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Letters

Detecting long-term changes in
stomatal conductance:
challenges and opportunities of
tree-ring 5'20 proxy

A reply to Lin et al. (2022) ‘Do changes in tree-ring
8'80 indicate changes in stomatal conductance?’

There is growing scientific consensus that rising atmospheric CO,
concentrations have caused an increase in forest water-use efficiency
(WUE), but the magnitude of this effect and the relative roles of
enhanced photosynthesis vs reduced stomatal conductance (g;) are
still under debate (Walker ez 4/, 2020). In Guerrieri et al. (2019)
we addressed this by combining 30 years of tree-ring stable carbon
(8"3C) and oxygen (5'%0) isotope data with a water—carbon
optimality model for 12 tree species at eight sites within the
AmeriFlux network in the US. The results suggested that enhanced
photosynthesis has been widespread, while reduced g was more
common at sites experiencing frequent water limitation. In this
issue of New Phytologist, Lin et al. (2022) challenges these findings
based on three criticisms pertaining to the use and interpretation of
8'80 data. While the physiological interpretation of 'O in tree
rings is indeed complex, it remains the only proxy — in conjunction
with 8'°C — that can be used to reconstruct mechanisms through
which WUE changes in response to global change drivers,
including atmospheric CO,. Here, we address the criticisms raised
by Lin ez al. (2022), with the aim of moving the discussion forward
and hence encouraging the use of tree-ring 8'%0 as a proxy to
constrain plant and forest ecophysiology and the response to
environmental changes beyond climate variability.

Criticism 1: Lin eral (2022) questioned the approach
employed in Guerrieri ez al. (2019) to estimate temporal changes
in 8'"0 in precipitation (5'®0p), which relies on equations
presented in Barbour ez a/. (2001) (‘BO1 model’ hereafter) to assess
spatial 5!80p. In particular, Guerrieri ezal. (2019) used temper-
ature and precipitation (both as annual or growing season means)
and elevation as predictors. They considered eight sites across
North America (most of the sites were in Canada, and thus did not
overlap with the sites studied in Guerrieri ez al., 2019) where 3180p
values were available from the global network of isotopes in
precipitation (GNIP) for the same time window we considered in
Guerrieri ezal. (2019). The nonsignificant relationship between
estimated and measured 8'8Op found at those sites led the authors
to conclude that the BO1 model may not be adequate for the
estimation of the isotopic signature of precipitation, and that this
would, therefore, likely be the case for our sites. We acknowledge
that the time for space substitution of the BO1 model bears
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uncertainties that can limit the interpretation of our results. Yet, in
the absence of 8'80p observations, such an approach is valuable,
and we applied it carefully, and in the limited context of our study
sites: inferring the directionality of the trend in the transpiration
(E)—g relationship. In Guerrieri ez l. (2019), the 8"80p estimates
were validated with 2 years of 8'%0 measurements in soil water
(8'80,,,) at two sites with contrasting climates, with the assump-
tion that 8'®0,, will reflect 8'®0p. As shown in supporting
information fig. S11 (Guerrieri e al., 2019), the estimates of 5'%0p
were in good agreement with measured 8'*Oy, particularly at the
site in Florida, where precipitation patterns may be more complex
compared to those of other northeastern US sites, due to the humid
subtropical climate. Moreover, we know that measurements made
in the first 10 cm of the soil may not accurately reflect §'*Op due to
the effect of evaporation, thus leading to a deviation between
modelled 8'®0p and measured §'%0,,; but this did not seem to
particularly affect the site in Florida, which had sandy soil and a
higher air temperature than the Harvard Forest in northeastern US.
The BO1 model may not provide a robust estimate of the absolute or
interannual variability of 8'%Op values; however, temperature and
precipitation remain two of the most important factors that affect
3'80p, and these factors provide reliable predictions of global
3'80p such as those used in isoscapes (Bowen, 2010). More
sophisticated approaches were recently proposed to estimate spatial
and temporal changes in precipitation 8'°O (Terzer eral., 2013;
Allen eral., 2018 at global scale; Nelson ez al., 2021 for Europe),
which will greatly contribute to reducing the uncertainties in source
water 880 estimates. When 8'%0p data are not available,
estimating 8'80p variations following the BO1 model remains a
valuable and more simple approach to accounting for the variation
in source water 8'%O in the temporal trend of tree ring 8' %0, and to
improving the detection of tree physiological signals, when the
focus is the long-term pattern (rather than intra-annual) recon-
struction of source water 8'%0. At most of the sites considered by
Lin ez al. (2022) (see their fig. 1), the estimate from the BO1 model
and the observed 8'®Op values showed a consistent directionality of
trend (given the positive Pearson coefficient for all but two sites),
despite the statistical significance of the correlations. Indeed, values
from GNIP usually derive from monthly precipitation water
(including snow) collection and therefore have a high temporal
resolution which can substantially differ from (smoothed) esti-
mates based on integrated periods such as mean growing season or
mean annual temperature and precipitation. A critical point
regarding 8'®*Op concerns the different water sources trees can
access, that is, different origins (seasonal) and soil depths
(Brinkmann  etal,2018; Allen etal,2019; Goldsmith
eral.,2022). We addressed this, though only at two sites (with
contrasting climates) where data on soil and xylem water §'%0 were
available (fig. S9 in Guerrieri ez al., 2019). The estimated 3180y fell
within the confidence interval of both measured soil and xylem
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8'80 values. This is aligned with other observations (depending on
site, soil type, rooting depth and tree species) that xylem water is
similar to soil water (seldom the top soil §'°0, e.g. Treydte
etal.,2014). The uncertainties in the leaf water '®O enrichment
(A0 ) estimates that Lin ez 2/, (2022) attributed to the estimate
of 880} (obtained from the BO1 model, fig. S9 in Guerrieri
etal., 2019) could be related to the fact that measurements for given
days were compared with estimates integrated over the growing
season. The absolute values of estimated and measured A'®O)  are
not expected to match, given that the measured A 180w isbased on
sample collections from 2—3 d and from two trees (as detailed in the
supporting information for Guerrieri eral., 2019). Despite that,
our estimates fell within the confidence interval of the measured
A0y, which gives us confidence that our estimates could
capture the temporal dynamics of leaf water enrichment.

Criticism 2: The second point raised by Lin ez al. (2022) was
related to the interpretation of ABO;  (as calculated from tree-
ring 8'%0 and estimated §'®Op) in terms of qualitative changes in
%> and underlying assumptions regarding the Péclet effect. Our
gS—AISOLW interpretation was not carried out a priori, but in
relation to changes in moisture conditions (vapour pressure deficit
(VPD), relative humidity (RH), precipitation, standardised pre-
cipitation—evapotranspiration index (SPEI)) and evapotranspira-
tion (ET) as derived from eddy covariance data (fig. S15 in
Guerrieri eral., 2019). We also considered differences in physio-
logical strategies between plant functional type, physiological
metrics derived from 8'>C (intercellular CO, concentrations,
carbon isotope discrimination) and basal area increment. That is,
we used the relationships found in previous studies (Barbour
etal.,2000; Sullivan & Welker, 2006; Grams ezal., 2007) in a
conceptual framework in which environmental and physiological
metrics were considered to constrain the physiological interpreta-
tion of the estimated A'® Oy in terms of g (Siegwolf ez al., 2021).
Interpreting the gS—AISOLW relationship asa function of changes in
VPD is physiologically plausible, given the well-established
relationship between g and VPD (Grossiord ez al., 2020). Under
more xeric conditions, g is expected to decrease with increasing
VPD (Grossiord ez al., 2020), which is reflected in a reduced
dilution of the enriched (in '®O) leaf water with nonenriched xylem
water at lower transpiration rates at high VPD (Cernusak
etal.,, 2016); thus, the Péclet effect has a smaller influence on the
predicted leaf water 8'®O enrichment when compared to measured
880 values (Belmecheri et 2/, 2018). Under mesic conditions and
with no temporal changes in precipitation, RH, VPD or SPEI, it is
physiologically plausible to assume that g remains unchanged,
given that ET at those sites has not changed (fig. S15 in Guerrieri
etal.,2019). Other studies considering mesic sites in the north-
eastern USA showed that with the climate becoming wetter,
stomatal limitations on photosynthesis are reduced, despite
increasing atmospheric CO, concentrations (Levesque ez al., 2017
Belmecheri ez al., 2021, the latter including also some of the sites in
Guerrieri eral., 2019). The finding that g did not decrease over
recent decades is in line with other findings based on different data
and approaches (e.g. Long er al,2004; Paschalis ez al,2017;
Purcell ez al., 2018; Cernusak ez al., 2019).
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The calculation of A0y from tree-ring 8180 in Guerrieri
etal. (2019) did not account for changes in the absolute values of
the effective path length for water movement through the leaf (L
factor). The latter may show hourly variations in relation to changes
in RH, and those changes followed a similar pattern across a
number of days, but the absolute values measured on different days
remained within the same range (see, for instance, fig. 1 in Song
etal,, 2013). Diurnal variations in leaf water '*O strongly reflect
changes in weather conditions, which can be smoothed in tree-ring
8180, as the latter records a signal integrated over the growing
season (several weeks/months) and in response to climate varia-
tions. Most of the studies quantifying values of L have been on
seedlings and on a few selected days (e.g. Song ez al., 2013), and
these conditions may not be representative of the conditions that
mature trees experience throughout the growing season. Never-
theless, if we use the ‘modelling exercise’ presented in fig. 2 by Lin
eral. (2022), given that ET, RH and precipitation across our mesic
sites did not change over recent decades, we can safely assume a
fixed L and therefore that the relationship between estimated
A0y and g follows the scenario represented by the light blue
line (i.e. a negative relationship), in line with our interpretation.
Studies integrating tree ring 8'80 data into land surface models
(Keel ez al., 2016; Barichivich ez al., 2021) or using it as a proxy in
paleoclimatological estimates in tropical regions (Evans, 2007),
generally assume a fixed L-value; however, this did not prevent the
interannual variability of tree ring 8'%0 chronologies from being
reproduced. Using a fixed L-value, as applied in early demonstra-
tions of the Péclet effect (see e.g. Barbour ez al., 2004), will only
affect the mean of the absolute modeled A'®O; y values, but not the
relationship between observed and measured A'*Oy or A0y
and evaporation rate, as shown in figs 3 and 4 in Barbour
etal. (2004).

Criticism 3: Although RH has an important effect on
transpiration and, hence, on plant §'%0, we observed no
systematic trends in humidity over most of our sites and
interpreted this as evidence that the temporal trends in 8'°0
observed at some sites were not caused by trends in RH. Lin
eral. (2022) challenged this, as well as our interpretation that the
lack of a trend in A3y \ at other sites reflected the lack of a trend
in g. The authors reasoned that the potential for a high degree of
interannual variability in RH and the absence of §'°0O data for
atmospheric water vapour increased the possibility that trends in
A'®0} might have gone undetected. Although our study would
indeed have benefited from direct measurements of water vapour
820, those data (as already discussed for 3'*Op) have hardly been
measured over the long-term. At high RH (which could be the case
for the northeastern US sites in Guerrieri etal.,2019), back-
diffusion of water vapour inside leaves can further complicate the
interpretation of the seasonal dynamics of A0, (Lehmann
etal.,2018), which was not the goal of Guerrieri eral (2019).
Nevertheless, a recent analysis provided strong evidence that RH
has a much greater effect than water vapour 5'%0 on A0y
(Cernusak ez al., 2022). As such, Lin et al. (2022)’s criticisms are
speculative and do not offer counter-evidence that would cause us
to alter our interpretation.
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Based on their criticisms, Lin et al. (2022) concluded that our
interpretations of 8'®0 measurements and their implications for
trends in g cannot be accepted with certainty. We fully agree but
assert that our interpretation is reasonable and consistent with the
evidence we presented in Guerrieri ez /. (2019) and here. Our goal
was to apply a novel approach (integrating tree ring isotopes,
ecosystem fluxes and modelling) to probe the mechanisms of rising
forest WUE and to offer the most plausible interpretation of the
available evidence. We are grateful to Lin eral (2022) for
highlighting areas of uncertainty that require future attention and
would welcome additional evidence that supports or counters our
hypotheses. To enhance the physiological interpretation of tree-
ring 380, future studies should include in-situ observations of
source water &' °O (i.e. precipitation and water vapour, which could
easily be achieved using existing monitoring networks world-wide,
e.g. Fluxnet, NEON, ICP Forests), and a complete characterization
of the 8'®0p pathway from soil through tree xylem (Barbeta
etal.,2022) and from water vapour to leaf water (bidirectional
diffusion — Lehmann ezal, 2019; Kagawa, 2022) to tree rings
under field conditions (both at intra- and inter-annual resolution).
Recent progress in deriving precipitation isotope time series using
machine learning or isotope-enabled general circulation models
can help to reduce uncertainties related to source water §'*O input
(Nelson etal,2021). The interpretation of tree ring 5180,
however, should go beyond the instantaneous or daily scale
assessment of A"®O;y, and be integrated with whole tree
transpiration data (e.g. through sapflow measurements, now
available at the global scale thanks to Poyatos eral. 2020) and
plant hydraulic traits underpinning water relations (e.g. Flo
etal,2021).
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