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ABSTRACT
We give an 𝑂̃ (𝑚)-time algorithm for the edge connectivity augmen-

tation problem and the closely related edge splitting-off problem.

This is optimal up to lower order terms and closes the long line of

work on these problems.
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1 INTRODUCTION
In the edge connectivity augmentation problem, we are given an

undirected graph 𝐺 = (𝑉 , 𝐸) with edge weights 𝑤 , and a target

connectivity 𝜏 > 0. The edge weights 𝑤 and connectivity target

𝜏 are assumed to be polynomially bounded integers. The goal is

to find a minimum weight set 𝐹 of edges on 𝑉 such that adding

these edges to𝐺 makes the graph 𝜏-connected. (In other words, the

value of the minimum cut of the graph𝐺 ′ = (𝑉 , 𝐸 ∪ 𝐹 ) should be at
least 𝜏 .) The edge connectivity augmentation problem is known to

be tractable in poly(𝑚,𝑛) time, where𝑚 and 𝑛 denote the number

of edges and vertices respectively in 𝐺 . This was first shown by

Watanabe and Nakamura [25] for unweighted graphs, and the first

strongly polynomial algorithm was obtained by Frank [10]. Since

then, several algorithms [6, 11, 12, 22, 23] progressively improved

the running time and till recently, the best known result was an

𝑂̃ (𝑛2)-time
1
algorithm due to Benczúr and Karger [4]. This was

improved to the current best runtime of 𝑂̃ (𝑚+𝑛3/2) [7] by reducing

1𝑂̃ ( ·) ignores (poly)-logarithmic factors in the running time.
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the edge connectivity augmentation problem to polylog(𝑛) max-

flow calls. The runtime bound follows from the current best max-

flow algorithm on undirected graphs [24].
2
This represents a natural

bottleneck for the problem since further improvement would need

techniques that do not rely on max-flows.

We overcome this bottleneck in this paper, and obtain a nearly-

linear 𝑂̃ (𝑚)-time algorithm for the edge connectivity augmentation

problem. This is optimal up to poly-logarithmic terms, and brings

to an end the long line of work on this problem (barring further

improvements in the logarithmic terms). Moreover, it demonstrates

that this problem is easier than max-flow, since obtaining an 𝑂̃ (𝑚)-
time max-flow algorithm remains a major open problem. We state

our main result below:

Theorem 1.1. There is an 𝑂̃ (𝑚)-time randomized Monte Carlo
algorithm for the edge connectivity augmentation problem.

The edge connectivity augmentation problem is closely related

to edge splitting off, a widely used tool in the graph connectivity

literature (e.g., [11, 22]). A pair of (weighted) edges (𝑢, 𝑠) and (𝑠, 𝑣)
both incident on a common vertex 𝑠 is said to be split off by weight

𝑤 if we reduce the weight of both these edges by 𝑤 and increase

the weight of their shortcut edge (𝑢, 𝑣) by𝑤 . Such a splitting off is

valid if it does not change the (Steiner) connectivity
3
of the vertices

𝑉 \ {𝑠}. If all edges incident on 𝑠 are eliminated by a sequence of

splitting off operations, we say that the vertex 𝑠 is split off. We call

the problem of finding a set of shortcut edges to split off a given

vertex 𝑠 the edge splitting off problem.

Lovász [20] initiated the study of edge splitting off by showing

that in an undirected graph, any vertex 𝑠 with even degree (i.e.

the total weight of incident edges is even) can be split off while

maintaining the (Steiner) connectivity of the remaining vertices.

(Later, more powerful splitting off theorems [21] were obtained that

preserve stronger properties and/or apply to directed graphs, but

these come at the cost of slower algorithms. We do not consider

these extensions in this paper.) The splitting off operation has

emerged as an important inductive tool in the graph connectivity

literature, leading to many algorithms with progressively faster

running times being proposed for the edge splitting off problem [4,

6, 10, 11, 22]. Currently, the best running time is 𝑂̃ (𝑚+𝑛3/2), which
was obtained in the same paper as the current best edge connectivity

augmentation result [7]. We improve this bound as well:

Theorem 1.2. There is a randomized, Monte Carlo algorithm for
the edge splitting off problem that runs in 𝑂̃ (𝑚) time.

2
We note that for sparse graphs, there is a slightly faster max-flow algorithm that runs

in𝑂 (𝑚3/2−𝛿 ) time [14], where 𝛿 > 0 is a small constant. If this max-flow algorithm is

used in [7], a running time of𝑂 (𝑚3/2−𝛿 ) is obtained for the augmentation problem.

3
The Steiner connectivity of a set of vertices is the minimum value of any cut that has

at least one of these vertices on each side of the cut.
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A key tool in augmentation/splitting off algorithms (e.g., in [3,

4, 7, 12, 23, 25]) is that of extreme sets. A non-empty set of vertices

𝑋 ⊊ 𝑉 is called an extreme set in graph 𝐺 = (𝑉 , 𝐸) if for every
non-empty proper subset 𝑌 ⊊ 𝑋 , we have 𝛿𝐺 (𝑌 ) > 𝛿𝐺 (𝑋 ), where
𝛿𝐺 (𝑋 ) (resp., 𝛿𝐺 (𝑌 )) is the total weight of edges with exactly one

endpoint in 𝑋 (resp., 𝑌 ) in𝐺 . (If the graph is unambiguous, we drop

the subscript 𝐺 and write 𝛿 (·).) In edge connectivity augmentation

problem, every vertices set𝑈 with 𝛿 (𝑈 ) < 𝜏 has a demand that the

solution must add edges with total weight at least 𝜏 −𝛿𝐺 (𝑈 ) across
𝑈 . It turns out that satisfying the demands of all extreme sets implies

satisfying the demands of all vertices sets. The extreme sets form

a laminar family, thereby allowing an 𝑂 (𝑛)-sized representation

in the form of an extreme sets tree. The main bottleneck of the

previous edge augmentation/splitting off algorithms [4, 7] is in the

construction of the extreme sets tree. Indeed, [7] show that once

the extreme sets tree is constructed, the augmentation/splitting off

problems can be solved in 𝑂̃ (𝑚) time:

Theorem 1.3 (Theorem 3.1 in [7]). Given an algorithm to com-
pute the extreme sets tree, the edge connectivity augmentation and
edge splitting problems can be solved in 𝑂̃ (𝑚) time.

(Benczúr and Karger [4] also hint that computing extreme sets is

the main bottleneck of their algorithm, although their algorithm

does use 𝑂̃ (𝑛2) time in a few other places.)

Theorem 1.3 reduces Theorem 1.1 and Theorem 1.2 to obtaining

an extreme sets tree in 𝑂̃ (𝑚) time. Benczúr and Karger [4] used

the recursive contraction framework of Karger and Stein [17] to

construct the extreme sets tree, which takes 𝑂̃ (𝑛2) time. This was

improved by Cen, Li, and Panigrahi [7] who used the isolating cuts

framework [19]
4
which uses polylog(𝑛) max-flow calls. But the

isoating cuts framework is unusable if we want to improve beyond

max-flow runtime, since a special case of an isolating cut is an

𝑠 − 𝑡 min-cut. In this paper, we overcome this barrier and give an

𝑂̃ (𝑚)-time algorithm for finding the extreme sets tree of a graph:

Theorem 1.4. There is a randomized, Monte Carlo algorithm for
finding the extreme sets tree of an undirected graph that runs in 𝑂̃ (𝑚)
time.

Given Theorem 1.3, the rest of this paper focuses on proving

Theorem 1.4.

Our Techniques. Our 𝑂̃ (𝑚)-time extreme sets algorithm can be

viewed as a series of reductions to finding extreme sets in progres-

sively simpler settings. Recall that the original problem is to find

extreme sets in an arbitrary undirected graph. Our first step is an

iterative refinement of this problem, namely instead of finding all

extreme sets, we refine the problem to finding extreme sets that

are also nearly minimum cuts (we call these near-mincut extreme
sets). More precisely, suppose we have identified all extreme sets

whose cut value is at most some threshold 𝛾 . These extreme sets

form a laminar family, and induce an equivalence partition on the

vertices where any two vertices that are not separated by any of

these extreme sets are in the same set of the partition. By laminarity

and the extreme sets property, we can claim that all the extreme

sets whose cut value exceeds 𝛾 must be strict subsets of the sets in

4
A similar framework was shown independently by Abboud, Krauthgamer, and Tra-

belsi [1].

this equivalance partition. This justifies a natural recursive strategy:

for each set in the equivalence partition, we contract all the vertices

outside this set into a single vertex and find extreme sets in this

contracted graph.

So far, we have reduced the problem to finding extreme sets that

are subsets of the set of (uncontracted) vertices 𝑆 , where in addition,

there is a (contracted) vertex 𝑐 representing all the other vertices

𝑉 \ 𝑆 of the graph. Clearly, the Steiner connectivity of 𝑆 , denoted 𝜆,

must exceed 𝛾 (else, any minimum Steiner cut that is also minimal

in terms of vertices would also be an extreme set of cut value 𝛾 ,

which contradicts the inductive assumption that we have already

identified all extreme sets of cut value at most 𝛾 ). We now define

our iterative goal: find all extreme sets that are subsets of 𝑆 and

have cut value in the range [𝜆, (1 + 𝜖)𝜆].
To solve this problem, our next pair of tools is sparsification

and tree packing. Suppose, for now, that the minimum cut in the

graph containing 𝑆 and the contracted vertex 𝑐 is of value 𝜆 (this

may not be true in general since the degree cut for vertex 𝑐 can be

smaller than 𝜆, but we will handle this complication later). Then, we

can use a uniform sparsification technique of Karger [15] to sample

edges and form a graph where the value of all cuts converge to

their expected value whp5 and where the expected value of the

minimum cut is 𝑂 (log𝑛). On this graph, we can pack 𝑂 (log𝑛)
disjoint spanning trees rooted at a fixed vertex 𝑟 in 𝑂̃ (𝑚) time such

that the following property holds whp: for every cut of value at

most (1 + 𝜖)𝜆 in the original graph (this includes all the extreme

sets we are interested in finding), there is a spanning tree that

contains at most two edges from the cut (we say the cut 2-respects
the tree). This essentially reduces the problem to finding extreme

sets that 2-respect a given spanning tree. There are two caveats.

First, we need an algorithm that can merge the extreme sets found

for the different trees into a single extreme sets tree. Second, the

contracted vertex 𝑐 may have degree smaller than the number of

trees, which means that trees wouldn’t be spanning and two tree

edges do not uniquely define a vertex set. We defer the technical

details to address these issues to later sections.

Now, we have reduced the extreme sets problem to finding all

extreme sets that 2-respect a given tree. If we were interested in

finding a minimum cut (see [16]), then we would use a dynamic

program at this stage. But, extreme sets are more complex. First,

the extreme set condition is more difficult to check than tracking

the minimum cut. More importantly, extreme sets are asymmetric,

i.e., even if𝑋 is an extreme set,𝑉 \𝑋 may or may not be an extreme

set. This seems to defeat the purpose of working on a tree. For

instance, when the two tree edges are comparable, i.e., form an

ancestor-descendant pair, the extreme set is not contiguous in the

tree. It is unclear at all how we can check the extreme sets property

for such a non-contiguous set. To overcome these difficulties, we

undertake two further simplifications of the problem. The first

is a recursive rotation of the tree based on the idea of a centroid

decomposition. We show that this ensures that all 2-respecting

cuts will appear as two incomparable edges in some level of the

recursion, thereby eliminating the need for handling comparable

tree edges. Our next technique reduces the problem from trees with

arbitrary structure to spiders. (A spider is a tree where only the

5
with high probability, i.e., with probability 1 − 𝑜 (1)
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root can have degree greater than 2.) The basic idea is to perform

a heavy-light decomposition of the spanning tree, and then sample

each path of this decomposition independently for contraction

in a manner that the resulting tree is a spider. If this process is

repeated𝑂 (log𝑛) times, then for every 2-respecting cut, there whp

is at least one spider that preserves both edges of the cut in the

tree. (This idea was previously explored by Li [18], although in a

somewhat different context.) As an aside, we note that both these

simplifications are also valid for the minimum cut problem, and can

be used to simplify Karger’s celebrated near-linear time minimum

cut algorithm [16].

We have now reduced the problem to finding 2-respecting ex-

treme sets on spiders, with the additional guarantee that if the cut

contains exactly two edges in the tree, then those two edges will be

incomparable. At this point, we first find all 1-respecting extreme

sets using a simple dynamic program. Conceptually, this is simple

because we can run the algorithm “in parallel” on each branch of the

spider. However, the 2-respecting case still needs additional work.

At this point, we use our final simplification, where we reduce the

2-respecting extreme sets problems from spiders to paths (equiva-

lently, spiders with only two branches). The basic idea behind this

transformation is that we use the laminar structure of extreme sets

to claim that all 2-respecting extreme sets can be partitioned into

equivalence classes, where each set of the partition corresponds

to two distinct branches of the spider. This allows us to run the

2-respecting algorithm “in parallel” on these spiders containing

only two branches each, i.e., on paths. Finally, for each path, we

can solve the 2-respecting extreme sets problem using a simple

dynamic program.

Roadmap. We introduce some preliminaries in Section 2. Sec-

tion 3 describes the iterative framework that we use in our extreme

sets algorithm, and reduces the problem to finding 2-respecting

extreme sets for a spanning tree of the graph. In Section 4, we

use the recursive rotation based on centroid partitioning and the

random sampling over the heavy-light decomposition to reduce the

problem to finding 2-respecting extreme sets in a spider. We solve

this latter problem in Section 5, using the reduction to a path and

the employing a dynamic program. Finally, in Section 6, we give

the algorithm to merge the extreme sets revealed by the different

steps into a single extreme sets tree.

2 PRELIMINARIES
Use 𝛿 (𝑆) to denote the value of a cut 𝑆 ⊊ 𝑉 , that is the sum

of weights of edges with exactly one endpoint in 𝑆 . For disjoint

𝑆,𝑇 ⊊ 𝑉 , denote 𝛿 (𝑆,𝑇 ) to be the sum of weights of edges with

one endpoint in 𝑆 and the other endpoint in 𝑇 . For vertices 𝑠 ≠ 𝑡 ,

denote 𝜆(𝑠, 𝑡) to be the value of minimum 𝑠-𝑡 cut.

Our goal is to find all the extreme sets of an undirected graph

𝐺 = (𝑉 , 𝐸). We can define an extreme set as follows.

Definition 2.1 (Extreme set). A nonempty set 𝑋 ⊊ 𝑉 is extreme if
for every non-empty proper subset 𝑈 of 𝑋 , we have 𝛿 (𝑈 ) > 𝛿 (𝑋 ).
By convention, all singleton sets are extreme sets.

One noteworthy aspect of this definition is that although the

graph 𝐺 is undirected, the notion of extreme sets is asymmetric. In
other words, if𝑋 is an extreme set, it is not necessarily the case that

the complementary set 𝑉 \ 𝑋 is also an extreme set. As described

in the introduction, this asymmetry is one of the main contributors

to the difficulty of the problem.

We need the following properties of cut function in undirected

graphs.

Proposition 2.2 (submodularity). ∀𝑋,𝑌 ⊆ 𝑉 , 𝛿 (𝑋∩𝑌 )+𝛿 (𝑋∪𝑌 ) ≤
𝛿 (𝑋 ) + 𝛿 (𝑌 ).

Proposition 2.3 (posi-modularity). ∀𝑋,𝑌 ⊆ 𝑉 , 𝛿 (𝑋 \ 𝑌 ) + 𝛿 (𝑌 \
𝑋 ) ≤ 𝛿 (𝑋 ) + 𝛿 (𝑌 ).

A family of sets is said to be laminar if any two of them are

either disjoint or one is contained in the other. It is well known that

extreme sets form a laminar family.

Lemma 2.4. Extreme sets form a laminar family.

Proof. Assume for contradiction that there are two extreme

sets 𝑋 and 𝑌 violate laminarity, i.e., 𝑋 \ 𝑌,𝑌 \ 𝑋, and 𝑋 ∩ 𝑌 are

all non-empty sets. Then, since both 𝑋 and 𝑌 are extreme sets, we

have 𝛿 (𝑋 \𝑌 ) > 𝛿 (𝑋 ) and 𝛿 (𝑌 \𝑋 ) > 𝛿 (𝑌 ). Then 𝛿 (𝑋 \𝑌 ) + 𝛿 (𝑌 \
𝑋 ) > 𝛿 (𝑋 ) + 𝛿 (𝑌 ), which contradicts posi-modularity of the cut

function. □

Laminarity induces a natural tree structure on extreme sets

where all the vertices of the graph (as trivial extreme sets) are

leaves of the tree and every subtree (or equivalently, the internal

tree node where the subtree is rooted) represents an extreme set

containing all the vertices that are leaves in the subtree. We call this

the extreme sets tree. Our goal in this paper is to find an extreme

sets tree in 𝑂̃ (𝑚) time, thereby establishing Theorem 1.4.

We also use the notion of Steiner connectivity of a set of vertices,

which is the minimum value of a cut that has at least one terminal

on each side of the cut. If we remove this additional condition

(equivalently, set all vertices as terminals), then we get the edge
connectivity of the graph.

Definition 2.5 (Steiner connectivity). The Steiner connectivity of

a set of vertices 𝑋 ⊆ 𝑉 (called terminals) is the minimum value of a

cut 𝑆 such that 𝑋 ∩ 𝑆 and 𝑋 \ 𝑆 are both nonempty. If 𝑋 = 𝑉 , then

we call this the edge connectivity of the graph.

3 REDUCTION TO 2-RESPECTING EXTREME
SETS

In this section, we reduce the problem of finding all extreme sets

to that of finding extreme sets that satisfy an additional property

called 2-respecting that we will define later. This reduction is in

two parts. In the first part, we use a framework that iteratively calls

an algorithm to find all extreme sets whose cut values are in a given

range. In the second part, we reduce from the problem of finding

all extreme sets in a given range of cut values to all extreme sets

that satisfy the 2-respecting property.

3.1 Iterative Framework for Extreme Sets
Algorithm

We use an iterative framework to find all extreme sets of the graph.

In fact, consider the following reformulation of this problem. Given

a set of vertices 𝑆 ⊊ 𝑉 , we need to find all extreme sets that are
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subsets of 𝑆 (including 𝑆 itself if it is an extreme set). We note that

this problem is actually equivalent to the problem of finding all

extreme sets in the graph. In one direction, an algorithm that finds

all extreme sets also identifies those that are subsets of 𝑆 . But, also

conversely, we can add a dummy isolated vertex to the graph, and

then set 𝑆 = 𝑉 to find all extreme sets of the graph.

We further refine the task of finding extreme sets contained in 𝑆

into finding extreme sets whose cut value is in the range [𝜆, (1+𝜖)𝜆]
for a fixed constant 𝜖 > 0. Here, 𝜆 is the Steiner connectivity of 𝑆

after we contract 𝑉 \ 𝑆 into a single vertex 𝑐 . We call these near-
mincut extreme sets.

Definition 3.1 (Near-mincut Extreme Set). Suppose we are given

an undirected graph and a set of vertices 𝑆 . Let 𝜆 denote the Steiner

connectivity of 𝑆 when 𝑉 \ 𝑆 is contracted to a single vertex 𝑐 .

Given a fixed constant 𝜖 > 0 (whose precise value will be given

in Lemma 3.8), a near-mincut extreme set 𝑆 ′ is an extreme set

that is a subset of 𝑆 (i.e., 𝑆 ′ ⊊ 𝑆) and whose cut value satisfies

𝛿 (𝑆 ′) ∈ [𝜆, (1 + 𝜖)𝜆).

In the rest of this section, we describe an algorithm to find all

extreme sets contained in 𝑆 by iteratively using an algorithm that

finds near-mincut extreme sets. To describe our algorithm, it is

convenient to partition cuts based on a threshold 𝑑 into 𝑑-strong
and 𝑑-weak cuts.

Definition 3.2 (𝑑-Strong and 𝑑-Weak Cuts). A nonempty set of

vertices 𝑋 ⊊ 𝑉 is said to be 𝑑-strong if the cut value 𝛿 (𝑋 ) ≥ 𝑑 , else

it is said to be 𝑑-weak.

Note that the problem of finding all near-mincut extreme sets is

equivalent to that of finding all (1 + 𝜖)𝜆-weak extreme sets after

contracting 𝑉 \ 𝑆 into a single vertex 𝑐 . In Algorithm 1, we use a

subroutine that returns all (1 + 𝜖)𝜆-weak extreme sets to obtain all

extreme sets contained in 𝑆 . Since the near-mincut extreme sets

form a laminar family (by Lemma 2.4), these (1+𝜖)𝜆-weak extreme

sets induce a canonical partition of the vertices of 𝑆 defined below.

Definition 3.3 (Canonical Partition). Define an equivalence rela-

tion on the vertices of 𝑆 using the following rule: two vertices are

related if and only if they are not separated by any of the (1 + 𝜖)𝜆-
weak extreme sets contained in 𝑆 . The equivalence classes corre-

sponding to this equivalence relation form the canonical partition

of 𝑆 .

The following lemma asserts that all (1 + 𝜖)𝜆-strong extreme

sets contained in 𝑆 must respect this canonical partition.

Lemma 3.4. Any (1 + 𝜖)𝜆-strong extreme sets contained in 𝑆 must
be contained in some equivalence class of the canonical partition.

Proof. Suppose not, and let 𝑢, 𝑣 ∈ 𝑆 be two vertices in different

equivalence classes of the canonical partition that are both in some

(1 + 𝜖)𝜆-strong extreme set 𝑆 ′. By definition of the equivalence

relation, there must be some (1 + 𝜖)𝜆-weak extreme set 𝑋 ⊊ 𝑆 such

that 𝑢 ∈ 𝑋, 𝑣 ∉ 𝑋 (or vice-versa). By Lemma 2.4, it must be that

𝑋 ⊊ 𝑆 ′ since 𝑢 ∈ 𝑋 ∩ 𝑆 ′. But, this violates the fact that 𝑆 ′ is an
extreme set since 𝛿 (𝑋 ) < (1 + 𝜖)𝜆 ≤ 𝛿 (𝑆 ′). □

This lemma allows us to recurse on the individual equivalence

classes of the canonical partition in Algorithm 1.

Algorithm 1: Iterative Framework for Extreme Sets

Input :Graph 𝐺 = (𝑉 , 𝐸) and a set 𝑆 ⊊ 𝑉 .

Output :The family of all extreme sets in 𝐺 that are

contained in 𝑆 .

1 When 𝑆 is a singleton, return the singleton as the only

extreme set contained in 𝑆 .

2 Let 𝜆 denote the Steiner connectivity of 𝑆 after contracting

𝑉 \ 𝑆 into a single vertex 𝑐 . Let 𝑑 = (1 + 𝜖)𝜆.
3 Call the near-mincut extreme sets subroutine to find all

𝑑-weak extreme sets contained in 𝑆 . This induces a

canonical partiton of 𝑆 into subsets 𝑆1, 𝑆2, . . . , 𝑆𝑘 .

4 For each set 𝑆𝑖 , recursively find all extreme sets contained in

𝑆𝑖 .

5 Construct a laminar family of all extreme sets in the current

call and all extreme sets found in the recursive calls.

Return the laminar family.

Figure 1: Implementation of line 5 of Algorithm 1. Top left:
𝑑-weak extreme sets. Bottom left: extreme sets trees returned
by recursive calls. Right: the merged extreme sets tree.

Theorem 3.5. Algorithm 1 finds all extreme sets that are contained
in 𝑆 .

Proof. The proof is by induction on the size of 𝑆 . When |𝑆 | = 1,

the singleton set is the only extreme set. Next consider |𝑆 | ≥ 2.

Any 𝑑-weak extreme set contained in 𝑆 will be found by the near-

mincut extreme sets subroutine. Consider any 𝑑-strong extreme set

𝑆 ′. By Lemma 3.4, such an extreme set must be contained in one

of the equivalence classes of the canonical partition. To apply the

inductive hypothesis asserting that 𝑆 ′ will be revealed in a recursive
call made by the algorithm, we need to show that the equivalence

classes of the canonical partition are proper subsets of 𝑆 , i.e., they

are strictly smaller than 𝑆 . This is because there is at least one cut of

value 𝜆 that is contained in 𝑆 , since 𝜆 is the Steiner connectivity of

𝑆 after contracting 𝑉 \ 𝑆 into a single vertex 𝑐 . Now, if we consider

any minimal subset of 𝑆 of cut value 𝜆, it must be an extreme set

by definition. Therefore, the canonical partition is nontrivial, i.e., it

contains at least two equivalence classes. Consequently, each set in

the equivalence partition is a strict subset of 𝑆 .

We also need to verify that any recursive call on a set 𝑆1 ⊊ 𝑆

does not return spurious extreme sets, i.e., sets that are extreme in

the graph where 𝑉 \ 𝑆1 is contracted, but are not extreme in the
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original graph. But, this can be ruled out based on the definition of

extreme sets since the property only depends on the cut values of

subsets of 𝑆1 which are unaffected by the contraction. □

We now bound the running time for the overall algorithm.

Theorem 3.6. If we can find all near-mincut extreme sets in 𝑂̃ (𝑚)
time, then Algorithm 1 finds all extreme sets contained in 𝑆 in 𝑂̃ (𝑚)
time.

Proof. In each recursive level, the uncontracted vertices form a

disjoint partition of 𝑆 . Thus, each edge of the graph appears in at

most 2 subproblems. So each recursive level has𝑂 (𝑚) edges across
all subproblems, and therefore, takes 𝑂̃ (𝑚) time by induction.

To bound the depth of the recursion, we compare the value of

𝜆 between a subproblem with set 𝑆 (call this 𝜆(𝑆)) and its child

subproblem with set 𝑆𝑖 (call this 𝜆(𝑆𝑖 )). We claim: 𝜆(𝑆𝑖 ) ≥ (1 +
𝜖)𝜆(𝑆). Suppose not; then, there is a proper subset of 𝑆𝑖 that has
cut value < (1 + 𝜖)𝜆. Now, any minimal subset (call it 𝑆 ′

𝑖
) of 𝑆𝑖 with

cut value < (1 + 𝜖)𝜆 must be an extreme set by definition. But, now

if we choose two vertices 𝑢, 𝑣 ∈ 𝑆𝑖 where 𝑢 ∈ 𝑆 ′
𝑖
, 𝑣 ∉ 𝑆 ′

𝑖
, then 𝑢 and

𝑣 cannot be in the same equivalence class of the canonical partition

since that would contradict the fact that 𝑆 ′
𝑖
is a (1 + 𝜖)𝜆-weak

extreme set contained in 𝑆 . This implies that 𝜆(𝑆𝑖 ) ≥ (1 + 𝜖)𝜆(𝑆).
This bounds the depth of recursion in Algorithm 1 to 𝑂 (𝜖−1 log𝑛)
since the edge weights are polynomially bounded.

Finally, we need to give an implementation of line 5 of Algo-

rithm 1 (see Figure 1). We map each set of the canonical partition

to a unique node in the 𝑑-weak extreme sets tree (call it𝑇 ) returned

by line 3. This can be done naturally by mapping every vertex in

𝑆 to the smallest extreme set that it belongs to among the 𝑑-weak

ones. (All vertices in 𝑆 that are not in any 𝑑-weak extreme set are

mapped to the root representing 𝑉 .) Note that by definition of the

canonical partition, the recursive calls are on sets of graph vertices

that are mapped to the same node in 𝑇 . Consider a recursive call

for a set 𝑋 . 𝑋 is mapped to a node 𝑥 representing 𝑋 ′ ⊇ 𝑋 in𝑇 . The

recursive call returns an extreme sets tree𝑇 ′
whose root represents

𝑋 . If 𝑋 ⊊ 𝑋 ′
, we attach𝑇 ′

as a child of 𝑥 in𝑇 ; If 𝑋 = 𝑋 ′
, we attach

the children of the root of 𝑇 ′
as children of 𝑥 in 𝑇 . Note that this

can done in 𝑂 (𝑛) time across all the recursive calls because the

corresponding extreme set trees are disjoint.

The total time complexity of Algorithm 1 is then given by 𝑂̃ (𝑚).
□

3.2 Sparsification and Tree Packing
We further reduce near-mincut extreme sets to 2-respecting extreme

sets via tree packing. We start with the following uniform sampling

theorem.

Theorem 3.7 ([15]). Given a weighted undirected graph 𝐺 with
min-cut value 𝜆 and any constant 𝜖 ∈ (0, 1), we can construct in
𝑂 (𝑚) time a subgraph 𝐻 such that the following holds whp: for every
cut 𝑆 in 𝐻 , its value in 𝐻 (denoted 𝛿𝐻 (𝑆)) and its value in𝐺 (denoted
𝛿 (𝑆)) are related by 𝛿𝐻 (𝑆) ∈ [(1− 𝜖)𝑝 · 𝛿 (𝑆), (1 + 𝜖)𝑝 · 𝛿 (𝑆)], where
𝑝 = 𝑂

(
log𝑛

𝜆

)
. Note that this implies that the min-cut value in 𝐻 is

𝑂 (log𝑛).
First, we use this theorem to prove the following lemma on

sampling graphs to preserve near-mincut extreme sets.

Lemma 3.8. Given a weighted undirected graph 𝐺 = (𝑉 = 𝑆 ∪
{𝑐}, 𝐸), we can construct in 𝑂 (𝑚) time a subgraph 𝐻 where the fol-
lowing hold whp: (a) the Steiner min-cut value of 𝑆 in graph 𝐻 is
𝜆𝐻 = 𝑂 (log𝑛), and (b) every near-mincut extreme set in 𝐺 has cut
value at most 1.1𝜆𝐻 in 𝐻 .

Proof. Let 𝜆 be the Steiner min-cut value of vertices 𝑆 in graph

𝐺 . Choose 𝜖 = 0.01. Let 𝛿 (𝑐) denote the value of the singleton cut

{𝑐} in graph 𝐺 .

When 𝛿 (𝑐) ≥ 𝜖𝜆, we use Theorem 3.7 to get a graph 𝐻1 with

min cut value 𝜆1 = 𝑂 (log𝑛). We have

𝜆1 ≥ (1 − 𝜖)𝑝 ·min{𝜆, 𝛿 (𝑐)} ≥ 𝜖 (1 − 𝜖)𝑝𝜆,

which implies that 𝑝𝜆 = 𝑂 (log𝑛). The Steiner min-cut value of 𝑆

in 𝐻 is

𝜆𝐻 ∈ [(1 − 𝜖)𝑝𝜆, (1 + 𝜖)𝑝𝜆] = 𝑂 (log𝑛) .
For any near-mincut extreme set 𝑆 ′, we have 𝛿 (𝑆 ′) ∈ [𝜆, (1 + 𝜖)𝜆),
which implies

𝛿𝐻 (𝑆 ′) ≤ (1 + 𝜖)𝑝 · 𝛿 (𝑆 ′) ≤ (1 + 𝜖)2𝑝𝜆 ≤ (1 + 𝜖)2
(1 − 𝜖) 𝜆𝐻 ≤ 1.1𝜆𝐻 .

(The first inequality is by Theorem 3.7 and the second inequality

by property of near-mincut extreme sets.)

When 𝛿 (𝑐) < 𝜖𝜆, let 𝐺 ′
be the graph formed by removing 𝑐

from 𝐺 . For any Steiner cut 𝑆 ′ separating 𝑆 , we have 𝛿𝐺′ (𝑆 ′) ≥
𝛿 (𝑆 ′) − 𝛿 (𝑐) ≥ (1 − 𝜖)𝜆. Use Theorem 3.7 on 𝐺 ′

to get a subgraph

𝐻 with min-cut value 𝜆𝐻 = 𝑂 (log𝑛). Note that

𝜆𝐻 ≥ (1 − 𝜖)𝑝𝜆𝐺′ ≥ (1 − 𝜖)2𝑝𝜆.

Now, for any near-mincut extreme set 𝑆 ′′, we have

𝛿𝐻1
(𝑆 ′′) ≤ (1 + 𝜖)𝑝 · 𝛿𝐺′ (𝑆 ′′) ≤ (1 + 𝜖)𝑝 · 𝛿 (𝑆 ′′)

≤ (1 + 𝜖)2𝑝𝜆 ≤ (1 + 𝜖)2
(1 − 𝜖)2

𝜆𝐻 ≤ 1.1𝜆𝐻 .

(The first inequality is by Theorem 3.7, the second inequality by the

fact that𝐺 ′
is a subgraph of𝐺 , and the third inequality by property

of near-mincut extreme sets.) □

So far, we have constructed a subgraph𝐻 of𝐺 where every near-

mincut extreme set has value at most 1.1𝜆𝐻 , where 𝜆𝐻 is the Steiner

connectivity of 𝑆 in𝐻 . We now pack a set of disjoint spanning trees

in 𝐻 . The next theorem follows from the work of Bang-Jensen et
al. [2] and can also be derived from earlier work by Edmonds [9].

We state a version of the theorem from [5, 8]. First, we need the

following definition:

Definition 3.9. Given a directed graph 𝐺 and a vertex 𝑟 , a direc-

tionless tree rooted at 𝑟 is a (possibly non-spanning) tree of directed

edges that is a subgraph of 𝐺 , and where all edges incident 𝑟 are

directed away from 𝑟 . All other edges can have arbitrary direction.

Theorem 3.10 ([5, 8]). Given an Eulerian directed graph 𝐺 , a
root vertex 𝑟 and a value 𝐶 , there exists 𝐶 edge-disjoint directionless
trees rooted at 𝑟 , such that the in–degree of every vertex 𝑣 ≠ 𝑟 in
the union of all the trees is min{𝜆(𝑟, 𝑣),𝐶}, where 𝜆(𝑟, 𝑣) is the value
of minimum 𝑟 -𝑣 cut. Such a tree packing can be obtained in 𝑂̃ (𝑚𝐶)
time.
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For an undirected graph, we can replace each undirected edge

with two directed edges oriented in opposite direction and apply

the above theorem to obtain the following corollary.

Corollary 3.11. Given an undirected graph𝐺 , a root vertex 𝑟 and a
value 𝐶 , there exists 𝐶 (possibly non-spanning) trees rooted at 𝑟 , such
that (a) each vertex 𝑣 ≠ 𝑟 appears in at least min{𝜆(𝑟, 𝑣),𝐶} trees,
and (b) every edge appears in at most two trees. Such a tree packing
can be obtained in 𝑂̃ (𝑚𝐶) time.

Using this undirected tree packing, we can now reduce the prob-

lem of finding near-mincut extreme sets to finding extreme sets

that 2-respect a tree. We first define the 2-respecting property.

Definition 3.12. Given an undirected graph𝐺 = (𝑉 , 𝐸) and a tree

𝑇 that is a subgraph of 𝐺 (𝑇 may not be spanning), an extreme set

𝑆 ⊊ 𝑉 in𝐺 is said to 2-respect𝑇 if there are at most two edges from

the cut (𝑆,𝑉 \ 𝑆) that appear in 𝑇 .
Now, we are ready to further reduce near-mincut extreme sets

to the following three problems:

• Finding 2-respecting extreme sets: given a weighted undi-

rected graph𝐺 on vertices 𝑆 ∪{𝑐}, and a subgraph𝑇 that is a

tree spanning 𝑆 (it may or may not contain 𝑐), find a laminar

family of vertex sets that contains all extreme sets in 𝐺 that

2-respect 𝑇 and are subsets of 𝑆 .

• Merging two laminar trees: given a weighted undirected

graph𝐺 , and two laminar families of vertex sets, merge these

laminar families by selecting a single laminar collection of

vertex sets from the two families that includes all extreme

sets in 𝐺 that are in these families.

• Removing non-extreme sets from a laminar family: given

a weighted undirected graph 𝐺 on vertices 𝑆 ∪ {𝑐}, and a

laminar family of vertex sets containing all near-mincut

extreme sets of 𝐺 (but possibly other sets), find the near-

mincut extreme sets of 𝐺 and discard the other sets that are

not near-mincut extreme sets.

Theorem 3.13. Suppose that given a weighted undirected graph𝐺
on vertices 𝑆 ∪ {𝑐} containing𝑚 edges, there are algorithms that can
find 2-respecting extreme sets, merge two laminar trees, and remove
non-extreme sets from a laminar family in 𝑂̃ (𝑚) time. Then we can
find whp all near-mincut extreme sets in 𝑂̃ (𝑚) time.

Proof. Given a near-mincut extreme sets problem instance in a

graph𝐺 on vertices 𝑆∪{𝑐}where 𝜆 denotes the Steiner connectivity
of 𝑆 , we first use Lemma 3.8 to obtain a subgraph 𝐻 . Let 𝜆′ be the
Steiner connectivity of 𝑆 in 𝐻 . If we set 𝐶 = 𝜆′ in Corollary 3.11

and apply it to 𝐻 , then we get 𝜆′ = 𝑂 (log𝑛) trees spanning 𝑆 . 𝑆 is

spanned because for each 𝑣 ∈ 𝑆 \ {𝑟 }, 𝜆𝐻 (𝑟, 𝑣) ≥ 𝜆′ by definition

of Steiner connectivity, and 𝑣 appears in all 𝜆′ = min{𝜆𝐻 (𝑟, 𝑣),𝐶}
trees. We remark that these trees may or may not contain 𝑐 .

Next, for each of these trees, we find a laminar family containing

all 2-respecting extreme sets using the first algorithm. We need

to show that every near-mincut extreme set in 𝐺 will 2-respect at

least one of the trees, and therefore, will be in one of these laminar

families. Set 𝜖 = 0.01. For any (1 + 𝜖)𝜆-weak extreme set 𝑆 ′ ⊆ 𝑆 in

𝐺 , we have that 𝑆 ′ is a 1.1-approximate Steiner min-cut in 𝐻 . Thus,

the 𝜆′ trees share at most 2.2𝜆′ cut edges, since each edge appears

at most twice in the trees by Corollary 3.11. So, on average, each

tree has at most 2.2 cut edges. Thus, there is at least one tree that

has at most 2 cut edges.

Now, we iteratively use the second algorithm to merge the lami-

nar families returned for each tree into a single laminar family, and

then remove the non-extreme sets from this family using the third

algorithm to obtain the near-mincut extreme sets.

Next, we bound the running time. The application of Lemma 3.8

takes 𝑂 (𝑚) time, and that of Corollary 3.11 makes 𝑂̃ (𝑚𝜆′) time.

Since 𝜆′ = 𝑂 (log𝑛) by Lemma 3.8, we can conclude that the tree

packing takes 𝑂̃ (𝑚) time. Then, we run the extreme sets algorithm

on each of the𝑂 (log𝑛) trees, which takes 𝑂̃ (𝑚) time. Since there are

𝑂 (log𝑛) trees, it follows that we need to call the merger algorithm

𝑂 (log𝑛) times, which takes 𝑂̃ (𝑚) time. Finally, the algorithm to

remove non-extreme sets a takes𝑂 (𝑚) time. Thus, the total runtime

is 𝑂̃ (𝑚). □

We will give the algorithm to find 2-respecting extreme sets

in the statement of Theorem 3.13 in Section 4 and Section 5, and

the algorithm for merging two extreme sets trees into an extreme

sets tree in Section 6. Here, we give details of the last step, that of

removing non-extreme sets from a laminar family.

Lemma 3.14. Given a laminar family containing all near-mincut
extreme sets, we can remove all sets that are not near-mincut extreme
sets in 𝑂 (𝑚) time.

Proof. First remove all sets𝑋 with 𝛿 (𝑋 ) ≥ (1+𝜖)𝜆 or𝑋 \𝑆 ≠ ∅
because they cannot be near-mincut extreme sets. Then do a post-

order traversal on the tree formed by the laminar family. When

visiting some node𝑋 , compare the cut value of𝑋 and all its children.

If some child has cut value less or equal to 𝛿 (𝑋 ), we remove 𝑋 from

the family and assign its children to its parent in the tree. Given

the cut values, the traversal takes 𝑂 (𝑛) time.

Next we show that all cut values of sets in the laminar family

can be computed in 𝑂 (𝑚) time. For each vertex 𝑢 ∈ 𝑉 , let 𝑝 (𝑢)
be the collection of sets containing 𝑢 in the laminar family. Add

set 𝑉 into the family, so that 𝑝 (𝑢) is always nonempty. Because

the family is laminar, 𝑝 (𝑢) is a nested chain of sets. Let 𝑙 (𝑢) be the
minimal set in 𝑝 (𝑢), then 𝑝 (𝑢) is a path from the root to 𝑙 (𝑢) in the

laminar tree. Every edge (𝑢, 𝑣) contributes to the cut values of sets

separating𝑢 and 𝑣 , which are sets in exactly one of 𝑝 (𝑢) or 𝑝 (𝑣). On
the laminar tree, they are on the path from 𝑙 (𝑢) to 𝑙 (𝑣) excluding
the lowest common ancestor (LCA) of 𝑙 (𝑢) and 𝑙 (𝑣). Use Tarjan’s
offline LCA algorithm [13] to calculate LCA(𝑙 (𝑢), 𝑙 (𝑣)) of all edges
(𝑢, 𝑣) in𝑂 (𝑚 +𝑛) time. Assign a label to each tree node. The labels

are 0 initially. For every edge (𝑢, 𝑣) with weight 𝑤 , add 𝑤 to the

label of 𝑙 (𝑢) and 𝑙 (𝑣), and add −2𝑤 to the label of LCA(𝑙 (𝑢), 𝑙 (𝑣)).
Then for every set in the family, its cut value is the sum of labels in

the corresponding subtree. These sums of labels can be calculated

in 𝑂 (𝑛) time using dynamic programming.

Clearly, near-mincut extreme sets will not be removed by this

algorithm. Next, we show that all sets that are not near-mincut

extreme sets will indeed be removed. By the first step, we can only

focus on non-extreme sets𝑋 ⊊ 𝑆 that have cut value𝛿 (𝑋 ) < (1+𝜖)𝜆.
For such a set 𝑋 , there must be some extreme subset 𝑌 ⊊ 𝑋 with

𝛿 (𝑌 ) ≤ 𝛿 (𝑋 ) < (1 + 𝜖)𝜆 (e.g., a vertex minimal subset of 𝑋 that

violates the extreme condition for 𝑋 is a valid 𝑌 ). Then 𝑌 is a near-

mincut extreme set, so 𝑌 is in the family and has not been removed
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when visiting 𝑋 in the post-order traversal. Let 𝑌 ′
be the ancestor

of 𝑌 that is also a child of 𝑋 . Because the path from 𝑌 to 𝑌 ′
has

survived the post-order traversal, the cut values will be monotone

decreasing along this path. Thus, 𝛿 (𝑌 ′) ≤ 𝛿 (𝑌 ) ≤ 𝛿 (𝑋 ), which
implies that 𝑋 will be removed. □

4 REDUCTION TO SPIDERS
In this section, we reduce the problem of finding 2-respecting ex-

treme sets in Theorem 3.13 to the special case when the tree 𝑇 is a

spider. This significantly simplifies the case analysis of the extreme

sets algorithm.

Definition 4.1 (Spider). A spider is a rooted tree that is the edge-

disjoint union of root-to-leaf paths.

The full reduction has two steps. We first impose one additional

restriction: we only need to find extreme sets for which the root 𝑟 of

𝑇 is on the path in𝑇 between the two crossed edges. Of course, this

requires the extreme set to cross exactly two edges in𝑇 , and we call

such a set exactly 2-respecting. The reduction is captured by the

lemma below, which we prove in Section 4.1 using the technique

of centroid decomposition on a tree.

Lemma 4.2. Assume that given a weighted undirected graph, and
a tree 𝑇 spanning all but at most one vertex, we can find in 𝑂̃ (𝑚)
time all extreme sets in𝑉 (𝑇 ) that either (a) 1-respect𝑇 , or (b) exactly
2-respect 𝑇 such that 𝑟 is on the path in 𝑇 between the two crossed
edges. Then, we can find in 𝑂̃ (𝑚) time all 2-respecting extreme sets
(with no additional condition).

Finally, we reduce this special case to one that assumes the tree

𝑇 is a spider. The lemma below is proved in Section 4.2 using the

random branch contraction technique inspired by [18].

Lemma 4.3. Assume that given a weighted undirected graph, a
special vertex 𝑐 and a spider 𝑇 spanning all but at most one vertex,
we can find in 𝑂̃ (𝑚) time a laminar family of 𝑉 (𝑇 ) that includes all
extreme sets that either (a) 1-respect𝑇 , or (b) exactly 2-respect𝑇 such
that 𝑟 is on the path in 𝑇 between the two crossed edges. Then, the
same is true with “spider” replaced by a general “tree”.

4.1 Centroid Decomposition
In this section, we prove Lemma 4.2.

For a given tree 𝑇 , the centroid is a vertex 𝑟 such that if we root

𝑇 at 𝑟 , then each subtree rooted at a vertex different from 𝑟 has at

most half the total number of vertices. The centroid is guaranteed

to exist for any tree, and one can be computed in linear time easily.

Root 𝑇 at the centroid 𝑟 , and first call the 2-respecting extreme

sets algorithm under the special restriction described in the lemma

statement. In particular, this algorithm returns a laminar family of

subsets that includes all exactly 2-extreme sets on 𝑇 for which 𝑟 is

on the path in 𝑇 between the two crossed edges.

Next, let 𝑇1, . . . ,𝑇ℓ be the subtrees rooted at the children of 𝑟 ,

with the additional edge between 𝑟 and the root of the subtree,

so that 𝑇1, . . . ,𝑇ℓ is an edge partition of 𝑇 . We can split the set of

subtrees into two groups such that each group has at most 2/3 the
total number of vertices. Without loss of generality, let 𝑇1, . . . ,𝑇𝑘
and𝑇𝑘+1, . . . ,𝑇ℓ be the two groups. The algorithm recursively solves

two instances, one with all edges in𝑇1, . . . ,𝑇𝑘 contracted to a single

vertex, and one with all edges in 𝑇𝑘+1, . . . ,𝑇ℓ contracted to a single

vertex. Take the two laminar families returned by the recursive

calls and “uncontract” the contracted vertex in any set that contains

it, i.e., replace it with the vertices in𝑇1 ∪ · · · ∪𝑇𝑘 or𝑇𝑘+1 ∪ · · · ∪𝑇ℓ
depending on which instance. This does not destroy laminarity of

the two families. We then use Lemma 6.1 to merge the three laminar

families found overall (including the one from the non-recursive

case above).

We claim that the resulting laminar family includes all extreme

sets 2-respecting 𝑇 . There are a few cases:

(1) If an extreme set 1-respects 𝑇 , then it is picked up by the

non-recursive case.

(2) If an extreme set crosses two edges, one in 𝑇1 ∪ · · · ∪𝑇𝑘 and

one in 𝑇𝑘+1 ∪ · · · ∪𝑇ℓ , then it satisfies the specific condition

that the root 𝑟 is on the path in 𝑇 between the two crossed

edges, so the non-recursive case outputs this set.

(3) If an extreme set crosses two edges, either both in𝑇1∪· · ·∪𝑇𝑘
or both in 𝑇𝑘+1 ∪ · · · ∪𝑇ℓ , then it survives when the other

(𝑇1 ∪ · · · ∪𝑇𝑘 or𝑇𝑘+1 ∪ · · · ∪𝑇ℓ ) is contracted, so it is output

by the corresponding recursive algorithm.

It follows that all 2-respecting extreme sets are output by the al-

gorithm. By Lemma 6.1, they all survive the merging step, and are

therefore included in the final output.

As for running time, the recursion depth is 𝑂 (log𝑛) since the
number of vertices in 𝑇 drops by a constant factor on each recur-

sive call. Also, on each recursion level, the sum of the sizes of the

instances is 𝑂 (𝑚 + 𝑛 log𝑛) by the following argument. Each vertex

in the original tree 𝑇 appears in at most one instance (as a non-

contracted vertex), and each instance has an additional 𝑂 (log𝑛)
contracted vertices (one from each recursive call before it) and pos-

sibly one vertex 𝑐 in𝑉 not spanned by𝑇 . There are at most𝑚 edges

across the instances whose endpoints are not 𝑐 nor contracted ver-

tices, since each original edge appears in at most one instance (the

one containing both of its endpoints as non-contracted vertices, if

any). Each instance with 𝑘 vertices also gets an extra 𝑂 (𝑘 log𝑛)
edges adjacent to either one of the 𝑂 (log𝑛) contracted vertices

or 𝑐 . It is not hard to see that the total number of vertices among

the instances is 𝑂 (𝑛), so this is an additional 𝑂 (𝑛 log𝑛) edges. It
follows that the sum of the sizes of the instances at each level is

𝑂 (𝑚 + 𝑛 log𝑛), and over all the 𝑂 (log𝑛) levels, this is still 𝑂̃ (𝑚).

4.2 Reduction from Trees to Spiders
In this section, we further simplify to the case when 𝑇 is a spider,

proving Lemma 4.3. The idea is simple: we compute a heavy-light

decomposition of the tree, viewed as a set of edge-disjoint branches,

and randomly contract a subset of them so that the remaining graph

is a spider. We ensure that for any two fixed edges for which the

root is on the path between them, with probability Ω(1/log2 𝑛)
both edges survive the contraction.

More precisely, we define a heavy-light decomposition as a par-

tition P of the edges of 𝑇 into monotone paths (i.e., consecutive

vertices along the path have increasing/decreasing distance from

the root) called branches, such that for any vertex 𝑣 in 𝑇 , the path

from 𝑣 to the root 𝑟 shares edges with𝑂 (log𝑛) many branches. The

algorithm samples each branch in P independently with probability

1/log𝑛, and we keep all sampled branches whose path from (any
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Figure 2: Build spider from heavy-light decomposition.
Dashed branches: not sampled. Red branches: sampled and
used in spider. Blue branches: sampled but discarded.

vertex on) the branch to the root does not intersect any edge of

another sampled branch; see Figure 2. The algorithm contracts all

other branches. It repeats this process𝑂 (log3 𝑛) times, and for each

instance, it calls the extreme sets algorithm on a spider described in

the statement of Lemma 4.3. The algorithm then “uncontracts” all

edges to obtain collections of sets of vertices in𝐺 , and merges them

using Lemma 6.1. We claim that this algorithm correctly outputs

all extreme sets promised by Lemma 4.3.

We first claim that the resulting graph is indeed a spider. Indeed,

for every branch 𝐵 that is kept, consider the path from the branch

to the root; any other branch sharing edges with this path was not

sampled, otherwise branch 𝐵 would not be kept. It follows that

the branch hangs off the root in the contracted graph. Since all

branches are monotone and hang off the root, the contracted graph

must be a spider.

Finally, we claim that for any two edges of 𝑇 for which the root

is on the path between them, with probability Ω(1/log2 𝑛) both
edges survive the contraction, i.e., the branches containing them are

kept. For a single edge 𝑒 , in order for its respective branch 𝐵 to be

kept, that branch must be sampled and none of the 𝑂 (log𝑛) other
branches sharing edges with the path 𝑃𝑒 from 𝑒 to the root can be

sampled. This occurs with probability 1/log𝑛·(1−1/log𝑛)𝑂 (log𝑛) =
Ω(1/log𝑛). By assumption, for the two edges 𝑒1, 𝑒2, the paths 𝑃𝑒1
and 𝑃𝑒2 are edge-disjoint and connected at the root, so the set of

branches sharing edges with 𝑃𝑒1 is disjoint from the set of branches

sharing edges with 𝑃𝑒2 . It follows that the event that 𝑒1 survives the

contraction is independent from the event for 𝑒2, and the overall

probability of success is Ω(1/log2 𝑛).
Therefore, if we repeat this procedure𝑂 (log3 𝑛) times, then with

high probability, for any two such edges 𝑒1, 𝑒2, they both survive

in one of the resulting spiders. In particular, if there is an exactly

2-respecting extreme set crossing 𝑒1 and 𝑒2, then that extreme set

survives the contraction as well. Likewise, a 1-respecting extreme

set crossing 𝑒1 or 𝑒2 survives as well. It follows that the extreme

sets algorithm on a spider outputs the contracted version of this

extreme set. The set is then uncontracted to the original extreme

set, and then included in the final output after merging. It follows

that with high probability, all targeted extreme sets are output by

the algorithm.

5 2-RESPECTING EXTREME SETS ON A
SPIDER

In this section, we propose an efficient algorithm that, given a

weighted undirected graph on vertices 𝑆∪{𝑐} and a tree𝑇 spanning

𝑆 , finds all extreme sets in 𝑆 that 2-respect𝑇 . Using the reduction in

Section 4, we can assume that 𝑇 is a spider. Such extreme sets can

be divided into four ‘universes’: one subtree, complement of one

subtree, two subtrees and complement of two subtrees. We design

algorithms to find extreme sets in each universe, and merge all the

families by Lemma 6.1.

We now introduce some notations exclusive to this section. For

a tree𝑇 , define 𝑢↓ ⊆ 𝑉 (𝑇 ) as the vertices in the subtree of𝑇 rooted

at 𝑢, and 𝑢↑ ⊆ 𝑉 (𝑇 ) as the vertices on the path from 𝑢 to the root.

The complement 𝑋 = 𝑉 (𝑇 ) \ 𝑋 is defined with respect to vertices

on the tree. We say that two vertices 𝑢, 𝑣 ∈ 𝑉 (𝑇 ) are incomparable
if 𝑢↓ ∩ 𝑣↓ = ∅, i.e., neither is an ancestor or descendant of the

other, and we sometimes use the notation 𝑢⊥𝑣 to indicate that 𝑢

and 𝑣 are incomparable. Likewise, we say that 𝑢, 𝑣 are comparable
if 𝑢↓ ∩ 𝑣↓ ≠ ∅, and we sometimes use the notation 𝑢 ∥ 𝑣 . Note that
on a spider, two non-root vertices are incomparable iff they lie on

different branches, and they are comparable iff they lie on the same

branch.

5.1 Universe 1: One Subtree
The one subtree case is simple. Let F be the laminar family of all

(vertex sets of) subtrees of𝑇 : F = {𝑣↓ : 𝑣 ∈ 𝑉 (𝑇 )}, then F trivially

contains all extreme sets in the form of one subtree.

5.2 Universe 2: Complement of One Subtree
Note that all sets in this universe contain the root, so any laminar

family of sets in this universe must be a nested chain, which means

the cut edges of the sets on the tree must lie on the same branch.

We can actually find this main branch.

Lemma 5.1. Let 𝑆1 be the set with minimum cut value among all
subtrees and complement of subtrees. When 𝑆1 is a subtree, let 𝑆1 = 𝑢

↓
1
,

otherwise let 𝑆1 = 𝑢
↓
1
. (They are not equivalent when 𝑐 ∉ 𝑉 (𝑇 ).) If

𝑆 = 𝑢↓ is extreme, then 𝑢 ∥ 𝑢1.

Proof. Assume for contradiction that 𝑢 ⊥ 𝑢1. Then 𝑢
↓
1
⊊ 𝑆 and

𝛿 (𝑢↓
1
) > 𝛿 (𝑆) because 𝑆 is extreme. When 𝑆1 = 𝑢

↓
1
this contradicts

𝑆1’s minimality. When 𝑆1 = 𝑢
↓
1
, by posi-modularity

𝛿 (𝑆1) +𝛿 (𝑆) ≥ 𝛿 (𝑆 \𝑆1) +𝛿 (𝑆1 \𝑆) = 𝛿 (𝑢↓
1
) +𝛿 (𝑢↓) > 𝛿 (𝑆) +𝛿 (𝑆1),

contradiction. Therefore 𝑢 ∥ 𝑢1. □

It immediately follows that {𝑢↓ : 𝑢 ∥ 𝑢1} is a laminar family con-

taining all extreme sets in the form of complement of one subtree.

5.3 Universe 3: Two Subtrees
In this section, we compute a laminar family of subsets such that

each extreme set composed of the union of two subtrees is included

in the family, i.e., they can be written as 𝑢↓ ∪ 𝑣↓ for some 𝑢, 𝑣 on

different branches of the spider. We introduce two concepts central

to the algorithm: partners and bottlenecks.
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Partners. Informally, we consider a vertex 𝑣 to be a vertex 𝑢’s

partner if 𝑢↓ ∪ 𝑣↓ is a potential extreme set. A necessary condition

for this to happen is

𝛿 (𝑣↓) > 𝛿 (𝑢↓ ∪ 𝑣↓) ⇐⇒ 𝛿 (𝑢↓, 𝑣↓) > 1

2

𝛿 (𝑢↓) (P)

Note that for a fixed 𝑢 there cannot be two incomparable vertices 𝑣

satisfying condition (P). Therefore, the partners of 𝑢 are pairwise

comparable (if they exist), so on a spider, they must lie on a single

branch of the spider, and we can define the lowest partner 𝑝 (𝑢) to
be the partner of 𝑢 of highest depth in the tree (i.e., farthest away

from the root). We also require 𝑝 (𝑢) ⊥ 𝑢 because we assume 𝑣 in

on a different branch with 𝑢, and we say 𝑝 (𝑢) does not exist if there
is no vertex 𝑣 satisfying (P), or equivalently, the lowest partner is

comparable to 𝑢.

Fact 5.2. If 𝑢↓ ∪ 𝑣↓ is extreme, then (P) holds, and 𝑣 ∈ 𝑝 (𝑢)↑ and
𝑢 ∈ 𝑝 (𝑣)↑.

We now show that we can efficiently compute 𝑝 (𝑢) for every
vertex 𝑢.

Lemma 5.3. We can compute 𝑝 (𝑢) for every 𝑢 ∈ 𝑉 (𝑇 ) − 𝑟 in 𝑂̃ (𝑚)
time.

Proof. We give an algorithm computing 𝑝 (𝑢) for a branch 𝐵 in

time proportional to (up to polylogarithmic factors) |𝐵 | plus the
number of edges incident to vertices in 𝐵. Repeating this algorithm

for all branches gives an 𝑂̃ (𝑚) time algorithm.

Iterate over all 𝑢 ∈ 𝐵 from the leaf upwards. This means that

in each iteration, we add a new node into 𝑢↓. We use a heap to

maintain value 𝛿 (𝑢↓, 𝐵′) for every other branch 𝐵′ ≠ 𝐵. (Recall

that each branch 𝐵′
is a root-to-leaf path minus the root.) Also, for

each branch 𝐵′ ≠ 𝐵, we maintain a sorted list of added edges (𝑢, 𝑣)
where 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵′

, sorted by the position of 𝑣 in branch 𝐵′
from

leaf to root.

In each iteration with new node 𝑢, for every edge (𝑢, 𝑣) incident
on 𝑢 with 𝑣 ∉ 𝐵 ∪ {𝑟 }, add its weight to the value at the branch 𝐵

containing 𝑣 , and also insert edge (𝑢, 𝑣) to the sorted list of edges

for 𝐵′
. After the update step, we query the branch 𝐵′ ≠ 𝐵 with

maximum value 𝛿 (𝑢↓, 𝐵′). If 𝛿 (𝑢↓, 𝐵′) > 1

2
𝛿 (𝑢↓), then we find the

lowest vertex 𝑣 ∈ 𝐵 satisfying 𝛿 (𝑢↓, 𝑣↓) > 1

2
𝛿 (𝑢↓), which can be

done by binary searching over 𝑣 and taking a prefix sum of the

sorted list to determine each 𝛿 (𝑢↓, 𝑣↓). We set 𝑝 (𝑢) to be this vertex
𝑣 . □

Recall that by definition, a partner 𝑣 should be incomparable

to 𝑢 and satisfy condition (P). If 𝑝 (𝑢) does not exist, 𝑢 cannot be

one of the two subtrees that form an extreme set. Therefore, after

computing 𝑝 (𝑢) for all 𝑢, we can contract every 𝑢 whose lowest

partner does not exist to its parent without losing any extreme set

composed of two subtrees. After this preprocessing step, we can

assume the lowest partner 𝑝 (𝑢) exists for all 𝑢 ∈ 𝑉 (𝑇 ).

Bottlenecks. We now define the concepts of weak bottleneck and

bottleneck as a sort of upper bound on the cut size of an extreme

set. The weak bottleneck for a vertex 𝑢 is defined as 𝑏𝑤𝑒𝑎𝑘 (𝑢) =

min𝑤∈𝑢↓−𝑢 𝛿 (𝑢↓ \𝑤 ↓), and the bottleneck is

𝑏 (𝑢) = min

𝑣∈𝑢↓
𝑏𝑤𝑒𝑎𝑘 (𝑣) = min

𝑣∈𝑢↓,𝑤∈𝑣↓−𝑣
𝛿 (𝑣↓ \𝑤 ↓) .

Figure 3: Bad case in the proof of Lemma 5.7

The fact below explains the motivation of bottleneck as an upper

bound.

Fact 5.4. If 𝑢↓ ∪ 𝑣↓ is extreme, then 𝛿 (𝑢↓ ∪ 𝑣↓) < min{𝑏 (𝑢), 𝑏 (𝑣)}.

Proof. By the definition of bottleneck, there exists some𝑤1 ∈
𝑢↓ and𝑤2 ∈ 𝑤

↓
1
−𝑤1 such that𝑏 (𝑢) = 𝛿 (𝑤 ↓

1
\𝑤 ↓

2
). Also 𝛿 (𝑢↓∪𝑣↓) <

𝛿 (𝑤 ↓
1
\ 𝑤 ↓

2
) because 𝛿 (𝑤 ↓

1
\ 𝑤 ↓

2
) ⊆ 𝑢↓ and 𝑢↓ ∪ 𝑣↓ is extreme.

Therefore, 𝛿 (𝑆) < 𝑏 (𝑢). Swapping 𝑢 and 𝑣 in the argument gives

𝛿 (𝑆) < 𝑏 (𝑣) as well. □

The next fact establishes monotonicity of bottleneck, which is

useful for a binary search procedure we execute later on.

Fact 5.5. 𝑏 (𝑢) is monotonic decreasing in a branch from leaf to root.

Fact 5.6. We can compute 𝑏 (𝑢) for every 𝑢 ∈ 𝑉 (𝑇 ) −𝑟 in 𝑂̃ (𝑚) time.

Proof. Note that 𝑏 (𝑢) can be computed independently for each

branch, sowe focus on a single branch𝐵.We first calculate𝑏𝑤𝑒𝑎𝑘 (𝑢)
for every 𝑢. Observe that 𝛿 (𝑢↓ \𝑤 ↓) = 2𝛿 (𝑢↓ \𝑤 ↓,𝑤 ↓) + 𝛿 (𝑢↓) −
𝛿 (𝑤 ↓). We can easily calculate 𝛿 (𝑤 ↓) for all 𝑤 by traversing the

vertices of the branch from the leaf upwards, and using that for a

parent 𝑣 of vertex𝑤 , we have 𝛿 (𝑣↓) = 𝛿 (𝑤 ↓)+𝛿 (𝑣)−2𝛿 (𝑣,𝑤 ↓). This
takes time proportional to |𝐵 | plus the number of edges incident to

vertices in 𝐵. Next, initialize a dynamic array with value −𝛿 (𝑤 ↓)
on each vertex𝑤 . Traverse the branch from the leaf upwards, and

for the current vertex 𝑢, we take all edges (𝑢, 𝑣) for 𝑣 ∈ 𝑢↓, and
for each such edge, we add twice its weight to all vertices on the

array from 𝑣 inclusive to 𝑢 exclusive. This way, each vertex 𝑤 ∈
𝑢↓ has current value 2𝑤 (𝑢↓ \ 𝑤 ↓,𝑤 ↓) − 𝛿 (𝑤 ↓), so we can query

the minimum value of the prefix of the array up to 𝑢 to obtain

min𝑤∈𝑢↓ 2𝑤 (𝑢↓\𝑤 ↓,𝑤 ↓)−𝛿 (𝑤 ↓). Finally, adding 𝛿 (𝑢↓) to the query
gives us min𝑤∈𝑢↓

(
2𝛿 (𝑢↓ \𝑤 ↓,𝑤 ↓) + 𝛿 (𝑢↓) − 𝛿 (𝑤 ↓)

)
= 𝑏𝑤𝑒𝑎𝑘 (𝑢).

Altogether, the algorithm on branch 𝐵 takes time proportional to

(up to logarithmic factors) |𝐵 | plus the number of edges incident

to vertices in 𝐵. Summed over all branches 𝐵, this is 𝑂̃ (𝑚) time

total. □

5.3.1 Lowest Partner Condition. The follow lemma captures the

key property of our definition of the lowest partner 𝑝 (𝑢).

Lemma 5.7. If 𝑢↓ ∪ 𝑣↓ is extreme, then for every 𝑤 ∈ 𝑢↓ whose
lowest partner exists, we have 𝑝 (𝑤) ∥ 𝑝 (𝑢). Symmetrically, for all
𝑤 ∈ 𝑣↓, we have 𝑝 (𝑤) ∥ 𝑝 (𝑣).
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Proof. Assume for contradiction that there exists some𝑤 ∈ 𝑢↓

with 𝑝 (𝑤) ⊥ 𝑝 (𝑢). Since (P) holds for 𝑢 and 𝑣 , the lowest partner

𝑝 (𝑢) must be lower than 𝑣 , and in particular, they share the same

branch of the spider, so 𝑝 (𝑤) ⊥ 𝑣 . By definition of lowest part-

ner, we must have 𝑝 (𝑤) ⊥ 𝑤 , and since 𝑢 and 𝑤 share a branch,

this implies 𝑝 (𝑤) ⊥ 𝑢. It follows that 𝑝 (𝑤)↓ ∩ 𝑆 = ∅. Let 𝑆𝑤 =

𝑤 ↓ ∪ 𝑝 (𝑤)↓. By condition (P), we have 𝛿 (𝑆𝑤) < 𝛿 (𝑝 (𝑤)↓). Since 𝑆
is extreme, 𝛿 (𝑆) < 𝛿 (𝑆 \𝑤 ↓). Adding these two inequalities contra-
dicts 𝛿 (𝑆) +𝛿 (𝑆𝑤) ≥ 𝛿 (𝑆 \𝑆𝑤) +𝛿 (𝑆𝑤 \𝑆) = 𝛿 (𝑆 \𝑤 ↓) +𝛿 (𝑝 (𝑤)↓),
which holds by posi-modularity. □

This lemma allows us to pair up branches as follows. Compute

lowest partners 𝑝 (𝑢) for all vertices𝑢. Then, for each branch 𝐵, take
the lowest vertex 𝑢 in that branch whose lowest partner 𝑝 (𝑢) is
defined (if it exists), and let 𝑓 (𝐵) be the branch containing 𝑝 (𝑢). We

pair up branches 𝐵, 𝐵′
satisfying 𝐵′ = 𝑓 (𝐵) and 𝐵 = 𝑓 (𝐵′). Some

branches may not be paired; we leave them alone.

Lemma 5.8. For any extreme set𝑢↑∪𝑣↑, the two branches containing
𝑢 and 𝑣 are paired up.

Proof. By Fact 5.2 and Lemma 5.7, for an extreme set 𝑢↑ ∪ 𝑣↑,
both 𝑝 (𝑢) and 𝑝 (𝑣) are defined, and for the lowest vertices 𝑢 ′ ∥ 𝑢
and 𝑣 ′ ∥ 𝑣 whose 𝑝 (𝑢 ′), 𝑝 (𝑣 ′) are defined, we have 𝑝 (𝑢 ′) ∥ 𝑝 (𝑢) ∥ 𝑣
and 𝑝 (𝑣 ′) ∥ 𝑝 (𝑣) ∥ 𝑢. In other words, the two branches containing

𝑢 and 𝑣 are paired up, as needed. □

Therefore, we can process each pair of branches separately by

contracting all other branches to the root. The remaining task is

to compute, for each pair of branches 𝐵, 𝐵′
, a laminar family that

contains all extreme sets of the form 𝑢↓ ∪ 𝑣↓. The laminar family

we construct is

F(𝐵,𝐵′) =
{
𝑢↓ ∪ 𝑣↓ : 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵′, 𝛿 (𝑢↓ ∪ 𝑣↓) < min{𝑏 (𝑢), 𝑏 (𝑣)}

}
.

Lemma 5.9. The set F(𝐵,𝐵′) is laminar. That is, any two sets 𝑢↑
1
∪

𝑣
↑
1
, 𝑢

↑
2
∪ 𝑣

↑
2
∈ F(𝐵,𝐵′) satisfy either 𝑢1 ∈ 𝑢

↓
2
, 𝑣1 ∈ 𝑣

↓
2
or 𝑢2 ∈ 𝑢

↓
1
, 𝑣2 ∈

𝑣
↓
1
.

Proof. Suppose for contradiction that 𝑢1 ∈ 𝑢
↓
2
− 𝑢2 and 𝑣2 ∈

𝑣
↓
1
−𝑣1 (without loss of generality). Let 𝑆1 = 𝑢

↑
1
∪𝑣↑

1
and 𝑆2 = 𝑢

↑
2
∪𝑣↑

2
.

Then, the sets 𝑆1 and 𝑆2 cross, and by posi-modularity,

𝛿 (𝑆1) + 𝛿 (𝑆2) ≥ 𝛿 (𝑆1 \ 𝑆2) + 𝛿 (𝑆2 \ 𝑆1)

= 𝛿 (𝑣↓
1
\ 𝑣↓

2
) + 𝛿 (𝑢↓

2
\ 𝑢↓

1
)

≥ 𝑏 (𝑣1) + 𝑏 (𝑢2).

But 𝑆1, 𝑆2 ∈ F(𝐵,𝐵′) implies that 𝛿 (𝑆1) < 𝑏 (𝑣1) and 𝛿 (𝑆2) < 𝑏 (𝑣2),
a contradiction. □

Lemma 5.10. Over all branches 𝐵, 𝐵′, we can compute all pairs
(𝑢, 𝑣) : 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵′ with 𝑢↓ ∪ 𝑣↓ ∈ F in 𝑂̃ (𝑚) time total.

Proof. For a fixed pair of branches 𝐵, 𝐵′
, we describe an algo-

rithm that finds all 𝑢↓ ∪ 𝑣↓ ∈ F(𝐵,𝐵′) such that 𝑏 (𝑢) ≤ 𝑏 (𝑣). The
other case 𝑏 (𝑢) > 𝑏 (𝑣) can be handled by swapping 𝐵 and 𝐵′

and

running the same algorithm. Repeating the algorithm for all pairs

of branches establishes the lemma.

Fix a pair of branches 𝐵, 𝐵′
. We maintain a range minimum query

data structure D on the vertices in branch 𝐵′
. Initialize the data

structure with value 𝛿 (𝑣↓) for each vertex 𝑣 ∈ 𝐵′
.

Now iterate through the vertex 𝑢 ∈ 𝐵 from leaf to root. Let

the current iteration be at vertex 𝑢 ∈ 𝐵. First, for each edge (𝑢, 𝑣)
with 𝑣 ∈ 𝐵′

, subtract twice its weight from all vertices in 𝑣↑ in the

data structures, which is an interval update. This ensures that each

element 𝑣 has current value 𝛿 (𝑣↓) − 2𝛿 (𝑢↓, 𝑣↓) in the data structure.

Next, we seek all sets 𝑢↓ ∪ 𝑣↓ ∈ F for the current 𝑢, assuming

𝑏 (𝑢) ≤ 𝑏 (𝑣). By monotonicity of 𝑏 (𝑣) (Fact 5.5), the vertices 𝑣 ∈ 𝐵′

satisfying 𝑏 (𝑢) ≤ 𝑏 (𝑣) form a consecutive interval 𝐼 in the branch

which can be found by binary search. To find vertices 𝑣 ∈ 𝐼 with

𝑢↓ ∪ 𝑣↓ ∈ F and 𝑏 (𝑢) ≤ 𝑏 (𝑣), we are looking for vertices 𝑣 ∈ 𝐼

satisfying 𝛿 (𝑢↓ ∪ 𝑣↓) < 𝑏 (𝑢). Note that 𝛿 (𝑢↓ ∪ 𝑣↓) = 𝛿 (𝑢↓) +
𝛿 (𝑣↓) − 2𝛿 (𝑢↓, 𝑣↓), so this is equivalent to 𝛿 (𝑣↓) − 2𝛿 (𝑢↓, 𝑣↓) <

𝑏 (𝑢) − 𝛿 (𝑢↓), so it suffices to find all vertices 𝑣 whose value in D is

less than 𝑏 (𝑢) − 𝛿 (𝑢↓), a value independent of 𝑣 . This can be done

by repeatedly querying for the vertex of minimum value inside

interval 𝐼 in D, and if the value is less than 𝑏 (𝑢) − 𝛿 (𝑢↓), then add

a large value 𝑀 to the value of 𝑣 and repeat, ensuring a different

vertex has the minimum value this time; this recovers all such (𝑢, 𝑣),
and we can subtract𝑀 from these vertices 𝑣 once we are done.

Altogether, for vertex 𝑢 ∈ 𝐵, the total running time is propor-

tional to (up to polylog(𝑛) factors) the number of edges (𝑢, 𝑣) with
𝑣 ∈ 𝐵′

plus the number of pairs (𝑢, 𝑣) found. The former totals at

most the number of edges between branches 𝐵 and 𝐵′
, and the latter

totals𝑂 ( |𝐵 |+ |𝐵′ |) since F is a laminar family by Lemma 5.9. Finally,

over all pairs of branches 𝐵, 𝐵′
, the number of edges between pairs

of branches totals at most𝑚, and the sum of 𝑂 ( |𝐵 | + |𝐵′ |) totals
𝑂 (𝑛). It follows that the entire algorithm takes 𝑂̃ (𝑚) time. □

Next, note that the laminar families F(𝐵,𝐵′) are disjoint from

each other since they are contained in their respective branches

𝐵 ∪ 𝐵′
which are pairwise disjoint. It follows that their union⋃

(𝐵,𝐵′) F(𝐵,𝐵′) is also a laminar family. We have thus computed a

laminar family containing all desired extreme sets in 𝑂̃ (𝑚) time.

5.4 Universe 4: Complement of Two Subtrees
This section finds a laminar family containing all extreme sets in

the form of complement of two subtrees. The algorithm has the

same spirit as in two subtrees case.

5.4.1 Find Main Branch. All sets of the form 𝑢↓ ∪ 𝑣↓ contain the

root, so a laminar sub-family must be a nested chain of sets. This

means the cut edges on the tree must be contained in two branches.

We first locate one of the two branches to be some 𝑢
↑
0
. Then the

problem can be reduced to finding extreme sets in the form of

𝑢↓ ∪ 𝑣↓ where 𝑢 ∈ 𝑢
↑
0
.

Lemma 5.11. Let 𝑆1 be the set with minimum cut value among four
types of sets: a subtree, complement of a subtree, two subtrees, and

complement of two subtrees. Describe set 𝑆1 by 𝑢
↓
1
, 𝑢↓

1
, 𝑢↓

1
∪ 𝑣

↓
1
or

𝑢
↓
1
∪ 𝑣

↓
1
respectively in the four cases.

Any extreme set of the form𝑢↓ ∪ 𝑣↓ has one endpoint in the branch
of 𝑢1 in the first two cases, and has one endpoint in the branch of 𝑢1
or 𝑣1 in the last two cases.
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Proof. Let 𝑆 = 𝑢↓ ∪ 𝑣↓ be any such extreme set. Let 𝑋 = 𝑢
↓
1
in

the first two cases, and 𝑋 = 𝑢
↓
1
∪ 𝑣

↓
1
in the last two cases, so that

either 𝑆1 = 𝑋 or 𝑆1 = 𝑋 .

Assume for contradiction that neither 𝑢 or 𝑣 is comparable to 𝑢1
in the first two cases, and to 𝑢1 or 𝑣1 in the last two cases, which

means 𝑋 ⊊ 𝑆 and 𝑢
↓
1
∪ 𝑣

↓
1
⊊ 𝑋 . Since 𝑆 is an extreme set, this

means that 𝛿 (𝑋 ) > 𝛿 (𝑆). When 𝑆1 = 𝑋 , we obtain 𝛿 (𝑆1) > 𝛿 (𝑆),
which contradicts the minimality of 𝛿 (𝑆1). When 𝑆1 = 𝑋 , by posi-

modularity

𝛿 (𝑆)+𝛿 (𝑆1) ≥ 𝛿 (𝑆\𝑆1)+𝛿 (𝑆1\𝑆) = 𝛿 (𝑢↓∪𝑣↓)+𝛿 (𝑋 ) > 𝛿 (𝑆1)+𝛿 (𝑆),

contradiction. Therefore 𝑢 or 𝑣 is comparable to 𝑢1 in the first two

cases, and to 𝑢1 or 𝑣1 in the last two cases. □

In the first two cases, we fix the main branch containing 𝑢1,

which is 𝑢
↑
0
where 𝑢0 is the leaf of that branch. In the last two cases,

we try fixing main branches 𝑢1 and 𝑣1, compute the two laminar

families, and merge them using Lemma 6.1. From now on, assume

that we have correctly identified the branch 𝑢
↑
0
.

If the tree 𝑇 spans all but one vertex 𝑐 , then we attach 𝑐 below

𝑢0 in the tree. This way, the new tree𝑇 ′
now spans all vertices, and

all extreme sets we wish to find (in particular, they do not include

𝑐) are still of the form 𝑢↓ ∪ 𝑣↓.

5.4.2 Partner Condition. Like in two subtrees case, the idea is to

restrict the potential partners onto a path, but with a different

partner condition. This time, we define the lowest partner

𝑝 (𝑢) = argmin

𝑣⊥𝑢
𝛿 (𝑢↓ ∪ 𝑣↓, 𝑣↓) (P‚)

Since 𝛿 (𝑢↓ ∪ 𝑣↓, 𝑣↓) = 1

2
(𝛿 (𝑢↓∪𝑣↓)+𝛿 (𝑣↓)−𝛿 (𝑢↓)), lowest partners

can be calculated in the same way as in Lemma 5.3 from the two

subtrees case.

Lemma 5.12. If 𝑆 = 𝑢↓ ∪ 𝑣↓ is an extreme set, then 𝑣 ∈ 𝑝 (𝑢)↑.

Proof. Assume for contradiction that 𝑣 ∉ 𝑝 (𝑢)↑, so that either

𝑣 ⊥ 𝑝 (𝑢) or 𝑣 ∈ 𝑝 (𝑢)↓ − 𝑝 (𝑢). There are two cases:

Case 1: 𝑣 ⊥ 𝑝 (𝑢). 𝑝 (𝑢) is also incomparable to 𝑢 by definition,

so 𝑝 (𝑢) ⊊ 𝑆 . Because 𝑆 is extreme, 𝛿 (𝑝 (𝑢)↓) > 𝛿 (𝑆), which implies

𝛿 (𝑝 (𝑢)↓, 𝑆 − 𝑝 (𝑢)↓) > 𝛿 (𝑆 − 𝑝 (𝑢)↓, 𝑢↓ ∪ 𝑣↓) ≥ 𝛿 (𝑆 − 𝑝 (𝑢)↓, 𝑣↓) .

Adding 𝛿 (𝑣↓, 𝑝 (𝑢)↓) to both sides gives 𝛿 (𝑢↓ ∪ 𝑝 (𝑢)↓, 𝑝 (𝑢)↓) >

𝛿 (𝑆, 𝑣↓) = 𝛿 (𝑢↓ ∪ 𝑣↓, 𝑣↓), which contradicts minimality in (P‚).

Case 2: 𝑣 ∈ 𝑝 (𝑢)↓ − 𝑝 (𝑢). Let 𝑋 = 𝑢↓ ∪ 𝑝 (𝑢)↓ ⊊ 𝑆 and 𝑌 =

𝑆 \ 𝑋 = 𝑝 (𝑢)↓ \ 𝑣↓. Because 𝑆 is extreme,

𝛿 (𝑋 ) > 𝛿 (𝑆) =⇒ 𝛿 (𝑋,𝑌 ) > 𝛿 (𝑌,𝑢↓ ∪ 𝑣↓) ≥ 𝛿 (𝑌, 𝑣↓) .

Adding 𝛿 (𝑋, 𝑣↓) to both sides gives 𝛿 (𝑋, 𝑝 (𝑢)↓) > 𝛿 (𝑆, 𝑣↓), or in
other words, 𝛿 (𝑢↓ ∪ 𝑝 (𝑢)↓, 𝑝 (𝑢)↓) > 𝛿 (𝑢↓ ∪ 𝑣↓, 𝑣↓), which contra-

dicts minimality in (P‚). □

Figure 4: Proof of Lemma 5.13. Left: the second case where 𝑢
is above 𝑢1. Right: the third case where 𝑢 is below 𝑢1.

5.4.3 Find the Second Branch. We would now like to identify a

second branch to locate all extreme sets. Our key observation is

that if 𝑆 = 𝑢↓ ∪ 𝑣↓ is extreme, then for any𝑤 that is incomparable

to both 𝑢 and 𝑣 , 𝛿 (𝑤 ↓) > 𝛿 (𝑆) because 𝑤 ↓ ⊊ 𝑆 . We call this the

subtree cut condition:

∀𝑤, 𝑤⊥𝑢, 𝑤⊥𝑣 : 𝛿 (𝑤 ↓) > 𝛿 (𝑆) (S)

Therefore, 𝛿 (𝑆) is less than the minimum subtree cut in all branches

other than 𝑢’s and 𝑣 ’s (or equivalently, 𝑝 (𝑢)’s by Lemma 5.12).

Next, define the optimal partner 𝑜𝑝𝑡 (𝑢) = argmin𝑣∈𝑝 (𝑢)↑ 𝛿 (𝑢↓∪
𝑣↓). We only calculate the optimal partners for 𝑢 ∈ 𝑢

↑
0
, which can

be done in 𝑂̃ (𝑚) time. For each branch, calculate the minimum

cut value among all subtrees on the branch. List the values as a

sequence to perform range minimum queries.

Lemma 5.13. Let𝑢1 be the highest node onmain branch𝑢↑
0
such that

𝑢
↓
1
∪ 𝑜𝑝𝑡 (𝑢1)↓ satisfies subtree cut condition (S). Then, any extreme

set 𝑆 = 𝑢↓ ∪ 𝑣↓ with 𝑢 ∈ 𝑢
↑
0
has 𝑣 ∥ 𝑜𝑝𝑡 (𝑢1).

Proof. For any extreme set 𝑆 = 𝑢↓ ∪ 𝑣↓ with 𝑢 ∈ 𝑢
↑
0
, we define

𝑢1 as in the lemma. Assume for contradiction that 𝑣 ⊥ 𝑜𝑝𝑡 (𝑢1). We

case on the location of𝑢: either𝑢 = 𝑢1, or𝑢 ∈ 𝑢
↑
1
−𝑢1, or𝑢 ∈ 𝑢

↓
1
−𝑢1.

Note that 𝑢 ∥ 𝑢1 because both are in 𝑢
↑
0
.

First, suppose that 𝑢 = 𝑢1. Then 𝑜𝑝𝑡 (𝑢1) = 𝑜𝑝𝑡 (𝑢), which is in

𝑝 (𝑢)↑ by definition of 𝑜𝑝𝑡 (𝑢). Vertex 𝑣 , as a partner of 𝑢, is also in

𝑝 (𝑢)↑ by Lemma 5.12. This contradicts 𝑣 ⊥ 𝑜𝑝𝑡 (𝑢1).
Second, suppose that 𝑢 ∈ 𝑢

↑
1
− 𝑢1. By definition of 𝑢1, we have

that 𝑢↓ ∪ 𝑜𝑝𝑡 (𝑢)↓ does not satisfy subtree cut condition (S), since

otherwise 𝑢 would be a better choice than 𝑢1. Since 𝑢
↓ ∪ 𝑜𝑝𝑡 (𝑢)↓

does not satisfy (S), there exists some𝑤 incomparable to both𝑢 and

𝑝 (𝑢) such that 𝛿 (𝑤 ↓) ≤ 𝛿 (𝑢↓ ∪ 𝑜𝑝𝑡 (𝑢)↓). By definition of 𝑜𝑝𝑡 (𝑢),
we have 𝛿 (𝑢↓ ∪ 𝑜𝑝𝑡 (𝑢)↓) ≤ 𝛿 (𝑆). These two inequalities implies

𝛿 (𝑤 ↓) ≤ 𝛿 (𝑆). However, since 𝑣 ∥ 𝑝 (𝑢) by Lemma 5.12 and 𝑤 is

incomparable to both 𝑢 and 𝑝 (𝑢), we have𝑤 ↓ ⊊ 𝑆 , and since 𝑆 is

extreme, this implies that 𝛿 (𝑤 ↓) > 𝛿 (𝑆), a contradiction.
The final case is 𝑢 ∈ 𝑢

↓
1
−𝑢1. Let 𝑆1 = 𝑢

↓
1
∪ 𝑜𝑝𝑡 (𝑢1)↓. The sets 𝑆1

and 𝑆 cross because 𝑢 ∥ 𝑢1 and 𝑣 ⊥ 𝑜𝑝𝑡 (𝑢1). Since 𝑆 is extreme, we

have 𝛿 (𝑆 \ 𝑆1) > 𝛿 (𝑆), so by posi-modularity, we have 𝛿 (𝑆1 \ 𝑆) <
𝛿 (𝑆1). Notice that 𝑆1 \ 𝑆 = 𝑣↓. It follows that 𝛿 (𝑣↑) < 𝛿 (𝑆1), which
contradicts 𝑆1’s subtree cut condition (S). □
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Figure 5: Reduction from complement case to subtrees case
after fixing 2 branches

5.4.4 Reducing to the Two Subtrees Case. Let 𝑣0 be the leaf of the
second branch guaranteed by Lemma 5.13. To find all extreme sets

in the form of complement of two subtrees,𝑢↓ ∪ 𝑣↓, we only need to
find the extreme sets with two endpoints𝑢 and 𝑣 on the branches of

𝑢0 and 𝑣0. Now we can contract edges except those on 𝑢
↑
0
and 𝑣

↑
0
, so

that the tree only consists of two branches. Split the two branches

by deleting the tree edge incident to the root on the branch of 𝑣0.

Then, contract 𝑢0 and 𝑣0 into a single vertex, and declare it as the

new root; see Figure 5. It is easy to see that any extreme set that

was previously of the form 𝑢↑ ∪ 𝑣↑ for 𝑢 ∈ 𝑢
↑
0
and 𝑣 ∈ 𝑣

↑
0
is now

a union of two subtrees, or just one subtree if 𝑣 is a child of root.

Therefore, we have reduced to the two subtrees case, as desired.

6 MERGING TWO LAMINAR TREES
In this section, we prove the lemma that merges two laminar fami-

lies and preserves all extreme sets in both families.

Lemma 6.1. Given two laminar families X and Y on the vertex
sets, Algorithm 2 constructs a merged laminar family 𝑅 containing
all extreme sets in X ∪Y (and possibly other sets in X ∪Y) in 𝑂̃ (𝑚)
time.

We represent each laminar family by a tree to ensure its repre-

sentation size is linear and not quadratic. In the tree representation,

each node corresponds to a set in the family, except the root which

represents all vertices 𝑉 . Each node 𝑥 has a (possibly empty) set of

vertices in 𝑉 associated with it, and the corresponding set in the

laminar family is all vertices in 𝑉 associated with any node in the

subtree rooted at 𝑥 . Each vertex in 𝑉 is associated with exactly one

node. Note that we do not require that only leaves have a nonempty

set of associated vertices. This is because even if we start with a

tree with only nonempty sets at leaves, the algorithm’s operations

on the tree may produce internal vertices with nonempty sets.

Our algorithm requires the definition of a bough of a tree, as

follows.

Definition 6.2. A bough is a tree path that starts at a leaf, extends

toward the root and stops before reaching the first node with more

than one children.

Our algorithm decomposes the laminar trees into disjoint boughs.

Initially all vertices are in the leaves. But as we proceed, the boughs

will be contracted to their parents, so there may be vertices in

internal nodes.

6.1 Removing Inconsistent Sets
We start by analyzing Algorithm 2.

Definition 6.3. We define a set𝑈 ⊆ 𝑉 to be consistent with𝑊 ⊆ 𝑉

if 𝛿 (𝑈 \𝑊 ) > 𝛿 (𝑈 ) or𝑊 is disjoint from 𝑈 . We define 𝑈 to be

consistent with a laminar familyY if𝑈 is consistent with all𝑊 ∈ Y.

Fact 6.4. An extreme set is consistent with any vertex set.

Algorithm 2: Verify(X,Y)

Input :Laminar trees X and Y on vertex set 𝑉 .

Output :Laminar tree of X∗ = X \ {𝑈 ∈ X : ∃𝑊 ∈
Y, 𝛿 (𝑈 \𝑊 ) ≤ 𝛿 (𝑈 ) and𝑈 ∩𝑊 ≠ ∅}.

1 Let X∗ = X.

2 while X is nonempty do
3 foreach bough B of X do
4 Using Lemma 6.5, find all sets𝑈 ∈ B such that

∃𝑊 ∈ Y, 𝛿 (𝑈 \𝑊 ) ≤ 𝛿 (𝑈 ) and𝑈 ∩𝑊 ≠ ∅. Add
all sets in B to X∗

except for the ones we found.

5 Remove the bough from X, and contract the vertices

in the bough to the bough’s parent node.

6 end
7 end
8 return X∗

.

Lemma 6.5. Consider a bough of X consisting of nested sets𝑈1 ⊆
𝑈2 ⊆ · · · ⊆ 𝑈𝑘 . There is an algorithm that outputs all sets 𝑈𝑖 for
which there exists𝑊 ∈ Y with 𝛿 (𝑈 \𝑊 ) ≤ 𝛿 (𝑈 ) and 𝑈 ∩𝑊 ≠ ∅.
The algorithm takes 𝑂̃ (𝑚) preprocessing time and then handles each
bough in time proportional to (up to polylogarithmic factor) the size
of the induced subgraph 𝐺 [𝑈𝑘 ].

Proof. Initialize a dynamic tree on the tree𝑇 representing lami-

nar familyY with initial value 0 on each node, along with a Boolean

flag that is initially false. Our goal is to maintain, for each𝑊 ∈ Y,

the value 𝛿 (𝑈 \𝑊 ) − 𝛿 (𝑈 ). We are interested in whether this value

is at most 0 for all𝑊 with 𝑈 ∩𝑊 ≠ ∅. Throughout, we abuse

notation by referring to each node and its set𝑊 interchangeably.

Iterate through𝑈1,𝑈2, . . . ,𝑈𝑘 in that order. For each𝑈𝑖 , we loop

through the vertices 𝑢 ∈ 𝑈𝑖 \𝑈𝑖−1 one by one in arbitrary order

𝑢1, 𝑢2, . . . , 𝑢ℓ . For convenience, define𝑈𝑖−1, 𝑗 = 𝑈𝑖−1 ∪ {𝑢1, . . . , 𝑢 𝑗 }.
For each vertex 𝑢 𝑗 , do the following.

(1) For each incident edge (𝑢 𝑗 , 𝑣) where 𝑣 ∈ 𝑈𝑖−1, 𝑗−1, add twice

the weight to each node on the path from 𝑣 to the lowest

common ancestor of 𝑢 𝑗 and 𝑣 (excluding the LCA).

(2) Add 2𝛿 (𝑢 𝑗 ,𝑈𝑖−1, 𝑗−1) − 𝛿 (𝑢 𝑗 ) to each node on the path from

𝑢 𝑗 to root. Each such node has its Boolean flag set to true.

After these operations, the algorithm queries the minimum value

over all nodes whose flag is set to true. If this minimum value is at

most 0, then we add 𝑈𝑖 to the output set.

For convenience, define𝑈0 = ∅. We prove by induction on 𝑖 ≥ 0

that after processing𝑈𝑖 , each node in the dynamic tree carries value

𝛿 (𝑈𝑖 \𝑊 ) − 𝛿 (𝑈𝑖 ). This is vacuously true for 𝑖 = 0 since 𝑈0 = ∅
and each node carries value 0. To prove each inductive step, we

perform a separate induction on vertices 𝑢1, . . . , 𝑢 𝑗−1 ∈ 𝑈𝑖 \𝑈𝑖−1.
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We claim that after inserting𝑢 𝑗 , each node in the dynamic tree with

corresponding set𝑊 ⊆ 𝑉 carries value 𝛿 (𝑈𝑖−1, 𝑗 \𝑊 ) − 𝛿 (𝑈𝑖−1, 𝑗 )
where 𝑈𝑖−1, 𝑗 = 𝑈𝑖−1 ∪ {𝑢1, . . . , 𝑢 𝑗 } = 𝑈𝑖−1, 𝑗−1 ∪ {𝑢 𝑗 }. This is true
for 𝑗 = 0 by induction on 𝑖 − 1. For each set𝑊 , consider the change

of its value after adding 𝑢 𝑗 into𝑈𝑖−1, 𝑗−1, that is

Δ 𝑗 = (𝛿 (𝑈𝑖−1, 𝑗 \𝑊 ) −𝛿 (𝑈𝑖−1, 𝑗 )) − (𝛿 (𝑈𝑖−1, 𝑗−1 \𝑊 ) −𝛿 (𝑈𝑖−1, 𝑗−1)) .

There are two cases. If 𝑢 𝑗 ∉𝑊 ,

Δ 𝑗 = 2𝛿 (𝑢 𝑗 ,𝑈𝑖−1, 𝑗−1 ∩𝑊 ).

If 𝑢 𝑗 ∈𝑊 ,

Δ 𝑗 = 2𝛿 (𝑢 𝑗 ,𝑈𝑖−1, 𝑗−1) − 𝛿 (𝑢 𝑗 ).
We show that this change is correctly accounted for in the dy-

namic tree updates. For each set𝑊 not containing 𝑢 𝑗 , each edge

(𝑢 𝑗 , 𝑣) with 𝑣 ∈ 𝑈𝑖−1, 𝑗−1 ∩𝑊 has its weight added twice to the

value of𝑊 , since𝑊 as an ancestor of 𝑣 but not an ancestor of 𝑢 𝑗 on

𝑇 . Therefore the value of𝑊 is increased by 2𝛿 (𝑢 𝑗 ,𝑈𝑖−1, 𝑗−1 ∩𝑊 ),
as expected. Note that in step (1), for each edge (𝑢 𝑗 , 𝑣), we only add
its weight to sets not containing 𝑢 𝑗 . For each set𝑊 containing 𝑢 𝑗 ,

it lies on the path from 𝑢 𝑗 to the root, and its value is increased

by 2𝛿 (𝑢 𝑗 ,𝑈𝑖−1, 𝑗−1) − 𝛿 (𝑢 𝑗 ) in step (2), as expected. These changes

match the required net change Δ 𝑗 .

It remains to show that a set 𝑈𝑖 should be output if and only if

there is a node in the tree with value at most 0 and Boolean flag

set to true. We have already shown that any node𝑊 of value at

most 0 satisfies 𝛿 (𝑈 \𝑊 ) − 𝛿 (𝑈 ) ≤ 0, so it remains to show that a

node𝑊 is flagged true if and only if𝑈 ∩𝑊 ≠ ∅. Observe that for
each vertex 𝑢 𝑗 processed, we flag the nodes from 𝑢 𝑗 to the root as

true; their sets are precisely those that contain 𝑢 𝑗 . Since the sets𝑈𝑖

are nested, once we finished processing 𝑈𝑖 , the nodes 𝑢 𝑗 we have

processed on iterations up to 𝑖 are precisely 𝑈𝑖 . In other words, a

set𝑊 is flagged true if and only if 𝑈 ∩𝑊 ≠ ∅, as desired.
Finally, we discuss running time. All dynamic tree operations

take𝑂 (log𝑛) time. The total number of edges (𝑢 𝑗 , 𝑣) for 𝑣 ∈ 𝑈𝑖−1, 𝑗−1,
summed over all 𝑖 and 𝑗 , is at most the number of edges in the in-

duced subgraph 𝐺 [𝑈𝑘 ]. □

Lemma 6.6. Algorithm 2 takes 𝑂̃ (𝑚) time.

Proof. For each bough with root 𝑈𝑘 , we spend time propor-

tional to the number of edges in induced graph 𝐺 [𝑈𝑘 ], and then

we contract all vertices in 𝑈𝑘 into a single vertex. The contraction

removes all edges in the induced graph 𝐺 [𝑈𝑘 ], so the decrease in

number of edges pays for the processing time of the bough. Since

there are𝑚 initial edges, the total running time becomes 𝑂̃ (𝑚). □

Corollary 6.7. Given two laminar families X and Y, let X∗ =

Verify(X,Y) and Y∗ = Verify(Y,X). Then, X∗ ∪ Y∗ is laminar.

Proof. Assume for contradiction that some𝑈 ∈ X∗ ⊆ X crosses

some𝑊 ∈ Y∗ ⊆ Y. Then 𝑈 ∩𝑊 ≠ ∅, and by posi-modularity,

either 𝛿 (𝑈 \𝑊 ) ≤ 𝛿 (𝑈 ) or 𝛿 (𝑊 \𝑈 ) ≤ 𝛿 (𝑊 ). By Lemma 6.5, either

𝑈 or𝑊 will be removed in Algorithm 2, which contradicts the

definitions of X∗
and Y∗

. □

Given laminar families X,Y and their tree structures, we can

therefore run Algorithm 2 to obtain X∗,Y∗
such that X∗ ∪ Y∗

is

a laminar family containing all extreme sets in X ∪ Y. We can

easily recover the tree structures of X∗
and Y∗

as well. It remains

to recover the tree structure of X∗ ∪ Y∗
.

Lemma 6.8. Assume that X∗, Y∗, and X∗ ∪ Y∗ are all laminar
families. There is an 𝑂 (𝑛 log𝑛) algorithm that computes the tree
structure of X∗ ∪ Y∗.

Proof. Let 𝑇X∗ and 𝑇Y∗ be the tree structures for X∗
and Y∗

,

respectively. We first find, for each set 𝑍 ∈ X∗ ∪ Y∗
, (a pointer to)

the parent node of 𝑍 in the tree structure 𝑇 of X∗ ∪ Y∗
. Pick an

arbitrary vertex 𝑧 ∈ 𝑍 . Since X∗ ∪Y∗
is laminar, the parent of 𝑍 is

exactly the set 𝑍 ′ ∈ X∗ ∪ Y∗
satisfying 𝑧 ∈ 𝑍 ′

and |𝑍 ′ | > |𝑍 | and
|𝑍 ′ | is as small as possible given these two constraints. The set 𝑍 ′

can be found by computing a binary search on the path from 𝑧 to

the root on the tree structures for X∗
and Y∗

and taking the best

𝑍 ′
found. If there is a tie, as in both X∗

and Y∗
include the parent

𝑍 ′
, then we take the pointer to the one in X∗

, and we can ignore

the duplicate one in Y∗
in the next step of the algorithm.

By computing all the parents (and ignoring the duplicate nodes),

we can build the tree 𝑇 for X∗ ∪ Y∗
where each node corresponds

to the same set as its pointer in the tree structure of X∗
or Y∗

. It

remains to compute the set of vertices associated with each node.

For each node 𝑍 ∈ X∗
or 𝑍 ∈ Y∗

with children 𝑍1, . . . , 𝑍𝑘 in 𝑇X∗

or 𝑇Y∗ respectively, we check whether each vertex in 𝑍 \ ⋃𝑖 𝑍𝑖
is in any child of 𝑍 in 𝑇 . This can be done by first marking the

pointer of each child of 𝑍 in𝑇 (which is a node in𝑇X∗ or𝑇Y∗ ), and

then testing, for each vertex 𝑣 ∈ 𝑍 \ ⋃𝑖 𝑍𝑖 and for both 𝑇X∗ and

𝑇Y∗ , whether the node associated with 𝑣 in either 𝑇X∗ or 𝑇Y∗ is a

descendant of a marked node. This can be done in𝑂 (log𝑛) time per

vertex 𝑣 using tree data structures. Any vertex 𝑣 ∈ 𝑍 that is not a

descendant of any marked node is associated with 𝑍 in the new tree

𝑇 . As for running time, marking the pointer of each child of 𝑍 in

𝑇 takes 𝑂 (log𝑛) times the number of children, which is 𝑂 (𝑛 log𝑛)
time summed over all 𝑍 . Also, we can iterate through 𝑣 ∈ 𝑍 \⋃𝑖 𝑍𝑖
since these are precisely the nodes associated with 𝑍 in either 𝑇X∗

or 𝑇Y∗ , and the descendant queries take 𝑂 ( |𝑍 \⋃𝑖 𝑍𝑖 | log𝑛) time

overall, which again sums to 𝑂 (𝑛 log𝑛) over all 𝑍 . □
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