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• We use machine learning modeling to
quantify critical loads and their uncer-
tainty.

• Machine learning models performed bet-
ter than other modeling techniques.

• The uncertainty is as large as deposition
variability for many tree species.

• Uncertainty in our results is relevant to de-
cision making and air quality standards.
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Critical loads (CLs) of atmospheric deposition for nitrogen (N) and sulfur (S) are used to support decision making
related to air regulation and land management. Frequently, CLs are calculated using empirical methods, and the cer-
tainty of the results depends on accurate representation of underlying ecological processes. Machine learning (ML)
models perform well in empirical modeling of processes with non-linear characteristics and significant variable inter-
actions. We used bootstrap ensemble ML methods to develop CL estimates and assess uncertainties of CLs for the
growth and survival of 108 tree species in the conterminous United States. We trained ML models to predict tree
growth and survival and characterize the relationship between deposition and tree species response. Using four statis-
tical methods, we quantified the uncertainty of CLs in 95 % confidence intervals (CI). At the lower bound of the CL
uncertainty estimate, 80 % or more of tree species have been impacted by nitrogen deposition exceeding a CL for
tree survival over >50 % of the species range, while at the upper bound the percentage is much lower (<20 % of
tree species impacted across>60% of the species range). Our analysis shows that bootstrap ensemble ML can be effec-
tively used to quantify critical loads and their uncertainties. The range of the uncertainty we calculated is sufficiently
large towarrant consideration inmanagement and regulatory decisionmakingwith respect to atmospheric deposition.

1. Introduction

Emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and ammonia
(NH3) result in atmospheric deposition of nitrogen and sulfur compounds
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onto the land surface, which can lead to acidification and eutrophication
(nitrogen enrichment) of terrestrial and aquatic ecosystems (Fenn et al.,
2011). The cumulative impacts of atmospheric deposition on ecosystems
impact timber production, carbon sequestration, soil fertility, biodiversity,
habitat preservation, commercial and recreational fishing, and tourism.
The U.S. Environmental Protection Agency (EPA) has found that current
secondary National Ambient Air Quality Standards (NAAQS) for NO2

and SO2 are “not adequate to provide appropriate protection against
deposition-related effects associated with oxides of nitrogen and sulfur”
(U.S. Environmental Protection Agency, 2011). The Clean Air Act grants
EPA the authority to establish secondary standards to protect public wel-
fare, but currently the secondary standards are set to the same level as the
primary standards. In addition to the EPA and the Clean Air Act, other agen-
cies, including the U.S. Forest Service and National Park Service, have reg-
ulatory authority to address the impact of poor air quality on land
management objectives under the Federal Lands Policy and Management
Act, the National Environmental Policy Act, the Wilderness Act, and the
National Forest Management Act. Agency decision-making commonly
uses data and modeling results indicating the potential impact of atmo-
spheric deposition on ecological endpoints.

In the context of atmospheric deposition, critical loads (CLs) are esti-
mates of a quantitative threshold for levels of deposition above which sig-
nificant harmful ecological effects occur (Phelan et al., 2018; Nilsson and
Grennfelt, 1988; Burns and Sullivan, 2015). The CL concept was developed
through the Convention on Long-Range Transboundary Air Pollution
(CLRTAP, 2004). EPA uses estimates of CLs to guide review of the second-
ary NAAQS for ecological effects of NOx and SOx under the Clean Air Act
(U.S. Environmental Protection Agency, 2017). Multiple methods have
been reported for estimation of CLs, including empirical methods, steady
state mass balance (e.g., McNulty et al., 2007), and dynamic modeling
(Wu and Driscoll, 2010; Blett et al., 2014).

CLs for different taxonomic groups such as trees (Horn et al., 2018),
herbaceous communities (Simkin et al., 2016; Clark et al., 2019), and
lichen (Geiser et al., 2019, 2010) are commonly determined using
empirical relationships developed through observational data (Pardo
et al., 2011). The empirical relationship is typically described in the form
of a dose-response function. CLs have been considered the point along the
dose-response relationship at which a relevant negative biological response
occurs (Pardo et al., 2019), and we use the term in this sense throughout.
Researchers have defined this threshold using several approaches. For epi-
phytic macrolichens, Geiser et al. (2019) define the CL as the condition at
which a 20 % decline in response is observed. Simkin et al. (2016) devel-
oped quantile regressionmodels of the richness and estimated N CLs of her-
baceous plant species using the partial derivative of the regression model.
Clark et al. (2019) conducted binomial generalized linear models for each
individual herbaceous species by examining their response to environmen-
tal data (S deposition, N deposition, soil pH, precipitation, and tempera-
ture). Nitrogen CLs were calculated by taking the partial derivative of the
best statistical model with respect to N and S deposition and solving for de-
position. Horn et al. (Horn et al., 2018) developed statistical relationships
between atmospheric S and N deposition, and the growth and survival of
94 tree species in the conterminous United States by fitting parametric re-
gression equations using maximum likelihood. CLs have subsequently
been derived from these curves based on the point of downward inflection
ormaximum value of the curve. The selection of one definition or threshold
approach or another can substantially influence the CL value.

There are a number of uncertainties associated with estimates of CLs
(Blett et al., 2014). Biological receptors can have a range of CL values
that differ because of response metrics, location, time, and environmental
covariates. The vulnerability of ecosystems is a complex function of bed-
rock geology, climate, vegetation type, community composition, elevation,
soil characteristics, ancillary disturbance, and other factors. Models that do
not include interaction terms are incapable of accounting for factors that in-
fluence the sensitivity of biological receptors to atmospheric deposition.
There is also substantial uncertainty in the calculation of atmospheric depo-
sition (Walker et al., 2019). As a result, the dose-response relationships

used to develop CLs may not fully represent the natural process they are
intended to depict.

Because of variability in biological receptors studied, differences in
methods, and the uncertainty in modeled relationships, many CLs are re-
ported as ranges,which can vary by a factor of two ormore for a given region,
ecosystem, andbiological receptor (Pardo et al., 2011). Improving the charac-
terization, quantification, and communication of uncertainty associated with
CL estimates—and reducing those uncertainties—will be essential to further
develop and refine national-scale CL data to guide regulatory action (Blett
et al., 2014; Clark et al., 2019). Modeling techniques that address the limita-
tions of previous modeling approaches to develop dose-response curves, such
as through improved model accuracy and representation of variable interac-
tions, can help better quantify and reduce uncertainty.

ML models are well-suited to address the limitations of other methods
used in CL analysis. ML models have among the highest levels of accuracy
in modeling empirical relationships (Lary et al., 2016). Furthermore, ML
models generally do not rely on the parametric assumptions of the form of re-
lationships between variables, which allows for greater flexibility in the form
of those relationships (i.e., linear, step-function, and polynomial relationships
may all be represented with the same model form). In addition, decision tree
type models inherently represent and can be used to describe variable inter-
actions. The XGBoost ML algorithm (Chen and Guestrin, 2016) in particular
has demonstrated excellent predictive performance in competitions ofML ac-
curacy (Bekkerman, 2015) and environmental sciences (Ma et al., 2019). As a
result, the algorithm has gained widespread use in predictive tasks. Recent
advances in model interpretation techniques offer the opportunity to identify
key variable relationships within ML models (Molnar, 2019) through causal
inference (Zhao and Hastie, 2021). Limitations of ML models include the re-
quirement of substantial training data, significant computational require-
ments, and the potential to replicate bias within the training set through
overfitting. Nevertheless, ML techniques have significant advantages and
have never been used in the assessment of CLs. Therefore, they may provide
a powerful tool to examine complex relationships that have been difficult to
capture with other methods.

In this paper, we introduce a novel approach to estimate CLs derived from
ML models for a collection of over 100 tree species across the conterminous
United States. We hypothesized that machine learning modeling would pro-
vide improved performance for prediction of tree outcomes relative to previ-
ous modeling efforts and that the model results could be used to quantify
critical load uncertainty. We build on Horn et al. (Horn et al., 2018), who
used simulated annealing to fit parameters for an a priori determined func-
tional form (i.e., multiplicative product of Gaussian and power functions) to
relate the growth and survival of tree species to six different factors (i.e., N de-
position, S deposition, temperature, precipitation, tree size, and competition
among neighbors [calculated from the plot basal area and the basal area of
trees larger than that of the tree observed tree]). Using these fittedmodels, re-
searchers have since been able to estimate CLs for N and S for individual tree
species in exploratory analyses.WeusedXGBoostwith the remeasured tree in-
ventory data to predict tree growth and survival, andweused the relationships
represented in the trained models to develop empirical relationships between
atmospheric deposition and growth and survival of individual tree species.We
used four different statistical tests to quantify (1) the CL of the growth and sur-
vival of a tree species, and (2) the associated uncertainty of the CL estimator

(cCL) with bootstrapping (Efron, 1979). We compared these results to CLs de-
rived from the relationships developed by Horn et al. (2018) and assessed the
uncertainty of these CLs based on the bootstrapped 95 % confidence interval
(CI). We further assessed the extent to which these CLs have been exceeded
historically across the spatial ranges of the tree species.

2. Materials and methods

2.1. Forest inventory data

To facilitate a comparison with other CL methods, we obtained tree
growth and survival data sets for individual tree species used by Horn
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et al. (2018). Briefly, the data set was compiled from the Forest Inventory
and Analysis (FIA) program database of the U.S. Forest Service in January
2017 covering data for 2000–2016. Growth and survival for individual
tree species were calculated using the first and last inventory observations
available for each tree in the database. The data set included indices of
tree height, basal area, and above-ground biomass from FIA. Environmental
conditions at each site were added to the data set using (1) monthly mean
temperature and precipitation data from the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM) Climate Group at Oregon
State University (23, 24) and (2) atmospheric deposition of S and N data
from U.S. National Atmospheric Deposition Program's Total Deposition
Science Committee (TDep) (Program, 2021; Schwede and Lear, 2014).
1,260,622 trees were included in the growth data set and 1,544,523 trees
in the survival data set. Species with 1500 or more observed trees were
used to developMLmodels for tree growth and survival. This cutoff was se-
lected to allow calculation of CLs for additional tree species while balancing
higher uncertainty for tree species with fewer observations. Atmospheric S
and N deposition, tree height, basal area, above-ground biomass, and the
number of years between the first and last observation were used as fea-
tures (predictors) for model development. We then developed an updated
forest inventory data set based on the January 2021 FIA database, using
the same methods as in the Horn et al. (Horn et al., 2018) data set.

2.2. ML model

Wedeveloped growth and survivalmodels for 108 tree species using the
XGBoost ML algorithm (Chen and Guestrin, 2016). XGBoost is a tree-based
ML ensemble algorithm in which weak prediction models, in the form of
classification and regression (CART) trees, are iteratively trained to correct
the residuals of previous models. To avoid confusion between statistical
trees (i.e., CARTs) and botanical trees, we hereafter refer to the former as
“CARTs” and the latter as “trees.” We developed models to predict (1) an-
nual growth rate and (2) decadal survival probability for different tree spe-
cies,whichwere used to develop empirical CLs for bothN and S.We trained
these models using full random search hyperparameter tuning, using a
75 % training set, and evaluated them using the remaining 25 % of the
data. We define the input data set, which is composed of n records and m
features, as D = {(xi,yi)}(|D| = n,xi ∈ ℝm,yi ∈ ℝ), where xi is the ith set
of predictive features input to the model and yi is the ith value to be pre-
dicted. Our model structure is

byi ¼ bf xið Þ ¼ ∑
K

k¼1
f k xið Þ (1)

where byi is the predicted tree growth or survival, and K is the number of
additive functions making up the XGBoost ensemble. fk(xi) is the kth inde-
pendent function, where fk is an individual CART selected from the space
F= f{(x)=wq(x)}(q : Rm→ T,w∈ℝT) for model leaf weightsw of indepen-
dent CART structure q composed of T leaves from m input data features.
CART structures were iteratively trained using gradient boosting, as de-
scribed by Chen and Guestrin (2016). For the tree survival model, we use
the negative log loss objective function.

negative log loss ¼ � ∑
N

i¼1
∑
M

j¼1
yi,j log pi,j

� �
(2)

where N is the number of samples, M is the number of classes (live or dead),
yi,j is a binary indicator of whether observation i belongs to class j, and pi,j is
the predicted class probability. For the tree growth model, we train the
model using the mean square error objective function.

mean square error ¼ ∑
N

i¼1
yi � f xið Þð Þ2: (3)

We assessed model performance using R2 (Kvålseth, 1983), root mean
square error (RMSE), and mean absolute error (MAE) for growth, and, for
survival, the receiver operating characteristic's (ROC) area under the

curve (AUC) (Fawcett, 2006). The AUC represents the probability that, in
a two-class classification model, a member of the positive class will have
a higher predicted probability of membership in the positive class than a
member of the negative class.

The ML models were trained using the Scikit-learn 0.23.2 and XGBoost
1.2.0 libraries in Python 3.6.

2.3. Model interpretation

To investigate the relationships between atmospheric deposition and
tree growth and survival, we calculated the partial dependence (PD) of
the model predictions on S and N deposition. The PD function provides
the marginal effect of a feature on the predicted outcome of a ML model
(Friedman, 2001), while all other variables are held constant. The PD func-
tion is defined and approximated as

bf xS xsð Þ ¼ ExC bf xS, xCð Þ
h i

≈
1
N

∑
N

i¼1
bf xS, xiC
� �

, (4)

where xS is the feature vector for the feature S for which the partial depen-
dence is calculated, xC is the set of feature vectors for all other predictive
features C, and xiC are the actual values of features C for the record i.

To aid in interpretation of the PD relationship result for the tree growth
model and ensure comparability with the Horn et al. (Horn et al., 2018)
method, we further hold the value of number of years between first and
last observation constant at 10 years during calculation of the approximate

PD (cPD).
2.4. Critical load estimation

We used the approximated PD function for N and S deposition to esti-
mate the CL for each tree species for both tree growth and tree survival.
To estimate the CL for each model, we fit a polynomial curve
cPDpoly ¼ β0 þ β1xS þ β2x2S þ β3x3S þ ε, up to the third degree, to the PD
values calculated at even intervals within the range of observed deposition
values for each tree species. The polynomial fit provides a smoothed ap-
proximation of the PD function. We defined the CL as the minimum value
of xs along the N or S deposition gradient where there is a 1 % decrease

from the maximum value. Specifically, for cPDpoly with a downward sloping

component as xS increases, we defined the value of xS that maximizes cPDpoly

as x
SbPDmax

. We calculated the CL as the minimum value of xS greater than

x
SbPDmax

for which

cPDpoly x
SbPDmax

� �
� cPDpoly xSð Þ

cPDpoly x
SbPDmax

� � ≥0:01: (5)

We define this minimum value of xS as the cCLpoly. A graphical represen-
tation of this value is illustrated in Fig. S4a. Note that in this effortwe define
the 1 % reduction level as the CL. Relatively small demographic rate
changes can alter forest structure and function due to compounding effects
over time (Kobe, 1996)We selected the threshold used here as impactful to
forest management objectives due to a significant loss of function, even at a
relatively small absolute change (van Mantgem et al., 2009). This is similar
in spirit to the lichen CLs (Geiser et al., 2019) where a 20 % change in the
community is defined as the threshold and is different from Horn et al.
(Horn et al., 2018). Horn et al. (2018) did not formally define the estimates
as CLs, but it is implied that the statistical terms therein could be
interpreted as CLs.

2.5. Comparison to other critical load estimates

To assess differences between theML approach and previously reported
methods, we compared the model performance to CLs calculated using the
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regression equations described by Horn et al. (2018). CLs were defined as
the deposition value at which 1 % decline from the maximum growth or
survival occurred in the Horn et al. (2018) regression equations. For the
growth regression model, we also compared model performance using

model R2. This comparison was made using cCLpoly generated from the en-
tire, original training data set rather than the bootstrapped data sets de-
scribed in Section 2.6. This assessment was performed to provide directly
comparable results to the Horn CLs based on the same input data sets.

2.6. Uncertainty assessment

To address uncertainty in ML-based CL values created using cPDpoly , we
developed a bootstrap ensemble of XGBoost models. Six hundred XGBoost
models were trained on a resampling of the original data set of size equal to
the original data, randomly sampled with replacement. We fit a function
cPDpoly,b to each bootstrap model b and defined the 95% CI as the range rep-

resenting the 2.5th and 97.5th percentiles of cCLpoly,b across all bootstraps
for which the cCLpoly,b could be calculated (Fig. S4b).

Using the bootstrap results, we further developed CL estimates that do

not depend on polynomial approximation of cPD. To develop uncertainty-
based CLs, we first test whether tree growth and survival are significantly
related to deposition. To test this condition, we calculate the 95 % CI for
cPD at each of 20 bins that are evenly spaced between the minimum and
maximum observed atmospheric S and N deposition for the geographic
range of occurrence of each tree species. The 95 % CI is 2.5th and 97.5th

percentiles of cPD across all bootstraps. For each tree species, we first test
whether a significant relationship exists between N or S deposition and
tree growth or survival by calculating

max cPD xSbPDmax

� �
� cPD xSð Þ

��� ���� �
(6)

for all values for xS>xSbPDmax
for each bootstrap. If the bootstrapped 95 % CI

for this value does not include zero, we conclude a significant relationship
exists between deposition and tree growth and survival. If a significant re-
lationship exists, we next calculate the minimum value of xS, for which,
for all xS>xSbPDmax

, the 95 % CI of bPD xSð Þ does not overlap the 95 % CI of

cPD xSbPDmax

� �
. The minimum value that satisfied these conditions is the low-

est level of deposition at which a decline in tree function is detected and is

the statistically significant CL, cCLstat (Fig. S4c). cCLstat represents the mini-
mum deposition level at which the predicted growth or survival from
95 % of bootstraps is below the maximum growth or survival level across
95 % of bootstraps. At this level, there is a high statistical certainty that a
negative effect due to atmospheric deposition exists, but the magnitude of
the effect is not considered.

It is possible that a cCLstat may correspond to a very small decline of tree
function. To calculate the level at which a meaningful decline in tree func-
tion occurs, we estimate the deposition level at which a 1 % decline in tree

growth or survival is identified by cPD for each bootstrap cCLnp. To estimate
cCLnp, we calculate the minimum value of xS, where xS>xSbPDmax

, which

satisfies

cPD xSbPDmax

� �
� cPD xSð Þ

cPD xSbPDmax

� � ≥0:01: (7)

cCLnp,b was then approximated for each bootstrap as

0:99 cPD xSbPDmax

� �� �
∗
cPD xS�1ð Þ � cPD xSð Þ

xS�1 � xS
(8)

where xS−1 is the first value of cPD less than xS. The 95 % CI for cCLnp,b was
then estimated from the bootstrapped values (Fig. S4d).

In some cases, CLs from one or more CL calculation methods could not
be calculated for a tree species although sufficient data were available for

that species. For cCLstat , no CL can be calculated in cases where the variabil-
ity tree growth and survival between bootstraps is greater than the variabil-
ity within the bootstraps. For the othermethods, CLs cannot be calculated if
statistical assessment shows that no relationship exists between deposition
and tree growth or survival or in cases where the PD showed a flat or in-
creasing trend.

2.7. Exceedance analysis

Using a 5-year average (2015–2019) of TDep atmospheric N and S depo-
sition, we assessed the extent to which recent deposition has exceeded the
CLs for different tree species at different confidence levels. We generated
maps indicating whether observed deposition was higher than the 1) lower

bound, 2) median, or 3) upper bound of the 95 % CI for cCLpoly,b and cCLnp,b
bootstrap results for each tree species across the published range for that spe-
cies (Little, 1971, 1976, 1977, 1978). To summarize the extent of exceedance
across the U.S., we calculated the proportion of all species present in each lo-
cation for which deposition exceeded the CL threshold for that species.

3. Results

3.1. Model results

Out of 90 tree species for which sufficient growth data were available,
we were able, using a polynomial fit of the ML partial dependence

(cPDpolyÞ, to estimate N CLs (cCLpolyÞ for 54 species and S cCLpoly for 83 species
using the entire data set (no bootstrap). Out of 108 species for which suffi-

cient survival data were available, we calculated N cCLpoly for 78 species and

S cCLpoly for 91 species. cCLpoly could not be calculated for the remaining spe-
cies because a 1 % drop from the maximum deposition value was not ob-
served in the fit polynomial curve. This occurred in cases where the curve
was nearly flat or had increasing deposition. Based on the independent test-
ing set,we found that themodel performance (R2) for growth of tree species
with variation in N and S deposition ranged from0.2 to 0.75, with amedian
value of 0.54. Our model performance AUC for tree survival models with N
and S deposition ranged from 0.61 to 0.92, with a median value of 0.76.

We were able to calculate bootstrapped CLs using polynomial fit
cCLpoly,b

� �
and non-parametric (cCLnp,b) methods for 69 (N, growth), 53 (N,

survival), 79 (S, growth), and 68 (S, survival) tree species. Using the statis-
tically significant decline in tree growth and survival across bootstraps

(cCLstat), we were able to calculate CLs for 18 (N, growth), 21 (N, survival),
45 (S, growth), and 45 (S, survival) tree species. Bootstrap-based CLs were
calculated only for tree species where a statistically significant relationship
between deposition and tree growth or survival was identified (Eq. (6)).
The bootstrapped CL estimates for all tree species for N and S are shown

in Fig. 1 (for N) and Fig. 2 (for S). The cCLpoly,b values are derived from the
cPDpoly,b curves (Eq. (4)) and corresponding 95 % CIs for each tree species.
The deposition response curves and CIs developed for each species' growth
and survival are provided in Fig. S5.

The CLs and CIs calculated with the three bootstrap methods indicate the
range of likely values for the CL. For example, the CL for atmospheric deposi-
tion of S for paper birch (Betula papyrifera) growth ranged from 0.78 to

3.24 kg ha−1 yr−1 across all tests (cCLpoly,b, cCLstat , and cCLnp,b). This CL indi-
cates one of the narrowest absolute CIs for N or S, but it nevertheless exhibits
a high range of variability in terms of the percent of the median. In contrast,
the confidence interval of the CL for atmospheric deposition of S for black
cherry (Prunus serotina) growth ranged from 4.0 to 34.25 kg ha−1 yr−1 for

the cCLpoly method, indicating a very wide range of absolute uncertainty.
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We assessed the width of the CI from each technique. For N impacts

on growth, the median CI width was 7.56 kg ha−1 yr−1 for cCLpoly,b and
5.05 kg ha−1 yr−1 for cCLnp,b. The median values for N impacts on sur-
vival and S impacts on growth and survival were 5.22 kg ha−1 yr−1

(cCLpoly,b) and 3.69 kg ha−1 yr−1 (cCLnp,b), 2.16 kg ha−1 yr−1 (cCLpoly,b)
and 1.73 kg ha−1 yr−1 (cCLnp,b), and 1.38 kg ha−1 yr−1 (cCLpoly,b) and
1.66 kg ha−1 yr−1 (cCLnp,b), respectively. cCLpoly,b CIs were wider than

cCLnp,b CIs for for S and N impacts on growth and N impacts on
survival (Fig. S1). Just over half (50.7 %) of tree species for which
one or more CLs were calculated had a CL range >10 kg N ha−1 yr−1

when accounting for the CIs for individual methods and variation
between methods for N deposition impacts on tree growth, and
29.8 % for impacts on tree survival. For S deposition, 53.2 %
(growth) and 52.1 % (survival) of tree species had an overall range
>5 kg S ha−1 yr−1.

Fig. 1. CLs and their uncertainties for atmospheric deposition of N calculated from XGBoost bootstraps for tree growth (a) and survival (b).
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The confidence intervals derived from the cCLpoly,b and cCLnp,b methods
show similar wide confidence intervals and medians for each species
and response type, with limited exceptions (e.g., black cherry [Prunus

serotina] growth). S cCL CIs showed greater variability in the absolute

size of the CIs relative to N cCL CIs. cCLstat , where it could be calculated,

frequently falls above the CI from the other cCL methods and provides
a more conservative CL estimate. However, for a majority of tree spe-

cies, no cCLstat could be calculated for N deposition. This indicates that
variability between bootstraps was greater than within individual

bootstraps, such that a statistically significant difference between tree
growth or survival over the range of observed deposition was not de-
tected using the bootstraps.

3.2. Comparison with critical loads from previously reported work

Fig. 3 shows the relationship between the whole data set ML-based CLs

(i.e., cCLpoly) for growth and survival for each tree species to the 1 % reduc-
tion levels developed from the relationships defined by Horn et al. (2018).

Fig. 2. CLs and their uncertainties for atmospheric deposition of S calculated from XGBoost bootstraps for tree growth (a) and survival (b).
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Agreement was generally good between the two approaches for deter-
mining the CLs for tree survival. For tree growth, agreement was also
high, but several CLs for atmospheric N deposition from ML (quaking
aspen [Populus tremuloides], western red cedar [Thuja plicata], and
Chestnut oak [Quercus prinus]) were less than half the CLs 1 % thresh-
olds derived using Horn et al. (2018). Growth CLs for atmospheric S de-
position for green ash (Fraxinus pennsylvanica), American elm (Ulmus
americana), silver maple (Acer saccharinum), and pacific silver fir
(Abies amabilis) from ML were more than twice the values derived
using Horn et al. (2018).

For tree growth, we compared model performance (R2) between the
ML model and the model performance reported by Horn et al. (2018)
(Fig. S2). ML model performance exceeded the performance reported
by Horn et al. (2018) for all tree species, and in many cases, the R2

for ML was greater by more than a factor of two. It was not possible
to compare model performance for the survival results because these
were not reported in Horn et al. (2018), but we would expect similar
patterns.

3.3. Exceedance results

The proportion of tree species impacted by atmospheric deposition of N
and S that exceed their CL at low, median, and high confidence are shown
in Figs. 4, 5, and S3. At the median CL level within each metric, 40–60% or
more of tree species experience conditions where their CL is exceeded in
some regions (i.e., the Great Lakes region for S impacts and the upper

Midwest for N tree survival CLs). At the upper bound of the cCL CI, the pro-
portion of trees exceeding the CL range for N and S is low (<20%) across 64
to 92% of the portion of the conterminous United States in the range of one

ormore tree species (Table S1). At the lower bound of the cCL CI for N depo-
sition impacts on tree survival, the proportion of tree species exceeding the
CL is high (>80 %) across 53 to 61 % of the range. For S and N growth CLs
and S survival CLs, the upper bound threshold also shows an increase in the
proportion of tree species exceeding the CL.

Comparison of the proportion of species exceeding the calculated CL be-

tween the cCLpoly,b and cCLnp,b methods indicate differences in the results

Fig. 3. Comparison of atmospheric N (left) and S (right) deposition 1 % reduction values reported by Horn et al. (2018) with the ML-derived cCLpoly values for tree survival
(top) and growth (bottom). Species falling outside the 2:1 and 1:2 lines are indicated with a black point and labeled with the species name. Lower, middle, and upper solid
lines indicate the 2:1, 1:1, and 1:2 lines, respectively. CLs >15 kg N ha−1 yr−1 are shown in Fig. S5.
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Fig. 4. Percentage of tree species exceeding their calculated N CL from cCLpoly,b and cCLnp,b at high (upper 95th CI bound; top), median (median CL value; middle), and low
(lower 95th CI bound; bottom) values within the bootstrapped CI. White indicates locations where none of the tree species for which a CL CI could be calculated are
known to occur.

Fig. 5. Percentage of tree species exceeding their calculated S CL from cCLpoly,b and cCLnp,b at high (upper 95th CI bound; top), median (median CL value; middle), and low
(lower 95th CI bound; bottom) values within the bootstrapped CI. White indicates locations where none of the tree species for which a CL CI could be calculated are
known to occur.

N.R. Pavlovic et al. Science of the Total Environment 857 (2023) 159252

8



obtained between the methods. cCLpoly,b values consistently have lower per-

cent of species exceeding the CL relative to cCLnp,b values across the conter-
minous United States for N deposition impacts on tree growth. For S

deposition impacts on tree survival, the cCLpoly,b and cCLnp,b methods further
indicate different spatial patterns in the proportion of tree species

experiencing deposition exceeding the CL. The median cCLnp,b results in
the highest proportion of exceedances in Indiana, Ohio, and eastern

Texas, while the median cCLpoly,b results indicate a higher proportion of
exceedances in the Dakotas and eastern Pennsylvania.

Maps comparing the CL CIs for each tree species with historical atmo-
spheric deposition are provided in Datasets S1 and S2. The maps indicate
the extent to which deposition levels fall within the CL CIs calculated for

each species. For example, although paper birch cCLpoly,b CIs for tree growth
impacts from atmospheric deposition of S cover a relatively small range of
2.16 kg S ha−1 yr−1, 77 % of the species range is impacted by deposition
levels within the lower and upper bounds of the CI.

4. Discussion

Our analysis of effects from atmospheric N and S deposition on the
growth and survival of 108 tree species demonstrates a novel application
of ML to model the relationship between tree outcomes and atmospheric
deposition and to constrain the uncertainty in that relationship. Substantial
variability in the range of uncertainty of critical loads between species was
observed in our model results, with some species showing large uncertainty
ranges and others with very small uncertainty ranges. This variability can
be attributed to differences in the range of deposition experienced by
trees across species and variability between individual tree in their sensitiv-
ity to deposition. The results show that the range of uncertainty in CLs we
calculated with this approach spans the actual atmospheric deposition
that occurs over many species' geographic ranges. The range of the uncer-
tainty is sufficiently large towarrant consideration inmanagement and reg-
ulatory decision making.

The ML models we developed performed well in representing tree
growth and survival in independent testing. When compared with previous
work (Horn et al., 2018), the CLs established with the ML approach are
comparable or often lower, and the model performance is improved by a
factor of two. The improvement in the prediction of tree growth suggests
that the CLs established using ML methods are likely to reflect the relation-
ship between atmospheric deposition and tree growth with greater fidelity
(Zhao and Hastie, 2021).

In addition to improvedmodel performance, the MLmethods used here
provide several advantages. First, theML techniqueswe used do not rely on
parametric assumptions about the shape of the relationship between atmo-

spheric deposition and tree growth and survival. In particular, the cCLstat andcCLnp,b tests can establish CLs regardless of the shape of the dose response
function (e.g., step function). Second, XGBoost represents variable interac-
tions, such that our CLs account for the impact of environmental variables
on tree sensitivity to a particular level of atmospheric deposition. Third,
the use of PD to characterize the relationship between deposition and tree
growth and survival, combined with bootstrapping, allows us to estimate
the impact of N and S deposition while holding all other factors constant.
This approach mitigates concerns related to confounding between N and
S deposition. However, co-effects of N and S are also likely to occur.
While these interactions are expected to be represented in the trained
models, they are not captured by the PD approach use to quantify CLs for
N and S individually. In future work, we plan to investigate these interac-
tions directly. For these reasons, the bootstrap machine-learning ensemble
approach we describe here is well suited to development of CLs and CL CIs
for trees and likely could be applied effectively to other ecological
endpoints.

Our methods quantified the uncertainty in CL calculations resulting
from sampling error associatedwith the FIA tree database using a bootstrap
approach. However, additional sources of uncertainty in CL values exist and

were not assessed. Among these, uncertainty in the reported deposition
may be an important source itself (Walker et al., 2019). Additional sources
of uncertainty include potential temporal lags in ecosystem response, corre-
lations among predictors, and spatiotemporal bias in FIA sampling sched-
ules. These sources of uncertainty are common to all empirical CL
methods that use similar sources of input data. Future work is needed to
quantify the full range of uncertainty associated with CL estimates.

There are several opportunities to extend this work. The ML models we
developed could be extended to incorporate additional environmental var-
iables likely to impact tree growth and survival. In particular, soil character-
istics and disturbances such as drought, short-term meteorological events,
beetle infestation, or wildfire events could be incorporated. Future work
could use model interpretation techniques (multivariate PD) to calculate
how additional environmental factors influence tree sensitivity to atmo-
spheric deposition. For example, such models could be used to investigate
the relationship between soil pH and the sensitivity of trees to atmospheric
deposition (Battles et al., 2014; Sullivan et al., 2013). Such relationships,
once established, could be applied to develop spatially-explicit maps of
CLs that vary as environmental conditions, besides climate, change across
the landscape. This approach can be used to understand the impact of var-
iability in the sensitivity of individual trees to atmospheric deposition on
uncertainty in the species-level critical loads calculated here. Climate-
related variables also present an opportunity to explore tree sensitivity
under future climate change scenarios (Van Houtven et al., 2018). In addi-
tion, models that included ozone could be used to constrain the uncertainty
of ozone critical levels, with implications for regulatory decision making.

5. Conclusions

The results we present here show that bootstrapped ensemble ML pro-
vides a robust approach to (1) estimating CLs for atmospheric nitrogen
and sulfur deposition for the growth and survival of individual tree species
across the coterminous U.S. and (2) constraining their uncertainty. These
results can be used by land managers and regulators to guide decision
making related to atmospheric deposition. For example, the U.S. EPA
(U.S. Environmental Protection Agency, 2017) included CL information in
a review of secondary standards for atmospheric nitrogen and sulfur oxides
under the NAAQS.
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