphreys and Nowak had 
12,989 observations to support their Repeat-Sale estimation and 41,417 
for the Hedonic estimation, and Joshi et al. (2020) had 10,398 and 7697 
for their Repeat-Sale estimation and 27,427 and 20,060 for the Hedonic. 
These are far more than the 178 and 2758 observations we have, 
respectively, for the Repeat-Sale and Hedonic estimation. These differ
ences arise because the Humphreys and Nowak and Joshi et al. studies 
were conducted in urban areas, Charlotte, NC and Seattle, WA, whereas 
our study was conducted in largely rural areas of Connecticut and 
Massachusetts. Thus, the larger coefficient-estimate difference in our 
study may be driven by the small number of repeat-sale observations 
and the larger difference in repeat sales relative to single sales. Noting 
the summary statistics on live basal area and vigor in Table 2, which are 
nearly identical for the for the kriged repeat-sale and hedonic data, the 
larger difference observed in our study may be due to the repeat-sale 
sample differing from the hedonic sample in terms of properties sold 
in terms of features we could not control for in the hedonic. However, it 
is worth repeating that the hedonic and repeat-sales descriptive statistics 
for the variables included in the models were statistically identical with 
two minor differences (see Appendix Table A). 

Differences might also be driven by endogeneity in the hedonic 
model. Heintzelman and Tuttle (2012) attributed larger effects in a 
hedonic model of wind farms, relative to a repeat-sale model, to the 
presence of endogeneity in the hedonic. Note, both models were esti
mated with the same number of observations. We observed the opposite 
relationship between the hedonic and repeat-sale estimation. While 
endogeneity may be a contributing factor, we suspect the observed 
difference are due to multiple confounding factors that include endo
geneity, different samples of properties and differing sample sizes. 

There are other estimation approaches that might be used in future 
comparisons to help explain or reduce differences in estimation out
comes between repeat-sale and hedonic estimation such as pooling 
single and repeat-sales data (e.g., Case and Quigley, 1991) and matching 
properties with differing levels of the policy variable of interest (e.g., 
Guntermann et al., 2016; Klaiber and Smith, 2013). Joshi et al. (2020) 
use one matching approach and found the ratio of repeat-sale to hedonic 
coefficients of about 0.70 for both their 0.5- and 0.05–1-mile buffers: 
reducing the difference for the smaller buffer and increasing the dif
ference for the larger buffer. 

8. Conclusions 

Using spatial data interpolation allowed for the extrapolation of on- 
site sampling data, limited due to expense and limited access to private 
lands, to a large geographical area based on high resolution data on 
hemlock stands. This expansion of the data has important implications 
for the economic analysis as it allows for much larger sample sizes to 
support estimation of traditional hedonic models and allows for the 
estimation of a repeat-sale model. 

Our results show that hemlock trees within 0.1 k of a property and 
infected by the adelgid, in central portions of Connecticut and Massa
chusetts, reduce property values and only the healthiest trees contribute 
positively to property values. This outcome is consistent with the study 
by (Holmes et al., 2010), conducted in New Jersey, that also found a 
threshold of hemlock stand health below which hemlock stands reduce 
property values. 

The robustness analyses found that estimation results are sensitive to 
investigator modeling decisions. This lack of robustness is not an 
inherently negative outcome as important information is revealed about 
the extent of the adelgid's effects on property values and economic 
modeling choices. The results support that there is a property impact for 
hemlock tress located near a property (0.1 km here) but not beyond. In 

Table 4 
Hemlock Coefficient Estimates Based on Alternative Interpolation Methods (0.1 
km buffers).   

Kriging IDW Spline 

Hedonic Model (N = 2758) 
Lba (m2/ha) −0.0071**a 

(0.0037)b 
−0.0035* 
(0.0027) 

−0.0025 
(0.0024) 

lba*vigor 0.0018** 
(0.0008) 

0.0011* 
(0.0007) 

0.0008* 
(0.0006) 

vigor+/− 3.8 3.3 ncc  

Repeat-Sale Model (N = 178) 
lba (m2/ha) −0.0322*** 

(0.0116) 
−0.0245* 
(0.0152) 

−0.0228** 
(0.0129) 

lba*vigor 0.0097*** 
(0.0035) 

0.0079* 
(0.0039) 

0.0075** 
(0.0034) 

vigor+/− 3.3 3.1 3.1  

a Asterisks denote significance at the 1% (***), 5% (**) and 10% (*) levels for 
one-tailed tests. 

b Standard errors in parentheses. 
c Denotes no calculation because coefficient estimates are insignificant or 

have counterintuitive signs. 
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context, 0.1 k is 328 ft, which suggests the trees are located on subject 
properties or on an adjacent property; more distant trees do not have an 
effect. 

The capitalized property value impacts are not robust between the 
Hedonic and Repeat-Sale models. The challenge here is that this model 
robustness comparisons is an imperfect investigation of convergent 
validity where the truth is unknown (Bishop and Boyle, 2019). The 
Hedonic and Repeat-Sale models are designed to measure the same im
plicit price. If there are no omitted relevant variables in the Hedonic 
estimation, and this is a big if, the two estimation approaches should 
provide similar implicit price estimates. Even if this strict omitted- 
variable condition holds, one does not know which is unbiased or if 
both are biased. Based on theoretical considerations, the Repeat-Sale 
Model is preferred for identifying the price effect because time-invariant 
explanatory variables cancel out of the estimation. However, this 
advantage may be offset by the limited number of properties that sell 
more than once, which may be systematically different from all prop
erties that sold once during the study period. 

Thus, careful consideration of the empirical evidence is required. 
Our results provide some support for the quasi-experimental Repeat-Sale 
Model over the Hedonic Model with spatial fixed effects. When both 
models were estimated using the same data, the Hedonic Model 

underperformed. 
In closing, we report losses in capitalized property values due to the 

adelgid infestation. However, another perspective might be how prop
erty values might recover post infestation. Our model is not equipped to 
answer this question in that the adelgid “rapidly” decreases hemlock 
health over several years while it would take hundreds of years for a 
replanted hemlock tree to reach maturity. Further, we do not know what 
action a landowner might take; nothing, planting a new hemlock, 
planting a different species or other. The recovery of diminished prop
erty values in the face of tree disease and pest infestation is a question 
that has yet to be addressed in the literature. 
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Appendix  

Appendix Table A 
Descriptive Statistics of Property Characteristic Variables (0.1 km buffers).   

Hedonic Model Repeat-Sale Model  

Mean Standard Deviation Mean Standard Deviation  

Sample Data   
Sale price ($2003) $384,246 $250,960   
Living area (ft2) 2289 910   
Lot size (ft2) 86,936 133,246   
Baths 2.0 0.8   
Bedrooms 3.4 0.9   
Age (years) 42 49   
Air conditioning (%) 39 49   
Fireplace (%) 54 50   
Distance to highway (m) 937 845   
Water (%) 0.3 2.5   
Open space (%) 24 22   
Developed area (%) 0.4 3.2   
Forest (%) 52 30   
Agricultural (%) 2 9   
Wetland (%) 2 7   
N 148 148     

Interpolation Data 
Sale price ($2003) $311,888 $176,061 $299,834 $183,692 
Living area (ft2) 1912 840 1868 874 
Lot size (ft2) 93,253 213,342 81,288 149,281 
Baths 1.8 0.8 1.8 0.7 
Bedrooms 3.2 0.8 3.2 0.8 
Age (years) 39 41 41 40 
Air conditioning (%) 31 46 28 45 
Fireplace (%) 48*a 50 41* 49 
Distance to highway (m) 1068 1068 1016 1163 
Water (%) 53 3.4 69 3.4 
Open space (%) 22 20 22 18 
Developed area (%) 0.1*** 1.2 0.0*** 0.0 
Forest (%) 47 30 48 29 
Agricultural (%) 5 13 5 12 
Wetland (%) 3* 8 2* 6 
N 2758 2758 178 178  
a * and *** denote significant differences at the 10% and 1% levels.  
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Appendix Table B 
Hedonic Coefficient Estimates for Different Data Sets with the 0.1 km Buffers.  

Variables Sample Data Kriging Interpolation Data  

Hedonic Model Hedonic Model Repeat-Sale Model 

Living area (1000 ft2) 0.242 *** 
(0.014) 

0.242***a 

(0.014)b 
0.207 *** 
(0.046) 

Lot size (1000 ft2) 1.102 × 10−3*** 
(3.04 × 10−4) 

1.70 × 10−4*** 
(4.24 × 10−5) 

−0.838 × 10−4 

(1.731 × 10−4) 
Baths 0.089 

(0.059) 
0.092*** 
(0.011) 

0.104 ** 
(0.049) 

Bedrooms −0.091** 
(0.044) 

0.015* 
(0.008) 

0.018 
(0.037) 

Age −1.764 × 10−3*** 
(0.621 × 10−3) 

−0.002*** 
(0.0002) 

−2.311 × 10−3 *** 
(0.636 × 10−3) 

Air conditioning 0.064 
(0.072) 

0.125*** 
(0.013) 

0.086 * 
(0.050) 

Fireplace −0.080 
(0.083) 

0.064*** 
(0.015) 

0.081 
(0.070) 

Distance to highway (km) 0.082 
(0.079) 

0.010 
(7.62 × 10−3) 

−0.027 
(0.027) 

Water (%) 0.017 *** 
(0.004) 

5.439 × 10−3** 
(2.269 × 10−3) 

−8.054 × 10−3 

(5.192 × 10−3) 
Open space (%) 2.066 × 10−3 

(1.257 × 10−3) 
1.642 × 10−4 

(4.389 × 10−4) 
0.639 × 10−3 

(1.825 × 10−3) 
Developed area (%) 2.710 × 10−3 

(2.166 × 10−3) 
−9.410 × 10−3* 
(5.487 × 10−3) 

−1.406 *** 
(0.404) 

Forest (%) 1.097 × 10−3 

(1.258 × 10−3) 
5.320 × 10−4* 
(2.795 × 10−4) 

−0.142 × 10−3 

(0.853 × 10−3) 
Agricultural (%) 2.814 × 10−3 

(2.643 × 10−3) 
1.585 × 10−3*** 
(4.169 × 10−4) 

−0.114 × 10−3 

(1.207 × 10−3) 
Wetland (%) −0.010** 

(5.144 × 10−3) 
1.445 × 10−4 

(7.211 × 10−4) 
1.845 × 10−3 

(2.037 × 10−3) 
lba −0.0059* 

(0.0032) 
−0.0071* 
(0.0037) 

0.0299 
(0.0243) 

lba*Vigor 0.0020** 
(0.0010) 

0.0018** 
(0.0008) 

−0.0009 
(0.0047) 

N 148 2758 178 
Adjusted-R2 0.521 0.5538 0.326  
a *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level. 
b Standard errors in parentheses.  

Appendix Table C 
Hedonic Coefficient Estimates for Different Data Sets with the 0.5 km Buffers.  

Variables Sample Data Kriging Interpolation Data  

Hedonic Model Hedonic Model Repeat-Sale Model 

Living area (1000 ft2) 0.274*** 
(0.025) 

0.266 *** a 

(0.007) b 
0.241 *** 
(0.020) 

Lot size (1000 ft2) 9.156 × 10−4*** 
(3.417 × 10−4) 

1.65 × 10−4 *** 
(2.69 × 10−5) 

1.42 × 10−4 

(1.77 × 10−4) 
Baths 0.010 

(0.026) 
0.073 *** 
(0.007) 

0.053 ** 
(0.022) 

Bedrooms −0.022 
(0.022) 

2.816 × 10−3 

(5.109 × 10−3) 
0.010 
(0.015) 

Age −1.535 × 10−3** 
(0.594 × 10−3) 

−1.617 × 10−3 *** 
(1.560 × 10−4) 

−1.760 × 10−3 *** 
(2.427 × 10−4) 

Air conditioning 0.098 *** 
(0.032) 

0.108 *** 
(0.007) 

0.123 *** 
(0.027) 

Fireplace 0.154*** 
(0.039) 

0.078 *** 
(0.009) 

0.123 *** 
(0.030) 

Distance to highway (km) 0.035 
(0.032) 

0.011*** 
(0.007) 

−0.008 
(0.011) 

Water (%) 3.523 × 10−3 

(3.948 × 10−3) 
2.891 × 10−3 *** 
(0.863 × 10−3) 

3.970 × 10−3 

(2.955 × 10−3) 
Open space (%) 3.192 × 10−3*** 

(0.790 × 10−3) 
2.584 × 10−3 *** 
(0.566 × 10−3) 

6.057 × 10−3 *** 
(1.383 × 10−3) 

Developed area (%) −4.509 × 10−3 

(3.328 × 10−3) 
−8.596 × 10−3 *** 
(2.391 × 10−3) 

−0.016 *** 
(6.146 × 10−3) 

Forest (%) 1.780 × 10−3* 
(0.909 × 10−3) 

1.307 × 10−3 *** 
(0.289 × 10−3) 

3.364 × 10−3 *** 
(0.814 × 10−3) 

Agricultural (%) 6.420 × 10−3 *** 
(2.198 × 10−3) 

2.450 × 10−3 *** 
(0.431 × 10−3) 

2.124 × 10−3 

(1.572 × 10−3) 
Wetland (%) −0.660 × 10−3 

(3.131 × 10−3) 
1.472 × 10−3 *** 
(0.423 × 10−3) 

3.090 × 10−3 * 
(1.829 × 10−3) 

(continued on next page) 
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Appendix Table C (continued ) 

Variables Sample Data Kriging Interpolation Data  

Hedonic Model Hedonic Model Repeat-Sale Model 

lba 0.0017 
(0.0022) 

−0.0054** 
(0.0022) 

−0.0124 
(0.0077) 

lba*Vigor −0.0005 
(0.0007) 

0.0015*** 
(0.0005) 

0.0032 ** 
(0.0016) 

N 484 13,076 816 
Adjust-R2 0.554 0.582 0.481  
a *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level. 
b Standard errors in parentheses.  

Appendix Table D 
Hedonic Coefficient Estimates for Different Data Sets with the 1.0 km Buffers.  

Variables Sample Data Interpolation Data  

Hedonic Model Hedonic Model Repeat-Sale 

Living area (1000 ft2) 0.274 
(0.016) 

0.266 *** a 

(0.007) b 
0.223 *** 
(0.015) 

Lot size (1000 ft2) 2.81 × 10−4*** 
(1.03 × 10−4) 

1.89 × 10−4 *** 
(3.00 × 10−5) 

2.94 × 10−4* 
(1.78 × 10−4) 

Baths 0.051*** 
(0.019) 

0.065 *** 
(0.006) 

0.074 *** 
(0.014) 

Bedrooms −0.028** 
(0.011) 

4.082 × 10−3 

(4.142 × 10−3) 
3.684 × 10−3 

(1.169 × 10−2) 
Age −0.879 × 10−3** 

(0.365 × 10−3) 
−1.650 × 10−3 *** 
(1.566 × 10−4) 

−1.760 × 10−3 *** 
(2.427 × 10−4) 

Air conditioning 0.115 *** 
(0.018) 

0.109 *** 
(0.006) 

0.123 *** 
(0.022) 

Fireplace 0.093*** 
(0.015) 

0.077 *** 
(0.008) 

0.112 *** 
(0.024) 

Distance to highway (km) 0.020 
(0.014) 

0.014*** 
(0.004) 

−0.004 
(0.010) 

Water (%) 0.559 × 10−4*** 
(0.157 × 10−4) 

2.211 × 10−3 *** 
(0.854 × 10−3) 

6.401 × 10−4 

(2.491 × 10−3) 
Open space (%) 0.040 × 10−3** 

(0.200 × 10−4) 
3.805 × 10−3 *** 
(0.870 × 10−3) 

9.457 × 10−3 *** 
(2.005 × 10−3) 

Developed area (%) −0.151 × 10−3*** 
(0.036 × 10−3) 

−10.253 × 10−3 *** 
(2.252 × 10−3) 

−2.633 × 10−3 

(4.155 × 10−3) 
Forest (%) 0.265 × 10−4*** 

(8.65 × 10−6) 
1.556 × 10−3 *** 
(0.351 × 10−3) 

4.447 × 10−3 *** 
(0.851 × 10−3) 

Agricultural (%) 0.729 × 10−4 *** 
(0.136 × 10−4) 

3.272 × 10−3 *** 
(0.535 × 10−3) 

5.035 × 10−3 ** 
(2.053 × 10−3) 

Wetland (%) 0.222 × 10−4 

(0.024 × 10−3) 
1.636 × 10−3 *** 
(0.528 × 10−3) 

5.226 × 10−3 *** 
(1.618 × 10−3) 

lba 0.0020 
(0.0012) 

−0.0030* 
(0.0016) 

−0.0020 
(0.0047) 

lba*Vigor −0.0006 
(0.0004) 

0.0009** 
(0.0004) 

0.0008 
(0.0011) 

N 1651 23,244 1420 
Adjust-R2 0.5406 0.5786 0.4691  
a *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level. 
b Standard errors in parentheses.  

Appendix Table E 
Hedonic Coefficient Estimates Based on Alternative Interpolation Methods with 0.1 km Buffers.  

Variables Kriging IDW Spline 

Living area (1000 ft2) 0.242***a 

(0.014)b 
0.242*** 
(0.014) 

0.242*** 
(0.014) 

Lot size 
(1000 ft2) 

1.70 × 10−4*** 
(4.24 × 10−5) 

1.70 × 10−4*** 
(4.24 × 10−5) 

1.71 × 10−4*** 
(4.25 × 10−5) 

Baths 0.092*** 
(0.011) 

0.092*** 
(0.011) 

0.092*** 
(0.011) 

Bedrooms 0.015* 
(0.008) 

0.015* 
(0.008) 

0.015* 
(0.008) 

Age −0.002*** 
(0.0002) 

−0.002*** 
(0.0002) 

−0.002*** 
(0.0002) 

Air conditioning 0.125*** 
(0.013) 

0.125*** 
(0.013) 

0.125*** 
(0.013) 

Fireplace 0.064*** 
(0.015) 

0.063*** 
(0.015) 

0.063*** 
(0.015) 

(continued on next page) 
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Appendix Table E (continued ) 

Variables Kriging IDW Spline 

Distance to highway (km) 0.010 
(7.62 × 10−3) 

0.010 
(7.65 × 10−3) 

0.010 
(7.65 × 10−3) 

Water (%) 5.439 × 10−3** 
(2.269 × 10−3) 

5.370 × 10−3** 
(2.250 × 10−3) 

5.351 × 10−3** 
(2.250 × 10−3) 

Open space (%) 1.642 × 10−4 

(4.389 × 10−4) 
1.686 × 10−4 

(4.421 × 10−4) 
1.749 × 10−4 

(4.414 × 10−4) 
Developed area (%) −9.410 × 10−3* 

(5.487 × 10−3) 
−9.412 × 10−3* 
(5.474 × 10−3) 

−9.345 × 10−3* 
(5.484 × 10−3) 

Forest (%) 5.320 × 10−4* 
(2.795 × 10−4) 

5.460 × 10−4* 
(2.808 × 10−4) 

5.507 × 10−4* 
(2.816 × 10−4) 

Agricultural (%) 1.585 × 10−3*** 
(4.169 × 10−4) 

1.578 × 10−3*** 
(4.161 × 10−4) 

1.572 × 10−3*** 
(4.167 × 10−4) 

Wetland (%) 1.445 × 10−4 

(7.211 × 10−4) 
1.830 × 10−4 

(7.287 × 10−4) 
1.827 × 10−4 

(7.308 × 10−4) 
lba −0.0071* 

(0.0037) 
−0.0035 
(0.0027) 

−0.0025 
(0.0024) 

lba*Vigor 0.0018** 
(0.0008) 

0.0011 
(0.0007) 

0.0008 
(0.0006) 

N 2758 2758 2758 
Adj-R2 0.5538 0.5534 0.5533  
a *** denotes significant at the 1% level, ** denotes significant at the 5% level, * denotes significant at the 10% level. 
b Standard errors in parentheses. 
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