
Letters

Detecting long-term changes in
stomatal conductance:
challenges and opportunities of
tree-ring d18O proxy

A reply to Lin et al. (2022) ‘Do changes in tree-ring
d18O indicate changes in stomatal conductance?’

There is growing scientific consensus that rising atmospheric CO2

concentrations have caused an increase in forestwater-use efficiency
(WUE), but the magnitude of this effect and the relative roles of
enhanced photosynthesis vs reduced stomatal conductance (gs) are
still under debate (Walker et al., 2020). In Guerrieri et al. (2019)
we addressed this by combining 30 years of tree-ring stable carbon
(d13C) and oxygen (d18O) isotope data with a water–carbon
optimality model for 12 tree species at eight sites within the
AmeriFlux network in the US. The results suggested that enhanced
photosynthesis has been widespread, while reduced gs was more
common at sites experiencing frequent water limitation. In this
issue of New Phytologist, Lin et al. (2022) challenges these findings
based on three criticisms pertaining to the use and interpretation of
d18O data. While the physiological interpretation of d18O in tree
rings is indeed complex, it remains the only proxy – in conjunction
with d13C – that can be used to reconstruct mechanisms through
which WUE changes in response to global change drivers,
including atmospheric CO2. Here, we address the criticisms raised
by Lin et al. (2022), with the aim of moving the discussion forward
and hence encouraging the use of tree-ring d18O as a proxy to
constrain plant and forest ecophysiology and the response to
environmental changes beyond climate variability.

Criticism 1: Lin et al. (2022) questioned the approach
employed in Guerrieri et al. (2019) to estimate temporal changes
in d18O in precipitation (d18OP), which relies on equations
presented in Barbour et al. (2001) (‘B01 model’ hereafter) to assess
spatial d18OP. In particular, Guerrieri et al. (2019) used temper-
ature and precipitation (both as annual or growing season means)
and elevation as predictors. They considered eight sites across
North America (most of the sites were in Canada, and thus did not
overlap with the sites studied inGuerrieri et al., 2019) where d18OP

values were available from the global network of isotopes in
precipitation (GNIP) for the same time window we considered in
Guerrieri et al. (2019). The nonsignificant relationship between
estimated and measured d18OP found at those sites led the authors
to conclude that the B01 model may not be adequate for the
estimation of the isotopic signature of precipitation, and that this
would, therefore, likely be the case for our sites. We acknowledge
that the time for space substitution of the B01 model bears

uncertainties that can limit the interpretation of our results. Yet, in
the absence of d18OP observations, such an approach is valuable,
and we applied it carefully, and in the limited context of our study
sites: inferring the directionality of the trend in the transpiration
(E)–gs relationship. In Guerrieri et al. (2019), the d18OP estimates
were validated with 2 years of d18O measurements in soil water
(d18Osw) at two sites with contrasting climates, with the assump-
tion that d18Osw will reflect d18OP. As shown in supporting
information fig. S11 (Guerrieri et al., 2019), the estimates of d18OP

were in good agreement with measured d18Osw, particularly at the
site in Florida, where precipitation patterns may be more complex
compared to those of other northeasternUS sites, due to the humid
subtropical climate. Moreover, we know that measurements made
in the first 10 cm of the soil may not accurately reflect d18OP due to
the effect of evaporation, thus leading to a deviation between
modelled d18OP and measured d18Osw; but this did not seem to
particularly affect the site in Florida, which had sandy soil and a
higher air temperature than theHarvard Forest in northeasternUS.
TheB01modelmaynot provide a robust estimate of the absolute or
interannual variability of d18OP values; however, temperature and
precipitation remain two of the most important factors that affect
d18OP, and these factors provide reliable predictions of global
d18OP such as those used in isoscapes (Bowen, 2010). More
sophisticated approaches were recently proposed to estimate spatial
and temporal changes in precipitation d18O (Terzer et al., 2013;
Allen et al., 2018 at global scale; Nelson et al., 2021 for Europe),
whichwill greatly contribute to reducing the uncertainties in source
water d18O estimates. When d18OP data are not available,
estimating d18OP variations following the B01 model remains a
valuable and more simple approach to accounting for the variation
in source water d18O in the temporal trend of tree ring d18O, and to
improving the detection of tree physiological signals, when the
focus is the long-term pattern (rather than intra-annual) recon-
struction of source water d18O. At most of the sites considered by
Lin et al. (2022) (see their fig. 1), the estimate from the B01 model
and the observed d18OP values showed a consistent directionality of
trend (given the positive Pearson coefficient for all but two sites),
despite the statistical significance of the correlations. Indeed, values
from GNIP usually derive from monthly precipitation water
(including snow) collection and therefore have a high temporal
resolution which can substantially differ from (smoothed) esti-
mates based on integrated periods such as mean growing season or
mean annual temperature and precipitation. A critical point
regarding d18OP concerns the different water sources trees can
access, that is, different origins (seasonal) and soil depths
(Brinkmann et al., 2018; Allen et al., 2019; Goldsmith
et al., 2022). We addressed this, though only at two sites (with
contrasting climates) where data on soil and xylemwater d18Owere
available (fig. S9 inGuerrieri et al., 2019). The estimated d18OP fell
within the confidence interval of both measured soil and xylem
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d18O values. This is aligned with other observations (depending on
site, soil type, rooting depth and tree species) that xylem water is
similar to soil water (seldom the top soil d18O, e.g. Treydte
et al., 2014). The uncertainties in the leaf water 18O enrichment
(D18OLW) estimates that Lin et al. (2022) attributed to the estimate
of d18OP (obtained from the B01 model, fig. S9 in Guerrieri
et al., 2019) could be related to the fact thatmeasurements for given
days were compared with estimates integrated over the growing
season. The absolute values of estimated andmeasuredD18OLW are
not expected tomatch, given that themeasuredD18OLW is based on
sample collections from2–3 d and from two trees (as detailed in the
supporting information for Guerrieri et al., 2019). Despite that,
our estimates fell within the confidence interval of the measured
D18OLW, which gives us confidence that our estimates could
capture the temporal dynamics of leaf water enrichment.

Criticism 2: The second point raised by Lin et al. (2022) was
related to the interpretation of D18OLW (as calculated from tree-
ring d18O and estimated d18OP) in terms of qualitative changes in
gs, and underlying assumptions regarding the P�eclet effect. Our
gs–D

18OLW interpretation was not carried out a priori, but in
relation to changes in moisture conditions (vapour pressure deficit
(VPD), relative humidity (RH), precipitation, standardised pre-
cipitation–evapotranspiration index (SPEI)) and evapotranspira-
tion (ET) as derived from eddy covariance data (fig. S15 in
Guerrieri et al., 2019). We also considered differences in physio-
logical strategies between plant functional type, physiological
metrics derived from d13C (intercellular CO2 concentrations,
carbon isotope discrimination) and basal area increment. That is,
we used the relationships found in previous studies (Barbour
et al., 2000; Sullivan & Welker, 2006; Grams et al., 2007) in a
conceptual framework in which environmental and physiological
metrics were considered to constrain the physiological interpreta-
tion of the estimatedD18OLW in terms of gs (Siegwolf et al., 2021).
Interpreting the gs–D

18OLW relationship as a function of changes in
VPD is physiologically plausible, given the well-established
relationship between gs and VPD (Grossiord et al., 2020). Under
more xeric conditions, gs is expected to decrease with increasing
VPD (Grossiord et al., 2020), which is reflected in a reduced
dilution of the enriched (in 18O) leaf water with nonenriched xylem
water at lower transpiration rates at high VPD (Cernusak
et al., 2016); thus, the P�eclet effect has a smaller influence on the
predicted leaf water d18O enrichment when compared tomeasured
d18O values (Belmecheri et al., 2018). Under mesic conditions and
with no temporal changes in precipitation, RH, VPD or SPEI, it is
physiologically plausible to assume that gs remains unchanged,
given that ET at those sites has not changed (fig. S15 in Guerrieri
et al., 2019). Other studies considering mesic sites in the north-
eastern USA showed that with the climate becoming wetter,
stomatal limitations on photosynthesis are reduced, despite
increasing atmospheric CO2 concentrations (Levesque et al., 2017;
Belmecheri et al., 2021, the latter including also some of the sites in
Guerrieri et al., 2019). The finding that gs did not decrease over
recent decades is in line with other findings based on different data
and approaches (e.g. Long et al., 2004; Paschalis et al., 2017;
Purcell et al., 2018; Cernusak et al., 2019).

The calculation of D18OLW from tree-ring d18O in Guerrieri
et al. (2019) did not account for changes in the absolute values of
the effective path length for water movement through the leaf (L
factor). The lattermay showhourly variations in relation to changes
in RH, and those changes followed a similar pattern across a
number of days, but the absolute values measured on different days
remained within the same range (see, for instance, fig. 1 in Song
et al., 2013). Diurnal variations in leaf water 18O strongly reflect
changes in weather conditions, which can be smoothed in tree-ring
d18O, as the latter records a signal integrated over the growing
season (several weeks/months) and in response to climate varia-
tions. Most of the studies quantifying values of L have been on
seedlings and on a few selected days (e.g. Song et al., 2013), and
these conditions may not be representative of the conditions that
mature trees experience throughout the growing season. Never-
theless, if we use the ‘modelling exercise’ presented in fig. 2 by Lin
et al. (2022), given that ET, RH and precipitation across our mesic
sites did not change over recent decades, we can safely assume a
fixed L and therefore that the relationship between estimated
D18OLW and gs follows the scenario represented by the light blue
line (i.e. a negative relationship), in line with our interpretation.
Studies integrating tree ring d18O data into land surface models
(Keel et al., 2016; Barichivich et al., 2021) or using it as a proxy in
paleoclimatological estimates in tropical regions (Evans, 2007),
generally assume a fixed L-value; however, this did not prevent the
interannual variability of tree ring d18O chronologies from being
reproduced. Using a fixed L-value, as applied in early demonstra-
tions of the P�eclet effect (see e.g. Barbour et al., 2004), will only
affect themean of the absolutemodeledD18OLWvalues, but not the
relationship between observed and measured D18OLW or D18OLW

and evaporation rate, as shown in figs 3 and 4 in Barbour
et al. (2004).

Criticism 3: Although RH has an important effect on
transpiration and, hence, on plant d18O, we observed no
systematic trends in humidity over most of our sites and
interpreted this as evidence that the temporal trends in d18O
observed at some sites were not caused by trends in RH. Lin
et al. (2022) challenged this, as well as our interpretation that the
lack of a trend inD18OLW at other sites reflected the lack of a trend
in gs. The authors reasoned that the potential for a high degree of
interannual variability in RH and the absence of d18O data for
atmospheric water vapour increased the possibility that trends in
D18OLW might have gone undetected. Although our study would
indeed have benefited from direct measurements of water vapour
d18O, those data (as already discussed for d18OP) have hardly been
measured over the long-term. At high RH (which could be the case
for the northeastern US sites in Guerrieri et al., 2019), back-
diffusion of water vapour inside leaves can further complicate the
interpretation of the seasonal dynamics of D18OLW (Lehmann
et al., 2018), which was not the goal of Guerrieri et al. (2019).
Nevertheless, a recent analysis provided strong evidence that RH
has a much greater effect than water vapour d18O on D18OLW

(Cernusak et al., 2022). As such, Lin et al. (2022)’s criticisms are
speculative and do not offer counter-evidence that would cause us
to alter our interpretation.
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Based on their criticisms, Lin et al. (2022) concluded that our
interpretations of d18O measurements and their implications for
trends in gs cannot be accepted with certainty. We fully agree but
assert that our interpretation is reasonable and consistent with the
evidence we presented in Guerrieri et al. (2019) and here. Our goal
was to apply a novel approach (integrating tree ring isotopes,
ecosystem fluxes andmodelling) to probe the mechanisms of rising
forest WUE and to offer the most plausible interpretation of the
available evidence. We are grateful to Lin et al. (2022) for
highlighting areas of uncertainty that require future attention and
would welcome additional evidence that supports or counters our
hypotheses. To enhance the physiological interpretation of tree-
ring d18O, future studies should include in-situ observations of
sourcewaterd18O (i.e. precipitation andwater vapour,which could
easily be achieved using existing monitoring networks world-wide,
e.g. Fluxnet,NEON, ICPForests), and a complete characterization
of the d18OP pathway from soil through tree xylem (Barbeta
et al., 2022) and from water vapour to leaf water (bidirectional
diffusion – Lehmann et al., 2019; Kagawa, 2022) to tree rings
under field conditions (both at intra- and inter-annual resolution).
Recent progress in deriving precipitation isotope time series using
machine learning or isotope-enabled general circulation models
can help to reduce uncertainties related to source water d18O input
(Nelson et al., 2021). The interpretation of tree ring d18O,
however, should go beyond the instantaneous or daily scale
assessment of D18OLW, and be integrated with whole tree
transpiration data (e.g. through sapflow measurements, now
available at the global scale thanks to Poyatos et al. 2020) and
plant hydraulic traits underpinning water relations (e.g. Flo
et al., 2021).
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