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Abstract: In this work, we compare the air quality benefits of a variety of future policy scenarios
geared towards controlling EGU (electricity generating units) emissions between the present-day
conditions and 2050. While these policies are motivated by reducing CO, emissions, they also
yield significant co-benefits for criteria pollutants, such as ozone and PM; 5. An integrated set of
clean energy policies were examined to assess the time-varying costs and benefits of a range of
check for decarbonization strategies, including business as usual and the Affordable Clean Energy plan, with
updates a primary focus on others that look to achieve very low, if not zero, CO, emissions from the EGU
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sector by 2050. Benefits assessed include mitigation of greenhouse gas emissions as well as air quality
co-benefits. In this introductory work, we describe the potential air quality changes from various clean
air policies, to set the stage for upcoming work looking at health and monetized benefits. Emission
changes for key pollutants are forecast using the Integrated Planning Model (IPM), which are then

Benefits of Zero Carbon Energy transformed into emission inputs for the Community Multiscale Air Quality Model (CMAQ). For all

Policies. Atmosphere 2022, 13, 1401. primary scenarios considered that achieve large greenhouse gas decreases, significant reductions in
https://doi.org/10.3390/ ozone and PM are realized, mainly in the eastern US, and all policies produce air quality benefits.
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with regard to jurisdictional claims in The energy sector in the US is one of the major contributors of harmful criteria pol-
published maps and institutional affil-  Jutants, such as nitrogen oxides (NOy), sulfur oxides (SOy), ozone (O3), and fine particu-
iations. late matter (PM,5) [1-3], with many states within the US struggling to achieve National

Ambient Air Quality Standards (NAAQS) [4-6]. These pollutants have a variety of delete-

rious health effects [7-9]. With regard to health impacts and achieving the NAAQS, the
= two pollutants of greatest concern are PM, 5 and Os. At the regional scale, both pollutants

are largely secondary in nature, being formed in the atmosphere, e.g., by reactions of
Licensee MDPL, Basel, Switzerland. ¢ ]5ile organic compounds (VOCs) and NO for both PM, 5 and O3, while SO, and NHj
This article is an open access article o5 oqions also contribute to PM, 5 [10-13]. Primary emissions, e.g., from wildfires and
windblown dust, also contribute to PM. Given the recent global push for reductions in
greenhouse gas (GHG) emissions, there have been calls for a 100% carbon-free power
sector by 2035, with an interim target of 80% clean electricity by 2030, which is consistent
with the previously proposed Clean Air Payment Program and somewhat greater than
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the 2030 reduction expected under the recently passed Inflation Reduction Act (IRA) [14].
Coupled with the increased electrification of both the transportation and building sectors,
such a transition could enable the US to comply with the greenhouse gas reduction targets
under the Paris Agreement [15-17]. Reductions in GHG emissions almost always have
resulted in co-benefits, since a shift away from fossil fuel sources typically leads to corre-
sponding decreases in criteria pollutants [18-20], particularly Oz and PM; 5. Such decreases
are important to help local air quality managers meet the NAAQS as regions across the
US continue to exceed those standards, particularly for Oz and PM; 5. Currently, the O3
standard, as set by the US EPA, is 70 ppb, defined as the fourth-highest daily maximum
8 h concentration averaged across three consecutive years, while the primary standard
for PMjy 5 is set at an annual average of 12 ug m 3 [6,21-24]. Note, both standards are
under review [25] and may be tightened, further increasing the importance of strategies
that address both GHGs and traditional air pollutants.

The push for a 100% carbon-free power sector by 2035, with 80% clean generation
achieved by 2030, has recently been promoted by the Biden Administration. Along with the
increased electrification that is taking place in the transportation sector, these policies would
allow the United States to attain its 2030 GHG commitment under the Paris Agreement.
While there are many ways that such reductions can be achieved, one way is for Congress,
through budget reconciliation, to provide financial incentives to “revamp” America’s
infrastructure and move towards cleaner forms of energy. The recently passed IRA is an
example of such a bill, and it promotes investments in clean energy. However, it is not
expected to achieve full compliance with the US Paris commitment. Additional legislation is
likely to be needed that could move the country to having 80% of total electricity production
by 2030 (80x30) to be from fossil-free sources. This would require heavy investment in
renewable energy sources, such as wind and solar, while potentially requiring additional
generation from clean energy sources, such as hydroelectric and nuclear. The target for
such policies often includes 100% clean energy as early as 2035, and 2050 the latest.

Various policies have been proposed to achieve the above reductions, with a target
year of 2050 for net-zero emissions. There has been much focus on Clean Energy Standard
(CES) policies, which specify that a percentage of energy needs to be satisfied by clean
sources. The definition of clear sources depends on legislative criteria: for example, such
sources as natural gas with carbon sequestration and nuclear energy can be deemed clean.
Such an approach can be less costly than a more restrictive policy, such as a renewable
portfolio standard (RPS), where a percentage of energy generation is required to be derived
from renewable sources, such as solar and wind. The CES policy that has gained much
traction is the 80x30 CES. Under the 80x30 CES, the federal government would cover a part
of the cost associated with adding new, clean sources in energy generation, while at the
same time providing incentives to the private sector to retain and increase its investments
in clean energy sources. This scenario has the following characteristics: (a) a target of 100%
clean energy generation by 2040, (b) use of banked credits being allowed until 2050, (c) the
initial carbon intensity benchmark being set at 0.82 tons MWh ™!, and (d) natural gas partial
crediting being allowed until 2040, based on the emission rate of each plant. Under the
above provisions, the policy attains 80% clean energy by the year 2030.

As part of a broad-scale project assessing the viability of various clean air policies,
here we determine their efficacy at reducing O3 and PM, 5 by performing a modeling study
using the Community Multiscale Air Quality (CMAQ) model to simulate how air quality
will respond. We examine an array of policy scenarios targeting emissions reductions
from EGUs for the years 2030, 2040, and 2050. Emissions are forecast using the Integrated
Planning Model (IPM). This is the first part of an interdisciplinary effort from the clean
energy futures team, which includes researchers from the Georgia Institute of Technology,
Syracuse University, and Resources for the Future. In particular, results presented here will
be used in subsequent papers for cost-benefit and health and ecological damage analyses.
The overall scope of the entire study includes analyses of the health and environmental
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impacts and costs of the scenarios. More details on the larger study can be found at available
online: https:/ /cleanenergyfutures.syr.edu (accessed on 16 July 2022).

2. Materials and Methods

A series of policies targeted to reduce GHG emissions was analyzed as part of the
overall project, as briefly summarized on Table 1. The Integrated Planning Model was used
to assess how those policies would impact air pollutant emissions, the results of which
were used for photochemical air quality modeling with the Community Multiscale Air
Quality (CMAQ) model. The output of the CMAQ was a set of air pollution and pollutant
deposition fields, as detailed below.

Table 1. List and brief description of scenarios of policy options for decarbonization of the electricity
sector used in this study.

Policy Type Policy Cases Case name
Reference case “Business as usual”—No Policy enacted Base case/BAU
Net 0 emissions in 2040, offsets allowed but no banking CAP
Cap and trade

Net 0 emissions in 2040; banking allowed CAP-B

100% clean in 2050, low carbon intensity benchmark (0.46 metric tons/MWh), CES50-L
total generation, banking allowed until 2040
100% clean in 2050, high carbon intensity benchmark (0.82 metric tons/MWh),
. . . CES50-H
total generation, banking allowed until 2040
Clean Energy Standard
100% clean in 2040, 0.82 metric tons/MWh, partial crediting, total generation,
. CES40
no banking
83% clean by 2030, 100% clean by 2040, 0.82 metric tons/MWh, partial crediting,
. . CES40B
total generation, banking allowed
Carbon price $25/ton rising at 5% per year CP-25
Carbon Price . -
Carbon price $50/ton rising at 5% per year CP-50
Affordable Clean Energy (ACE)—assumed 4.5% HRI for affected units ACE
Section 111 rules Updated Clean Power Plan—achieves 65% CO, reduction from 2005 levels

by 2033 CPP-20

2.1. Clean Air Policy Scenarios Analyzed

As part of a large-scale study examining the costs and benefits (including air quality
and health), we simulated the air quality outcomes of an array of various policy scenarios,
including some based on clean energy standards, carbon price options, and others based
on carbon pricing or national cap-and-trade system options for the years 2030, 2040, and
2050. A comprehensive list of the scenarios, along with a short description, is found
in Table 1. A more detailed description of the overall project and the scenarios being
studied, along with preliminary health and climate-related analyses, can be found at
https:/ /cleanenergyfutures.syr.edu (accessed on 16 July 2022).

Due to its high benefit-to-cost ratios and increased feasibility when compared to the
others, we focus on one particular scenario: the Clean Energy Standard 40 Banking (CES40B:
the 7th scenario listed in Table 1), which achieves 83% clean energy generation by 2030
with banking allowed and 100% clean by 2040, also called 80x30 CES.

2.2. Emissions

The Integrated Planning Model (IPM) was used to project how emissions of pollutants,
including CO,, NOy, SOy, and primary PM, 5, would respond to each of the above policies.
IPM is a proprietary, commercial linear optimization model that includes unit-level repre-
sentation of the entire EGU sector across the US. For given policy constraints, IPM returns
the cost-minimizing pattern of generation, including the energy mix used by each facility
in the domain, along with other pertinent parameters, including pollutant emissions, total
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generating power, and costs. It is widely used both by the US Environmental Protection
Agency (EPA), as well as other federal and state agencies.

2.3. Chemical Transport Model

For air quality simulations, we used the CMAQ model [26], a three-dimensional, mass-
conserving, chemical transport model that resolves the processing that air quality-pertinent
species undergo in the atmosphere, including emissions, chemical reactions, turbulent
diffusion, and atmospheric deposition. With regard to the model configuration, CMAQ
version 5.0.2 was used with an in-house-developed update described briefly below that
allowed for the adjustment of emissions, using ratios derived from IPM results without
the need to rerun the emissions preprocessor for each case separately. Simulations were
conducted on a 36 x 36 km resolution grid that covered the continental US (CONUS), along
with parts of Mexico and Canada. For each scenario, three (3)-year-long simulations were
conducted for the years 2030, 2040, and 2050, while one additional simulation for the year
2020 was conducted for the BAU case to serve as a baseline. Input meteorology was gener-
ated using the Weather and Research Forecasting (WRF) model. Using future climatology
under the Intergovernmental Panel on Climate Change (IPCC) RCP8.5 scenario [27,28],
while emissions for the year 2020 were produced using the EPA SMOKE model [29]. The
SMOKE-generated emissions were scaled on a state-by-state basis using the IPM output
results, in order to determine precursor emissions for each policy scenario and each year.
A five (5)-day period served as spin-up for each run in order to initialize the model, while
the same methodology was used for all the cases to rule out potential climatological effects
on ozone and PM concentrations. For our analysis, daily mean PM, 5 data were averaged
over each year period, while the O3 data were the seasonal average of the 8 h maximum
averages, in accordance with the NAAQS.

3. Results
3.1. Ozone

Figure 1 shows the model-predicted maximum 8 h average ozone concentrations for
the years 2020, shown in Figure 1a and 2050 in Figure 1b for the base case (BAU). While
modest reductions (<1 ppb) are observed throughout the domain by 2050, particularly in
states that were already in nonattainment for ozone, such as Louisiana and California, as
they were unable to comply with the federal standard of 70 ppb by 2050.

Figure 1. Average of seasonal maximum 8-hour ozone average concentrations across the domain for
the Business as Usual (BAU), (a) for 2020 and (b) 2050 in ppb. California and Louisiana shown on
the map.

With regard to the other scenarios, in most cases marked decreases in O3 are real-
ized by 2050, with sufficient magnitude to drive some non-attainment locations towards
attainment (below 70 ppb). Domain-wide reductions/increases on maximum 8-h ozone
for all the cases are shown in Figure 2. Of particular note is the Affordable Clean Energy
policy which provides no reductions and thus no health benefits. This policy was pro-
posed by the Trump Administration but has been voided by D.C. Circuit Court (US EPA,
2021 (https:/ /www.epa.gov/sites/default/files /2021-02 /documents/ace_letter_021121
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.doc_signed.pdf, accessed on 10 August 2022). All other policies achieve reductions ranging
from 3 to 5 ppb, especially across the southern and eastern US, with Texas, Ohio, Indiana,
West Virginia, and Pennsylvania reaping the largest benefits. The higher ambition policies
(i.e., those with the highest reductions in CO, emissions), namely, CAP (Figure 2c), CAP-B
(Figure 2d), CES50-H (Figure 2h), and CES50-L (Figure 2i), exhibit the greatest reductions.
While some states benefit more than others, the reductions are widespread throughout
the eastern US, with all eastern states reaping significant air quality and associated health
benefits. Note that the magnitude of reductions is not related to the initial ozone values
in 2020 (Figures 1a,b and 2), which indicates that ozone in the states with the smallest
improvements is largely driven by the emissions of sectors other than the power sector,
such as transportation, oil, and gas. In such cases, additional controls and/or increased
electrification of the on-road vehicle fleet could significantly magnify the air quality benefits
and associated improved health outcomes.

Figure 2. Differences in the seasonal average of the maximum 8 h ozone average concentrations
in ppb, across the domain for the year 2050 between BAU and: (a) CP-25u, (b) CP-50u, (c) CAP,
(d) CAP-B, (e) CES40, (f) ACE, (g) CPP20, (h) CES50-H and (i) CES50-L.

3.2. PM, 5

The predicted annual mean PM, 5 concentrations for the years 2020 (Figure 3a) and
2050 (Figure 3b) are shown in Figure 3 for the base case. Similarly to ozone, concentrations
are reduced throughout the domain by 2050, but reductions are not only more uniformly
distributed across the US but are also of increased relative magnitude. The larger magnitude
is likely due to higher relative reductions of PM; 5 precursors when compared to ozone,
especially SOx and the corresponding sulfate aerosol that comprises a significant portion of
total PM2.5.
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Figure 3. Mean PM), 5 concentrations across the domain for (a) 2020 and (b) 2050 in ug m3,

As with ozone, the most ambitious policies tend to be those that yield the highest
reductions to particulate matter (Figure 4), of up to 1 pg m~>: a more than 8% improvement
over the standard. Once again, the Affordable Clean Energy policy does not provide any
air quality benefits relative to the BAU case, while the CAP (Figure 4c), CAP-B (Figure 4d),
CES50-H (Figure 4h) and CES50-L (Figure 4i) tend to provide the greatest reductions.

Figure 4. Difference between annual mean PM, 5 concentrations in pg m 3 across the domain for
the year 2050 between BAU and: (a) CP-25u, (b) CP-50u, (c) CAP, (d) CAP-B, (e) CES40, (f) ACE,
(g) CPP20, (h) CES50-H and (i) CES50-L.

Similarly to O3, not all states are equally impacted by reductions: Texas, Ohio, Indiana,
West Virginia, and Pennsylvania are projected to experience large reductions in PM; 5
concentrations. Due to the complexity of particulate matter formation that encompasses
multiple species, both anthropogenic and biogenic, and both directly emitted as well as
formed in the atmosphere, it is increasingly difficult to control secondary PM formation
when compared to O3 (which responds well to VOC and NOy controls, depending on the
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relative abundance of these two precursors). Nevertheless, the observed reductions would
be expected to yield significant reductions in pollutant exposures.

A similar pattern is evident in population-weighted exposure (Figure 5). When com-
paring BAU to other policies, the higher ambition policies result in greater exposure
reductions, with the CES50-L policy having the greatest benefits (Figure 5). The ACE
rule retains very similar exposure as the BAU both for O3 and PM; 5, highlighting the
ineffectiveness of the policy at producing benefits. Note that while PM exposure scales
almost linearly with CO, reductions, the same does not apply for Os; rather, the Clean
Energy Standard policies tend to obtain more significant O3 exposure improvements for an
equivalent reduction in CO; emissions when compared to other policies, due to the higher
degree of integration of clean energy sources to cover grid needs.
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Figure 5. Population-weighted reductions in (a) PM; 5 (in ug m~3), and (b) O3 (ppb), between each
policy and the BAU case for the year 2050, as a function of CO, reductions (in million metric tons).

3.3. Clean Energy Standard (CES) CES40B—An 80x30 policy

As discussed in our report “An 80x30 Clean Electricity Standard: Carbon, Costs, and
Health Benefits” [30], found at https:/ /cleanenergyfutures.syr.edu (accessed on 16 July 2022),
as well as upcoming publications, the CES40B policy offers air quality improvements similar
to the CAP policy at a lower cost (~80% of CAP). Specifically, this policy has a target of
100% clean energy by 2040, with a carbon intensity benchmark of 0.82 metric tons/MWh,
that allows partial crediting for natural gas, as well as banking of credits. It reaches
83% clean generation by 2030, with a corresponding 83% reduction in CO, emissions from
2005 levels. It yields an estimated $637 billion in climate benefits, with a total cost of
enactment of $342 billion, a 13% increase over BAU system costs [30]. When compared to
the other policy scenarios evaluated in this study, it provides the highest overall climate
benefits, with a cumulative reduction in CO, emissions by 30 billion metric tons between
2020 and 2050. In addition, it achieves considerable reduction in air pollution in the form
of co-benefits. For ozone, limited reductions are achieved by 2030 (Figure 6a), with most
occurring by 2050 (Figure 6b). This pattern is to be expected, since the policy utilizes partial
crediting and also increases in stringency over time. Similarly to the previously discussed
cases, eastern states, such as Ohio and Pennsylvania, are projected to experience the largest
reductions, both in 2030 and 2050.

PMj 5 reductions tend to be more drastic, with an average of 0.5 g m~2 less PM, 5 in
the eastern US by 2030 (Figure 7b), and up to 1 pug m~3 by 2050 (Figure 7b), which is on
par with highest-ambition policies. The spatial pattern of reductions is identical to other
policies considered (Figure 4).
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Figure 6. Difference in seasonal average maximum 8 h ozone average concentrations in ppb, across
the domain for the year (a) 2030 and (b) 2050 between BAU and CES40B.

Figure 7. Differences in mean PM, 5 concentrations in ug m~3, across the domain for the year (a) 2030
and (b) 2050 between BAU and CES40B.

4. Discussion

In this work, we investigated a variety of energy policies aimed at reducing CO,
emissions from EGUs and projected the resulting potential air quality co-benefits of those
policies. We found that the corresponding improvement in air quality, through reductions
in emissions that lead to increases in ozone and PMj; 5 concentrations, can be substantial.
With the exception of the BAU and ACE, all of the policies considered generate reductions
for both ozone and particulate matter by 2050 to varying extents. Due to the relatively
heavy reliance of the eastern US on coal for energy generation, the largest reductions
in pollutants after policy implementation are observed over the east, with a maximum
decrease of 5 ppb for Oz and 1 ug m~2 for PMy 5. Such reductions can provide large health
benefits and help areas reach attainment of the NAAQS. Our CES40B policy achieves an
80% reduction in CO, by 2030 (i.e., 80x30), which has been a proposed target and found to
be achievable [31], and would also lead to significant air quality-related benefits by 2030,
and those benefits increase in 2040 and 2050. We did not examine potential strategies aimed
at reducing CO, emissions from non-EGU sectors, most notably the transportation sector.
Electrification of mobile sources would lead to reductions in tailpipe emissions of ozone
and PM,; 5 precursors, though it would also increase demand on electricity generation.
While such policies would increase EGU emissions, the clean air policies examined here
would also provide even greater benefits than modeled.
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