
PHYSICAL REVIEW E 105, 055305 (2022)

Efficient d-dimensional molecular dynamics simulations for studies of the glass-jamming transition
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We develop an algorithm suitable for parallel molecular dynamics simulations in d spatial dimensions and
describe its implementation in C + +. All routines work in arbitrary d; the maximum simulated d is limited
only by available computing resources. These routines include several that are particularly useful for studies
of the glass-jamming transition, such as SWAP Monte Carlo and FIRE energy minimization. The scalings of
simulation runtimes with the number of particles N and number of simulation threads nthreads are comparable to
popular molecular dynamics codes such as LAMMPS. The efficient parallel implementation allows simulation
of systems that are much larger than those employed in previous high-dimensional glass-transition studies. As a
demonstration of the code’s capabilities, we show that supercooled d = 6 liquids can possess dynamics that are
substantially more heterogeneous and experience a breakdown of the Stokes-Einstein relation that is substantially
stronger than previously reported, owing at least in part to the much smaller system sizes employed in earlier
simulations.
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I. INTRODUCTION

Molecular dynamics (MD) simulations have been an es-
sential part of statistical physicists’ toolbox for over 50 years
[1–4]. Numerous open-source, highly optimized multipurpose
parallel MD simulation packages are now available [5–10].
These packages are designed to simulate systems embedded
in the physically relevant spatial dimensions 2 � d � 3; they
cannot be used for d > 3 simulations without extensive modi-
fications. Accordingly, they employ parallelization algorithms
that are efficient in low d , e.g., spatial domain decom-
position allowing simulation of multibillion-atom systems
on distributed-memory supercomputers [11,12]. These algo-
rithms, however, rapidly become less efficient as d increases.
Developing publicly available codes that allow efficient par-
allel MD simulations of higher-dimensional systems to be
performed may be a key step toward answering several open
questions in physics, particularly questions related to super-
cooled liquids and the glass-jamming transition. In this paper,
we describe the first such code (hdMD) [13]. Then we use it to
show that the dynamics of supercooled d = 6 liquids at den-
sities above the RFOT dynamical glass transition density φd

[14] can be substantially more heterogeneous than previously
reported.

Early simulations of high-dimensional supercooled liquids
employing systems of N = 103 − 104 particles indicated that
crystallization is strongly suppressed as d increases beyond 3
[15–18]. Recent work, however, has shown that (i) crystalliza-
tion instabilities in glassforming mixtures often appear only
when larger N [19] or SWAP Monte Carlo equilibration [20]
are employed, and (ii) hard-sphere crystals are thermodynam-
ically stable for a wide range of packing fractions φ < φd for
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all d � 10 [21]. Both results suggest that the conclusions of
many of the early d > 3 studies need to be reexamined using
larger systems. Moreover, the N typically employed in recent
simulations of higher-d systems have remained small (e.g.,
N < 104 in Refs. [22–24]), precluding robust investigation of
how any static or dynamic length scales that grow substan-
tially as φd is approached [25–29] depend on d .

For example, simulation studies suggesting that dynam-
ical heterogeneity weakens as d increases [30–32] can be
challenged on the grounds that heterogeneous dynamics in
these studies are suppressed not (or not primarily) by the
increase in spatial dimension, but instead by their use of
periodic boundary conditions with simulation cell side lengths
L that decrease rapidly with increasing d . This is a reasonable
concern, given the tendency of the least mobile particles in
glassforming liquids to remain near their initial positions af-
ter time intervals over which the most mobile particles have
hopped by several times their diameter [33,34], and the fact
that L drops as low as ∼2 particle diameters for the highest
studied d [30–32]. Resolving this issue requires performing
analogous simulations with larger L, and completing such
simulations in a reasonable amount of time requires an effi-
cient parallel implementation of high-dimensional MD.

Simulating supercooled liquids in high d presents several
challenges. One of the most difficult involves neighbor-list
construction. If one wishes to simulate systems with a given
number of particles N , then the cell side length L ∼ N1/d ,
and thus the number of linked (fixed-size) subcells along each
axis of the simulation cell, is ncell ∼ N1/d . The total number
of subcells is Nsc = ndcell, and the number of these which
must be searched over for each atom during a typical Verlet
list (VL) build is 3d . The total number of atoms in these
neighboring cells is Nnc = (3d/Nsc)N ≡ (3/ncell )dN ∼ 3d , so
the total number of pair distances which must be evaluated to
rebuild all atoms’ Verlet lists is NVl ∼ 3dN . In other words,
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the effort required to maintain the neighbor lists increases
exponentially with increasing d because building each atom’s
VL requires searching over a exponentially increasing fraction
of the system’s volume.

Avoiding strong finite-size effects requires simulating sys-
tems of a minimum spatial extent L; typically L � 10 particle
diameters. If L is taken to be L, then the minimum number
of particles simulations must include to avoid such affects
is Nmin ∼ Ld . While characteristic packing fractions φ scale
across dimensions roughly as 2−d or d2−d [35,36], hyper-
sphere volumes decrease faster than this, so the corresponding
particle number densities ρ increase with increasing d . For
example, the dynamical-glass transition-number densities for
hard spheres, ρd � 1.78 − 0.5d + 0.095d2 [30], nearly triple
as d increases from 3 to 7. Taking Nmin = ρdLd , the computa-
tional effort to build the VL for a d-dimensional supercooled
liquid scales roughly as ρd (3L)d .

This rapidly becomes prohibitive as d increases, but it
can be overcome for intermediate d using efficient parallel
algorithms. In this paper, we describe our newly developed
hdMD code, which employs such algorithms and is capable
of simulating much larger high-d systems than have been
studied previously. hdMD includes several routines commonly
employed in studies of the glass-jamming transition [37–39],
such as SWAP Monte Carlo [20,40], FIRE energy mini-
mization [41,42], and calculation of the overlap parameter
fov(t ) and van Hove correlation function Gs(r, t ). Here we
use it to simulate 3 � d � 6 supercooled liquids of up to
107 particles over short timescales and 105 particles over
the much longer timescales typically employed in modern
glass-transition studies [20]. The latter simulations show that
strongly heterogenous dynamics (as indicated by large non-
Gaussian parameters) can persist to very long times in deeply
supercooled liquids for d up to at least 6. By contrasting
results for N = 105 to those for N = 5000 liquids at the same
φ and T , we provide initial evidence that some of the conclu-
sions of Refs. [30–32]—at least in terms of their quantitative
details—would have been different had these studies consid-
ered larger systems.

The outline of the rest of this paper is as follows. Section II
describes hdMD’s algorithmic implementation. Section III
presents performance benchmarks for simulations at pack-
ing fractions φ � φd for 3 � d � 6, focusing on the code’s
parallel efficiency and the scaling of simulation runtimes
with N and d . Section IV includes an original analyisis of
the dynamics of supercooled d = 6 liquids and serves as a
demonstration of hdMD’s suitability for state-of-the-art glass-
transition-related studies. Finally, in Sec. V, we discuss our
results and conclude. Readers more interested in the code’s
performance than its algorithmic implementation are urged
to skip to Sec. III, while readers primarily interested in our
supercooled-liquid physics results are urged to skip to Sec. IV.

II. ALGORITHMIC IMPLEMENTATION

Most previous simulations of liquids in d > 3 have em-
ployed hard spheres. This is sensible given that hard-core
interactions dominate liquids’ structure [2] and polydisperse
hard-sphere liquids are excellent glassformers [20]. However,
hard-particle techniques are inherently limited in the range

of physical phenomena they can capture. The lack of finite
interparticle forces makes it difficult for them to accurately
model the collective rearrangements which increasingly dom-
inate liquids’ relaxation mechanisms as the glass transition
is approached [26,27]. They cannot, for example, capture the
long-range elastically mediated dynamical facilitation that has
recently been shown to arise below the mode-coupling tem-
perature TMCT [43]. While attractive forces are well known
to exert a strong and nonperturbative influence on three-
dimensional (3D) glassforming liquids’ dynamics [44] and
to increase their tendency to crystallize [45], the variation of
these effects with increasing d remains unexplored and cannot
be explored using hard-particle models. Therefore we employ
a soft-particle MD approach that can treat both repulsive and
attractive forces.

Parallelizing a MD simulation requires devising a method
of distributing the computation across its nthreads concurrent
threads. Modern MD packages, most of which are optimized
for large-nthreads simulations on distributed-memory machines
[5–10], are typically parallelized via spatial domain decompo-
sition of simulation cells [11]. In this scheme, different CPU
cores “own” geometrically distinct regions, and information
that needs to be passed across the boundaries of these regions
is typically passed via intercore communication, usually im-
plemented using MPICH. For example, a typical nthreads = 8
simulation employing a cubic simulation cell divides it into
2 × 2 × 2 domains, each of which is a cube with ncell/2
subcells along each edge. The intercore communication that
is necessary for force evaluation and VL building is only
required between subcells on the surfaces of these domains
[11].

Codes that operate this way work very well for d � 3.
For example, simulations of million-atom liquids have been
shown to exhibit nearly optimal scaling (runtimes ∼n−1

threads)
for nthreads up to ∼102 [46]. As d increases, however, the
spatial-domain-decomposition method loses its effectiveness
for reasons comparable to those outlined above for VL build-
ing. Therefore we respectively employ per-atom, per-atom,
and per-subcell parallelization for force evaluation, time in-
tegration of equations of motion, and VL building. In this
scheme, each thread is responsible for N/nthreads atoms and
Nsc/nthreads subcells rather than a spatial domain, and intercore
communication is avoided entirely by using OpenMP rather
than MPICH to parallelize the code. While the latter choice
limits our code to shared-memory (as opposed to distributed-
memory) machines, it makes it far more efficient.

Table I lists hdMD’s principal routines. All of these routines
work in arbitrary d; the maximum simulated d is limited
only by available computing resources. Our implementation
of these routines will be described in detail in the following
sections.

A. Particle model and initial state generation

Here, for simplicity, we present results for a single hard-
sphere-like pair potential, the truncated and shifted Morse
potential given by

Ua(εi j, σi j, ri j ) = εi j{ exp[−2a(ri j − σi j )]

− 2 exp[−a(ri j − σi j )] + 1} (1)
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TABLE I. Principal routines (C++ functions) included in hdMD.
Additional standard functions involving I/O and memory allocation
are present in the code but are not listed here.

Name Purpose

main Control program operation
leapfrog Integrate Newton’s EOM
getforce Calculate force on atom i
Berendsen Berendsen thermo- or barostat
getthermo Calculate thermodynamic quantities
getvanHove Calculate van Hove corr. function
initRMSE Initialize {�ri}, {mi}, {εi}, {σi}
setupcell Initialize simulation cell
needsrebuild Check if VLs need to be rebuilt
buildneighborlist Build or rebuild the VLs
FIRE Control FIRE energy minimization
FIREintegrate Integrate FIRE EOM
steepest Steepest-descent energy minimization
buildswapNLs Generate SWAP-attempt VLs
swapmove Attempt SWAP moves
writerestart Write restart files to disk
writecoords Write {�ri} and image flags to disk

for ri j � σi j and zero for ri j � σi j , where ri j is the center-
to-center distance between particles i and j. We use the
standard Lorentz-Berthelot MD mixing rules for particle di-
ameters and force prefactors, i.e., σi j = (σi + σ j )/2 and εi j =√

εiε j . Longer-range interactions including attractive terms
can be implemented by adjusting main()’s “cut” parame-
ter. The Morse parameter a can be adjusted by editing a
single-line in getforce(); all results presented below are for
a = 30σ̃−1. More generally, hDMD can be easily generalized
to arbitrary radial force laws and mixing rules (incorpo-
rating, e.g., nonadditivity [20]) by editing a few lines of
code in the getforce(), thermo(), and swapmove() rou-
tines. In particular, switching the stock code from the Morse
to the Mie potential Un(εi j, σi j, ri j ) = εi j[(

σi j

r )2n − 2( σi j

r )n],
which reduces to the widely employed Lennard-Jones or
WCA potential for n = 6, requires only commenting or
uncommenting-out a few lines of code in these routines.

The volume of a d-dimensional spherical particle with
diameter σ is

v(d, σ ) = πd/2σ d

2d�(1 + d/2)
, (2)

where � is the gamma function. For all simulations dis-
cussed in Sec. III, we set particles’ mass density ρm =
[v(d, σ )σ−d ]−1 = π−d/22d�(1 + d/2) so particles have mass
mi = σ d

i and typical particles with σ = 1 have unit mass.
Correspondingly, we set εi = σ d

i so repulsive interactions
also scale with particle volumes [47]. During MD simulation,
Newton’s equation of motion are integrated using the stan-
dard leapfrog algorithm with a timestep dt = 6τ/(125a) =
0.0016τ , where τ =

√
m̃σ̃ 2/ε̃ is the unit of time. Here m̃, σ̃ ,

and ε̃ are the mass, diameter, and force prefactor for typical
particles: m̃ = σ̃ = ε̃ = 1 in dimensionless units.

Polydispersity is one of the most important factors control-
ling glassforming ability in molecular simulations [48]. We

use the particle-diameter distribution

P(d,R, σ ) =
{

(d−1)σ−d

R
d−1
2d −R− d−1

2d
, R− 1

2d � σ � R 1
2d

0, σ < R− 1
2d or σ > R 1

2d

,

(3)
where R = (σmax/σmin)d is the ratio of maximum to
minimum particle volumes. The total volume V (σ ) =
NP(d,R, σ )v(d, σ ) occupied by particles of diameter σ

is σ -independent over the entire range R− 1
2d � σ � R 1

2d ;
this choice apparently optimizes glass-formability for a wide
range of force laws [20]. Preventing crystallization also re-
quires a sufficiently large polydispersity index 	 = [〈σ 2〉 −
〈σ 〉2]1/2/〈σ 〉, with the minimum 	 decreasing with increas-
ing d [20]. Here we choose R = d , which gives 	 =
0.107, 0.099, 0.091, 0.083 in d = 3–6. We find that these pa-
rameter choices are sufficient to prevent both crystallization
and phase separation in all systems discussed below.

To generate N-particle initial states with packing fraction
φ, we first define the particle diameters {σi} by randomly
sampling the distribution P(d,R, σ ), using the function
initRMSE(). This function also sets the particle masses {mi}
and force prefactors {εi}. The total volume occupied by these
particles is

Vpart =
N∑
i=1

v(d, σi ); (4)

thus the total simulation cell volume must be V = Vpart/φ.
We employ hypercubic simulation cells of this volume (and
side length L = V 1/d ), centered at the origin; initRMSE()
assigns all particles random initial positions {�ri} within these
cells. After initializing the linked-subcell data structures using
setupsupercell(), hdMD populates the subcells and initial-
ize all particles’ Verlet lists using buildneighborlist().
These two routines will be described in detail in Sec. II C.

The randomly generated positions lead to severe par-
ticle overlap that must be reduced before the simulation
can begin. We accomplish this “pushoff” using a partial
FIRE minimization (Sec. II B). During this minimization and
throughout the rest of the simulation, periodic boundary con-
ditions are applied along all d directions. After the pushoff
is complete, we give particles random initial velocities corre-
sponding to the desired target temperature Ttarg. Alternatively,
the above-mentioned initial-state-generation-and-pushoff pro-
cedure may be skipped by reading initial states (e.g., restart
files written during a previous simulation) in from an ASCII
file. This is also handled using initRMSE(), with the relevant
restart file names passed to hdMD as command-line arguments
as discussed below. Then the linked-subcell data structures are
initialized, the subcells are populated and all particles’ VLs
are initialized as outlined above. Once either of these options
is completed, the MD simulation begins.

B. Program control, force evaluation, and integration
of equations of motion

In this section, we outline hdMD’s usage and
large-scale structure. Entering the command ./hdMD
d N φ T nsteps nthreads p resfilename rinitfilename
nmsdstart starts a d-dimensional MD simulation with N
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TABLE II. Principal user-adjustable parameters defined in hdMD.
Each of these may be adjusted by editing one line of code in main().
Alternatively, they may be straightforwardly converted to command-
line parameters.

Name Definition

nthermo Steps between getthermo() calls
nvhc Steps between getvanHove() calls
nbaro Steps between Berendsen() calls
nrestart Steps between writerestart() calls
ndump Steps between writecoords() calls
nbet Steps between needsrebuild() calls
nmin Steps between FIRE() calls
nswap Steps between swapmove() calls
nmsdstart Steps before MSD calculation begins
nchunk Chunk size for integration of EOM
Ttarg, Ptarg Target temperature and pressure
τtemp, τpress Temperature and pressure damping times
Ethres, Fthres Convergence criteria for FIRE()
maxiter Maximum number of FIRE iterations
	max Maximum particle displacement or timestep
baroflag True (false) for NPT (NVT) simulations
minflag True (false) if performing (not performing)

periodic energy minimization
vhcflag True (false) if performing (not performing)

van Hove correlation function calculations

particles at packing fraction φ and target temperature T . The
fifth and sixth command-line parameters specify the number
of MD timesteps and the number of parallel OpenMP threads.
p is the SWAP attempt fraction, i.e., the fraction of particles
for which swaps are attempted every time swapmove()
gets called. resfilename is the name of the file containing
the initial particle {mi}, {σi}, {εi}, positions, velocities, and
image flags. Such a file is unnecessary (and resfilename
should be “null”) if these are to be generated as outlined
above. Finally, rinitfilename is the name of the file
containing an earlier set of particle positions and image flags
to be used as the reference configuration for calculations of
particles’ mean-squared displacement, etc., as outlined in
Sec. II E. Such a file is unnecessary and rinitfilename
should be “null” if the initial particle positions are to be
used for this reference configuration. In addition to the
above-mentioned command-line parameters, a number of
other runtime parameters are defined in hdMD’s main.cpp file
and summarized in Table II.

Once a simulation is running, it dumps ther-
modynamic data every nthermo MD timesteps to a
file named thermodata.dd.NN.phiφ.pp, energy-
minimization data every nmin timesteps to a file named
mindata.dd.NN.phiφ.pp (if minflag = true), restart
files including all particles {mi}, {σi}, {εi}, positions,
velocities, and image flags every nrestart timsteps to files
named restart.dd.NN.phiφ.pp.stepstep, van Hove
correlation function data every nvhc timesteps to a file named
vanHoveCorr.dd.NN.phiφ.pp (if vhcflag = true), and
the particle positions and image flags at step nmsdstart to a file
named Rinit.dd.NN.phiφ.pp.stepstep (and also every
ndump timesteps to a file named coords.dd.NN.phiφ.pp).

Italicized quantities indicate the numerical values of the
various parameters.

After initial states are prepared using either of the two
methods outlined above, hdMD’s main loop (i.e., time inte-
gration for nsteps MD timesteps) begins. Before describing the
structure of this main loop, however, we discuss some imple-
mentation details particular to hdMD that we found optimize
its performance. First, rather then employing three 2D arrays
of format r[N][d], v[N][d], and f[N][d] for the positions,
velocities, and forces, as is done in, e.g., LAMMPS [5], we
store all three in a single 1D array (rvf) of length 3dN .
Second, in all parallel for loops of length∼dN , we employ the
OpenMP scheduling directive schedule (static,nchunk)
with nchunk = 100. Both of these choices speed up the code
by improving its cache locality; see Sec. III B.

hdMD’s main loop is structured as follows:
(i) needsrebuild() is called once every nbet timesteps

to determine whether particles’ VLs need to be rebuilt
(Sec. II C).

(ii) On timestep nmsdstart , the positions rinit that will be
used as the reference state for calculcations of particles’ mean-
squared displacement, van Hove correlation function, etc.
(Sec. II E) are stored in memory and written to rinitfile.

(iii) getthermo() is called once every nthermo timesteps.
(iv) If vhcflag is set to true and and step � nmsdstart ,

then getvanHove() is called once every nvhc timesteps.
(v) writerestart() is called once every nrestart

timesteps.
(vi) If minflag is set to true and step � nmsdstart , then

FIRE() is called once every nmin timesteps.
(vii) swapmove() is called once every nswap timesteps

provided p > 0 (Sec. II D).
(viii) Newton’s equations of motion are integrated forward

in time by the increment 	t = nbetdt by calling leapfrog()
nbet times.

Here step indicates the timestep #. nbet is analogous
to LAMMPS’ “delay” parameter [5]; large values reduce
simulation runtimes slightly but run the risk of insufficiently-
frequent VL builds that lead to lost-atom crashes. For the
T = 0.25ε̃/kB runs described below, we found that nbet = 5
was sufficiently low to ensure stability of the runs. Lower T
allow larger nbet values.

Newton’s equation of motion are integrated via the “kick-
drift-kick” variant of the leapfrog method [49]. For maximum
efficiency, thermostatting in NVT simulations (see Sec. II E)
is implemented as part of leapfrog()’s second kick (i.e.,
its second velocity update); this improves cache locality.
Force evaluation within getforce() is handled in standard
fashion, with one exception; for d > 5, the pair distance
calculation

ri j =
d∑

k=1

(�r j − �ri ) · x̂i, (5)

where x̂i is the unit vector pointing along the ith spatial-
coordinate axis, is truncated before its completion if the partial
sum exceeds the cutoff radius.

Efficient energy minimization is implemented using the
semi-implicit Euler variant of the “FIRE 2.0” update [42]
to the original FIRE algorithm [41]. hdMD’s FIRE() routine
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takes two arguments: Ethres and Fthres. Minimization stops
when the average pair energy drops below Ethres, the fractional
pair energy drop

F =
∣∣∣∣Ei+1 − Ei

Ei

∣∣∣∣ (6)

is smaller than Fthres for 10 consecutive iteration steps, or the
iteration count reaches maxiter. During the above-mentioned
“pushoff,” complete energy minimization is unnecessary, so
we set Ethres = ε. hdMD also includes steepest(), a standard
adapative-timestep gradient-descent energy minimization rou-
tine which stops when the average pair energy drops below
Ethres (its only argument).

C. Cell setup and Verlet-list building

As discussed above, hdMD’s simulation cells are hyper-
cubes of side length L, divided into Nsc = ndcell cubic subcells
with side length Lsc ≡ L/ncell. Here

ncell = floor

(
L

R 1
2d σ̃ + s

)
, (7)

where R 1
2d σ̃ is the diameter of the largest particles, s is the

skin depth, and floor[x] rounds x downward to the nearest in-
teger, e.g., floor[12.3] = 12. All particles’ VLs are rebuilt any
time needsrebuild() finds that at least 0.1% of particles
have moved by at least s/2 or any particles have moved by at
least s since the previous build. Partial VL builds, wherein
only the VLs of particles that have moved by at least s/2
and those in neighboring subcells are rebuilt [50], increased
runtimes for simulations like those reported below, so this
capability was not included in the final code. We found that
s = 0.25σ̃ works well for a wide range of conditions and use
this value in all simulations reported below.

The maximum cutoff radius for inclusion in any particle’s
VL, rmax

c = R 1
2d σ̃ + s, is the maximum interaction range,

(i.e., the maximum interparticle distance for which nonzero
forces can arise) plus s. Thus Lsc is equal to or slightly larger
than rmax

c . Many modern MD codes employ smaller subcells
of side length equal to or slightly larger than rmax

c /2 and
link each subcell to its 5d − 1 nearest neighbors (as opposed
to its 3d − 1 adjacent neighbors as discussed above). Im-
plementing these smaller subcells multiplies the number of
pair distances which must be evaluated during VL builds by
a factor ∼(5/6)d and often speeds up VL building [11,51].
However, it also leads to increased computational overhead
because Nsc increases by a factor ∼2d . We find that for the
short-ranged interactions employed here, the reduction in the
number of pair-distance calculations is outweighed by the
increased overhead. However, the smaller-subcell approach is
likely faster for sufficiently long-ranged interactions, and can
be implemented by editing two lines of code in main().

The linked subcells and machinery for VL-building are
set up at the beginning of any simulation. Subcells centered

FIG. 1. Basic structure of the buildneighborlist() routine.
Parallelization is achieved by dividing its outermost loop equally
amongst the nthreads concurrent threads.

at

�R =
d∑
i=1

(
− 1

2
+ Ci + 1/2

ncell

)
Lx̂i, (8)

where Ci is an integer satisfying 0 � Ci < ncell, and the −1/2
term is present because the simulation cell is centered at the
origin, are given the index

I =
d∑
i=1

Cin
d−i
cell . (9)

Thus each subcell has a unique I ∈ {0, 1, 2, . . . ,Nsc − 1}
as well as a unique set of {Ci : i = 1, 2, . . . , d}. These are
defined when setupsupercell() is called at the beginning
of a simulation.

Building the VL for any given atom requires calculating the
distances between it and all other atoms in its subcell as well
as the 3d − 1 neighboring subcells. This can be accomplished
in many different ways. After considerable trial and error, we
found that the fastest algorithm is schematically described by
Fig. 1. The basic features of this algorithm are standard for
molecular simulations [4], but we found several details of this
approach that are standard and work well for d � 3 perform
poorly in higher d and needed to be modified as detailed
below.

First, implementing the outer single loop over all cells I =
0, 1, . . . ,Nsc − 1 rather than a d-deep loop over the {Ci} both
provided a substantial speedup and allowed construction of
a buildneighborlist() routine in which d is a parameter
and thus works for arbitrary d � 2. A comparable speedup
was achieved by implementing a single second-from-outer
loop over each subcell’s 3d linked subcells rather than the
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more geometrically intuitive approach of a d-deep loop over
the linked subcells’ 	Ci = −1, 0, 1 for each i = 1, 2, . . . , d .

Second, while the most intuitively obvious way of handling
the linked-subcell structure is to store it in static memory
by identifying each subcell’s 3d − 1 neighboring subcells at
the start of the simulation and including pointers to each
neighbor in each subcell’s data structure (e.g., as a private
variable in a “subcell” class object in C++) works well
for d � 3, this approach has a substantial memory cost that
significantly increases simulation runtimes in larger d . We
found that substantially better perfomance is achieved when
each subcell’s neighboring subcells are identified in the first
step of the outermost loop in Fig. 1, i.e., each time the VL is
built.

Third, we found that implementing the outer double loop
over subcells and inner double loop over particles in these
cells provides a substantial speedup relative to alternative loop
orderings, and this speedup increases rapidly with increasing
d . For example, we found that the runtimes of simulations
like the d = 6, φ = φd runs discussed in Secs. III and IV are
∼40% larger when the order of the second and third loops in
Fig. 1 is reversed.

The procedure described above requires ncell � 3 to func-
tion correctly and has an O(N2) computational cost when
ncell = 3. Therefore we also included a more efficient O(N2)
VL-building routine buildNsq() that replaces it whenever
floor(L[R 1

2d σ̃ + s]−1) � 3. buildNsq() eliminates the sub-
cells entirely and performs only the bottom three steps
depicted in Fig. 1. For the remainder of this paper, we focus
on larger systems where ncell > 3.

D. SWAP Monte Carlo

Over the past decade, SWAP Monte Carlo, which speeds
equilibration of deeply supercooled liquids by many orders
of magnitude by exchanging particles’ diameters [20,40], has
revolutionized simulations of the glass-jamming transition.
For example, showing that SWAP allows equilibration of
hard-sphere liquids with φ > φMRJ [52] proved that φMRJ is
not the endpoint of the equilibrium-liquid branch of their
phase diagram [53]. The algorithm was recently extended to
d > 3; Ref. [22] showed that while the dynamical speedup
it produces decreases exponentially with increasing d , it re-
mains substantial for d as large as 8. Therefore we included
SWAP capability in hdMD and describe it here.

Once every nswap timesteps, the main() routine calls
swapmove(). This function controls all aspects of SWAPping.
First, it generates lists of the atom indices {i} and { j} for which
the swaps σi ↔ σ j , εi ↔ ε j , and mi ↔ mj will be attempted.
Both {i} and { j} are of length pN (Sec. II B); the included
indices are chosen randomly. Next it generates the VLs for
these sets using the subroutine buildNLs(). This routine
operates differently than buildneighborlist() for two rea-
sons. First, to properly calculate potential energy changes,
full VLs (as opposed to the half-VLs outlined in Sec. II C)
are required. Second, there is no reason to loop over all Nsc

subcells during this process. Instead, the subcell indices {Ii}
and {I j} are identified in advance. This process, as well as the
actual population of the VLs {Li} and {L j}, are parallelized.

Specifically, the VL-building loops of length pN over the {i}
and { j} are divided equally among the nthreads threads.

After the VLs are built, the actual swapping is executed
serially by the master thread. The total potential energy asso-
ciated with interactions involving particles i and j is initially

Eb =
∑
k

Ua(εik, σik, rik ) +
∑
l

Ua(ε jl , σ jl , r jl ), (10)

where the sums are respectively over the particles {k} and {l}
neighboring them. This energy becomes

Ea =
∑
k

Ua(ε jk, σ jk, rik ) +
∑
l

Ua(εil , σil , r jl ) (11)

if the swap is accepted, and the particles’ velocities are
rescaled to conserve kinetic energy. Swaps are accepted or
rejected using the standard Metropolis criteria.

E. Temperature, pressure control, and thermodynamics metrics

While the results presented below are all from NVT sim-
ulations, hdMD also includes a Berendsen barostat [54] that
allows NPT simulations to be performed. The target pressure
Ptarg and target temperature Ttarg can be set at the initiation
of the MD run or can be ramped by resetting them within
main()’s main loop. Every time Berendsen() is called, it
checks whether ncell [Eq. (7)] has changed since the last time it
was called, and if it has, then it calls setupsupercell() and
then buildneighborlist() to repopulate the subcells. As
mentioned above, for NVT simulations (i.e., when baroflag
is set to false), Berendsen thermostatting is implemented
within leapfrog().

hdMD’s getthermo() routine calculates standard thermo-
dynamic quantities like the temperature, pair energy Epair

from Eq. (1) or its user-defined replacement, pressure P,
and average coordination number Z . Calculation and output
of these quantities is performed once every nthermo steps.
Since hdMD will likely be used primarily for glass-jamming
transition-related studies, it also (by default) calculates parti-
cles’ mean-squared displacements 〈(	�r)2〉 and mean quartic
displacements 〈(	�r)4〉 since step nmsdstart , the non-Gaussian
parameter

α2 = d〈(	�r)4〉
(d + 2)〈(	�r)2〉2 − 1, (12)

and the overlap function

fov = N−1
N∑
i=1

�(0.1d σ̃ − |	�ri|). (13)

Equation (12) is the d-dimensional generalization [30] of
the usual 3D expression for α2 (3〈(	�r)4〉/5〈(	�r)2〉2 − 1). In
Eq. (13), � is the Heaviside step function, and fov is a sim-
ple, commonly used metric for particle relaxation in deeply
supercooled liquids. It varies continuously from 1 to zero
as particles hop away from their initial positions, and pro-
vides roughly the same information as the self-intermediate
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scattering function Fs(q, t ) evaluated at q = 2π/σ̃ [20]. Fi-
nally, hdMD’s getvanHove() routine calculates the self part
of the van Hove correlation function

Gs(r, t ) = 1

N

N∑
i=1

δ(|�ri(t ) − �ri(0)| − r), (14)

where δ(x) is the Dirac delta function. Note that hdMD’s main
loop is structured in such a way that additional periodic calcu-
lations of other thermodynamic quantities can easily be added
by the user.

III. PERFORMANCE OF SIMULATIONS AT φ � φd

FOR 3 � d � 6

A. Theoretical background

The dynamical glass transition packing fraction φd is
defined as the packing fraction at which a supercooled d-
dimensional hard-sphere liquid’s diffusivity would drop to
zero if there were no hopping motion [14]. Hopping makes
the actual packing fraction at which diffusivity drops to zero
substantially higher, but examining systems with φ � φd has
proven very fruitful [30,55] for understanding the ways in
which finite-d supercooled liquids and glasses differ from
their exactly solvable, mean-field counterparts [36,56]. In
this section, we examine hdMD’s scalability and parallel ef-
ficiency for simulations of systems at packing fractions and
temperatures that map to φd but have orders-of-magnitude-
larger N than have been employed in previous d > 3 studies
[15,17,18,21–24,30–32,55–58]. We show that its performance
(as judged by these metrics) is comparable to those achieved
by popular d = 3 MD codes [5–10]. Then we examine how
hdMD’s performance varies with d . We show that in the large-
N limit it is nearly optimal, i.e., the runtime per pair distance
calculation is nearly d-independent.

Results from simulations employing the Morse poten-
tial can be compared to hard-sphere results by considering
systems at the same effective packing fraction φeff = φσ d

eff ,
where the temperature-dependent effective hard-sphere diam-
eter [2] is

σeff (a,T ) =
∫ σ̃

0
{1 − exp [−Ua(r)/kBT ]}dr. (15)

More accurate mapping to hard sphere results can be achieved
using a refined version of this method [59], but since the pri-
mary focus of this paper is to demonstrate the utility of hdMD
rather than precisely matching hard-sphere results, we use
Eq. (15) to estimate the dynamical-glass-transition packing
fractions φ∗

d for a = 30 and T = 0.25ε/kB (Table III).

B. Scaling of runtimes with N, nthreads, and d

Figure 2 summarizes hdMD’s scalability and parallel effi-
ciency for short (100τ ) simulations of supercooled liquids at
this temperature and φ = φ∗

d for 3 � d � 6. All simulations
include 10 FIRE energy minimizations and 100 SWAP-MC
passes, respectively, performed once every 10τ and once
every τ after the simulation begins. The FIRE minimiza-
tions employ Ethres = 10−25ε̃, and the SWAP passes employ

TABLE III. Dynamical-glass-transition packing fractions φd

for hard spheres [30], the associated σ d
eff values for a = 30

and T = 0.25ε/kB [Eq. (15)], and the packing fractions φ∗
d =

[σeff (30, 0.25ε/kB )]−dφd employed in the simulations discussed in
this section and Sec. IV.

d φd [σeff (30, 0.25ε/kB )]d φ∗
d

3 0.5770 0.9650 0.5980
4 0.4036 0.9536 0.4232
5 0.2683 0.9423 0.2847
6 0.1723 0.9312 0.1850

p = 0.1, which is close to the optimal value [20]. For a = 30,
dt = 0.0016τ , so there are 625 MD timesteps per τ and thus
62 500 total timesteps in each simulation.

Figures 2(a) and 2(b) show how runtimes increase with N
for 103.5 � N � 107 for 3 � d � 4 and 105 � N � 107 for
5 � d � 6. For N � 105, runtimes scale as Ny with y � 1.04,
which is very close to the optimal linear scaling. As dN
increases beyond ∼106, the particles’ rvf array (Sec. II B)
can no longer easily fit within the CPU’s L3 cache, and
calls to getforce() produce more and more cache misses.
This worsens the runtime scaling to 1.1 � y � 1.15, which is
suboptimal, but only slightly so. Some standard (d = 3) MD
codes that are optimized for large N (e.g., LAMMPS [5]) pe-
riodically reorder particle ids by the particles’ positions along
one dimension [50,60]. This improves their large-N scaling
by improving cache locality. Since N = 105 should be large
enough for most glass-transition-related studies likely to be
conducted in the next few years, we have not yet implemented
this feature in hdMD, but it can easily be added.

Figure 2(c) shows how parallel efficiency (PE) decreases
as nthreads increases for N = 106 simulations on a typical
mid-2010s dual-socket cluster node. For nthreads = 2, PE val-
ues are ∼85%. This is typical for numerical applications
of OpenMP; PE is never 100% because there is a ∼10μs
overhead associated with parallelizing any for loop. As
discussed above, some of the tasks executed during these
simulations, e.g., the assignment of particles to subcells and
the SWAP moves, are not parallelized or readily paralleliz-
able. Fortunately, PE drops only slowly as nthreads increases.
As shown in the figure, a very loose lower bound for PE is
(83–1.5nthreads)%, and higher-d simulations have considerably
larger PE. For large N , hdMD’s efficiency-limiting factor ap-
pears to be the memory-bound force evaluations; increasing
nthreads increases the rate of cache misses in getforce().
Thus PE(nthreads) might also be improved by implementing
particle-id reordering. We leave this for future work, but em-
phasize that since VL building is less memory-bound than
integration of the EOM, PE(nthreads) actually increases with
increasing d .

Next we discuss how runtimes for fixed N and nthreads vary
with d . In general, runtimes for fixed φ̂ = 2dφ must increase
with d for two reasons. First, the effort required for VL
building scales with NVl ∼ 3d as discussed above. Second,
the size of particles VLs in these runs scales as ρdv(d, σ + s)
[Eq. (2)]. For these φ = φ∗

d runs, NVl = 11.0, 19.4, 31.9,
and 50.4 in d = 3–6. Thus the runtime per pair distance

055305-7



HOY AND INTERIANO-ALBERTO PHYSICAL REVIEW E 105, 055305 (2022)

FIG. 2. Scaling of performance withN and nthreads for 3 � d � 6.
Runtimes for panels (a) and (b) are for nthreads = 8 simulations run on
an iMac with a single 10-core Intel Core i9 CPU (3.6 GHz). Results
for N < 105 and d > 4 are not shown here because these N give
ncell � 4 and thus the scaling of the time devoted to VL builds is
closer to O(N2) than O(N ). Runtimes for panel (c) are for N = 106

simulations on cluster nodes with two 12-core Intel Xeon E5-2650
CPUs (2.2GHz). The larger efficiencies for nthreads > 12 probably
arise from distributing the computational effort to more than one
CPU socket. Solid lines in panels (a) and (c) are guides to the eye,
and the dotted vertical line in panel (b) indicates the iMac’s L3 cache
size (20 MB).

calculation in getforce(), i.e., t/[nstepsNVl], is a good met-
ric for comparing runtimes across different d . Results for all
N � 105 systems are shown in Fig. 3. For the smaller N ,
t/NVl increases rapidly with d because ncell drops to low
values (e.g., ncell = 4 for N = 105 and d = 6) and thus a

FIG. 3. Scaling of performance with d . Runtimes are for
nthreads = 8 simulations run on an iMac with a single 10-core Intel
Core i9 CPU (3.6 GHz).

large fraction of the N particles must be searched over during
the building of each particle’s VL. For N � 106, however,
t/NVl increases far slower, only increasing by a factor of
∼2 as d increases from 3 to 6. This indicates that for large
simulations the scaling of hdMD runtimes with d is nearly
optimal when pair-distance calculations are the rate-limiting
factor.

The trends shown in Fig. 3 can be understood by examining
in greater detail how simulation runtimes are divided among
hdMD’s various routines. Table IV lists the runtime percentages
devoted to leapfrog integration, VL building, energy mini-
mizations, and SWAP for N = 105 and N = 107, which are
representative of simulations of moderately sized and very
large systems. For both N , the percentage of simulation run-
times spent in VL building (leapfrog integration) increases
(decreases) rapidly with increasing d . However, the fractional
increases or decreases in these percentages as d increases
from 3 to 6 are far greater for N = 105 than for N = 107.
This explains why the runtimes per pair distance calculation
increase faster with d when N is smaller and vice versa.

Taken together, the above results show that hdMD makes
large-N simulations practical in d up to 6, even with modest
computational resources. In the following section, we demon-
strate how this feature can be exploited to obtain novel physics
results.

TABLE IV. Runtime percentages for nthreads = 8 simulations with
N = 105 (top rows) and N = 107 (bottom rows).

d Leapfrog VL building Minimizations SWAP Other

3 83.9 11.1 2.1 1.2 1.7
4 72.0 22.4 1.5 2.9 1.2
5 47.5 45.9 1.0 4.6 1.0
6 26.0 67.2 0.7 5.3 0.7

3 90.6 5.5 1.5 0.6 1.7
4 88.2 7.6 1.5 1.4 1.4
5 72.2 20.1 1.3 3.5 3.0
6 42.8 43.5 0.8 4.2 1.8
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IV. HETEROGENEOUS DYNAMICS IN DEEPLY
SUPERCOOLED d = 6 LIQUIDS

A. Breakdown of the Stokes-Einstein relation

Three recent simulation studies [30–32] of dynamical
heterogeneity in supercooled liquids in 3 � d � 10 have
reported that it weakens with increasing d . However, as men-
tioned in the Introduction, it may be that the heterogeneous
dynamics in these simulations artificially weakened with in-
creasing d because they employed small fixed N < 104 and
periodic boundary conditions with L ∼ N1/d that may have
dropped below the characteristic size L of the liquids’ spatial
heterogeneities [61]. Whether this is so can be determined
by simulating liquids with fixed L rather than fixed N over
a comparable range of d , taking care that L > L for all d [62].
As described above, hdMD’s efficient parallel implementation
makes it well suited to doing so. Here we motivate such
studies by showing that d = 6 supercooled liquids can be sub-
stantially more heterogeneous that previously reported, and
provide some initial evidence that the strengths of the Stokes-
Einstein-relation (SER) breakdowns reported in Refs. [30–32]
were artificially suppressed by the small system sizes they
employed.

Figure 4 shows dynamical results for supercooled d = 6
liquids with 1.02φ∗

d � φ � 1.05φ∗
d (Table III). To obtain a

cleaner comparison to the results of Refs. [30–32], all particles
in these simulations were given equal masses (mi = m̃ = 1).
All systems have N = 105 and were SWAP equilibrated at
kBT = 0.25ε̃ for at least 1.75×104τ . Following the equilibra-
tion runs, SWAP was turned off and systems were evolved
forward in time for another T = 105τ (also at kBT = 0.25ε̃).
No ensemble or time averaging was performed.

Figure 4(a) shows particles’ mean-squared displacements
〈[	�r(t )]2〉. The increasing MSD plateau length with increas-
ing φ is typical for supercooled liquids [63], as is the gradual
increase in the slope ζ (t ) ≡ d ln[〈	�r(t )]2〉]/d ln(t ) toward
1 as systems approach the Brownian-diffusive regime. All
systems reach this regime well before t = T , and the values
of 〈[	�r(T )]2〉/σ̃ 2 are all well above 1, indicating that typical
particles have hopped multiple times by the end of these
simulations even for φ = 1.05φ∗

d .
Figure 4(b) shows particles’ overlap parameter fov(t ).

Again, all results are typical for supercooled liquids. Fol-
lowing Refs. [20,32], we define the alpha relaxation times
(τα) for these liquids using the criterion fov(τα ) = e−1.
Numerical results for τα , the diffusion coefficients D =
limt→∞〈[	�r(t )]2〉/2dt , and several related quantities are
shown for a wider range of φ in Table V. As shown in the inset,
the fov(t ) curves do not collapse when plotted vs. τ/τα , indi-
cating that time-density superposition breaks down in these
systems. fov(t/τα ) decreases faster as φ increases because the
dynamics of small and large particles have decoupled; larger
particles’ mobility is decreasing faster with increasing φ than
that of their smaller counterparts. Such decoupling has long
been associated with dynamical heterogeneity [63–65].

Figure 4(c) shows results for the non-Gaussian parameter
α2(t ). As expected from previous d = 3 studies [63], results
for different φ fall on a common curve at small t and ex-
hibit maxima α2,max(φ) at times τ ∗(φ) that increase with φ

slower than τα (φ). As expected for relatively-low-temperature

FIG. 4. Dynamics of supercooled d = 6 liquids for 1.02φ∗
d �

φ � 1.05φ∗
d and kBT = 0.25ε̃. Panels (a)–(c) respectively show the

mean-squared displacement, overlap parameter fov [Eq. (13)], and
non-Gaussian parameter [Eq. (12)]. Straight gray lines in panel
(a) are guides to the eye, and dotted vertical lines in panels (b) and
(c) indicate t = τα . All times are given in units of τ = √

m̃σ̃ 2/ε̃

(Sec. II A).

liquids, α2,max ∼ τ x
α with x � 0.3 [66–68]. Intriguingly, the

α2(τα ) values increase roughly logarithmically with τα as φ

increases rather than as a power law, i.e., α2(τα ) ∼ ln(τα ).
At longer times, rather than trending back to zero as

is the case when monodisperse systems are considered or
α2 is calculated using only one component of a bidisperse
mixture [30–32,63], all systems’ α2(φ, t ) decay very slowly
(over timescales of order 102τα) toward finite plateau values
α2,∞ that increase rapidly with φ. Finite α2,∞ are expected
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TABLE V. Measures of mobility and dynamical heterogene-
ity in supercooled d = 6 liquids. τα and τ ∗ are given in units
of τ = √

m̃σ̃ 2/ε̃ (Sec. II A). Results for φ � 1.04φ∗
d are well fit

by D ∼ (φ̃d − φ)γD and τα ∼ (φ̃d − φ)−γτ , with φ̃d = 1.068φ∗
d =

.1976, γd � 8/3, and γτ � 10/3. α2,∞ values are given only for
systems in which α2(t ) has clearly reached its plateau value by
t = 105τ .

φ/φ∗
d Dσ̃−2τ τα α2,max τ ∗ α2(τα ) α2,∞

1.00 4.11×10−3 2.09×102 1.06 30 0.735 0.41
1.005 3.40×10−3 2.63×102 1.15 32 0.769 0.45
1.01 2.67×10−3 3.58×102 1.24 59 0.847 0.49
1.015 2.13×10−3 4.77×102 1.40 66 0.898 0.54
1.02 1.62×10−3 6.57×102 1.54 75 0.992 0.59
1.025 1.22×10−3 9.92×102 1.79 91 1.079 –
1.03 8.72×10−4 1.54×103 2.00 127 1.154 –
1.035 6.09×10−4 2.58×103 2.40 126 1.321 –
1.04 4.02×10−4 4.63×103 2.93 158 1.455 –
1.045 2.52×10−4 1.03×104 3.56 295 1.613 –
1.05 1.46×10−4 2.67×104 4.44 598 1.770 –

since smaller particles have larger diffusion coefficients Di =
D̃(σi ), where D̃ is an a priori unknown function that captures
the particle-size dependence of diffusivity. Quantitatively, one
expects [69]

α2,∞ = 〈D̃2〉
〈D̃〉2 − 1, (16)

where

〈D̃n〉 =
∫ σmax

σmin

P(σ )[D̃(σ )]ndσ. (17)

For the particle-size distribution employed here [i.e., P(σ ) ≡
P(6, 6, σ ) from Eq. (3)], assuming all particles obey the
classical relation D̃(σ ) ∝ kBT (ησ )−1 [where η is viscosity]
predicts α2,∞ � 0.047. Actual α2,∞ values are much larger
and increase rapidly with increasing φ, consistent with the
well-known result that deviations of D̃(σ ) from this for-
mula strengthen with increasing φ or decreasing T [70].
This contributes to the above-mentioned breakdown of t-φ
superposition. One expects, based on previous studies of poly-
disperse d = 3 supercooled liquids performed as far back as
the mid-2000s [71,72], that it will also contribute to the SER
breakdown, indicated by the increase in Dτα with increas-
ing φ, that occurs as particle motion becomes increasingly
hopping-dominated.

While the qualitative behaviors summarized in Fig. 4(c)
and Table V are unremarkable in and of themselves, they
are noteworthy because they show in two distinct ways that
high-d supercooled liquids can be more heterogeneous than
previously reported. First, the α2,max values are substantially
higher than any reported in Refs. [30,32], neither of which
showed any α2,max > 1.6 for d = 6 liquids at any T or φ. The
recently demonstrated one-to-one correspondence between
α2,max and the kinetic fragility m∗ [66] implies that these
liquids are also more fragile than any d = 6 liquids studied
in Refs. [30,32]. Second, they show that the SER violations in

FIG. 5. Breakdown of the Stokes-Einstein relation in super-
cooled d = 6 liquids at kBT = 0.25ε̃. Symbols show MD data while
lines show fits toDτα ∼ τω

α andDτα ∼ τ y
α . The inset contrasts results

for N = 105 (same symbols shown in the main panel) to N = 5000
results for selected 1.01φ∗

d � φ � 1.055φ∗
d (open circles); all results

for N = 5000 are averaged over 10 independently prepared systems.
Note that the range of τα depicted here is almost identical to that
considered in Ref. [32].

these liquids (as quantified via the relation Dτα ∼ τω
α ) can be

much stronger than observed in Refs. [31,32].
The quantity ω is of particular interest for its ability to

shed light on the d-dependence of dynamical heterogeneity
in supercooled liquids [62]. D is dominated by the fastest
(smallest) particles, while τα is primarily set by the slowest
(largest) particles [72]. Since τα increases with φ faster thanD
decreases, the product Dτα increases with both φ and τα , im-
plying ω > 0. The strength of this effect should decrease with
increasing d because particles’ cages become more mean-
field like [30]. Mean-field theories predict D ∼ (φd − φ)γ

and τα ∼ (φd − φ)−γ as φ approaches φd from below, im-
plying ω = 0. Additional theoretical analyses predict that ω

should vanish above the upper critical dimension du = 8 [73].
Numerical results in Refs. [31,32] were consistent with this
hypothesis and suggested ω ∼ (du − d ). On the other hand,
studies of the mean-field Mari-Kurchan model [55] showed
ω � .22 for all 2 � d � 6, while a recent study of the kineti-
cally constrained East model showed [74] thatω remains finite
for all d � 10 and may remain finite in the d → ∞ limit,
suggesting that this issue has not yet been resolved.

The D(φ) and τα (φ) data shown in Table V are qualita-
tively consistent with those reported in many previous studies.
For φ not too close to the packing fraction φ̃d where dif-
fusive motion ceases, D ∼ (φ̃d − φ)γD and τ ∼ (φ̃d − φ)−γτ ,
where φ̃d is several percent above φ∗

d [55] and (in contrast to
mean-field theories) γτ > γD. Thus Dτα ∼ (φ̃d − φ)γD−γτ ∼
τω
α with ω = 1 − γD/γτ . Figure 5 shows Dτα vs. τα for these
systems. Lower-density (φ � 1.02φ∗

d ) liquids’ results fall on
a common curve Dτα ∼ τω

α with ω � 0.2. At higher densities,
a crossover to a stronger dependence Dτα ∼ τ

y
α is observed

as systems become sluggish, consistent with Fig. 7(b) of
Ref. [31]. Overall, the trends are the same as found in
Refs. [31,32], but the ω value is more than twice as large as
in these studies, which respectively found ω � 0.09 [31] and
ω � 0.083 [32] in comparable d = 6 liquids.
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There are multiple potential reasons for this difference.
For example, here we have employed a moderate-stiffness
(a = 30) Morse pair potential and moderate temperature. In
contrast, Refs. [30,31] employed hard spheres while Ref. [32]
employed soft harmonic spheres at very low T . Thus our
liquids experience thermal activation over energy barriers (ab-
sent from Refs. [30,31]) and substantially higher mobilities
than those of Ref. [32].

Another potential reason is that our systems are much
larger, with N = 105 rather than N = 5000–8000 as was
the case in Refs. [30–32]. As discussed above, one expects
dynamical heterogeneity to increase with system size. To in-
vestigate this possibility, we characterized the dynamics of
N = 5000 systems at the same {φ} and T . We found that D
decreases with φ slightly slower in these liquids than in their
N = 105 counterparts, but τα increases substantially slower,
particularly for φ � 1.03φ∗

d . Results for Dτα for these liquids
are shown in the inset to Fig. 5. Plainly Dτα grows slower
with increasing φ than in the N = 105 liquids, and as a
consequence, the apparent breakdown of the SER is weaker.
This difference presumably arises because periodic boundary
conditions cap the characteristic size of cooperatively rear-
ranging regions within a model supercooled liquid at L; the
N = 5000 liquids’ smaller L reduces the characteristic size
of their cooperatively rearranging regions and hence their τα

[28]. If true, then this would explain these liquids’ delayed
crossover to the stronger Dτα ∼ τ

y
α scaling.

It is reasonable to suppose that when comparing systems
with fixed N and φ/φ∗

d across multiple d as was done in
Refs. [30–32], the decrease in L with increasing d produces
a comparable (artificial) reduction in the measured Dτα and
perhaps also in the inferred ω [75]. As mentioned above, this
hypothesis could be tested using simulations where L rather
than N is fixed [62]. Our present focus is not to resolve this
issue—finite-size effects on the dynamics of supercooled liq-
uids are decidedly nontrivial [61]—but rather to demonstrate
that hdMD is well suited to doing so.

B. Comparison to bidisperse systems

A third potential reason for the larger α2,max and ω re-
ported above is our use of continuously-polydisperse P(σ )
[Eq. (3)]. To investigate this possibility, we repeated the N =
105 studies highlighted in Figs. 4 and 5, using the 50:50
1:1.4 bidisperse P(σ ) employed in Ref. [32] and many other
studies of the glass-jamming transition [38]. For maximal
consistency with Ref. [32] and other previous studies, we set
εsmall = εlarge = ε̃ [47].

Figure 6 illustrates two aspects of these bidisperse liquids’
heterogeneous dynamics. Figure 6(a) shows the large parti-
cles’ α2(t ) for selected φ. The finite-α2,∞ plateaus vanish,
as expected [63]. Compared to results shown in Fig. 4(c),
the α2,max are lower for systems with comparable τ ∗. While
they are substantially higher than those reported in Ref. [32],
they are comparable to those reported in Ref. [30]. For φ �
1.06φ∗

d , if only large particles are used to estimate both D
and τα , these systems haveDτα ∼ τω

α withω � 0.1, consistent
with Refs. [30–32],

Other metrics, however, indicate that dynamics in these
liquids are in fact far more heterogeneous than their P ∝ σ−d

FIG. 6. Heterogenous dynamics of supercooled 50:50 1:1.4
bidisperse d = 6 liquids. Following Refs. [32,63], we calculated
α2(t ) and fov(t ) separately for small and large particles. Panel
(a) shows α2(t ) for the large particles, while panel (b) shows fov(t )
for all particles.

counterparts, as might have been expected from their larger
size asymmetry. For example, their fov(t ) [Fig. 6(b)] indicate a
decoupling of large and small particles’ dynamics that is much
stronger than that shown in Fig. 4(b). These data raise the
question: Which method of averaging dynamics results from
polydisperse supercooled liquids best captures their essential
physics?

C. Non-Gaussian particle caging

Closely related to the above discussion is the issue of
caging. The probability P(�r, t ) that a particle initially lo-
cated at the origin is at position �r at time t is P(r, t ) =
Gs(r, t )/A(d, r), where

A(d, r) = dπd/2rd−1

�(1 + d/2)
(18)

is the area of a d-dimensional hyperspherical shell of radius r;
here we have assumed isotropy in rewriting P(�r, t ) as P(r, t ).
Einstein’s theory of Brownian motion predicts that P(r, t ) is
Gaussian, and the central limit theorem requires that it be-
come Gaussian after sufficiently long times. At shorter times,
however, P(r, t ) is non-Gaussian in a very wide variety of
systems, including systems near glass and jamming transitions
[33,34]. Exponential tails of form PE (r, t ) ∝ exp[−r/λ(t )]
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FIG. 7. Non-Gaussian caging of the large particles in super-
cooled 50:50 1:1.4 bidisperse d = 6 liquids. Panels (a) and (b) show
results for φ = 1.03φ∗

d and φ = 1.06φ∗
d ; large particles in these sys-

tems respectively have τα � 7.8×102 and τα = 7×103. The dashed
lines show fits to exponential tails with λ = 0.301σ̃ and λ = 0.363σ̃ .

are universal in systems where particles have hopped a ran-
dom number of times [34,76], with λ(t ) typically growing
either as t1/2 or as t1/d [34,76–81]. In a dynamically het-
erogeneous liquid, these tails correspond to the high-mobility
particles.

Quantitatively predicting how P(r, t ) varies with φ and/or
T in arbitrary d is an obvious goal for any theory of liquid-
state dynamics. Replica theory [35,36] and dynamic DFT
[82] assume that it is Gaussian. MCT [83,84], RFOT [85],
the nonlinear Langevin equation theory [65,86], dynamical-
facilitation-based theories [87], and CTRW-based theories
[34,76–78] all predict non-Gaussian P(r, t ), with varying de-
grees of success. One might expect from the increase in the
number of near neighbors and the simplification of liquids’
local structure as d increases [15] that P(r, t ) will converge to
a Gaussian form even at short times if d is sufficiently large.
Reference [30] showed that in fact no such convergence oc-
curs for t � τα over the range 3 � d � 8, but did not examine
any t � τα . In light of the results presented in Figs. 4–6, it is
worthwhile to examine how our larger systems’ P(r, t ) behave
in this long-time limit.

Figure 7 shows P(r, t ) for the large particles in the bidis-
perse liquids discussed above. Data shown in Fig. 7(b) are
for a density at which the glassy dynamics are about about

10 times slower than those illustrated in Fig. 7(a). Both pan-
els show the same trends observed in d = 3 [34,79–81]: the
P(r, t ) are initially dominated by their exponential tails but
then slowly cross over toward a Gaussian form as t increases.
Two notable features are apparent.

First, contrary to what might be expected in higher-d liq-
uids but consistent with the slow decays of α2(t ) illustrated
in Fig. 6(a), substantial exponential tails are evident even for
t = 10τα . CTRW-based theories of diffusion [76–78] predict
that P(r, t ) converges to a fully Gaussian form only after all
(or nearly all) particles have hopped multiple times. For φ �
φ∗
d , where mobility is hopping-dominated and times between

hops are broadly distributed, this convergence should occur
only for t � τα , independent of d. Second, although P(r, t )
for fixed t/τα and different φ are qualitatively similar, they
do not collapse. The exponential-tail lengths λ(t/τα ) clearly
increase faster for φ = 1.06φ∗

d than for φ = 1.03φ∗
d . This re-

sult is consistent with the decoupling illustrated in Figs. 4(b)
and 6(b); λ(t/τα ) grows faster in the higher-φ system because
the disparity in mobility between large and small particles is
greater.

Since the slow crossovers to Gaussian P(r, t ) have been in-
terpreted [79,80] as a slow approach to ergodicity, suggesting
that they provide a useful metric for understanding how er-
godicity breaks, it would be very interesting to quantitatively
compare them across multiple d . While we leave this as a
challenge for future work, we emphasize here that quantitative
analyses of these crossovers are likely to suffer from spurious
finite-size effects if the crossovers are not complete by the
time the most mobile particles have traveled distances �L.
Taken together, the results shown in Figs. 5 and 7 suggest that
avoiding such effects requires L � 5σ , again emphasizing the
need for an efficiently parallelized code like hdMD.

V. DISCUSSION AND CONCLUSIONS

In this paper, we described a new public-domain, open-
source parallel molecular dynamics simulation package
(hdMD) that is optimized for high spatial dimensions. Four
aspects of hdMD’s algorithmic implementation differ from
those employed in most standard MD codes [5–10]. First,
since parallelization of the force evaluations by spatial do-
main composition works less well in large d than it does in
d � 3 (owing to the larger fraction of any spatial domain
that is within a distance σ̃ + s of its surface), hdMD instead
employs per-atom parallelization. Second, to further reduce
interprocessor communication, hdMD uses a shared-memory
OpenMP-based parallelization strategy rather than the more
commonly employed distributed-memory MPICH-based ap-
proach. Third, to avoid the large-for-high-d memory overhead
associated with storing pointers to each linked subcell’s 3d −
1 neighboring subcells, these subcells are instead efficiently
identified on the fly each time the VLs are built. Fourth, d
is a parameter rather than a fixed quantity in hdMD’s various
subroutines, all of which have been tested for all 2 � d � 10
and (in principle) work in arbitrary d .

hDMD is designed for maximum flexibility and extensi-
bility. For example, while above we presented results for a
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single (stiff repulsive Morse) pair potential, using a different
potential or interaction cutoff radius requires only editing a
few lines in getforce(), getthermo(), and swapmove().
Incorporating additional diagnostics, e.g., calculation of the
self-intermediate scattering function Fs(q, t ), is intended to be
comparably straightforward. For this reason, hdMD is written
in “plain vanilla” C++, and software tricks like advanced
vectorization techniques, SIMD or AVX intrinsics [88], and
GPU offloading of the type used in several popular MD pack-
ages [5,9,89], all of which can substantially increase a code’s
speed but often severely reduce its legibility, have not yet
been implemented. Adding any of these could substantially
accelerate the code.

By examining the scalings of simulation runtimes with the
number of particles N and the number of simulation threads
nthreads, we showed that three aspects of hdMD’s performance
are already nearly optimal. First, the runtimes scale as t ∼ N
when N is small enough for the particles’ position-velocity-
force (rvf) array to fit in the CPU’s L3 cache. Second, for
largeN , the runtimes per force evaluation increase only slowly
with increasing d , e.g., by only a factor of ∼2 over the range
3 � d � 6 for simulations of 106-particle supercooled liquids
at φ = φ∗

d . Since the computational effort to rebuild all parti-
cles’ Verlet lists scales as 3dN , this small increase is a major
strength of the code. Third, hdMD’s parallel efficiency is com-
parable to that of popular public-domain MD codes (at least
for selected problems [46,90]), and actually increases with
increasing d owing to its efficiently parallelized VL building.

The total “size” of each simulation described in Section IV
(as defined by the number of particles times the duration of
of the simulation) was NT = 1010τ , making them among the
largest d > 3 supercooled-liquid simulations ever performed.
We found that dynamical heterogeneity in supercooled d = 6
liquids can be substantially greater than previously reported
[30–32]. In particular, we found that the Dτα ∼ τω

α scaling in
continuously-polydisperse systems with 	 = 0.083 has ω �
0.2, which is about twice the value previously reported [31,32]
for d = 6. Simulations of bidisperse systems showedω � 0.1,
but also demonstrated that particle caging can remain sub-
stantially non-Gaussian [as indicated by long exponential tails
in particles’ displacement-probability distributions P(r, t )] for
times as large as 10τα . These dynamics appear to be consistent
with recently proposed, CTRW-based theories of diffusion in

systems for which the exponential tails of P(r) correspond to
particles that have hopped a random number of times [76–78].

We also showed that the crossover to the strongerDτα ∼ τ
y
α

scaling that occurs as the continuously-polydisperse systems
become sluggish [31] occurs at a density that decreases sub-
stantially whenN is increased from 5000 to 105. This decrease
may arise from larger systems’ ability to accommodate larger
cooperatively rearranging regions (CRRs). Specifically, our
results are consistent with the hypothesis that for φ > φc(N ),
τα grows faster with φ in larger systems of size N ′ > N
than in smaller systems of size N ′′ < N because the former
can accommodate larger CRRs which have a correspond-
ingly larger τα [28]. While the validity of this hypothesis
can depend on both temperature and the model employed
[61], our results nonetheless suggest that the conclusions of
many previous studies of supercooled liquids in d > 3 which
employed fixed N < 104 and L that decrease as N−1/d (e.g.,
Refs. [15,17,18,22–24,30–32,55–57]) may have been substan-
tially influenced—at least in their quantitative details—by
finite-size effects. We have demonstrated that hdMD is well-
suited to determining whether this is so.

Finally, we emphasize that hdMD is also well suited to
studying open problems that are less directly related to the
glass-jamming transition. For example, studies of melting
dynamics across multiple d can shed light on how melting
is affected by the symmetries of the crystal lattice and by
decorrelation [15] of the liquid state. Previous studies of
melting in d > 4 (e.g., Refs. [21,91–93]) have all employed
N < 6×104, and most have employed much smaller systems;
this has severely limited the accessible size range of any
crystal-fluid interfaces. We have used hdMD to simulate the
(nonequilbrium) melting of an 6.25 × 105-atom E7 crystal
(the densest lattice in d = 7) subjected to a temperature ramp
at constant pressure and will report our results elsewhere.

hdMD source code is publicly available and can be down-
loaded from our group website [94].
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