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ABSTRACT

Cyber-Physical Systems (CPS) such as industrial control systems,
automobiles, and medical devices often consist of applications with
real-time properties. Due to the safety-critical nature of the applica-
tion domain, multiple security and fault tolerance approaches have
been studied and used in safety-critical CPS. One of the popular
approaches for CPS safety is the Simplex architecture, which has
also been used recently to strengthen the security of the CPS. The
simplex architecture supports the integration of safe controllers
for dependable systems, and when combined with periodic restarts,
the architecture can reset the CPS into a safe state after each restart.
However, these restart-based systems do not protect the system
against attacks that persist beyond a restart. Such attacks can be
mitigated using secure boot, which is a widely used approach for
securing general computing systems but is not used in real-time sys-
tems due to the overhead of the boot process. This paper presents
an analytical framework and derives feasibility conditions to enable
secure reboots in real-time applications. The schedulability condi-
tions presented can be used to design and integrate secure reboot
into Simplex-based CPS. Our analysis shows that secure boot adds
a deterministic and low-performance overhead, which can be as
low as 0.08%.
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1 INTRODUCTION

The application of cyber-physical systems (CPS) has increased
tremendously across a wide range of domains, including safety-
critical applications such as flight software, medical devices, and
scientific instruments. CPSs have also taken advantage of the re-
cent improvements in the Internet of Things (IoT) technologies to
streamline processes and enhance performance and productivity.
However, these improvements require an increased level of connec-
tivity for many components in the CPS architecture, including the
real-time embedded systems (RTES), which CPS rely on to control
certain core processes of the plants. As a result, RTESs have become
more exposed to adversaries that may compromise the controller
in an effort to affect the plant.

Increasing attacks on CPS have motivated research in CPS se-
curity. One such security approach is the Simplex architecture.
Figure 1 depicts the architecture comprising three primary compo-
nents: safety unit, complex unit, and decision module. The safety
unit contains a fully verified controller that is outside the reach
of an attacker. The complex controller, on the other hand, makes
significant use of commercial off-the-shelf (COTS) components
that are not verified and can be vulnerable to attacks. The decision
module is responsible for switching the operation mode between
safety and complex controller to ensure the CPS plant is functional
throughout the timeline. The use of the COTS component makes
the complex controller exposed to known vulnerabilities. Restart-
based approach has been previously used to strengthen the security
of the complex controller [1-3].

In this work, we present a secure boot integrated restart-based
approach that periodically restores the real-time complex controller
into a secure computing environment. The secure boot mechanism
prevents the installation of persistent rootkits or compromised OS
images from taking over a system. Though the secure boot sequence
ensures a trusted computing environment after every restart, its
use in safety-critical systems is limited due to the lack of thorough
timing analysis that is needed for real-time systems.

This paper presents a response-time based analysis of periodic
secure reboots and establishes a relation between the schedulability
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Figure 1: Architecture of CPS plant with Simplex-based RTES
Controller.

and vulnerability window as a function of the system parameters
like reboot period, system unavailability, and scheduling scheme.
Our contributions are summarized as follows:

e We introduce a restart-based real-time security framework
based on periodic secure reboots.

e We provide schedulability analysis and equations that can
be used to derive performance trade-offs arising from the
level of security requirements.

e Using the system’s task parameters, we characterize the
delay introduced by the non-instantaneous periodic secure
restart and determine its bounds.

2 BACKGROUND

A system with real-time properties requires that the application
tasks complete execution before a predetermined deadline. This
timing guarantee is crucial, especially for safety-critical CPSs, to
avoid system failure, computed by schedulability analysis that ver-
ifies whether all tasks in the system will meet their deadlines
in the worst-case. A method for establishing the worst-case sce-
nario is through a characterization of the worst-case response time
(WCRT) [4, 5] computed by adding the worst-case execution time
(WCET) of a task and the interference caused due to preemption by
higher priority tasks. The WCET can be calculated using various
methods such as a tree- and path-based analysis [6, 7].

Secure boot establishes a trusted computing environment in
a system after each restart by ensuring that a device only boots
from trusted software (firmware). This trust is accomplished by
authenticating each component of the boot process, starting with
a (hardware or software) root of trust component. The authenti-
cation consists of verifying the embedded signatures contained in
firmware images to determine whether to allow or deny its execu-
tion, thereby preventing the installation of persistent rootkits or
compromised OS images from taking over a system. Compared to
a normal reboot (i.e., a reboot with no signature verification) [7],
the secure boot authentication process requires more time, and
integrating a recurring secure reboot to maintain a trusted environ-
ment in real-time CPSs will impact system availability. Specifically,
periodically rebooting an RTES controller can have additional con-
sequences for the CPS’s operation since the plant’s actuators rely
on timely commands generated by the RTES.

3 ADVERSARY MODEL

As shown in Figure 1, the complex controller unit of the RTES
can be accessed from the CPS network through the system’s input
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interfaces and peripherals. In this work, we consider a remote
adversary that can reach the RTES through these interfaces and
compromise the software of the complex controller. We assume that
the safety controller is located on a separate and isolated partition of
the RTES and therefore cannot be accessed by the remote attacker.
We also assume that all software components of the complex unit
in the RTES are trustworthy initially, i.e., their static images are
cryptographically signed by trusted system developers.

Consistent with previous studies [8], the goal of the attacker in
this work is to control or tamper with the plant’s operation. To
achieve this goal, the attacker manipulates the real-time operating
system (RTOS) image or real-time and control applications in the
complex controller. This manipulation impacts the integrity of the
actuator commands computed by the complex controller.

4 SECURE BOOT-ENABLED SIMPLEX SYSTEM

Our goal in this work is to integrate security functionalities to pre-
vent the adversarial actions presented in Section 3 while attempting
to minimize the impact on the system’s performance. In this section,
we present the design of the secure boot-enabled RTES and analyze
its schedulability performance.

4.1 System Design

An RTES compromised by an adversary at runtime can be recovered
by resetting the complex partition to its initial trusted state using
an external timer input and a secure boot-enabled restart operation.
The safety unit provides a mechanism to initiate the secure restart
operation on the complex unit, and regardless of the current state
of the partition (secure or under attack), the safety unit sends a
hardware pulse to the complex controller reboot pin. Hence, an
adversary is unable to block the restart operation. The secure-boot
enabled restart ensures that (1) compromised software components
are disabled, and (2) only authenticated software components are
activated in the complex unit once the partition is restored.

Both the deactivation (of possibly corrupted software) and au-
thentication (of trustworthy software) are achieved through a signa-
ture verification mechanism started from the root of trust, a system
component trusted for measurement and verification at all times.
The root of trust comes both in the form of software and hardware
components. A software root of trust is typically stored in a secure
read-only memory (ROM) location and is responsible for checking
the signatures of subsequent components locally or with the help
of trusted hardware. In this work, we use a bootloader as a software
root of trust, a trusted component in traditional computing sys-
tems that initializes a system’s software stack. A bootloader is also
usually lightweight and would be suitable for resource-constrained
platforms such as an RTES. In addition, it is readily available on
most COTS devices or would be easy to install on an existing system
that does not have one.

This signature verification approach guarantees a secure com-
puting environment only at restart. That is, once the RTES has been
securely rebooted, the adversary can once again attempt to modify
the RTOS and other applications to regain control of the complex
controller. Thus, to limit the potential impact of an attack, we rou-
tinely verify the authenticity of the software on the platform by
performing a periodic secure reboot.
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4.2 Schedulability Analysis

We now analyze the operation of the complex unit with periodic
secure reboots enabled and derive the schedulability conditions for
a secure-reboot system. First, we formally define the RTES tasks
necessary for the analysis as follows: we consider that the complex
controller is a uniprocessor system that executes a set 7~ of periodic
tasks using a fixed priority preemptive scheduling algorithm prior
to integrating the periodic secure reboot functionality. Each task
7; € T is characterized by a tuple {C;, T;, ; }, where C; is the WCET
of the task. T; is the period i.e., an instance of the task is periodically
released at a regular interval of T; units of time (we denote by 7;
the instance released at time mT;). 7; is the task’s priority. Priorities
are assigned such that for two tasks 7; and 7}, if 7; < 7 then 7; has
higher priority than 7;. In addition, we assume the tasks to have
implicit deadlines, that is, a task released at mTj, for an arbitrary
integer m, must complete its execution by (m+ 1)T; (we refer to the
implicit deadline simply as deadline herein). We denote the total
utilization of 7 by U = 3} u; where u; = C;/T;.

The WCRT of 7; on a unicore processor, with fixed priority pre-
emptive scheduling [9, 10], can be calculated using the recurrence
relation by Audsley et al. [4]:

Ri(n+ ) =Ci+ . V (")1 ; 1)

mj<m; -7

where R;(n) is the value of the WCRT calculated at nth step of
the iteration. The equation terminates when R;(n + 1) = R;(n) or
Rj(n) > T;. The base condition for the recurrence relation can be
taken as R(0) = C;

To integrate the periodic secure reboot, we model the reboot
procedure as a periodic task 7, with a WCET of Cy, a period of T;-
and a priority 7. Since the reboot process is capable of preempting
all ongoing processes in the complex controller, we consider that
7 has the maximal priority 7, in the system, ie., 7, < 7;, V7; € 7.
Also, for the restart task, the WCET C, can be viewed as the duration
between triggering the reset pin of the controller to the instant
the first task of 7~ starts execution. This duration depends on the
controller’s mode of operation. For the purpose of our analysis,
we distinguish three modes: for a system with no-restart task, we
let C;, = 0. When a periodic non-secure restart is added, we can
assign C, = €, where € represents the duration of the system restart.
Finally, for a mode of operation that integrates the periodic secure
reboot functionality, C, = € + €/, where €’ represents the overhead
due to secure boot verifications. Since the restart procedure is the
same for every restart, C, is considered to be constant.

Besides Cr, another timing parameter that we must study in
order to perform an accurate schedulability analysis is the max-
imum number of restarts that a task 7; can be subject to before
completing a single execution. The worst-case number of restarts
can be characterized by first understanding the secure reboot mech-
anism: if a task is already executing while the reboot is triggered,
that task will be terminated and flushed along with the rest of the
system memory. However, if the task has not been released yet,
that task will be scheduled even if the task and restart are released
at the same time. Using this distinction, we formulate the following
Lemma derived from Eq. 1:
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LEmMMA 4.1. WCRT for an arbitrary task in a secure-restart based
RTES is found when

Ri(n+1)=Ci+Crt » {R'(")ic, @)

T <7T; TJ

converges, i.e, Ri = Ri(n+1) = Ri(n).

Proor. Let us draw a relation between an arbitrary task 7; € 7
and the reboot task, 7, for an arbitrary instance 7; ;. We know
that the release time of 7; ,, is mT; and the deadline is (m + 1)T;.
Similarly, we can assume a reboot task with period T;. The least
common multiple of the periods of all tasks except the reboot task
is termed as a hyperperiod, which can be denoted by h. The total
number of possible restart in h can be calculated as LT%J Out of
all the possible reboot instances, let us assume that instance 7, i is
closest to 7j ;. Between 7; m, and 7, i, there can be three possible
relations: kT, < mT;, mT; < kT, < (m+ 1)T;, and kT, > (m+ 1)T;.

Case 1: The worst-case overhead will occur at kT, = mT;, where
the overhead will be C, = ¢ + €’.

Case 2: In this case, either kT, — mT; is large enough for 7; »,, to
complete the execution, or the reboot will terminate the task and it
will be deemed non-schedulable. Hence, the worst-case overhead
will be 0 in this case.

Case 3: This case won’t affect the execution of 7; ,,. Hence, this
case won’t add an overhead to the WCRT.

Hence, the highest interference due to reboot will be observed
in case 1. Therefore, taking Cr = € + ¢’ in Eq. 2 captures the WCRT
out of all possible cases. O

The key here is that a task instance can face a maximum of one
reboot during its execution. If the reboot preempts the task, the
decision unit will switch the control to the safety unit to prevent
the system from crashing and will switch back to the complex
controller when it is active again after the reboot.

A task is deemed non-schedulable if any instance of the task fails
to complete execution within the deadline. Lemma 4.1 states the
WCRT equation for a periodic reboot. The WCRT for a task can be
used to formally state the conditions for schedulability.

LEMMA 4.2. For a task t; to be schedulable in a secure reboot
enabled RTES, it is necessary to satisfy the following conditions:

() R <T;,

(2) U +u, <1, where uy is the utilization of 7,

(3) Ri<T,

If condition 1 is not satisfied, a task released at time mT; will
not be able to complete execution before the release of the next
instance of the task time (m + 1)T;. Condition 2 Can be explained
by the following reasoning: Let U = T’ and u, = T’ If 7 €4 T’ > 1,

it implies that % > 1. We know that the hyperperlod ofa

task set is equal to the LCM of the period of all the tasks. Let us
denote a hyperperiod by h. Hence, we can also write CLAGT g,
or CT, + C, T > h, which implies that all the tasks (including the
restart task) cannot be accommodated within the given hyperperiod
if condition 2 is not satisfied.

Condition 3 of Lemma 4.2 is an extension to condition 1 and it is
only applicable to systems with periodic reboots. The conditions
state that the reboot period has to be at least the length of WCRT
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Figure 2: Example of three execution windows (X; 1, Xj 2, and
X;3) for task 7;. The minimum execution window is X; 3 be-
cause it is shorter than X;; and X;, due to the upcoming
second instance of 7,.

of the task, else the task will be terminated by the periodic reboot
and it will never be able to complete execution.

For a periodic task set, we can treat the necessary schedulability
conditions stated in Lemma 4.2 as the base condition for schedul-
ability. However, these conditions are not sufficient to prove a task’s
schedulability because these conditions do not account for all the
possible instances of a task. As stated in the proof of Lemma 4.1,
there can be cases where kT, — mT; < R; and the task will fail to
complete before being terminated by the system reboot. We can
generalize the cases from the proof of Lemma 4.1 to define the
execution window of the task.

Definition 4.3 (Execution Window). For an arbitrary instance m
of a task, 7j i, the execution window is the maximum available exe-
cution time before the task gets terminated. The execution window
of any arbitrary instance 7; ,, can be formally defined as:

Xim =

5

{kTr -mT; mT; <kTy < (m+1)T, )

T; kT, < mT; or kT, > (m+ 1)T;

For all possible pairwise value of (m, k), where m and k are
instances of a system task and reboot task respectively.

In Fig. 2, we see three different cases of execution window. For
X 1, the task executes after the system has rebooted into a fresh
state, in this case, the execution window is T;. In the case of X; 5,
we see no interference due to reboot and this case also has the
same execution window size. However, in the case of Xj 3 we note
that the execution time has been shortened due to the periodic
reboot. Using the three cases, Eq. 3 can be further tightened to only
use instances of T, to calculate the execution windows that are
shortened due to the periodic reboot. We can derive a definition
for the minimum available execution window for an arbitrary task
based on the reboot period.

Definition 4.4 (Minimum Execution Window). The shortened exe-
cution window can be defined as:

kTr—V‘TTi’JY}, kKT, modT; #0
T;, kT, modT; =0

Xim = (4)

In the piecewise equation Eq. 4, the conditions are based on the
divisibility of kT, by T;. If the reboot instance is a multiple of T;,
i.e., kT, = nT; for n € Z, the execution window of the immediately

preceding task will be kT, — kTT’ T; = nT; — nT; = 0, since kT, = nT;.
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Figure 4: Impact of Secure Boot on Schedulability.

Hence the execution window available to the nth instance of the
task is T; as the reboot trigger coincides with the task deadline
and the task window is not shortened by the reboot. Using Eq. 4,
the Minimum Execution Window can be defined as min{X,-,m}]rX:O,
where N = %

THEOREM 4.5. If the WCRT of a periodic task t;, calculated using
Lemma 4.1, satisfies the conditions of Lemma 4.2, then the task is
guaranteed to be schedulable if the minimum execution window is at
least as long as the WCRT of the task.
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Proor. Let us assume that task 7; satisfies Lemma 4.2 where
the WCRT, R;, is calculated using Lemma 4.1, which accounts for
all the possible worst-case interference. Let us assume that the
Minimum Execution Window = X™" If R; < X™" then using
Definition 4.4, R; < X; »V0 < m < % which says that if the WCRT
of a task can be accommodated within the minimum execution
window, the task can complete execution in all its instances. Recall
that the schedulability of a task is defined as the ability to complete
execution before the deadline in all the instances of the task. Hence,
Theorem 4.5 sufficiently proves the schedulability of any task 7;.

O

5 EVALUATION

In this section, we evaluate the impact of the addition of the secure
reboot task on the task set schedulability.

5.1 Experimental Setup

We implemented our approach on the RTEMS RTOS [11] using
Das U-Boot, which is a popular open-source bootloader that is
compatible with a wide range of embedded devices. There are two
steps to implementation; the first stage occurs on a host computer
and the second on the RTES. During the first phase, The U-boot
bootloader is built using user-provided configurations supplied
through an .its file. Next, the hashed image is encrypted with
RSA2048 and stored in a flattened image tree format. In addition
to the flattened image tree, the device tree and generated public
key are stored in a read-only memory location on the RTES. The
second stage occurs every time the RTES is restarted. U-Boot uses
the public key obtained from stage 1 to verify the hash of the kernel
image and only allows a signature-verified image to boot. To ensure
the integrity of execution, we terminate and discard all the tasks
that did not complete execution before the reboot was triggered.

For performance analysis of the proposed model, we used The-
orem 4.5 on a synthetic task set that we generated using the UU-
nifast algorithm [12]. With a constant value for the hyperperiod
(h = 1000), we randomly selected task periods from the set of
the factors of h. For each task 7;, the WCET is calculated using
Ci = T; X U;. We varied U from 0.1 to 0.9 in steps of 0.1. For each
value of U, we generated 1000 task sets with 20 tasks in each task
set. The reboot overhead values, i.e., values for € and €’, used in
this performance analysis are recorded from our hardware test
implementation discussed above.

5.2 Experiments and Results

We performed the following experiments to gain quantitative in-
sights about the performance overheads due to periodic secure re-
boots. We measured performance in terms of the impact on the sys-
tem’s schedulability in three different modes: (1) No reboot: C, = 0
(2) Non-secure reboot: C, = € (3) Secure-reboot: C, = ¢ + ¢’.

We define schedulability of a task set as the percentage of the
tasks that can successfully complete execution before their respec-
tive deadline. For each experiment, we used an arbitrary fixed
priority preemptive (AFPP) scheduling [9] and a rate monotonic
(RM) scheduling algorithm [13] for assigning priorities to each task
in the task sets.
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Experiment 1: This experiment shows the schedulability com-
parison of a set of 1000 task sets for each value of U with a ran-
domly chosen fixed value of T, from a range of (0, h]. The reboot
overheads are € = 5.05 and €’ = 0.02856 seconds, which are col-
lected from our implementation setup. Fig. 3 shows the impact
of the periodic restart of the complex controller. Interestingly, we
observe an almost indistinguishable pattern in the normal reboot
and secure reboot traces with both AFPP and RM scheduling (see
Figs. 3a and 3b), which implies that for restart-based systems, there
is no significant reduction in schedulability by adding the secure
boot sequence in the restart operation. In particular, for the utiliza-
tion range typically used in CPS (0.5 to 0.7), the maximum drop
in schedulability is approximately 0.03% for AFPP and 0.081% for
RM scheduling. We attribute this to the schedulability conditions
presented in subsection 4.2.

Experiment 2: We extend Experiment 1 further and analyze
the numerical summary from a randomly generated task set. To
understand the performance trend better, we generated additional
task sets and analyzed the schedulability of 50000 randomly gen-
erated tasks using boxplots. The five-point summary (minimum,
first quartile, median, third quartile, and maximum) schedulability
of all tasks shows a complete picture of the task schedulability at
the given utilization level with the same fixed values of € and €’ as
used in Experiment 1. We used a pseudo-random number generator
to assign values for T,. Fig. 4 shows the schedulability of task set
with an arbitrary value of T, = 120. The box plot demonstrates the
relation between the system utilization and schedulability of task
sets with a constant Tj..

Experiment 3: We now examine the impact of weighted schedul-
ability [14] as a function of the utilization level and task schedul-
ability at each utilization level. We define weighted schedulability
as: Zi'(:"l(U";g_]i’;E/’T"m)) , where S(Uj, € + €/, Ty ) is the schedul-
ability at utilﬁgatign level U; and T . The resulting plot in Fig. 5
shows that the schedulability of the task is directly proportional to
the reboot period. On one hand, a longer reboot period results in
a higher frequency of the periodic reboot, which lowers the task
schedulability. On the other hand, using a lower frequency of secure
reboot increases the system’s vulnerability. We notice a pattern of
sudden peak (when the T} is a factor of h) immediately followed by a
steep drop in schedulability. This observation is due to the fact that
the task periods are factors of h. The steep drop can be explained
by the same argument: when T, takes values that are immediately
after factors of h, every task having a period equal to a factor of h
will have an instance released and terminated due to a reboot being
triggered, which severely impacts the schedulability of the task
sets for those values of T,. From this experiment and Experiment 1,
we infer that the biggest impact on performance comes from the
reboot period, and the schedulability can be maximized by setting
the reboot period as the least common multiple of a subset of tasks.
The subset of tasks can be selected based on factors such as priority,
which will guarantee the execution of high-priority tasks. The task
subset selection can also be done in such a way that the maximum
number of tasks gets executed.

Experiment 4: In Experiments 1 and 2, we compare the schedul-
ability with fixed reboot overhead and fixed reboot period. In Ex-
periment 3, we observe the impact of the reboot period using a
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Figure 5: Weighted schedulability as a function of reboot
period T;.

weighted schedulability plot with fixed reboot overhead. In this
experiment, we demonstrate the impact of the addition of a secure
reboot over a normal reboot. Fig. 6 shows a linear depreciation in
the schedulability as the overhead percentage of the secure reboot
increases. It is interesting to note that while this plot was generated
from synthetic task sets, this shows a similar trend when compared
to Experiment 1 where we used values from a real system. In Fig. 6a
the schedulability difference with ¢’ = 0.01 X ¢ is around 0.03%
which is close to what we found in Experiment 1. The weighted
schedulability with RM scheduling in Fig. 6b also shows a compara-
ble value 0.1% compared to 0.08% with real system values. Hence,
this experiment provides a very significant insight that the impact
of secure reboot overhead is low, and decreases linearly.

6 RELATED WORK

Trusted computing aims at protecting systems against integrity
attacks by providing an outlet for a root of trust, which uniquely
identifies a platform. The Simplex architecture has been used for
fault tolerance in control systems utilizing untrusted logic and
an isolated safety controller. Approaches based on System-level
Simplex architecture [15] and restart-based (both revival [16, 17]
and rejuvenation [18, 19]) approaches run the safety controller
and decision module on dedicated hardware. These methods add a
safety guarantee to the Simplex-based architecture.

Using System-level Simplex architecture, Abdi et al. [20] pro-
posed a restart-based recovery approach for the complex subsystem
when software faults are detected. Further, Abdi et al. 8, 18, 19]
proposed a framework to periodically restart the platform to im-
prove the safety of real-time systems and provide a system-wide
restart-based approach that provides a formal guarantee of sys-
tem safety. However, these works do not provide proof of timing
guarantee and feasibility analysis for real-time systems.

Vijay Banerjee, Sena Hounsinou, Habeeb Olufowobi, Monowar Hasan, and Gedare Bloom
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Figure 6: Schedulability as function of the secure reboot over-
head ¢’.

Romagnoli et al. [21] proposed a recovery technique based on
software refresh that guarantees the controller integrity and safety.
However, recovery does not prevent attacks from occurring again.
Simplex-based assurance architecture [2, 22-24] using decision
procedures provides fault-tolerant and low-overhead solutions to
choose control commands between the complex controller and
safety controller to improve system reliability.

Diversification-based security leverages the physical properties
of the system to introduce execution path randomness after every
restart [25, 26]. Configuration files, memory location, and hardware
state are diversified to decrease the exposure of system vulnera-
bilities after periodic reset operations, which prevents persistent
attacks. This work can be combined with our system to provide
better security with performance guarantees for real-time systems.

7 CONCLUSION

This paper presents a secure boot mechanism for restart-based
real-time CPS leveraging the Simplex architecture. We present a
schedulability analysis for the RTES task set when the secure boot
is enabled. We evaluated our approach by measuring the impact of
periodic restarts with and without the secure boot on schedulability.
Experimental results show that the periodic secure boot has a negli-
gible impact when using fixed-priority scheduling schemes. Future
work could consider re-execution of terminated tasks, alternative
scheduling paradigms that may be amenable to reboot scheduling,
and randomization of the reboot timing.
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