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ABSTRACT

We give an O(m)-time algorithm for the edge connectivity augmen-
tation problem and the closely related edge splitting-off problem.
This is optimal up to lower order terms and closes the long line of
work on these problems.
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1 INTRODUCTION

In the edge connectivity augmentation problem, we are given an
undirected graph G = (V, E) with edge weights w, and a target
connectivity 7 > 0. The edge weights w and connectivity target
7 are assumed to be polynomially bounded integers. The goal is
to find a minimum weight set F of edges on V such that adding
these edges to G makes the graph r-connected. (In other words, the
value of the minimum cut of the graph G’ = (V, E U F) should be at
least 7.) The edge connectivity augmentation problem is known to
be tractable in poly(m, n) time, where m and n denote the number
of edges and vertices respectively in G. This was first shown by
Watanabe and Nakamura [25] for unweighted graphs, and the first
strongly polynomial algorithm was obtained by Frank [10]. Since
then, several algorithms [6, 11, 12, 22, 23] progressively improved
the running time and till recently, the best known result was an
O(n?)-time! algorithm due to Benczir and Karger [4]. This was
improved to the current best runtime of O(m+n3/2) [7] by reducing

10(+) ignores (poly)-logarithmic factors in the running time.
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the edge connectivity augmentation problem to polylog(n) max-
flow calls. The runtime bound follows from the current best max-
flow algorithm on undirected graphs [24].2 This represents a natural
bottleneck for the problem since further improvement would need
techniques that do not rely on max-flows.

We overcome this bottleneck in this paper, and obtain a nearly-
linear O(m)-time algorithm for the edge connectivity augmentation
problem. This is optimal up to poly-logarithmic terms, and brings
to an end the long line of work on this problem (barring further
improvements in the logarithmic terms). Moreover, it demonstrates
that this problem is easier than max-flow, since obtaining an O(m)-
time max-flow algorithm remains a major open problem. We state
our main result below:

THEOREM 1.1. There is an O(m)-time randomized Monte Carlo
algorithm for the edge connectivity augmentation problem.

The edge connectivity augmentation problem is closely related
to edge splitting off, a widely used tool in the graph connectivity
literature (e.g., [11, 22]). A pair of (weighted) edges (u, s) and (s,v)
both incident on a common vertex s is said to be split off by weight
w if we reduce the weight of both these edges by w and increase
the weight of their shortcut edge (u,v) by w. Such a splitting off is
valid if it does not change the (Steiner) connectivity® of the vertices
V \ {s}. If all edges incident on s are eliminated by a sequence of
splitting off operations, we say that the vertex s is split off. We call
the problem of finding a set of shortcut edges to split off a given
vertex s the edge splitting off problem.

Lovasz [20] initiated the study of edge splitting off by showing
that in an undirected graph, any vertex s with even degree (i.e.
the total weight of incident edges is even) can be split off while
maintaining the (Steiner) connectivity of the remaining vertices.
(Later, more powerful splitting off theorems [21] were obtained that
preserve stronger properties and/or apply to directed graphs, but
these come at the cost of slower algorithms. We do not consider
these extensions in this paper.) The splitting off operation has
emerged as an important inductive tool in the graph connectivity
literature, leading to many algorithms with progressively faster
running times being proposed for the edge splitting off problem [4,
6, 10, 11, 22]. Currently, the best running time is é(m+ n3/2), which
was obtained in the same paper as the current best edge connectivity
augmentation result [7]. We improve this bound as well:

THEOREM 1.2. There is a randomized, Monte Carlo algorithm for
the edge splitting off problem that runs in O(m) time.

2We note that for sparse graphs, there is a slightly faster max-flow algorithm that runs
in O(m?% %) time [14], where § > 0 is a small constant. If this max-flow algorithm is
used in [7], a running time of O(m3/2"s) is obtained for the augmentation problem.
3The Steiner connectivity of a set of vertices is the minimum value of any cut that has
at least one of these vertices on each side of the cut.
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A key tool in augmentation/splitting off algorithms (e.g., in [3,
4,7, 12, 23, 25]) is that of extreme sets. A non-empty set of vertices
X ¢ Vis called an extreme set in graph G = (V,E) if for every
non-empty proper subset Y C X, we have 5g(Y) > 55 (X), where
06 (X) (resp., 6g(Y)) is the total weight of edges with exactly one
endpoint in X (resp., Y) in G. (If the graph is unambiguous, we drop
the subscript G and write §(-).) In edge connectivity augmentation
problem, every vertices set U with §(U) < 7 has a demand that the
solution must add edges with total weight at least 7 — g (U) across
U.It turns out that satisfying the demands of all extreme sets implies
satisfying the demands of all vertices sets. The extreme sets form
a laminar family, thereby allowing an O(n)-sized representation
in the form of an extreme sets tree. The main bottleneck of the
previous edge augmentation/splitting off algorithms [4, 7] is in the
construction of the extreme sets tree. Indeed, [7] show that once
the extreme sets tree is constructed, the augmentation/splitting off
problems can be solved in O(m) time:

THEOREM 1.3 (THEOREM 3.1 IN [7]). Given an algorithm to com-
pute the extreme sets tree, the edge connectivity augmentation and
edge splitting problems can be solved in O(m) time.

(Benczur and Karger [4] also hint that computing extreme sets is
the main bottleneck of their algorithm, although their algorithm
does use O(n?) time in a few other places.)

Theorem 1.3 reduces Theorem 1.1 and Theorem 1.2 to obtaining
an extreme sets tree in O(m) time. Benczur and Karger [4] used
the recursive contraction framework of Karger and Stein [17] to
construct the extreme sets tree, which takes O(n?) time. This was
improved by Cen, Li, and Panigrahi [7] who used the isolating cuts
framework [19]* which uses polylog(n) max-flow calls. But the
isoating cuts framework is unusable if we want to improve beyond
max-flow runtime, since a special case of an isolating cut is an
s — t min-cut. In this paper, we overcome this barrier and give an
O(m)-time algorithm for finding the extreme sets tree of a graph:

THEOREM 1.4. There is a randomized, Monte Carlo algorithm for
finding the extreme sets tree of an undirected graph that runs in O(m)
time.

Given Theorem 1.3, the rest of this paper focuses on proving
Theorem 1.4.

Our Techniques. Our O(m)-time extreme sets algorithm can be
viewed as a series of reductions to finding extreme sets in progres-
sively simpler settings. Recall that the original problem is to find
extreme sets in an arbitrary undirected graph. Our first step is an
iterative refinement of this problem, namely instead of finding all
extreme sets, we refine the problem to finding extreme sets that
are also nearly minimum cuts (we call these near-mincut extreme
sets). More precisely, suppose we have identified all extreme sets
whose cut value is at most some threshold y. These extreme sets
form a laminar family, and induce an equivalence partition on the
vertices where any two vertices that are not separated by any of
these extreme sets are in the same set of the partition. By laminarity
and the extreme sets property, we can claim that all the extreme
sets whose cut value exceeds y must be strict subsets of the sets in

4A similar framework was shown independently by Abboud, Krauthgamer, and Tra-
belsi [1].
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this equivalance partition. This justifies a natural recursive strategy:
for each set in the equivalence partition, we contract all the vertices
outside this set into a single vertex and find extreme sets in this
contracted graph.

So far, we have reduced the problem to finding extreme sets that
are subsets of the set of (uncontracted) vertices S, where in addition,
there is a (contracted) vertex ¢ representing all the other vertices
V '\ S of the graph. Clearly, the Steiner connectivity of S, denoted A,
must exceed y (else, any minimum Steiner cut that is also minimal
in terms of vertices would also be an extreme set of cut value y,
which contradicts the inductive assumption that we have already
identified all extreme sets of cut value at most y). We now define
our iterative goal: find all extreme sets that are subsets of S and
have cut value in the range [, (1 + €)A].

To solve this problem, our next pair of tools is sparsification
and tree packing. Suppose, for now, that the minimum cut in the
graph containing S and the contracted vertex c is of value A (this
may not be true in general since the degree cut for vertex ¢ can be
smaller than A, but we will handle this complication later). Then, we
can use a uniform sparsification technique of Karger [15] to sample
edges and form a graph where the value of all cuts converge to
their expected value whp® and where the expected value of the
minimum cut is O(logn). On this graph, we can pack O(logn)
disjoint spanning trees rooted at a fixed vertex r in O(m) time such
that the following property holds whp: for every cut of value at
most (1 + €)A in the original graph (this includes all the extreme
sets we are interested in finding), there is a spanning tree that
contains at most two edges from the cut (we say the cut 2-respects
the tree). This essentially reduces the problem to finding extreme
sets that 2-respect a given spanning tree. There are two caveats.
First, we need an algorithm that can merge the extreme sets found
for the different trees into a single extreme sets tree. Second, the
contracted vertex ¢ may have degree smaller than the number of
trees, which means that trees wouldn’t be spanning and two tree
edges do not uniquely define a vertex set. We defer the technical
details to address these issues to later sections.

Now, we have reduced the extreme sets problem to finding all
extreme sets that 2-respect a given tree. If we were interested in
finding a minimum cut (see [16]), then we would use a dynamic
program at this stage. But, extreme sets are more complex. First,
the extreme set condition is more difficult to check than tracking
the minimum cut. More importantly, extreme sets are asymmetric,
i.e, evenif X is an extreme set, V' \ X may or may not be an extreme
set. This seems to defeat the purpose of working on a tree. For
instance, when the two tree edges are comparable, i.e., form an
ancestor-descendant pair, the extreme set is not contiguous in the
tree. It is unclear at all how we can check the extreme sets property
for such a non-contiguous set. To overcome these difficulties, we
undertake two further simplifications of the problem. The first
is a recursive rotation of the tree based on the idea of a centroid
decomposition. We show that this ensures that all 2-respecting
cuts will appear as two incomparable edges in some level of the
recursion, thereby eliminating the need for handling comparable
tree edges. Our next technique reduces the problem from trees with
arbitrary structure to spiders. (A spider is a tree where only the

Swith high probability, i.e., with probability 1 — 0(1)
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root can have degree greater than 2.) The basic idea is to perform
a heavy-light decomposition of the spanning tree, and then sample
each path of this decomposition independently for contraction
in a manner that the resulting tree is a spider. If this process is
repeated O(log n) times, then for every 2-respecting cut, there whp
is at least one spider that preserves both edges of the cut in the
tree. (This idea was previously explored by Li [18], although in a
somewhat different context.) As an aside, we note that both these
simplifications are also valid for the minimum cut problem, and can
be used to simplify Karger’s celebrated near-linear time minimum
cut algorithm [16].

We have now reduced the problem to finding 2-respecting ex-
treme sets on spiders, with the additional guarantee that if the cut
contains exactly two edges in the tree, then those two edges will be
incomparable. At this point, we first find all 1-respecting extreme
sets using a simple dynamic program. Conceptually, this is simple
because we can run the algorithm “in parallel” on each branch of the
spider. However, the 2-respecting case still needs additional work.
At this point, we use our final simplification, where we reduce the
2-respecting extreme sets problems from spiders to paths (equiva-
lently, spiders with only two branches). The basic idea behind this
transformation is that we use the laminar structure of extreme sets
to claim that all 2-respecting extreme sets can be partitioned into
equivalence classes, where each set of the partition corresponds
to two distinct branches of the spider. This allows us to run the
2-respecting algorithm “in parallel” on these spiders containing
only two branches each, i.e., on paths. Finally, for each path, we
can solve the 2-respecting extreme sets problem using a simple
dynamic program.

Roadmap. We introduce some preliminaries in Section 2. Sec-
tion 3 describes the iterative framework that we use in our extreme
sets algorithm, and reduces the problem to finding 2-respecting
extreme sets for a spanning tree of the graph. In Section 4, we
use the recursive rotation based on centroid partitioning and the
random sampling over the heavy-light decomposition to reduce the
problem to finding 2-respecting extreme sets in a spider. We solve
this latter problem in Section 5, using the reduction to a path and
the employing a dynamic program. Finally, in Section 6, we give
the algorithm to merge the extreme sets revealed by the different
steps into a single extreme sets tree.

2 PRELIMINARIES

Use §(S) to denote the value of a cut S ¢ V, that is the sum
of weights of edges with exactly one endpoint in S. For disjoint
S,T ¢ V, denote (S, T) to be the sum of weights of edges with
one endpoint in S and the other endpoint in T. For vertices s # t,
denote A(s, t) to be the value of minimum s-¢ cut.

Our goal is to find all the extreme sets of an undirected graph
G = (V,E). We can define an extreme set as follows.

Definition 2.1 (Extreme set). A nonempty set X C V is extreme if
for every non-empty proper subset U of X, we have §(U) > §(X).
By convention, all singleton sets are extreme sets.

One noteworthy aspect of this definition is that although the
graph G is undirected, the notion of extreme sets is asymmetric. In
other words, if X is an extreme set, it is not necessarily the case that
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the complementary set V' \ X is also an extreme set. As described
in the introduction, this asymmetry is one of the main contributors
to the difficulty of the problem.

We need the following properties of cut function in undirected
graphs.

Proposition 2.2 (submodularity). VX,Y C V,§(XNY)+5(XVUY) <
8(X) +6(Y).

Proposition 2.3 (posi-modularity). VX, Y C V,6(X \ Y) + (Y \
X) <5(X) +6(Y).

A family of sets is said to be laminar if any two of them are
either disjoint or one is contained in the other. It is well known that
extreme sets form a laminar family.

Lemma 2.4. Extreme sets form a laminar family.

Proor. Assume for contradiction that there are two extreme
sets X and Y violate laminarity, i.e, X \ Y,V \ X, and X N Y are
all non-empty sets. Then, since both X and Y are extreme sets, we
have (X \Y) > §(X) and 5(Y \ X) > 6(Y). Then §(X \ Y) +6(Y \
X) > 8(X) + 6(Y), which contradicts posi-modularity of the cut
function. ]

Laminarity induces a natural tree structure on extreme sets
where all the vertices of the graph (as trivial extreme sets) are
leaves of the tree and every subtree (or equivalently, the internal
tree node where the subtree is rooted) represents an extreme set
containing all the vertices that are leaves in the subtree. We call this
the extreme sets tree. Our goal in this paper is to find an extreme
sets tree in O(m) time, thereby establishing Theorem 1.4,

We also use the notion of Steiner connectivity of a set of vertices,
which is the minimum value of a cut that has at least one terminal
on each side of the cut. If we remove this additional condition
(equivalently, set all vertices as terminals), then we get the edge
connectivity of the graph.

Definition 2.5 (Steiner connectivity). The Steiner connectivity of
a set of vertices X C V (called terminals) is the minimum value of a
cut S such that X N S and X \ S are both nonempty. If X =V, then
we call this the edge connectivity of the graph.

3 REDUCTION TO 2-RESPECTING EXTREME
SETS

In this section, we reduce the problem of finding all extreme sets
to that of finding extreme sets that satisfy an additional property
called 2-respecting that we will define later. This reduction is in
two parts. In the first part, we use a framework that iteratively calls
an algorithm to find all extreme sets whose cut values are in a given
range. In the second part, we reduce from the problem of finding
all extreme sets in a given range of cut values to all extreme sets
that satisfy the 2-respecting property.

3.1 [Iterative Framework for Extreme Sets
Algorithm
We use an iterative framework to find all extreme sets of the graph.

In fact, consider the following reformulation of this problem. Given
a set of vertices S € V, we need to find all extreme sets that are
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subsets of S (including S itself if it is an extreme set). We note that
this problem is actually equivalent to the problem of finding all
extreme sets in the graph. In one direction, an algorithm that finds
all extreme sets also identifies those that are subsets of S. But, also
conversely, we can add a dummy isolated vertex to the graph, and
then set S = V to find all extreme sets of the graph.

We further refine the task of finding extreme sets contained in S
into finding extreme sets whose cut value is in the range [A, (1+€)A]
for a fixed constant € > 0. Here, A is the Steiner connectivity of S
after we contract V' \ S into a single vertex c¢. We call these near-
mincut extreme sets.

Definition 3.1 (Near-mincut Extreme Set). Suppose we are given
an undirected graph and a set of vertices S. Let A denote the Steiner
connectivity of S when V \ S is contracted to a single vertex c.
Given a fixed constant € > 0 (whose precise value will be given
in Lemma 3.8), a near-mincut extreme set S’ is an extreme set
that is a subset of S (i.e., S ¢ S) and whose cut value satisfies
8(S) € [, (1+e)h).

In the rest of this section, we describe an algorithm to find all
extreme sets contained in S by iteratively using an algorithm that
finds near-mincut extreme sets. To describe our algorithm, it is
convenient to partition cuts based on a threshold d into d-strong
and d-weak cuts.

Definition 3.2 (d-Strong and d-Weak Cuts). A nonempty set of
vertices X C V is said to be d-strong if the cut value §(X) > d, else
it is said to be d-weak.

Note that the problem of finding all near-mincut extreme sets is
equivalent to that of finding all (1 + €)A-weak extreme sets after
contracting V' \ S into a single vertex c. In Algorithm 1, we use a
subroutine that returns all (1 + €)A-weak extreme sets to obtain all
extreme sets contained in S. Since the near-mincut extreme sets
form a laminar family (by Lemma 2.4), these (1 + €)A-weak extreme
sets induce a canonical partition of the vertices of S defined below.

Definition 3.3 (Canonical Partition). Define an equivalence rela-
tion on the vertices of S using the following rule: two vertices are
related if and only if they are not separated by any of the (1 + ¢)A-
weak extreme sets contained in S. The equivalence classes corre-
sponding to this equivalence relation form the canonical partition
of S.

The following lemma asserts that all (1 + €)A-strong extreme
sets contained in S must respect this canonical partition.

Lemma 3.4. Any (1 + €)A-strong extreme sets contained in S must
be contained in some equivalence class of the canonical partition.

PRroOF. Suppose not, and let u, v € S be two vertices in different
equivalence classes of the canonical partition that are both in some
(1 + €)A-strong extreme set S’. By definition of the equivalence
relation, there must be some (1 + €)A-weak extreme set X C S such
that u € X,v ¢ X (or vice-versa). By Lemma 2.4, it must be that
X ¢ S’ since u € X N S’. But, this violates the fact that S’ is an
extreme set since §(X) < (1+¢€)A < 8(5). O

This lemma allows us to recurse on the individual equivalence
classes of the canonical partition in Algorithm 1.
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Algorithm 1: Tterative Framework for Extreme Sets
Input :Graph G = (V,E)andasetS C V.
Output: The family of all extreme sets in G that are

contained in S.

1 When S is a singleton, return the singleton as the only
extreme set contained in S.

2 Let A denote the Steiner connectivity of S after contracting
V'\ S into a single vertex c. Let d = (1 + ¢)A.

3 Call the near-mincut extreme sets subroutine to find all
d-weak extreme sets contained in S. This induces a
canonical partiton of S into subsets S1, So, . . ., Sg.

4 For each set S;, recursively find all extreme sets contained in
Si.

5 Construct a laminar family of all extreme sets in the current
call and all extreme sets found in the recursive calls.
Return the laminar family.

() )

Figure 1: Implementation of line 5 of Algorithm 1. Top left:
d-weak extreme sets. Bottom left: extreme sets trees returned
by recursive calls. Right: the merged extreme sets tree.

THEOREM 3.5. Algorithm 1 finds all extreme sets that are contained
inS.

ProOF. The proof is by induction on the size of S. When S| =1,
the singleton set is the only extreme set. Next consider |S| > 2.
Any d-weak extreme set contained in S will be found by the near-
mincut extreme sets subroutine. Consider any d-strong extreme set
S’. By Lemma 3.4, such an extreme set must be contained in one
of the equivalence classes of the canonical partition. To apply the
inductive hypothesis asserting that S will be revealed in a recursive
call made by the algorithm, we need to show that the equivalence
classes of the canonical partition are proper subsets of S, i.e., they
are strictly smaller than S. This is because there is at least one cut of
value A that is contained in S, since A is the Steiner connectivity of
S after contracting V' \ S into a single vertex c. Now, if we consider
any minimal subset of S of cut value A, it must be an extreme set
by definition. Therefore, the canonical partition is nontrivial, i.e., it
contains at least two equivalence classes. Consequently, each set in
the equivalence partition is a strict subset of S.

We also need to verify that any recursive call on a set S; € S
does not return spurious extreme sets, i.e., sets that are extreme in
the graph where V' \ Sj is contracted, but are not extreme in the
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original graph. But, this can be ruled out based on the definition of
extreme sets since the property only depends on the cut values of
subsets of S; which are unaffected by the contraction. O

We now bound the running time for the overall algorithm.

TuEOREM 3.6. If we can find all near-mincut extreme sets in O(m)
time, then Algorithm 1 finds all extreme sets contained in S in O(m)
time.

ProoF. In each recursive level, the uncontracted vertices form a
disjoint partition of S. Thus, each edge of the graph appears in at
most 2 subproblems. So each recursive level has O(m) edges across
all subproblems, and therefore, takes O(m) time by induction.

To bound the depth of the recursion, we compare the value of
A between a subproblem with set S (call this A(S)) and its child
subproblem with set S; (call this A(S;)). We claim: A(S;) > (1 +
€)A(S). Suppose not; then, there is a proper subset of S; that has
cut value < (1+ €)A. Now, any minimal subset (call it 5;) of S; with
cut value < (1+ €)A must be an extreme set by definition. But, now
if we choose two vertices u,v € S; where u € Sl.’, vé Sl.’, then u and
v cannot be in the same equivalence class of the canonical partition
since that would contradict the fact that S] is a (1 + €)A-weak
extreme set contained in S. This implies that A(S;) > (1 + €)A(S).
This bounds the depth of recursion in Algorithm 1 to O(e~! log n)
since the edge weights are polynomially bounded.

Finally, we need to give an implementation of line 5 of Algo-
rithm 1 (see Figure 1). We map each set of the canonical partition
to a unique node in the d-weak extreme sets tree (call it T) returned
by line 3. This can be done naturally by mapping every vertex in
S to the smallest extreme set that it belongs to among the d-weak
ones. (All vertices in S that are not in any d-weak extreme set are
mapped to the root representing V.) Note that by definition of the
canonical partition, the recursive calls are on sets of graph vertices
that are mapped to the same node in T. Consider a recursive call
for a set X. X is mapped to a node x representing X’ 2 X in T. The
recursive call returns an extreme sets tree T’ whose root represents
X.If X € X/, we attach T’ as a child of x in T; If X = X’, we attach
the children of the root of T’ as children of x in T. Note that this
can done in O(n) time across all the recursive calls because the
corresponding extreme set trees are disjoint.

The total time complexity of Algorithm 1 is then given by O(m).

|

3.2 Sparsification and Tree Packing

We further reduce near-mincut extreme sets to 2-respecting extreme
sets via tree packing. We start with the following uniform sampling
theorem.

THEOREM 3.7 ([15]). Given a weighted undirected graph G with
min-cut value A and any constant ¢ € (0,1), we can construct in
O(m) time a subgraph H such that the following holds whp: for every
cut S in H, its value in H (denoted 8¢ (S)) and its value in G (denoted
8(S)) are related by 5g1(S) € [(1—€)p - 8(S), (1+€)p - 5(S)], where
p=0 (IOgn). Note that this implies that the min-cut value in H is

A
O(logn).

First, we use this theorem to prove the following lemma on
sampling graphs to preserve near-mincut extreme sets.
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Lemma 3.8. Given a weighted undirected graph G = (V = S U
{c}, E), we can construct in O(m) time a subgraph H where the fol-
lowing hold whp: (a) the Steiner min-cut value of S in graph H is
Ag = O(logn), and (b) every near-mincut extreme set in G has cut
value at most 1.1y in H.

Proor. Let A be the Steiner min-cut value of vertices S in graph
G. Choose € = 0.01. Let 5(c) denote the value of the singleton cut
{c} in graph G.

When 6(c) > €A, we use Theorem 3.7 to get a graph H; with
min cut value 4; = O(log n). We have

M = (1—¢e)p-min{A,8(c)} = e(1—€)pA,

which implies that pA = O(log n). The Steiner min-cut value of S
in H is

Ag € [(1 —e)pA, (1 +€)pA] = O(logn).
For any near-mincut extreme set S’, we have §(S’) € [A, (1 +¢€)A),
which implies
(1+¢)?
(1-e)
(The first inequality is by Theorem 3.7 and the second inequality
by property of near-mincut extreme sets.)

When §(c) < €A, let G’ be the graph formed by removing ¢
from G. For any Steiner cut S’ separating S, we have 55/ (S") >
8(8’) = 8(c) = (1 — €)A. Use Theorem 3.7 on G’ to get a subgraph
H with min-cut value Ay = O(log n). Note that

Su(S) < (1+€e)p-8(S") < (1+€)?pA < Ay < 1.1Ag.

A= (1—e)ple = (1-¢€)?pA.
Now, for any near-mincut extreme set S”/, we have
0m, (8") < (1+€)p- 86 (S”) < (1+e)p-5(S”)
(1+¢)?
(1-e)?

(The first inequality is by Theorem 3.7, the second inequality by the
fact that G is a subgraph of G, and the third inequality by property
of near-mincut extreme sets.) O

<(1+e)?pr< Ay < 1.1y,

So far, we have constructed a subgraph H of G where every near-
mincut extreme set has value at most 1.1y, where Ag is the Steiner
connectivity of S in H. We now pack a set of disjoint spanning trees
in H. The next theorem follows from the work of Bang-Jensen et
al. [2] and can also be derived from earlier work by Edmonds [9].
We state a version of the theorem from [5, 8]. First, we need the
following definition:

Definition 3.9. Given a directed graph G and a vertex r, a direc-
tionless tree rooted at r is a (possibly non-spanning) tree of directed
edges that is a subgraph of G, and where all edges incident r are
directed away from r. All other edges can have arbitrary direction.

THEOREM 3.10 ([5, 8]). Given an Eulerian directed graph G, a
root vertex r and a value C, there exists C edge-disjoint directionless
trees rooted at r, such that the in—degree of every vertexv # r in
the union of all the trees is min{A(r,v), C}, where A(r,v) is the value
of minimum r-v cut. Such a tree packing can be obtained in O(mC)
time.
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For an undirected graph, we can replace each undirected edge
with two directed edges oriented in opposite direction and apply
the above theorem to obtain the following corollary.

Corollary 3.11. Given an undirected graph G, a root vertex r and a
value C, there exists C (possibly non-spanning) trees rooted at r, such
that (a) each vertexv # r appears in at least min{A(r,v),C} trees,
and (b) every edge appears in at most two trees. Such a tree packing
can be obtained in O(mC) time.

Using this undirected tree packing, we can now reduce the prob-
lem of finding near-mincut extreme sets to finding extreme sets
that 2-respect a tree. We first define the 2-respecting property.

Definition 3.12. Given an undirected graph G = (V, E) and a tree
T that is a subgraph of G (T may not be spanning), an extreme set
S € Vin G is said to 2-respect T if there are at most two edges from
the cut (S, V' \ S) that appear in T.

Now, we are ready to further reduce near-mincut extreme sets
to the following three problems:

o Finding 2-respecting extreme sets: given a weighted undi-
rected graph G on vertices SU{c}, and a subgraph T that is a
tree spanning S (it may or may not contain c), find a laminar
family of vertex sets that contains all extreme sets in G that
2-respect T and are subsets of S.

e Merging two laminar trees: given a weighted undirected
graph G, and two laminar families of vertex sets, merge these
laminar families by selecting a single laminar collection of
vertex sets from the two families that includes all extreme
sets in G that are in these families.

e Removing non-extreme sets from a laminar family: given
a weighted undirected graph G on vertices S U {c}, and a
laminar family of vertex sets containing all near-mincut
extreme sets of G (but possibly other sets), find the near-
mincut extreme sets of G and discard the other sets that are
not near-mincut extreme sets.

THEOREM 3.13. Suppose that given a weighted undirected graph G
on vertices S U {c} containing m edges, there are algorithms that can
find 2-respecting extreme sets, merge two laminar trees, and remove
non-extreme sets from a laminar family in O(m) time. Then we can
find whp all near-mincut extreme sets in O(m) time.

ProoF. Given a near-mincut extreme sets problem instance in a
graph G on vertices SU{c} where A denotes the Steiner connectivity
of S, we first use Lemma 3.8 to obtain a subgraph H. Let A’ be the
Steiner connectivity of S in H. If we set C = A’ in Corollary 3.11
and apply it to H, then we get A’ = O(log n) trees spanning S. S is
spanned because for each v € S\ {r}, Ag(r,v) > A’ by definition
of Steiner connectivity, and v appears in all A’ = min{Ag(r, ), C}
trees. We remark that these trees may or may not contain c.

Next, for each of these trees, we find a laminar family containing
all 2-respecting extreme sets using the first algorithm. We need
to show that every near-mincut extreme set in G will 2-respect at
least one of the trees, and therefore, will be in one of these laminar
families. Set € = 0.01. For any (1 + €)A-weak extreme set S’ C S in
G, we have that §’ is a 1.1-approximate Steiner min-cut in H. Thus,
the A’ trees share at most 2.21” cut edges, since each edge appears
at most twice in the trees by Corollary 3.11. So, on average, each
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tree has at most 2.2 cut edges. Thus, there is at least one tree that
has at most 2 cut edges.

Now, we iteratively use the second algorithm to merge the lami-
nar families returned for each tree into a single laminar family, and
then remove the non-extreme sets from this family using the third
algorithm to obtain the near-mincut extreme sets.

Next, we bound the running time. The application of Lemma 3.8
takes O(m) time, and that of Corollary 3.11 makes O(m}’) time.
Since A’ = O(log n) by Lemma 3.8, we can conclude that the tree
packing takes O(m) time. Then, we run the extreme sets algorithm
on each of the O(log n) trees, which takes O(m) time. Since there are
O(log n) trees, it follows that we need to call the merger algorithm
O(log n) times, which takes O(m) time. Finally, the algorithm to
remove non-extreme sets a takes O(m) time. Thus, the total runtime
is O(m). o

We will give the algorithm to find 2-respecting extreme sets
in the statement of Theorem 3.13 in Section 4 and Section 5, and
the algorithm for merging two extreme sets trees into an extreme
sets tree in Section 6. Here, we give details of the last step, that of
removing non-extreme sets from a laminar family.

Lemma 3.14. Given a laminar family containing all near-mincut
extreme sets, we can remove all sets that are not near-mincut extreme
sets in O(m) time.

Proor. First remove all sets X with §(X) > (1+€)dlor X\S # 0
because they cannot be near-mincut extreme sets. Then do a post-
order traversal on the tree formed by the laminar family. When
visiting some node X, compare the cut value of X and all its children.
If some child has cut value less or equal to §(X), we remove X from
the family and assign its children to its parent in the tree. Given
the cut values, the traversal takes O(n) time.

Next we show that all cut values of sets in the laminar family
can be computed in O(m) time. For each vertex u € V, let p(u)
be the collection of sets containing u in the laminar family. Add
set V into the family, so that p(u) is always nonempty. Because
the family is laminar, p(u) is a nested chain of sets. Let I(u) be the
minimal set in p(u), then p(u) is a path from the root to /() in the
laminar tree. Every edge (u, v) contributes to the cut values of sets
separating u and v, which are sets in exactly one of p(u) or p(v). On
the laminar tree, they are on the path from I(u) to I(v) excluding
the lowest common ancestor (LCA) of I(u) and I(v). Use Tarjan’s
offline LCA algorithm [13] to calculate LCA(I(u), l(v)) of all edges
(u,v) in O(m + n) time. Assign a label to each tree node. The labels
are 0 initially. For every edge (u,v) with weight w, add w to the
label of I(u) and I(v), and add —2w to the label of LCA(I(u), [(v)).
Then for every set in the family, its cut value is the sum of labels in
the corresponding subtree. These sums of labels can be calculated
in O(n) time using dynamic programming.

Clearly, near-mincut extreme sets will not be removed by this
algorithm. Next, we show that all sets that are not near-mincut
extreme sets will indeed be removed. By the first step, we can only
focus on non-extreme sets X ¢ S that have cut value §(X) < (1+€)A.
For such a set X, there must be some extreme subset Y C X with
8(Y) < 5(X) < (1+¢€)A (e.g., a vertex minimal subset of X that
violates the extreme condition for X is a valid Y). Then Y is a near-
mincut extreme set, so Y is in the family and has not been removed
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when visiting X in the post-order traversal. Let Y’ be the ancestor
of Y that is also a child of X. Because the path from Y to Y’ has
survived the post-order traversal, the cut values will be monotone
decreasing along this path. Thus, §(Y’) < §(Y) < §(X), which
implies that X will be removed. O

4 REDUCTION TO SPIDERS

In this section, we reduce the problem of finding 2-respecting ex-
treme sets in Theorem 3.13 to the special case when the tree T is a
spider. This significantly simplifies the case analysis of the extreme
sets algorithm.

Definition 4.1 (Spider). A spider is a rooted tree that is the edge-
disjoint union of root-to-leaf paths.

The full reduction has two steps. We first impose one additional
restriction: we only need to find extreme sets for which the root r of
T is on the path in T between the two crossed edges. Of course, this
requires the extreme set to cross exactly two edges in T, and we call
such a set exactly 2-respecting. The reduction is captured by the
lemma below, which we prove in Section 4.1 using the technique
of centroid decomposition on a tree.

Lemma 4.2. Assume that given a weighted undirected graph, and
a tree T spanning all but at most one vertex, we can find in O(m)
time all extreme sets in V(T) that either (a) 1-respect T, or (b) exactly
2-respect T such that r is on the path in T between the two crossed
edges. Then, we can find in O(m) time all 2-respecting extreme sets
(with no additional condition).

Finally, we reduce this special case to one that assumes the tree
T is a spider. The lemma below is proved in Section 4.2 using the
random branch contraction technique inspired by [18].

Lemma 4.3. Assume that given a weighted undirected graph, a
special vertex ¢ and a spider T spanning all but at most one vertex,
we can find in O(m) time a laminar family of V(T) that includes all
extreme sets that either (a) 1-respect T, or (b) exactly 2-respect T such
that r is on the path in T between the two crossed edges. Then, the
same is true with “spider” replaced by a general “tree”.

4.1 Centroid Decomposition

In this section, we prove Lemma 4.2.

For a given tree T, the centroid is a vertex r such that if we root
T at r, then each subtree rooted at a vertex different from r has at
most half the total number of vertices. The centroid is guaranteed
to exist for any tree, and one can be computed in linear time easily.

Root T at the centroid r, and first call the 2-respecting extreme
sets algorithm under the special restriction described in the lemma
statement. In particular, this algorithm returns a laminar family of
subsets that includes all exactly 2-extreme sets on T for which r is
on the path in T between the two crossed edges.

Next, let Ty, ..., T; be the subtrees rooted at the children of r,
with the additional edge between r and the root of the subtree,
so that Ty, ..., Ty is an edge partition of T. We can split the set of
subtrees into two groups such that each group has at most 2/3 the
total number of vertices. Without loss of generality, let T3, . .., Ty
and Ty, q, . . ., Ty be the two groups. The algorithm recursively solves
two instances, one with all edges in T3, . . ., T contracted to a single
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vertex, and one with all edges in Ty, 1, ..., Ty contracted to a single
vertex. Take the two laminar families returned by the recursive
calls and “uncontract” the contracted vertex in any set that contains
it, i.e., replace it with the verticesin Ty U--- U T or Ty U---U T,
depending on which instance. This does not destroy laminarity of
the two families. We then use Lemma 6.1 to merge the three laminar
families found overall (including the one from the non-recursive
case above).

We claim that the resulting laminar family includes all extreme
sets 2-respecting T. There are a few cases:

(1) If an extreme set 1-respects T, then it is picked up by the
non-recursive case.

(2) If an extreme set crosses two edges, onein Ty U - - - U Ty, and
one in Tp4q U - - - U Ty, then it satisfies the specific condition
that the root r is on the path in T between the two crossed
edges, so the non-recursive case outputs this set.

(3) If an extreme set crosses two edges, either both in Ty U- - -UT}
or both in Tp,; U - - - U Ty, then it survives when the other
(1Y UTg or Ty U+ - - UTp) is contracted, so it is output
by the corresponding recursive algorithm.

It follows that all 2-respecting extreme sets are output by the al-
gorithm. By Lemma 6.1, they all survive the merging step, and are
therefore included in the final output.

As for running time, the recursion depth is O(logn) since the
number of vertices in T drops by a constant factor on each recur-
sive call. Also, on each recursion level, the sum of the sizes of the
instances is O(m + nlog n) by the following argument. Each vertex
in the original tree T appears in at most one instance (as a non-
contracted vertex), and each instance has an additional O(log n)
contracted vertices (one from each recursive call before it) and pos-
sibly one vertex c in V not spanned by T. There are at most m edges
across the instances whose endpoints are not ¢ nor contracted ver-
tices, since each original edge appears in at most one instance (the
one containing both of its endpoints as non-contracted vertices, if
any). Each instance with k vertices also gets an extra O(k logn)
edges adjacent to either one of the O(logn) contracted vertices
or c. It is not hard to see that the total number of vertices among
the instances is O(n), so this is an additional O(nlogn) edges. It
follows that the sum of the sizes of the instances at each level is
O(m + nlogn), and over all the O(log n) levels, this is still O(m).

4.2 Reduction from Trees to Spiders

In this section, we further simplify to the case when T is a spider,
proving Lemma 4.3. The idea is simple: we compute a heavy-light
decomposition of the tree, viewed as a set of edge-disjoint branches,
and randomly contract a subset of them so that the remaining graph
is a spider. We ensure that for any two fixed edges for which the
root is on the path between them, with probability Q(1/log? n)
both edges survive the contraction.

More precisely, we define a heavy-light decomposition as a par-
tition # of the edges of T into monotone paths (i.e., consecutive
vertices along the path have increasing/decreasing distance from
the root) called branches, such that for any vertex v in T, the path
from o to the root r shares edges with O(log n) many branches. The
algorithm samples each branch in # independently with probability
1/log n, and we keep all sampled branches whose path from (any
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Figure 2: Build spider from heavy-light decomposition.

Dashed branches: not sampled. Red branches: sampled and
used in spider. Blue branches: sampled but discarded.

vertex on) the branch to the root does not intersect any edge of
another sampled branch; see Figure 2. The algorithm contracts all
other branches. It repeats this process O(log> n) times, and for each
instance, it calls the extreme sets algorithm on a spider described in
the statement of Lemma 4.3. The algorithm then “uncontracts” all
edges to obtain collections of sets of vertices in G, and merges them
using Lemma 6.1. We claim that this algorithm correctly outputs
all extreme sets promised by Lemma 4.3.

We first claim that the resulting graph is indeed a spider. Indeed,
for every branch B that is kept, consider the path from the branch
to the root; any other branch sharing edges with this path was not
sampled, otherwise branch B would not be kept. It follows that
the branch hangs off the root in the contracted graph. Since all
branches are monotone and hang off the root, the contracted graph
must be a spider.

Finally, we claim that for any two edges of T for which the root
is on the path between them, with probability Q(1/log? n) both
edges survive the contraction, i.e., the branches containing them are
kept. For a single edge e, in order for its respective branch B to be
kept, that branch must be sampled and none of the O(log n) other
branches sharing edges with the path P, from e to the root can be
sampled. This occurs with probability 1/log n-(1—1/log n)© (108" =
Q(1/log n). By assumption, for the two edges e, ez, the paths P,
and P, are edge-disjoint and connected at the root, so the set of
branches sharing edges with P, is disjoint from the set of branches
sharing edges with P, . It follows that the event that e; survives the
contraction is independent from the event for ez, and the overall
probability of success is Q(1/log? n).

Therefore, if we repeat this procedure O(log® n) times, then with
high probability, for any two such edges ey, e, they both survive
in one of the resulting spiders. In particular, if there is an exactly
2-respecting extreme set crossing e; and ez, then that extreme set
survives the contraction as well. Likewise, a 1-respecting extreme
set crossing ej or ey survives as well. It follows that the extreme
sets algorithm on a spider outputs the contracted version of this
extreme set. The set is then uncontracted to the original extreme
set, and then included in the final output after merging. It follows
that with high probability, all targeted extreme sets are output by
the algorithm.
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5 2-RESPECTING EXTREME SETS ON A
SPIDER

In this section, we propose an efficient algorithm that, given a
weighted undirected graph on vertices SU{c} and a tree T spanning
S, finds all extreme sets in S that 2-respect T. Using the reduction in
Section 4, we can assume that T is a spider. Such extreme sets can
be divided into four ‘universes’: one subtree, complement of one
subtree, two subtrees and complement of two subtrees. We design
algorithms to find extreme sets in each universe, and merge all the
families by Lemma 6.1.

We now introduce some notations exclusive to this section. For
atree T, define ul C V(T) as the vertices in the subtree of T rooted
atu,andul C V(T) as the vertices on the path from u to the root.
The complement X = V(T) \ X is defined with respect to vertices
on the tree. We say that two vertices u,v € V(T) are incomparable
if ul nol = 0, ie, neither is an ancestor or descendant of the
other, and we sometimes use the notation u_Lov to indicate that u
and v are incomparable. Likewise, we say that u, v are comparable
if ul N ol # 0, and we sometimes use the notation u || 0. Note that
on a spider, two non-root vertices are incomparable iff they lie on
different branches, and they are comparable iff they lie on the same
branch.

5.1 Universe 1: One Subtree

The one subtree case is simple. Let # be the laminar family of all
(vertex sets of) subtrees of T: F = {zzl 10 € V(T)}, then F trivially
contains all extreme sets in the form of one subtree.

5.2 Universe 2: Complement of One Subtree

Note that all sets in this universe contain the root, so any laminar
family of sets in this universe must be a nested chain, which means
the cut edges of the sets on the tree must lie on the same branch.
We can actually find this main branch.

Lemma 5.1. Let S be the set with minimum cut value among all

subtrees and complement of subtrees. When Sy is a subtree, let S = ull

otherwise let S1 = Ii (They are not equivalent when ¢ ¢ V(T).) If

S =ul is extreme, thenu || u1.

Proor. Assume for contradiction that u L u;. Then u% C Sand

5(u1i) > §(S) because S is extreme. When S; = u% this contradicts

S1’s minimality. When S = ull , by posi-modularity

6(S1)+6(S) =2 6(S\S1)+6(51\9) = §(u1l)+5(ul) > 6(S) +6(51),

contradiction. Therefore u || uy. o

It immediately follows that {u! : u || u1} is a laminar family con-
taining all extreme sets in the form of complement of one subtree.

5.3 Universe 3: Two Subtrees

In this section, we compute a laminar family of subsets such that
each extreme set composed of the union of two subtrees is included
in the family, i.e., they can be written as ul U ol for some u,0 on
different branches of the spider. We introduce two concepts central
to the algorithm: partners and bottlenecks.
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Partners. Informally, we consider a vertex v to be a vertex u’s
partner if ulUolisa potential extreme set. A necessary condition
for this to happen is

S5 > swtuol) = s@utol) > %5(:&) P)

Note that for a fixed u there cannot be two incomparable vertices v
satisfying condition (P). Therefore, the partners of u are pairwise
comparable (if they exist), so on a spider, they must lie on a single
branch of the spider, and we can define the lowest partner p(u) to
be the partner of u of highest depth in the tree (i.e., farthest away
from the root). We also require p(u) L u because we assume v in
on a different branch with u, and we say p(u) does not exist if there
is no vertex v satisfying (P), or equivalently, the lowest partner is
comparable to u.

Fact 5.2. Iful U ol is extreme, then (P) holds, and v € p(u)T and
ue p(v)T.

We now show that we can efficiently compute p(u) for every
vertex u.

Lemma 5.3. We can compute p(u) for everyu € V(T) —r in O(m)
time.

ProoFr. We give an algorithm computing p(u) for a branch B in
time proportional to (up to polylogarithmic factors) |B| plus the
number of edges incident to vertices in B. Repeating this algorithm
for all branches gives an O(m) time algorithm.

Iterate over all u € B from the leaf upwards. This means that
in each iteration, we add a new node into ul. We use a heap to
maintain value § (ul, B’) for every other branch B’ # B. (Recall
that each branch B’ is a root-to-leaf path minus the root.) Also, for
each branch B’ # B, we maintain a sorted list of added edges (u,v)
where u € B,v € B/, sorted by the position of v in branch B’ from
leaf to root.

In each iteration with new node u, for every edge (u,v) incident
on u with v ¢ BU {r}, add its weight to the value at the branch B
containing v, and also insert edge (u,v) to the sorted list of edges
for B’. After the update step, we query the branch B’ # B with
maximum value §(u', B’). If §(ul, B) > %5(ul), then we find the
lowest vertex v € B satisfying S(ut, ol > %5(141), which can be
done by binary searching over v and taking a prefix sum of the
sorted list to determine each 5(ul, vl). We set p(u) to be this vertex
v. |

Recall that by definition, a partner v should be incomparable
to u and satisfy condition (P). If p(u) does not exist, u cannot be
one of the two subtrees that form an extreme set. Therefore, after
computing p(u) for all u, we can contract every u whose lowest
partner does not exist to its parent without losing any extreme set
composed of two subtrees. After this preprocessing step, we can
assume the lowest partner p(u) exists for all u € V(T).

Bottlenecks. We now define the concepts of weak bottleneck and
bottleneck as a sort of upper bound on the cut size of an extreme
set. The weak bottleneck for a vertex u is defined as b, pqr (u) =
min,,c,1_, cS(ul \ wl), and the bottleneck is

b(u) = min b, 1 (0) = min 5(0l \ wl).
veul

veul,weol—o
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Figure 3: Bad case in the proof of Lemma 5.7

The fact below explains the motivation of bottleneck as an upper
bound.

Fact 5.4. Iful U ol is extreme, then 5(14l U U‘L) < min{b(u), b(v)}.

ProoF. By the definition of bottleneck, there exists some w; €

utand wy € wll—wl such that b(u) = 5(wli\w21). Also §(utuol) <

c5(w1i \ wzi) because 5(wll \ wzl) c u! and u! U ! is extreme.
Therefore, 6(S) < b(u). Swapping u and v in the argument gives
§(S) < b(v) as well. O

The next fact establishes monotonicity of bottleneck, which is
useful for a binary search procedure we execute later on.

Fact 5.5. b(u) is monotonic decreasing in a branch from leaf to root.

Fact 5.6. We can compute b(u) for everyu € V(T) —r in O(m) time.

ProoF. Note that b(u) can be computed independently for each
branch, so we focus on a single branch B. We first calculate b, o (%)
for every u. Observe that Sub \ wh) = 28wt \ wi, wl) + s(ud) -
5(wl). We can easily calculate § (w') for all w by traversing the
vertices of the branch from the leaf upwards, and using that for a
parent v of vertex w, we have 5(0l) = 6(wl)+(5(v) —26(o, wl). This
takes time proportional to |B| plus the number of edges incident to
vertices in B. Next, initialize a dynamic array with value —¢ (wh)
on each vertex w. Traverse the branch from the leaf upwards, and
for the current vertex u, we take all edges (u,v) for v € ul, and
for each such edge, we add twice its weight to all vertices on the
array from v inclusive to u exclusive. This way, each vertex w €
u! has current value 2w(ul \ wi, wl) — 5(wl), so we can query
the minimum value of the prefix of the array up to u to obtain
min, ., | 2w(ul\wl, wl) —5(wl). Finally, adding 5(ul) to the query
gives us min | (28(ub \ whwh) + 8(ub) - 8(wh)) = byear (w).
Altogether, the algorithm on branch B takes time proportional to
(up to logarithmic factors) |B| plus the number of edges incident
to vertices in B. Summed over all branches B, this is O(m) time
total. O

5.3.1 Lowest Partner Condition. The follow lemma captures the
key property of our definition of the lowest partner p(u).

Lemma 5.7. Iful U ol is extreme, then for every w € ul whose
lowest partner exists, we have p(w) || p(u). Symmetrically, for all
w € v, we have p(w) || p(v).
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Proo¥. Assume for contradiction that there exists some w € u'
with p(w) L p(u). Since (P) holds for u and v, the lowest partner
p(u) must be lower than v, and in particular, they share the same
branch of the spider, so p(w) L v. By definition of lowest part-
ner, we must have p(w) L w, and since u and w share a branch,
this implies p(w) L u. It follows that p(w)l NS =0.LetS, =
wlu p(w)l. By condition (P), we have §(Sy) < 5(p(w)l). Since S
is extreme, 5(S) < (S \ wl). Adding these two inequalities contra-
dicts 8(S) +5(Sw) = 5(S\ Su) +8(Saw \ S) = 8(S\ wh) +8(p(w)b),
which holds by posi-modularity. O

This lemma allows us to pair up branches as follows. Compute
lowest partners p(u) for all vertices u. Then, for each branch B, take
the lowest vertex u in that branch whose lowest partner p(u) is
defined (if it exists), and let f(B) be the branch containing p(u). We
pair up branches B, B’ satisfying B’ = f(B) and B = f(B’). Some
branches may not be paired; we leave them alone.

Lemma 5.8. Forany extreme setu! UoT, the two branches containing
u and v are paired up.

ProoF. By Fact 5.2 and Lemma 5.7, for an extreme set ulu UT,
both p(u) and p(v) are defined, and for the lowest vertices u’ || u
and v’ || v whose p(u’), p(v”) are defined, we have p(u’) || p(u) || v
and p(v’) || p(v) || u. In other words, the two branches containing
u and v are paired up, as needed. O

Therefore, we can process each pair of branches separately by
contracting all other branches to the root. The remaining task is
to compute, for each pair of branches B, B/, a laminar family that
contains all extreme sets of the form u! U o!. The laminar family
we construct is

FBB) = {ul Uol:ue B, veB, 5(ul U U‘L) < min{b(u),b(u)}}.

Lemma 5.9. The set (g p) is laminar. That is, any two sets ulT U

UIT, uzT U02T € F(B,p) satisfy eitheru; € uzl, v1 € vzl orug € uli, vg €

I
0.

ProoF. Suppose for contradiction that u; € u% —uy and vp €

UiL—vl (without loss of generality). Let S; = ulT UulT and Sy = uZTUUZT.

Then, the sets S; and Sy cross, and by posi-modularity,
8(81) +6(S2) = 6(S1\ S2) +6(S2\ S1)
= (o} \ o) + (ud \ ub)
> b(v1) + b(uz).
But S1, 52 € F(p py implies that §(S1) < b(v1) and 5(Sz) < b(vz),

a contradiction. )

Lemma 5.10. Over all branches B, B, we can compute all pairs
(u,v) : u € B,v € B’ with wuol e Fin O(m) time total.

Proor. For a fixed pair of branches B, B’, we describe an algo-
rithm that finds all u! U 0! € F(B,p) such that b(u) < b(v). The
other case b(u) > b(v) can be handled by swapping B and B’ and
running the same algorithm. Repeating the algorithm for all pairs
of branches establishes the lemma.
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Fix a pair of branches B, B’. We maintain a range minimum query
data structure D on the vertices in branch B’. Initialize the data
structure with value § (Ul) for each vertex v € B’.

Now iterate through the vertex u € B from leaf to root. Let
the current iteration be at vertex u € B. First, for each edge (u,v)
with o € B’, subtract twice its weight from all vertices in ol in the
data structures, which is an interval update. This ensures that each
element v has current value (vl) -26 (ul, Ul) in the data structure.
Next, we seek all sets ul Uol € F for the current u, assuming
b(u) < b(v). By monotonicity of b(v) (Fact 5.5), the vertices v € B’
satisfying b(u) < b(v) form a consecutive interval I in the branch
which can be found by binary search. To find vertices v € I with
ut Uod € Fand b(u) < b(v), we are looking for vertices v € I
satisfying S(ut Uod) < b(u). Note that §(ut U od) = S(ul) +
5(ob) — 28(ut,vl), so this is equivalent to 5(oY) = 28(ut,vl) <
b(u) — 8(ul), so it suffices to find all vertices v whose value in D is
less than b(u) — 5(ul), a value independent of v. This can be done
by repeatedly querying for the vertex of minimum value inside
interval I in O, and if the value is less than b(u) — §(ul), then add
a large value M to the value of v and repeat, ensuring a different
vertex has the minimum value this time; this recovers all such (u, v),
and we can subtract M from these vertices v once we are done.

Altogether, for vertex u € B, the total running time is propor-
tional to (up to polylog(n) factors) the number of edges (u, v) with
v € B’ plus the number of pairs (u,v) found. The former totals at
most the number of edges between branches B and B, and the latter
totals O(|B|+|B’|) since ¥ is a laminar family by Lemma 5.9. Finally,
over all pairs of branches B, B/, the number of edges between pairs
of branches totals at most m, and the sum of O(|B| + |B’|) totals
O(n). It follows that the entire algorithm takes O(m) time. m]

Next, note that the laminar families F(p p/) are disjoint from
each other since they are contained in their respective branches
B U B’ which are pairwise disjoint. It follows that their union
Us,p) F(B,B) is also a laminar family. We have thus computed a

laminar family containing all desired extreme sets in O(m) time.

5.4 Universe 4: Complement of Two Subtrees

This section finds a laminar family containing all extreme sets in
the form of complement of two subtrees. The algorithm has the
same spirit as in two subtrees case.

5.4.1 Find Main Branch. All sets of the form u! U vl contain the
root, so a laminar sub-family must be a nested chain of sets. This
means the cut edges on the tree must be contained in two branches.

We first locate one of the two branches to be some ug . Then the
problem can be reduced to finding extreme sets in the form of

1
0

ul Uol whereueu

Lemma 5.11. Let Sy be the set with minimum cut value among four
types of sets: a subtree, complement of a subtree, two subtrees, and

complement of two subtrees. Describe set S1 by ull, u%, ull U 01l or

Lyt

uy Uoy
Any extreme set of the formul U vl has one endpoint in the branch

of uy in the first two cases, and has one endpoint in the branch of u;
or vy in the last two cases.

respectively in the four cases.
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l
1

in the last two cases, so that

ProoF. Let S = ul Uol be any such extreme set. Let X = uy in

Lol

the first two cases, and X = uy U vy
either $; = X or $; = X.

Assume for contradiction that neither u or v is comparable to u;
in the first two cases, and to u; or v7 in the last two cases, which
means X € S and ull U UiL C X. Since S is an extreme set, this
means that §(X) > §(S). When S; = X, we obtain §(S1) > 6(S5),
which contradicts the minimality of §(S;). When S; = X, by posi-
modularity

5(S)+8(S1) = 8(S\S1)+8(S1\S) = S(utUoh)+8(X) > 5(S1)+5(S),

contradiction. Therefore u or v is comparable to u; in the first two
cases, and to u; or v7 in the last two cases. O

In the first two cases, we fix the main branch containing uy,

1

which is u; where uy is the leaf of that branch. In the last two cases,
we try fixing main branches u; and v1, compute the two laminar
families, and merge them using Lemma 6.1. From now on, assume

that we have correctly identified the branch ug .

If the tree T spans all but one vertex c, then we attach ¢ below
ug in the tree. This way, the new tree T’ now spans all vertices, and
all extreme sets we wish to find (in particular, they do not include

¢) are still of the form u! U o!.

5.4.2  Partner Condition. Like in two subtrees case, the idea is to
restrict the potential partners onto a path, but with a different
partner condition. This time, we define the lowest partner

= i luol ol
p(u) = argmin §(ut Uos, 0%) P,

Since 8(u!l U o!, vl) = %(5(uile)+5(vl)—5(ul)), lowest partners
can be calculated in the same way as in Lemma 5.3 from the two
subtrees case.

Lemma 5.12. IfS = ul Uo! is an extreme set, then v € p(u)T.

ProOF. Assume for contradiction that v ¢ p(u)T, so that either
vlp(u)orove p(u)l — p(u). There are two cases:

Case 1: v L p(u). p(u) is also incomparable to u by definition,
so p(u) C S. Because S is extreme, 5(p(u)l) > §(S), which implies

S(pw, s —pw)h) > 8(S - pw)l,ut Uob) = 8(S - p(u)t,oh).

Adding 8(v', p(u)}) to both sides gives 8(ul U p(u)!, p(u)d) >
5(S,04) = 8(ul Uvl,vd), which contradicts minimality in (P,).

Case 2: v € p(u)l —pu). Let X = ulUp(u)l ¢ Sand Y =
S\ X = p(u)l \ ol Because S is extreme,

8§(X) > 8(S) = 8(X,Y) > (Y, ut uod) > 5(Y,0h).

Adding 5(X,v}) to both sides gives 5(X,p(u)l) > 8(S,0}), or in
other words, 8(ul U p(u)l,p(u)l) > §(ul Uol,vl), which contra-
dicts minimality in (P,). O
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S

Figure 4: Proof of Lemma 5.13. Left: the second case where u
is above u;. Right: the third case where u is below u;.

5.4.3 Find the Second Branch. We would now like to identify a
second branch to locate all extreme sets. Our key observation is

that if S = ul U ol is extreme, then for any w that is incomparable
to both u and v, 5(wl) > §(S) because w! C S. We call this the
subtree cut condition:

Vw, wlu, wlo: S(wh) > §(S) (S)

Therefore, §(S) is less than the minimum subtree cut in all branches
other than u’s and v’s (or equivalently, p(u)’s by Lemma 5.12).

Next, define the optimal partner opt(u) = arg ming e, )1 Sutu
ol). We only calculate the optimal partners for u € ug , which can

be done in O(m) time. For each branch, calculate the minimum
cut value among all subtrees on the branch. List the values as a
sequence to perform range minimum queries.

1

o Such that

Lemma 5.13. Letu; be the highest node on main branchu

ull U opt(uy)! satisfies subtree cut condition (S). Then, any extreme

setS=ul Uol withu e ug hasv || opt(uq).

1

Proor. For any extreme set S = ul U ol with u € u,, we define
u1 as in the lemma. Assume for contradiction that v L opt(u;). We

l

case on the location of u: either u = u1, oru € ulT—ul, oru € uy —uj.

1

Note that u || u; because both are in u.
First, suppose that u = u;. Then opt(u1) = opt(u), which is in
p(u)T by definition of opt(u). Vertex v, as a partner of u, is also in

p(u)T by Lemma 5.12. This contradicts v L opt(u1).

1
1

that ul U opt(u)! does not satisfy subtree cut condition (S), since

Second, suppose that u € u; — u;. By definition of u;, we have

otherwise u would be a better choice than u;. Since u! U opt(u)!
does not satisfy (S), there exists some w incomparable to both u and
p(u) such that s(wh) < s@lu opt(u)l). By definition of opt(u),
we have §(ut U opt(u)l) < (S). These two inequalities implies
5(wl) < 8(S). However, since v || p(u) by Lemma 5.12 and w is
incomparable to both u and p(u), we have w!l € S, and since S is
extreme, this implies that § (wl) > §(S), a contradiction.

ll—ul. Let S; = u% U opt(ul)l. The sets S1

and S cross because u || u; and v L opt(uy). Since S is extreme, we
have 6(S \ S1) > §(S), so by posi-modularity, we have §(S1 \ S) <
5(S1). Notice that 1 \ S = o'. It follows that 5(o7T) < 8(S;), which
contradicts Sq’s subtree cut condition (S). O

The final case isu € u
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Figure 5: Reduction from complement case to subtrees case
after fixing 2 branches

5.4.4 Reducing to the Two Subtrees Case. Let vy be the leaf of the
second branch guaranteed by Lemma 5.13. To find all extreme sets

in the form of complement of two subtrees, ub Uold, we only need to
find the extreme sets with two endpoints u and v on the branches of

1

uo and v9. Now we can contract edges except those on u, and ug , S0
that the tree only consists of two branches. Split the two branches
by deleting the tree edge incident to the root on the branch of vy.
Then, contract uo and vy into a single vertex, and declare it as the
new root; see Figure 5. It is easy to see that any extreme set that

T T

was previously of the form u! Uo7 for u € uy, and v € v, is now
a union of two subtrees, or just one subtree if v is a child of root.
Therefore, we have reduced to the two subtrees case, as desired.

6 MERGING TWO LAMINAR TREES

In this section, we prove the lemma that merges two laminar fami-
lies and preserves all extreme sets in both families.

Lemma 6.1. Given two laminar families X and Y on the vertex
sets, Algorithm 2 constructs a merged laminar family R containing
all extreme sets in X U Y (and possibly other sets in X U Y ) in O(m)
time.

We represent each laminar family by a tree to ensure its repre-
sentation size is linear and not quadratic. In the tree representation,
each node corresponds to a set in the family, except the root which
represents all vertices V. Each node x has a (possibly empty) set of
vertices in V associated with it, and the corresponding set in the
laminar family is all vertices in V associated with any node in the
subtree rooted at x. Each vertex in V is associated with exactly one
node. Note that we do not require that only leaves have a nonempty
set of associated vertices. This is because even if we start with a
tree with only nonempty sets at leaves, the algorithm’s operations
on the tree may produce internal vertices with nonempty sets.

Our algorithm requires the definition of a bough of a tree, as
follows.

Definition 6.2. A bough is a tree path that starts at a leaf, extends
toward the root and stops before reaching the first node with more
than one children.

Our algorithm decomposes the laminar trees into disjoint boughs.
Initially all vertices are in the leaves. But as we proceed, the boughs
will be contracted to their parents, so there may be vertices in
internal nodes.
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6.1 Removing Inconsistent Sets
We start by analyzing Algorithm 2.

Definition 6.3. We define aset U C V to be consistent with W C V
if 5(U \ W) > §(U) or W is disjoint from U. We define U to be
consistent with a laminar family  if U is consistent with all W € Y.

Fact 6.4. An extreme set is consistent with any vertex set.

Algorithm 2: Verify(X, V)

Input :Laminar trees X and Y on vertex set V.

Output:Laminar tree of X* =X\ {U € X : IW €

Y, 5(U\W) <6(U)andUNW # 0}.

1 Let X* = X.
2 while X is nonempty do
3 foreach bough B of X do
4 Using Lemma 6.5, find all sets U € B such that
IWel, 5(U\W)<S5U)andUNW # 0. Add
all sets in B to X* except for the ones we found.
5 Remove the bough from X, and contract the vertices
in the bough to the bough’s parent node.

6 end

7 end
s return X*.

Lemma 6.5. Consider a bough of X consisting of nested sets Uy C
Uy C --- C Ug. There is an algorithm that outputs all sets U; for
which there exists W € Y withS(U \ W) < 6(U) andUNW # 0.
The algorithm takes O(m) preprocessing time and then handles each
bough in time proportional to (up to polylogarithmic factor) the size
of the induced subgraph G[Uy].

ProoF. Initialize a dynamic tree on the tree T representing lami-
nar family Y/ with initial value 0 on each node, along with a Boolean
flag that is initially false. Our goal is to maintain, for each W € Y,
the value §(U \ W) — §(U). We are interested in whether this value
is at most 0 for all W with U N W # 0. Throughout, we abuse
notation by referring to each node and its set W interchangeably.

Iterate through Uy, Uy, . . ., Uy in that order. For each U;, we loop
through the vertices u € U; \ Uj—1 one by one in arbitrary order
u1, U, ..., up. For convenience, define Uj—1,j = Uj—1 U {uy, ..., u;}.
For each vertex uj, do the following.

(1) For each incident edge (uj,v) where v € U;—1,j-1, add twice
the weight to each node on the path from v to the lowest
common ancestor of u; and v (excluding the LCA).

(2) Add 26(uj, Uj—1,j—1) — 6(uj) to each node on the path from
uj to root. Each such node has its Boolean flag set to true.

After these operations, the algorithm queries the minimum value
over all nodes whose flag is set to true. If this minimum value is at
most 0, then we add Uj to the output set.

For convenience, define Uy = (. We prove by induction oni > 0
that after processing U;, each node in the dynamic tree carries value
8(U; \ W) — 6(U;). This is vacuously true for i = 0 since Uy = 0
and each node carries value 0. To prove each inductive step, we
perform a separate induction on vertices uy, ..., uj—1 € U; \ Uj-1.
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We claim that after inserting u ;, each node in the dynamic tree with
corresponding set W C V carries value 6(Uj—1,j \ W) — 6(Ui—1,j)
where Uj-1,j = Ui-1 U {u1,...,uj} = Uj—1,j—1 U {u;}. This is true
for j = 0 by induction on i — 1. For each set W, consider the change
of its value after adding u; into U;_1 -1, that is

Aj = (6(Ui—1,j \ W) = 6(Ui-1,j)) = (6(Uj-1,j—1 \ W) = 8(Uj-1,j-1))-
There are two cases. If uj ¢ w,
Aj =26(uj,Ui—1,j-1 "W).

If uj € w,
Aj = 25(uj, Ui—l,j—l) — 5(uj).

We show that this change is correctly accounted for in the dy-
namic tree updates. For each set W not containing u;, each edge
(uj,v) with o € Uj—1j—1 N W has its weight added twice to the
value of W, since W as an ancestor of v but not an ancestor of u; on
T. Therefore the value of W is increased by 25(uj, Uj—1,j-1 N W),
as expected. Note that in step (1), for each edge (u;,v), we only add
its weight to sets not containing u;. For each set W containing u;,
it lies on the path from u; to the root, and its value is increased
by 28(uj, Uj-1,j—1) — 8(u;j) in step (2), as expected. These changes
match the required net change A;.

It remains to show that a set U; should be output if and only if
there is a node in the tree with value at most 0 and Boolean flag
set to true. We have already shown that any node W of value at
most 0 satisfies 5(U \ W) — §(U) < 0, so it remains to show that a
node W is flagged true if and only if U N W # 0. Observe that for
each vertex u; processed, we flag the nodes from u; to the root as
true; their sets are precisely those that contain u;. Since the sets U;
are nested, once we finished processing U, the nodes u; we have
processed on iterations up to i are precisely U;. In other words, a
set W is flagged true if and only if U N W # 0, as desired.

Finally, we discuss running time. All dynamic tree operations
take O(log n) time. The total number of edges (u;,v) forv € Uj—1 j-1,
summed over all i and j, is at most the number of edges in the in-

duced subgraph G[Ug]. O
Lemma 6.6. Algorithm 2 takes O(m) time.

Proor. For each bough with root Uy, we spend time propor-
tional to the number of edges in induced graph G[Uy], and then
we contract all vertices in Uy, into a single vertex. The contraction
removes all edges in the induced graph G[Uy], so the decrease in
number of edges pays for the processing time of the bough. Since
there are m initial edges, the total running time becomes O(m). O

Corollary 6.7. Given two laminar families X and Y, let X* =
Verify(X,Y) and Y* = Verify(Y, X). Then, X* U Y™ is laminar.

ProoF. Assume for contradiction that some U € X* C X crosses
some W € Y* C Y. ThenU NW # 0, and by posi-modularity,
either S(U\W) < §(U) or §(W\U) < §(W). By Lemma 6.5, either
U or W will be removed in Algorithm 2, which contradicts the
definitions of X* and Y*. O

Given laminar families X, Y and their tree structures, we can
therefore run Algorithm 2 to obtain X*, Y* such that X* U Y* is
a laminar family containing all extreme sets in X U Y. We can
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easily recover the tree structures of X* and Y* as well. It remains
to recover the tree structure of X* U V™.

Lemma 6.8. Assume that X*, Y*, and X* U Y* are all laminar
families. There is an O(nlogn) algorithm that computes the tree
structure of X* U Y™,

Proor. Let Ty« and Ty~ be the tree structures for X* and Y*,
respectively. We first find, for each set Z € X* U Y*, (a pointer to)
the parent node of Z in the tree structure T of X* U Y*. Pick an
arbitrary vertex z € Z. Since X* U Y* is laminar, the parent of Z is
exactly the set Z’ € X* U Y* satisfying z € Z’ and |Z’| > |Z| and
|Z’| is as small as possible given these two constraints. The set Z’
can be found by computing a binary search on the path from z to
the root on the tree structures for X* and Y* and taking the best
Z' found. If there is a tie, as in both X* and Y* include the parent
Z’, then we take the pointer to the one in X*, and we can ignore
the duplicate one in Y™ in the next step of the algorithm.

By computing all the parents (and ignoring the duplicate nodes),
we can build the tree T for X* U Y* where each node corresponds
to the same set as its pointer in the tree structure of X* or Y*. It
remains to compute the set of vertices associated with each node.
For each node Z € X* or Z € Y* with children Z1, ..., Zj in Tx~
or Ty- respectively, we check whether each vertex in Z \ |; Z;
is in any child of Z in T. This can be done by first marking the
pointer of each child of Z in T (which is a node in Tx= or Ty-), and
then testing, for each vertex v € Z \ J; Z; and for both Ty« and
Ty-, whether the node associated with v in either T« or Ty is a
descendant of a marked node. This can be done in O(log n) time per
vertex v using tree data structures. Any vertex v € Z that is not a
descendant of any marked node is associated with Z in the new tree
T. As for running time, marking the pointer of each child of Z in
T takes O(log n) times the number of children, which is O(nlogn)
time summed over all Z. Also, we can iterate through v € Z\ U; Z;
since these are precisely the nodes associated with Z in either Ty
or Ty+, and the descendant queries take O(|Z \ U; Z;|log n) time
overall, which again sums to O(nlogn) over all Z. O
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