2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

Breaking the Cubic Barrier for All-Pairs Max-Flow:
Gomory-Hu Tree in Nearly Quadratic Time

Amir Abboud
Weizmann Institute of Science
Rehovot, Israel

Debmalya Panigrahi
Duke University
Durham, USA
debmalya@cs.duke.edu

Abstract—In 1961, Gomory and Hu showed that the All-Pairs
Max-Flow problem of computing the max-flow between all (g)
pairs of vertices in an undirected graph can be solved using only
n—1 calls to any (single-pair) max-flow algorithm. Even assuming
a linear-time max-flow algorithm, this yields a running time of
O(mn), which is O(n®) when m = ©(n?). While subsequent
work has improved this bound for various special graph classes,
no subcubic-time algorithm has been obtained in the last 60
years for general graphs. We break this longstanding barrier
by giving an O(n?)-time algorithm on general, integer-weighted
graphs. Combined with a popular complexity assumption, we
establish a counter-intuitive separation: all-pairs max-flows are
strictly easier to compute than all-pairs shortest-paths.

Our algorithm produces a cut-equivalent tree, known as the
Gomory-Hu tree, from which the max-flow value for any pair
can be retrieved in near-constant time. For unweighted graphs,
we refine our techniques further to produce a Gomory-Hu tree
in the time of a poly-logarithmic number of calls to any max-
flow algorithm. This shows an equivalence between the all-pairs
and single-pair max-flow problems, and is optimal up to poly-
logarithmic factors. Using the recently announced m!'*°()-time
max-flow algorithm (Chen et al., March 2022), our Gomory-Hu
tree algorithm for unweighted graphs also runs in m'*t°(")-time.

Index Terms—Gomory-Hu tree, graph algorithms, minimum
cut, maximum flow

I. INTRODUCTION

The edge connectivity of a pair of vertices s,t in an
undirected graph is defined as the minimum weight of edges
whose removal disconnects s and ¢ in the graph. Such a set
of edges is called an (s,t) mincut, and by duality, its value
is equal to that of an (s,t) max-flow. Consequently, the edge

A full version of this paper is available at arXiv:2111.04958. A.A. is
supported by an Alon scholarship and a research grant from the Center
for New Scientists at the Weizmann Institute of Science. R.K. is supported
by ONR Award N00014-18-1-2364, the Israel Science Foundation grant
#1086/18, the Weizmann Data Science Research Center, and a Minerva
Foundation grant. D.P. is supported in part by NSF Awards CCF-1750140
(CAREER) and CCF-1955703, and ARO Award W911NF2110230. O.T. is
supported by the NSF Grant CCF-1815316, and by the NWO VICI grant
639.023.812, and his work is partially done at University of Michigan, Ann
Arbor.

2575-8454/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00088

Robert Krauthgamer
Weizmann Institute of Science
Rehovot, Israel
amir.abboud@weizmann.ac.il robert.krauthgamer@weizmann.ac.il

Thatchaphol Saranurak
University of Michigan, Ann Arbor
Ann Arbor, USA
thsa@umich.edu

884

Jason Li
Simons Institute
University of California, Berkeley
Berkeley, USA
jmliQRalumni.cmu.edu
Ohad Trabelsi
Toyota Technological Institute at Chicago
Chicago, USA
ohadt@ttic.edu

connectivity of a vertex pair is obtained by running a max-
flow algorithm, and by extension, the edge connectivity for all
vertex pairs can be obtained by (%) = ©(n?) calls to a max-
flow algorithm. (Throughout, n and m denote the number of
vertices and edges in the input graph G = (V, E, w), where
w:E— ZO+ maps edges to non-negative integer weights. We
denote the maximum edge weight by W.)

Definition 1 (The All-Pairs Max-Flow (APMF) Problem).
Given an undirected edge-weighted graph, return the edge
connectivity of all pairs of vertices.

Remarkably, Gomory and Hu [40] showed in a seminal
work in 1961 that one can do a lot better than this naive
algorithm. In particular, they introduced the notion of a cut
tree (later called Gomory-Hu tree, which we abbreviate as
GHTREE) to show that n—1 max-flow calls suffice for finding
the edge connectivity of all vertex pairs.

Theorem 2 (Gomory-Hu (1961)). For any undirected edge-
weighted graph G = (V, E), there is a cut tree (or GHTREE),
which is defined as a tree T on the same set of vertices V
such that for all pairs of vertices s,t € V, the (s,t) mincut in
T is also an (s,t) mincut in G and has the same cut value.
Moreover, such a tree can be computed using n — 1 max-flow
calls.!

Since their work, substantial effort has gone into obtaining
better GHTREE algorithms, and faster algorithms are now
known for many restricted graph classes, including unweighted
graphs [7], [24], [48], simple graphs [6], [8], [9], [55], [72],
planar graphs [26], surface-embedded graphs [25], bounded
treewidth graphs [5], [16], and so on (see the survey [63]).
Indeed, GHTREE algorithms are part of standard textbooks
in combinatorial optimization (e.g., [12], [31], [67]) and have
numerous applications in diverse areas such as networks [45],
image processing [71], and optimization [62]. They have also

IThese max-flow calls are on graphs that are contractions of G, and thus
no larger than G.

inspired entire research directions as the first example of a
sparse representation of graph cuts, the first non-trivial global
min-cut algorithm, the first use of submodular minimization in
graphs, and so forth.

In spite of this attention, Gomory and Hu’s 60-year-old
algorithm has remained the state of the art for constructing
a GHTREE in general, weighted graphs (or equivalently for
APMF, due to known reductions [5], [55] showing that any
APMF algorithm must essentially construct a GHTREE). Even
if we assume an optimal O(m)-time max-flow algorithm, the
Gomory-Hu algorithm takes O(mn) time, which is O(n?)
when m = ©(n?). Breaking this cubic barrier for the GHTREE
problem has been one of the outstanding open questions in the
graph algorithms literature.

In this paper, we break this longstanding barrier by giving
a GHTREE algorithm that runs in O(n?)-time for general,
weighted graphs.

Theorem 3. There is a randomized Monte Carlo algorithm
for the GHTREE (and APMF) problems that runs in O(n?)
time in general, weighted graphs.

a) Remarks: 1. As noted earlier (and similar to state-of-

the-art max-flow algorithms), we assume throughout the paper
that edge weights are integers in the range {1,2,..., W}
Throughout, the notation O(-) hides poly-logarithmic factors
inn and W.
2. Our result is unconditional, i.e., it does not need to assume
a (near/almost) linear-time max-flow algorithm. We note that
concurrent to our work, an almost-linear time max-flow al-
gorithm has been announced [30]. Our improvement of the
running time of GHTREE/APMEF is independent of this result:
even with this result, the best GHTREE/APMF bound was
m!*t°Mn which is between n?+°() and n3+°(1) depending
on the value of m, and we improve it to O(n?). Moreover,
we stress that we do not need any recent advancement in max-
flow algorithms for breaking the cubic barrier: even using
the classic Goldberg-Rao max-flow algorithm [38] in our
(combinatorial) algorithm solves GHTREE/APMF in subcubic
time.

Our techniques also improve the bounds known for the
GHTREE problem in unweighted graphs, and even for simple
graphs, which are defined as unweighted graphs without
parallel edges. Observe that the GHTREE problem in simple
graphs is easier than in unweighted graphs, which in turn is
easier than in general weighted graphs. For unweighted graphs,
the best previous results were O(mn) obtained by Bhalgat et
al. [24] and by Karger and Levine [48], and an incomparable
result that reduces the GHTREE problem to O(y/m) max-flow
calls [7]. There has recently been much interest and progress
on GHTREE in simple graphs as well [6], [8], [9], [55], [72],
with the current best running time being (m + n'2)!+o(),

We give a reduction of the GHTREE problem in unweighted
graphs to polylog(n) calls of any max-flow algorithm. Note
that this reduction is nearly optimal (i.e., up to the poly-log
factor) since the all-pairs max-flow problem is at least as hard

885

as finding a single-pair max-flow. Using the recent m!*o()-
time max-flow algorithm [30], this yields a running time of
m!*+°() for the GHTREE problem in unweighted graphs.

Theorem 4. There is a randomized Monte Carlo algorithm for
the GHTREE problem that runs in m*+°) time in unweighted
graphs.

b) APMF vs APSP: Our results deliver a surprising
message to a fundamental question in graph algorithms: What
is easier to compute, shortest paths or max-flows? Ignoring
n°M) factors, the single-pair versions are both solvable in
linear-time and therefore equally easy; albeit, the shortest path
algorithm [33] is classical, elementary, and fits on a single
page, whereas the max-flow algorithm [30] is very recent,
highly non-elementary, and requires more than a hundred
pages to describe and analyze. This and nearly all other
evidence (perhaps excluding the mere existence of the succinct
Gumory Hu trees) had supported the consensus that max-
flows are at least as hard as (if not strictly harder than)
shortest paths, and perhaps this can be established by looking
at the more general all-pairs versions: APMF and APSP
(All-Pairs Shortest-Paths). Much effort had gone into proving
this belief (APMF > APSP) using the tools of fine-grained
complexity [3], [5], [7], [10], [50], with limited success: it
was shown that (under popular assumptions) APMF is strictly
harder than APSP in directed graphs, but the more natural
undirected setting remained open. The first doubts against
the consensus were raised in the aforementioned n2+°(!)
algorithms for APMF in simple (unweighted) graphs that go
below the n“ bound of APSP [68] (where 2 < w < 2.37286
[14] denotes the fast matrix multiplication exponent). But if,
as many experts believe, w = 2+40(1) then the only conclusion
is that APMF and APSP are equally easy in simple graphs.
In general (weighted) graphs, however, one of the central
conjectures of fine-grained complexity states that the cubic
bound for APSP cannot be broken (even if w = 2). Under
this “APSP Conjecture”, Theorem 3 proves that APMF is
strictly easier than APSP! Alternatively, if one still believes
that APMF > APSP, then our paper provides strong evidence
against the APSP Conjecture and against the validity of the
dozens of lower bounds that are based upon it (e.g., [2], [4],
[11], [27], [65], [66], [70]) or upon stronger forms of it (e.g.,
(1], [18], [19], [32], [37]).

A. Related Work

Algorithms: Before this work, the time complexity of
constructing a Gomory-Hu tree in general graphs has im-
proved over the years only due to improvements in max-
flow algorithms. An alternative algorithm for the problem
was discovered by Gusfield [41], where the n — 1 max-
flow queries are made on the original graph (instead of on
contracted graphs). This algorithm has the same worst-case
time complexity as Gomory-Hu’s, but may perform better in
practice [39]. Many faster algorithms are known for special
graph classes or when allowing a (1 + €)-approximation; see
the full version of this paper for a summary. Moreover, a

few heuristic ideas for getting a subcubic complexity in social
networks and web graphs have been investigated [13].

Hardness Results: The attempts at proving conditional
lower bounds for All-Pairs Max-Flow have only succeeded in
the harder settings of directed graphs [3], [50] or undirected
graphs with vertex weights [7], where Gomory—Hu trees may
not even exist [43], [46], [57]. In particular, SETH gives an
n3~°() Jower bound for weighted sparse directed graphs [50]
and the 4-Clique conjecture gives an n“*+'=°(1) lower bound
for unweighted dense directed graphs [3].

Applications: Gomory-Hu trees have appeared in many
application domains. We mention a few examples: in math-
ematical optimization for the b-matching problem [62] (and
that have been used in a breakthrough NC algorithm for perfect
matching in planar graphs [15]); in computer vision [71], lead-
ing to the graph cuts paradigm; in telecommunications [45]
where there is interest in characterizing which graphs have a
Gomory-Hu tree that is a subgraph [49], [61]. The question
of how the Gomory-Hu tree changes with the graph has arisen
in applications such as energy and finance and has also been
investigated, e.g., [20], [21], [34], [42], [64].

B. Overview of Techniques

We now introduce the main technical ingredients used in
our algorithm, and explain how to put them together to prove
Theorem 3 and Theorem 4.

a) Notation: In this paper, a graph G is an undirected
graph G = (V, E, w) with edge weights w(e) € {1,2,..., W}
for all e € E. If w(e) = 1 for all e € E, we say that G is
unweighted. The total weight of an edge set E’ C F is defined
as w(E') = . p w(e). For a cut (S,V'\ S), we also refer
to a side S of this cut as a cut. The value of cut S is denoted
0(S) = w(E(S,V \ S)). For any two vertices a,b, we say
that S is an (a,b)-cut if |S N {a,b}| = 1. An (a,b)-mincur is
an (a,b)-cut of minimum value, and we denote its value by
A(a, b).

b) Reduction to Single-Source Minimum Cuts: The clas-
sic Gomory-Hu approach to solving APMF is to recursively
solve (s,t) mincut problems on graphs obtained by contract-
ing portions of the input graph. This leads to n — 1 max-
flow calls on graphs that cumulatively have O(mn) edges.
Recent work [5] has shown that replacing (s,¢) mincuts by
a more powerful gadget of single-source mincuts reduces the
cumulative size of the contracted graphs to only O(m). But,
how do we solve the single-source mincuts problem? Prior
to our work, a subcubic algorithm was only known for simple
graphs [6], [8], [9], [55], [72]. Unfortunately, if applied to non-
simple graphs, these algorithms become incorrect, and not just
inefficient.

Conceptually, our main contribution is to give an O(nz)-
time algorithm for the single source mincuts problem in
general weighted graphs. For technical reasons, however, we
will further restrict this problem in two ways: (1) the algorithm
(for the single-source problem) only needs to return the values
A(s,t) for some terminals ¢ € U \ {s}, and (2) the mincut

886

values A(s,t) for the terminals ¢t € U \ {s} are guaranteed to
be within a 1.1-factor of each other.”

We now state a reduction from GHTREE to this restricted
single-source problem. Let U C V be a set of termi-
nal vertices. The U-Steiner connectivity/mincut is \(U) =
min, per A(a, b). The restricted single-source problem is de-
fined below.

Problem 5 (Single-Source Terminal Mincuts with Promise).
The input is a graph G = (V, E,w), a terminal set U CV
and a source terminal s € U with the promise that for all
t € U\ {s}, we have \(U) < A(s,t) < 1.IA(U). The goal is
to determine the value of \(s,t) for each terminal t € U\ {s}.

The reduction has two high-level steps. First, we reduce the
single-source terminal mincuts problem without the promise
that A(s,t) € [A(U),1.1A(U)] (we define this formally in the
full version of this paper) to the corresponding problem with
the promise (i.e., Problem 5) by calling an approximate single-
source mincuts algorithm of Li and Panigrahi [54]. Then, we
use a reduction from Gomory-Hu tree to the single-source
terminal mincuts without the promise that was presented by
Li [51].3 For completeness, we fully describe both steps of the
reduction in the full version.

Lemma 6 (Reduction to Single-Source Terminal Mincuts).
There is a randomized algorithm that computes a GHTREE of
an input graph by making calls to max-flow and single-source
terminal mincuts (with the promise, i.e., Problem 5) on graphs
with a total of O(n) vertices and O(m) edges, and runs for
O(m) time outside of these calls.

¢) Guide Trees: The main challenge, thus, is to solve
single-source terminal mincuts (Problem 5) faster than n — 1
max-flow calls. Let us step back and think of a simpler
problem: the global mincut problem. In a beautiful paper,
Karger [47] gave a two-step recipe for solving this problem
by using the duality between cuts and tree packings. First,
by packing a maximum set of edge-disjoint spanning trees in
a graph and sampling one of them uniformly at random, the
algorithm obtains a spanning tree that, with high probability, 2-
respects the global mincut, meaning that only two edges from
the tree cross the cut. Second, a simple linear-time dynamic
program computes the minimum value cut that 2-respects the
tree. Can we use this approach?

Clearly, we cannot hope to pack A(U) disjoint spanning
trees since the global mincut value could be much less than
A(U). But what about Steiner trees? A tree T is called a U-
Steiner tree if it spans U, i.e., U C V(T'). When U is clear
from the context, we write Steiner instead of U-Steiner.

First, we define the k-respecting property for Steiner trees.

Definition 7 (k-respecting). Let A C V be a cut in G =
(V,E,w). Let T be a tree on (some subset of) vertices in V.

>The value 1.1 is arbitrary and can be replaced by any suitably small
constant greater than 1.

3The actual reduction is slightly stronger in the sense that it only requires
a “verification” version of single-source terminal mincuts, but we omit that
detail for simplicity.

We say that the tree T k-respects the cut A (and vice versa)
if T contains at most k edges with exactly one endpoint in A.

Using this notion of k-respecting Steiner trees, we can now
define a collection of guide trees that is analogous to a packing
of spanning trees.

Definition 8 (Guide Trees). For a graph G and set of terminals
U C V with a source s € U, a collection of U-Steiner trees
Ti,...,Ty is called a k-respecting set of guide trees, or in
short guide trees, if for every t € U \ {s}, at least one tree T;
k-respects some (s, t)-mincut in G.

Two questions immediately arise:
1) Can we actually obtain such k-respecting guide trees,
for a small k& (and h)?

2) Can guide trees be used to speed up the single-source

mincuts algorithm?

The first question can be solved in a way that is concep-
tually (but not technically) similar to Karger’s algorithm for
global mincut. We first prove, using classical tools in graph
theory (namely, Mader’s splitting-off theorem [56], and Nash-
Williams [60] and Tutte’s [69] tree packing) that there exists a
packing with A\(U)/2 edge-disjoint Steiner trees. Then, we use
the width-independent Multiplicative Weights Update (MWU)
framework [17], [35], [36] to pack a near-optimal number of
Steiner trees using O(m) calls to an (approximation) algorithm
for the minimum Steiner tree problem. For the latter, we use
Mehlhorn’s 2-approximation algorithm [58] that runs in O(m)
time, giving a packing of A(U)/4 Steiner trees in O(m?2) time.
To speed this up, we compute the packing in a (1 + €)-cut-
sparsifier of G (e.g., [22]), which effectively reduces m to
O(n) for this step. Overall, this gives an O(n?)-time algorithm
for constructing 4-respecting guide trees.

We note that our improved running time for unweighted
graphs comes from replacing this algorithm for constructing
guide trees by a more complicated algorithm. Specifically, we
show that all of the O(m) calls to (approximate) minimum
Steiner tree during the MWU algorithm can be handled in a
total of m!*°() time using a novel dynamic data structure
that relies on (1) a non-trivial adaptation of Mehlhorn’s
reduction from minimum Steiner tree to approximate Single-
Source Shortest Paths and (2) a recent decremental (dynamic)
algorithm for the latter problem [23].* This achieves running
time m!'t°() compared with O(n?) for unweighted graphs.

We summarize the construction of guide trees in the next
theorem, which we prove in Section IIl. (The new dynamic
data structure that is used in the improvement for unweighted
graphs is deferred to the full version of the paper.)

Theorem 9 (Constructing Guide Trees). There is a random-
ized algorithm that, given a graph G = (V, E,w), a terminal
set U CV and a source terminal s € U, with the guarantee

that for all t € U\ {s}, AU) < A(s,t) < 1L1AU),

4While decremental algorithms for approximate single-source shortest paths
have been known since [44], the algorithm of [23] is the first to work against
adaptive adversaries, which is required for the MWU framework. In particular,
their algorithm is deterministic.

887

computes a 4-respecting set of O(logn) guide trees. The
algorithm takes O(nQ) time on weighted graphs (i.e., when
w(e) € {1,2,..., W} for all e € E) and m*+t°") time on
unweighted graphs (i.e., when w(e) =1 for all e € E).

But, how do guide trees help? In the case of global mincuts,
the tree is spanning, hence every k tree edges define a partition
of V, and also a cut in G. Therefore, once the k-respecting
property has been achieved, finding the best k-respecting cut
is a search over at most n* cuts for any given tree, and can be
done using dynamic programming for small k£ [47]. In contrast,
specifying the k tree-edges that are cut leaves an exponential
number of possibilities when 7' is a Steiner tree based on
which side of the cut the vertices not in 7" appear on. In fact,
in the extreme case where the Steiner tree is a single edge
between two terminals s and ¢, computing the 1-respecting
mincut is as hard as computing (s, ¢)-mincut.

We devise a recursive strategy to solve the problem of
obtaining k-respecting (s, t)-mincuts. First, we root the tree
T at a centroid, and recursively solve the problem on each
subtree, finding a new vertex s if necessary. By the choice of
the centroid, each subtree contains half as many vertices, so
the recursion depth is logarithmic. We show that each recursive
call preserves the k-respecting property for (s, t)-mincuts for
vertices ¢ in the targeted subtree. However, in general, this
is too expensive since the entire graph G is being used in
each recursive call, and there can be many subtrees (and a
correspondingly large number of recursive calls). Nevertheless,
we show that this strategy can be made efficient when all the
cut edges are in the same subtree by an application of the
Isolating Cuts Lemma from [8], [53] and suitably contracting
the graph in each recursive call.

This leaves us with the case where the cut edges are spread
across multiple subtrees. Here, we use a different recursive
strategy. Consider the subtrees rooted at the children of the
centroid. We randomly remove a subset of these subtrees, and
recursively solve the problem on the remaining tree with a
smaller value of k. (We ensure that the subtree containing
s, if it exists, is never removed.) Note that this effectively
turns our challenge in working with Steiner trees vis-a-vis
spanning trees into an advantage; if we were working on
spanning trees, sampling and removing subtrees would have
violated the spanning property. This strategy works directly
when there exists at least one cut edge in a subtree other than
those containing s and ¢; then, with constant probability, we
remove this subtree but not the ones containing s, t to reduce
k by at least 1. The more tricky situation is if the cut edges are
only in the subtrees of s and ¢; this requires a more intricate
procedure involving a careful relabeling of the source vertex
s using a Cut Threshold Lemma from [54].

The algorithm is presented in detail in Section II, and we
state here its guarantees.

Theorem 10 (Single-Source Mincuts given a Guide Tree). Let
G = (V, E,w) be a weighted graph, let T be a tree defined
on (some subset of) vertices in V, and let s be a vertex in T.
For any fixed integer k > 2, there is a Monte-Carlo algorithm

that finds, for each vertex t # s in T, a value A(t) > A(s, t)
such that \(t) = A(s,t) if T is k-respecting an (s,t)-mincut.
The algorithm takes m*t°M) time.

d) Remarks: The algorithm in Theorem 10 calls max-
flow on instances of maximum number of m edges and n
vertices and total number of O(m) edges and O(n) vertices,
and spends O(m) time outside these calls. The number of
logarithmic factors hidden in the O(-) depends on k. Note
that the running time of the algorithm is m't°(1) even when
G is a weighted graph.

e) Putting it all together: Proof of Theorem 3 and Theo-
rem 4: The three ingredients above suffice to prove our main
theorems. By Lemma 6, it suffices to solve the single-source
mincut problem (Problem 5). Given an instance of Problem 5
on a graph G with terminal set U, we use Theorem 9 to
obtain a 4-respecting set of O(logn) guide trees. We call
the algorithm in Theorem 10 for each of the O(logn) trees
separately and keep, for each ¢ € U\ {s}, the minimum (s, t)
found over all the O(logn) trees.

The running time of the final algorithm equals that of max-
flow calls on graphs with at most O(m) edges and O(n)
vertices each, and total number of O(m) edges and O(n)
vertices. In addition, the algorithm takes O(n?) time outside
of these calls (in Theorem 9); in unweighted graphs, the
additional time is only m!'*To(),

II. SINGLE-SOURCE MINCUTS GIVEN A GUIDE TREE

In this section, we present our single-source mincut algo-
rithm (SSMC) given a guide tree, which proves Theorem 10.

Before describing the algorithm, we state two tools we
will need. The first is the Isolating-Cuts procedure introduced
by Li and Panigrahi [53] and independently by Abboud,
Krauthgamer, and Trabelsi [8]. (Within a short time span, this
has found multiple interesting applications [6], [9], [28], [29],
[52], [54], [55], [59], [72])

Recall that for a vertex set S C V, §(5) denotes the total
weight of edges with exactly one endpoint in S (i.e., the value
of the cut (S, V'\ S)). For any two disjoint vertex sets A, B C
V, we say that S is an (A, B)-cut if A C S and BNS =0 or
B C S and AN S = (. In other words, the cut S “separates”
the vertex sets A and B. We say that S is an (A, B)-mincut if
it is an (A, B)-cut of minimum value, and let A(A4, B) denote
the value of an (A, B)-mincut. As described earlier, if A and
B are singleton sets, say A = {a} and B = {b}, then we use
the shortcut (a, b)-mincut to denote an (A, B)-mincut, and use
A(a,b) to denote the value of an (a, b)-mincut.

We now state the isolating cuts lemma from [8], [53]:

Lemma 11 (Isolating Cuts Lemma: Theorem 2.2 in [53], also
follows from Lemma 3.4 in [8]). There is an algorithm that,
given a graph G = (V, E,w) and a collection U of disjoint
terminal sets Un,..., Uy, C V, computes a (U;,U;2U;)-
mincut for every U; € U. The algorithm calls max-flow
on graphs that cumulatively contain O(mlogh) edges and
O(nlog h) vertices, and spends O(m) time outside these calls.

888

a) Remark: The isolating cuts lemma stated above
slightly generalizes the corresponding statement from [8], [53].
In the previous versions, each of the sets Uy, Us, ..., Uy is a
distinct singleton vertex in V. The generalization to disjoint
sets of vertices is trivial because we can contract each set U;
for ¢ € [h] and then apply the original isolating cuts lemma to
this contracted graph to obtain Lemma 11.

We call each (U;,U;»;U;)-mincut S; a minimum isolating
cut because it “isolates” U; from the rest of the terminal sets,
using a cut of minimum size. The advantage of this lemma is
that it essentially only costs O(log h) max-flow calls, which is
an exponential improvement over the naive strategy of running
h max-flow calls, one for each U;.

The next tool is the Cut-Threshold procedure of Li and Pani-
grahi, which has been used earlier in the approximate Gomory-
Hu tree problem [54] and in edge connectivity augmentation
and splitting off algorithms [28].

Lemma 12 (Cut-Threshold Lemma: Theorem 1.6 in [54]).
There is a randomized, Monte-Carlo algorithm that, given a
graph G = (V,E,w), a vertex s € V, and a threshold by
computes all vertices v € V with X(s,v) < X (recall that
A(s,v) is the size of an (s,v)-mincut). The algorithm calls
max-flow on graphs that cumulatively contain O(m) edges
and O(n) vertices, and spends O(m) time outside these calls.

We use the Cut-Threshold lemma to obtain the following
lemma, which is an important component of our final algo-
rithm. At a high level, we simply binary search on the value
Amax; We leave the details to the full version of the paper.

Lemma 13. For any subset U C V' of vertices and a vertex
s ¢ U, there is a randomized, Monte-Carlo algorithm that
computes Amax = max{A(s,t) : t € U} as well as all
vertices t € U attaining this maximum, i.e., the vertex set
argmax;cy{ (s, t)}. The algorithm calls max-flow on graphs
that cumulatively contain O(m) edges and O(n) vertices, and
spends O(m) time outside these calls.

b) The SSMC Algorithm: Having introduced the main
tools, we are now ready to present our SSMC algorithm (see
Figure 1). The input to the algorithm is a graph G = (V, E, w)
containing a specified vertex s, a (guide) tree 1" containing s,
and a positive integer k. The algorithm is a recursive algorithm,
and although the guide tree initially only contains vertices
in V, there will be additional vertices (not in V') that are
introduced into the guide tree in subsequent recursive calls.
To distinguish between these two types of vertices, we define
R(T) as the subset of vertices of T that are in V/, and call
these real vertices. We call the vertices of 7" that are not in V'
fake vertices.

We extend the definition of k-respecting (i.e., Definition 7)
to fake vertices as follows:

Definition 14 (Generalized k-respecting). Let A C V be a
cut in G = (V,E,w). Let T be a tree on (some subset of)
vertices in V' as well as additional vertices not in V. We say
that T k-respects cut A (and vice versa) if there exists a set

F'5 of fake vertices such that T" contains at most k edges with
exactly one endpoint in A U F4; we say that such edges are
cut by AU Fy.

We also note that even if all the vertices in 7' are real
vertices, 7' may not be a subgraph of G.

Recall that our goal is to obtain a value A(£) > A(s,t)
for every terminal ¢t € U \ {s} such that if an (s, t)-mincut k-
respects T', then \(t) = A(s, t). We will actually compute A(t)
for every real vertex t € R(T')\ {s}; clearly, this suffices since
the input Steiner tree (i.e., at the top level of the recursion)
spans all the vertices in U.

The algorithm maintains estimates A(¢) of the mincut values
A(s,t) for all t € R(T) \ {s}. The values A(t) are initialized
to oo, and whenever we compute an (s, t)-cut in the graph, we
“update” A(t) by replacing A(t) with the value of the (s, ¢)-
cut if it is lower. Formally, we define UPDATE(t,) : A(t)
min(A(¢), z).

We describe the algorithm below. The reader should use the
illustration in Figure 1 as a visual description of each step of
the algorithm.

1) First, we describe a base case. If |R(T)| is less than
some fixed constant, then we simply compute the (s, t)-
mincut in G separately for each ¢t € R(T) \ {s}
using |R(T)| — 1 O(1) max-flow calls, and run
UPDATE(t, A(s, t)).

From now on, assume that |R(T)| is larger than some
(large enough) constant.’

Let ¢ be a centroid of the tree T', defined in the following
manner: c is a (possibly fake) vertex in 7" such that if
we root 1" at ¢, then each subtree rooted at a child of ¢
has at most |R(T)|/2 real vertices.®

If c € R(T) and s # ¢, then compute an (s, ¢)-mincut
in G (whose value is denoted \) using a max-flow call
and run UPDATE(c, A(s, ¢)).

Root T" at ¢ and let uq, ..., uy be the children of c. For
each ¢ € [¢], let T; be the subtree rooted at ;. Recall that
R(T;) denotes the set of real vertices in the respective
subtrees T; for ¢ € [¢]. (For technical reasons, we ignore
subtrees 7; that do not contain any real vertex.) Use
Lemma 11 to compute minimum isolating cuts in G
with the following terminal sets: (1) U; = R(T;) for
i€ []. (2) If ¢c € R(T), then we add an additional set
Upt1 = {c}. Note that U;U; = R(T) irrespective of
whether ¢ € R(T) or not.

Let S; C V be the (U;, R(T)\U;)-mincut in G obtained
from Lemma 11. We ignore Syy; (if it exists) and
proceed with the remaining sets S; for ¢ € [¢] in the
next step.

2)

3)

SFor example, the constant 10 is more than enough.

A centroid always exists by the following simple argument: take the (real
or fake) vertex of T' of maximum depth whose subtree rooted at 7' has at
least |R(T")|/2 real vertices. By construction, this vertex is a centroid of T,
and it can be found in time linear in the number of vertices in the tree using
a simple dynamic program.

889

4) For each ¢ € [{], define G; as the graph G with V' \ S;
contracted to a single vertex. Now, there are two cases.
In the first case, we have s € V'\ S;. Then, the contracted
vertex for V' \ S; is labeled the new s in graph G;.
Correspondingly, define 77 as the tree 7; with an added
edge (s,u;) (recall that u; is the root of T;). In the
second case, we have s € S;. Then, assign a new label
¢; to the contracted vertex for V'\ S; in G;. In this case,
define T as the tree T; with an added edge (c;, u;), and
keep the identity of vertex s unchanged since it is in
T;. (Note that if s = ¢, the only difference is that the
second case does not happen for any i € [¢].)

In both cases above, make recursive calls (G;, T}, k)
for all ¢ € [¢]. Call UPDATE(t, N (s,t)) for all ¢ €
R(T;) \ {s} where the recursive call returns the value
N (s,t) for the variable A(t). Furthermore, if s € S;, call
UPDATE(t, A (s, ¢;)) for all t € R(T)\ R(T;) where the
recursive call returns the value \'(s, c;) for the variable
)\(Cz)

If £ =1, then we terminate the algorithm at this point,
so from now on, assume that k > 1.

Sample each subtree T; independently with probability
1/2 except the subtree containing s (if it exists), which
is sampled with probability 1. (If ¢ = s, then there is
no subtree containing s, and all subtrees are sampled
with probability 1/2.) Let T®) be the tree 7" with all
(vertices of) non-sampled subtrees deleted. Recursively
call (G, T k—1) and update A(t) for all t € R(T®)).
(Note that R(T(®)) denotes the set of real vertices in tree
7). Moreover, by the sampling procedure, s is always
in R(T®)) and hence, the recursion is valid.) Repeat
this step for O(logn) independent sampling trials.
Execute this step only if s # ¢, and let T be the subtree
from step (3) containing s. Using Lemma 13, compute
the value Apax = max{A(s,t) : ¢t € R(T) \ R(T5)},
as well as all vertices t € R(T) \ R(T;) attaining this
maximum. Update ;\(t) = Amax for all such ¢, and
arbitrarily select one such ¢ to be labeled 5. Let T
be the tree 1" with (the vertices of) subtree Ts removed.
Recursively call (G,T() k — 1) where s’ is treated as
the new s, and update A(t) for all t € R(T©®).

5)

6)

A. Correctness

First, we use a standard (uncrossing) property of mincuts.
For completeness, we prove the lemma below in the full
version of the paper.

Lemma 15. Let G = (V, E,w) be a weighted, undirected
graph with vertex subset U C V. For any subsets) T X C
X' QU and an (X',U\ X')-mincut A’ CV of G, there is
an (X, U\ X)-mincut A CV of G satisfying A C A'.

Now, we proceed to establish correctness of the SSMC
algorithm. Note that A(t) starts with the value oo, and every
time we run UPDATE(#, x), we have that = is the value of
some (s,t)-cut in G. Naturally, this would suggest that our
estimate 5\(15) is always an upper bound on the true value

AYAYLYL

Step 1:
If |T| = 0(1) then compute (s, t)-mincut in G
foreach t € V(T) \ {s}.

Step 2:

s=V\S5, c

subsample

Step 4:
Vi:If s € V \ S;, contract V \ S; and call it s.
Otherwise, contract V \ S; and call it ¢; .

Step 5:

correspondingly.

If ¢ # s then compute (s, ¢)-mincut in G.

Let T®) C T be a subtree where each T; # Tg is
Call (G, T; U {e}, k), for e = {s,u;} or e = {c;, u;}, subsampled w.p. 1/2.
Call (6, T,k - 1).

Step 3:
Run Isolating Cuts on {R(T;)}; U {c}.
Let {S;}; be the resulting cuts.

Step 6:
Set s’ := arg mtax{mincut(s, t):t ¢ V(Ty)}.

Call (G, T\ Ty k — 1).

Fig. 1: An illustration of the steps inside a recursive iteration of the SSMC algorithm. We assume that the centroid ¢ has four
children in 7" and that all tree vertices are real; in particular ¢ € R(T"), which simplifies some of the steps. Graph vertices
that are not spanned by 7" are represented by gray dots. The gray areas in Step 4 refer to contracted subsets, and the scissors

symbol in Steps 5 and 6 means we remove the subtree.

A(s,t). However, this is not immediately clear because the
vertex s may be relabeled in a recursive call from step (6).
The lemma below shows that this relabeling is not an issue.
We defer the proof to the full version of the paper.

Lemma 16 (Upper bound). For any instance (G
(V,E,w),T,k) and a vertex t € R(T), the output value \(t)
is at least \(s,1).

The lemma above establishes the condition A(t) > A(s, t)
of Theorem 10. It remains to show equality when T' is k-
respecting an (s, t)-mincut, which we prove below.

Lemma 17 (Equality). Consider an instance (G
(V,E,w),T,k) and a vertex t € R(T) such that there is
an (s, t)-mincut in G that k-respects T. Then, the value \(t)
computed by the algorithm equals \(s,t) w.h.p.

Proof. Consider an (s,t)-mincut C' in G that k-respects 7.
First, if the centroid c¢ is the vertex ¢, then the mincut
computation in Step (2) correctly recovers A(s,t). Otherwise,
let T} be the subtree containing ¢. We have a few cases based
on the locations of the edges in 7' that cross the cut C', which
we call the cut edges. Note that there is at least one cut edge
along the (s,t) path in T, and it is incident to (the vertices of)
either 73 or the subtree T containing s. (If ¢ = s and there
is no subtree 7 containing s, then at least one cut edge must
be incident on some vertex in 7;.)

890

The first case (Case 1 in Figure 2) is that all the cut edges
are incident to the vertices of a single subtree 7’;, which must
be either T; or T, (if the latter exists). Then, there is a side
A € {C,V\C} of the (s, t)-mincut C whose vertices in R(7")
are all in R(T}); in other words, ANR(T') = ANR(T}). Note
that A is an (AN R(T}), R(T) \ (AN R(T})))-mincut since if
there were a smaller such cut, then that would also be a smaller
(s,t)-cut, which contradicts that A is an (s,t)-mincut. Also,
by construction, S; is a (R(T}), R(T) \ R(T}))-mincut. We
now apply Lemma 15 on parameters U = R(T), A = A,
X = ANR(T;), A = S;, and X' = R(T}). The lemma
implies that there is an (ANR(T}), R(T)\(ANR(T})))-mincut
A - SJ, and this cut survives in the contracted graph Gj.
Since A is an (s, t)-cut of the same value as A, we conclude
that A is also an (s, t)-mincut. Finally, we argue that A also
k-respects the tree TJ{ in the recursive instance. By definition,
since A k-respects T, there exists a set F's of fake vertices
such that T contains at most k edges cut by A U F4. Since
A and A agree on vertices in R(Tj), tree T also contains at
most k edges cut by AUFy (it is the exact same set of edges).
Define F; = F4 NV(T}), and from AN R(T) C R(T;), we
observe that tree T); contains at most k edges cut by ANF i
(it is all edges from before, restricted to tree 7). Furthermore,
the new edge (s, u;) or (cj,u;) added to T} is cut by AUF;
if and only if the edge (c, u;) of T is cut by AUF . 1t follows
that at most k edges of ij are cut by AUF '1- Thus, the lemma

Case 1: All cut-edges are in T;:
- Call (G, T¢, k); step 4.

0 (logn) times; step 5.
Z flmg,ng, t/2,k)
7

O(logn) - f(m,n,t,k — 1)

Case 2: There exists a cut-edge outside of T U T;.: Case 3: There exists a cut-edge in Ty:
- Subsample each T’ # T; w.p. 1/2 and repeat

- Set s’ == arg mtax{mincut(s, t):t ¢ V(Ty)}

and remove Tg; step 6.

0(m) + f(m,n, t,k — 1)

Fig. 2: An illustration of the different cases, which part of our algorithm deals with them, and the corresponding running time.
Here, vertices in the side of s are depicted by blue dots, vertices in the side of ¢ by red dots, and cut edges by dashed lines.
The gray area refers to a contracted subset, and the scissors symbol means we remove the subtree. Observe that whenever the

latter happens, we get rid of at least one cut edge.

statement is satisfied on recursive call (G, T}, k) of Step (4),
and the algorithm recovers A(s,t) w.h.p.

In the rest of the proof, we assume that the edges of T'
cut by AU F4 are incident to (the vertices of) at least two
subtrees. Suppose first (Case 2 in Figure 2) that a cut edge is
incident to some subtree T} that is not T; or T (or only T3,
if s = ¢ and T does not exist). In each independent trial of
Step (5), we sample T; but not T; with constant probability.
In this case, since T} is discarded in the construction of 7)),
the (s,t)-mincut C' (k — 1)-respects the resulting tree 7).
Over O(logn) independent trials, this happens w.h.p., and the
algorithm correctly recovers A(s,t) w.h.p.

We are left with the case (Case 3 in Figure 2) that all edges
of T cut by AUF4 are incident to subtrees T} and T. Note that
Ts must exist since if s = ¢ and Case 2 does not happen, we
would be in Case 1. Furthermore, T # T}, because otherwise,
we would either be in Case 1 (if all cut edges are incident on
T; = Ty) or in Case 2 (if there is at least one cut edge incident
on some 1 # T, = Tj).

Since T # T}, we have t ¢ R(Ts), i.e., t € R(T)\ R(T%).
If A(s,t) = Amax (Where Apax is as defined in Step (6)),
then Step (6) sets A(s,t) = Apax correctly. Otherwise, we
must have A(s,t) < Apax. In this case, we claim that the
vertex s’ (that has the property A(s,s’) = Apax in Step (6)
of the algorithm) satisfies A(s',t) = A(s,t). To prove this
claim, we first observe that s’ must appear on the s-side of
the (s,t)-mincut C. Otherwise, if s’ is on the ¢-side, then C
is an (s,s’)-cut of value A(s,t) < Amax, contradicting the
guarantee A(s,s’) = Apax. It follows that A(s',t) < A(s,).
Next, observe that s must appear on the s’-side of the (s',t)-
mincut C’. Otherwise, if s is on the t-side, then C’ is an
(s,s)-cut of value A(s,t) < A(s,t) < Amax, contradicting the
guarantee A(s,s’) = Apax. It follows that A(s,t) < A(s, 1),
which proves the claim A(s,t) = A(s',).

Consider again the (s, ¢)-mincut C'. Since s’ is on the s-side
of the (s,t)-mincut C, if we swap the locations of s and s’ in
T, then C still k-respects the modified tree, and the edges of

891

the tree that cross the cut are the same (except that s and s’
swap places on the edges). In particular, the subtree T with
s replaced by s’ has at least one cut edge. By removing this
modified subtree T, we arrive at the tree T’ (©) in Step (6),
and the (s,t)-mincut C' must (k — 1)-respect 7). So, the
recursive call (G,T(®), k — 1) recovers \(s’,t) w.h.p., which
equals A(s,t) by the claim above.

This concludes all cases, and hence the proof of Lemma 17.

O

B. Running Time

Lemma 18 (Running time). For any fixed integer k > 1, the
algorithm calls max-flow on instances of at most n vertices
and m edges each, and a total of O(n) vertices and O(m)
edges. Moreover, these max-flow calls dominate the running
time.

We first bound the total number of vertices across all
recursive instances, then use the same technique to also bound
the total number of edges.

We use the following notation for any recursive call:
r = |R(T)| and n represents the number of vertices in G
including contracted vertices, i.e., vertices resulting from the
contraction on Step (4) of any previous instance. (Since the
original instance has no contracted vertex, the initial value of n
is just the number of vertices in the input graph.) The function
f(n,r k) represents an upper bound on the total number of
vertices among all max-flow calls that occur, starting from a
single input instance with parameters n, 7, k (and including
max-flows called inside recursive instances).

Fix an instance with parameters n,r, k. For each i, let n;
represent the number of vertices in G;, and let r; = |R(T})|.
Now observe that

1) Zle(ni — 1) =n — 1 since the sets S; are disjoint by

the guarantee of Lemma 11, and

2) r; < r/2 for each i € [¢] by the fact that ¢ is a centroid.
We now consider the individual steps of the recursive SSMC
algorithm.

1) The algorithm calls a single max-flow in step (2), and
then in step (3), it calls Lemma 11, which in turn calls
max-flows on a total of O(n log¥) vertices. In total, this
is O(nlog?) vertices among the max-flow calls.

In step (4), the algorithm makes recursive calls on trees
T! containing 7; + 1 real vertices each, and graphs
G; containing n; vertices each, so the total number of
vertices in the max-flow calls in the recursion is at most
Zie[@] f(TLZ, r; + 1,]C)

In step (5), the algorithm makes O(logn) independent
calls to an instance where k decreases by 1. So, this step
contributes at most O(logn) - f(n,r, k — 1).

In step (6), the algorithm calls Lemma 13, which in turn
calls max-flows on a total of O(n) vertices, followed by
a recursive call on an instance where k decreases by 1. In
total, this step contributes at most O(n) + f(n, r, k—1).

We may assume that f(n,r, k) is monotone non-decreasing in
all three parameters, which gives us the recursive formula

f(nvrv k) SO(nlogf)—}— Z f(niari + 1,k)

i€[(]

2)

3)

4)

steps (2),(3)

step (4)
+ O(logn) - f(n,r,k —1)
step (3), only for k>1
+0(n) + f(n,rk—1).

step (6), only for k>1

We now claim that f(n,7, k) solves to O(n) for any constant
k, where the number of polylog terms depends on k. For k =
1, the recursive formula f(n,t,1) solves to O(nlog?t). This
is because r; +1 < r/2+ 1 < 2r for all i € [¢] limits the
recursive depth to O(logt).” And, since Zle (ni—1) =n—1,
the sum of f(-) in any recursive level is O(n logt). For larger
k, note that if we assume that f(n,r,k — 1) < O(n), then
we also obtain f(n,r, k) < O(n), where the O(-) hides more
logarithmic factors. The claim then follows by induction on k.
(Note that the polylogarithmic dependency on k is f(n,r, k) =
n(logn)©®))

We now bound the total number of edges. We use the
following notation in any recursive call: as earlier, r = |R(T)|
and n represents the number of vertices in G including
contracted vertices. In addition, m’ represents n plus the
number of edges in G not incident to a contracted vertex.
(Since the original instance has no contracted vertex, the initial
value of m’ is just the number of vertices plus the number
of edges in the input graph.) The function g(m',n,r k)
represents an upper bound on f(n,r, k) plus the total number
of edges not incident to contracted vertices among all max-
flow calls that occur, starting from a single input instance
with parameters m’,n,r, k (and including max-flows called
inside recursive instances). This then implies a bound on the
total number of edges over all max-flow calls, including those

THere, we have used the assumption that 7 is larger than some constant,
e.g. 10.

892

incident to contracted vertices, by the following argument.
Each recursive instance has at most O(log |R(T)|) contracted
vertices, since each contraction in Step (4) decreases |R(T)|
by a constant factor. So the total number of edges incident
to contracted vertices is at most the total number of vertices
times O(log|R(T)|), which is at most f(n,r, k)-O(logn) <
g(m/,n,r, k) - O(logn). So from now on, we only focus on
edges not incident to contracted vertices.

Fix an instance with parameters m’, n, r, k. For each i, let
n; represent the number of vertices in G, let m/ represent the
number of edges in G; not incident to a contracted vertex, and
let 7, = |R(T;)|. Once again, observe that Zle(ni -1) =
n —1 and r; < r/2 for each i € [¢]. This time, we also
have Zle m}, < m' by the following explanation: Lemma 11
guarantees that the vertex sets S; are disjoint, and the edges
of each (G; not incident to a contracted vertex have both
endpoints in S;, and are therefore disjoint over all i. We may
assume that g(m,n,r, k) is monotone non-decreasing in all
four parameters, which gives us the recursive formula

g(m’,n,r, k) <O((m + n)logt) + Z g(mg,ni,ri, k)
—_——

steps (2),(3) i€l

step (4)
+ O(logn) - g(m,n,r k —1)

step (5), only for k>1
+O0(m) + g(m,n,r k —1).

step (6), only for k>1

Similar to the solution for f(n,r, k), we now have that
g(m,n, 7, k) solves to O(m + n) for any constant k by the
same inductive argument. (Once again, the polylogarithmic
dependency on k is f(n,7, k) = (m +n)(logn)°®).)

Since the graph never increases in size throughout the
recursion, each max-flow call is on a graph with at most as
many vertices and edges as the original input graph. Finally,
we claim that the max-flow calls dominate the running time
of the algorithm. In particular, finding the centroid of 7" on
step (2) can be done in time in the size of the tree (see
the footnote at step (2)), which is dominated by the single
max-flow call on the same step. This finishes the proof of
Lemma 18.

III. CONSTRUCTING GUIDE TREES

In this section, we show how to obtain guide trees that prove
Theorem 9. Our algorithm is based on the notion of a Steiner
subgraph packing, as described next.

Definition 19. Let G = (V, E,w) be an undirected edge-
weighted graph with a set of terminals U C V. A subgraph
H of G is said to be a U-Steiner subgraph (or simply a
Steiner subgraph if the terminal set U is unambiguous from
the context) if all the terminals are connected in H. In this
case, we also call H a terminal-spanning subgraph of G.

Definition 20. A U-Steiner-subgraph packing P is a collec-
tion of U-Steiner subgraphs Hj, . .., Hj, where each subgraph

H; is assigned a value val(H;) > 0. If all val(H,) are integral,
we say that P is an integral packing. Throughout, a packing
is assumed to be fractional (which means that it does not
have to be integral), unless specified otherwise. The value of
the packing P is the total value of all its Steiner subgraphs,
denoted val(P) = >, .p val(H). We say that P is feasible
if

Ve € E, Z val(H) < w(e).

HeP:ecH

To understand this definition, think of w(e) as the “capacity”
of e; then, this condition means that the total value of all
Steiner subgraphs H € P that “use” edge e does not exceed
its capacity w(e). A Steiner-tree packing is a packing P where
each subgraph H € P is a tree.

Denote by pack(U) the maximum value of a feasible U-
Steiner-subgraph packing in G. The next two lemmas show a
close connection between Steiner-subgraph packing pack(U)
and U-Steiner mincut A(U), and that the former problem
admits a (2 + €)-approximation algorithm.

Lemma 21. For every graph G with terminal set U, we have
A(U)/2 < pack(U) < A(U).

Lemma 22. There is a deterministic algorithm that, given
e € (0,1/2), a graph G = (V,E,w), and a terminal set
U C V, returns a U-Steiner-subgraph packing P of value
val(P) > pack(U)/(2+¢€) in O(m?/€®) time, and in the case
of unweighted G in m**t°") /€ time.

We defer Lemmas 21 and 22 to the full version of the paper.
Assuming these lemmas, we immediately obtain the following.

Corollary 23. There is a deterministic algorithm that, given
e € (0,1/2) and a graph G = (V, E,w) with m edges and
terminal set U C V, returns a U-Steiner subgraph packing P
of value val(P) > ANU)/(4 + €) in O(m?/e?) time, and in
the case of unweighted G in ml“"’(l)/e2 time.

A. Algorithm for constructing guide trees.

Given Corollary 23, we can now prove Theorem 9.

Proof of Theorem 9. Fix g = 1/60 (or another sufficiently
small ¢y > 0). The construction of guide trees is described in
Algorithm 1. To analyze this algorithm, let P be the packing
computed in line 5. Consider t € U \ {s}, and let (S;, V'\ S;)
be a minimum s, ¢-cut in G. Denote by w(S;, V'\ S;) the total
edge-weight of this cut in G, and by w’(S¢, V' \ S;) the total
edge-weight of the cut in G’ between these same vertices.
Consider first an unweighted input G. Then, the computa-
tion in line 5 is applied to G’ = G. By combining Corollary 23
and the promise in the single source terminal mincuts problem
(Problem 5) that Ag(s,t) < 1L.IA(U), ® we get that

AU) Ag(s,t) w'(S, V'\S)
P e 2 Tt)~ 11T o)

ey

8For a graph G’, Ag(s,t) denotes the value of an (s,t)-mincut in G,
and recall that A(U) is the value of a U-Steiner mincut in G.

893

Algorithm 1: An algorithm for constructing guide
trees
input : Undirected graph G = (V, E,w) (weighted or
unweighted) and terminal set U C V
output: A collection of guide trees for U

1 if G is weighted then then
2 compute for it a (1 % €)-cut-sparsifier G’
using [22] and €y = 1/60, thus G’ has
m = O(n/e?) edges
3 else
| let G’ G

5 compute a packing P for G’ by applying Corollary 23

6 sample 300 Inn subgraphs from P, each drawn
independently from the distribution
{val(H)/val(P)} nep

7 compute any Steiner tree of each sampled subgraph,
and report these trees

If the input graph G is weighted, then the bound in (1)
applies to the cut-sparsifier G’ of G, and we get that

Agr (s, t) (1 —eo) - w(Se, V\St)
val(P) 2 1.1c(:4+e()) 2 3.1(44-60) @
> (1 —¢€) w'(St,V\St) < w' (S, V' \ St) 3)

1.1(4+60)(1+60) - 11(4+306(]) '

We remark that now the packing P contains subgraphs of the
sparsifier G’ and not of G, but it will not pose any issue.
In both cases we have the weaker inequality

val(P) > WS, V\S)

= 1.1(4+ 30€q) @

Let E; be the set of edges in the cut (S;,V \ S;) in G’
(depending on the case, G’ is either G or the sparsifier). Let
P<4 C P be the subset of all Steiner subgraphs H € P whose
intersection with Ej is at most 4 edges, and let F} be the event
that no subgraph from P<, is sampled in line 6. Then

Pr[Fy] = (1 — val(’Pg)/Val(p))%o Inn

< n7300-va1(73§4)/val(79) .

(%)

Similarly to Karger’s paper [47], define x to be one less
than the number of edges of H that crosses the cut E}, and
observe that zy is always a non-negative integer (because U

is connected in H). Since P is a packing, every edge of E;
appears in at most one subgraph of P, and consequently,

Z val(H)(zg + 1) < Z w(e) = w' (S, V' \ Si)
HeP eCE]
= > val(H)zy < w'(S;,V\Se) — > val(H)
HeP HeP
=w'(S, V' \ S;) — val(P).

Observe that for a random H € P drawn as in line 6,

B val(H) _ w'(S;, V'\ Sp)
Eglzgl = };f’f " val(P) = val(P)

< 1.1(4 + 30ep) — 1,

-1

where the last inequality is by (4). By Markov’s inequality,
1.1(4 4 30¢) — 1
4
Observe that val(P<4)/val(P) = Prglzz < 4] > 0.01, and
so by plugging into (5) we get that Pr[F}] < 1/n®. Finally, by
a union bound we have that with high probability, for every
t € U\ {s}, at least one of the subgraphs that are sampled
in line 6 of the algorithm 4-respects the cut Ej.° and thus
at least one of the trees reported by the algorithm 4-respects
E}. Furthermore, since the cut £} in G’ has the exact same
bipartition of V' as the (s,¢)-mincut in G, the reported tree
mentioned above 4-respects also the (s, ¢)-mincut in G (recall
that Definition 7 refers to a cut as a bipartition of V).
Finally, computing a Steiner tree of a Steiner subgraph in
Line 7 only takes linear time, and so the running time is
dominated by line 5 and thus it is bounded by O(n?/€?) for
weighted graphs and by m!*te(l) /€2 for unweighted graphs,
and by fixing a small € > 0, we can write these as O(n?)
and m' oM respectively. This concludes the proof of Theo-
rem 9. |

Prlzg > 4] < < 0.99.
H

IV. CONCLUSION

In this paper, we broke the longstanding cubic barrier for the
GHTREE and APMF problems in general, weighted graphs.
All previous improvements since 1961, were either corollaries
of speed-ups in (single-pair) max-flow algorithms, or were
limited to special graph classes. Assuming the APSP Con-
jecture, a cornerstone of fine-grained complexity, our result
disproves the belief that computing max-flows is at least as
hard as computing shortest-paths.

Our algorithm has a running time of O(n?) which is
nearly-optimal for APMF if all (g) max-flow values must be
returned. For GHTREE in unweighted graphs, our techniques
yield an improved running time of m!t°(1)_ In fact, a succinct
representation of all-pairs max-flows can be produced in the
time of O(1) calls to a (single-pair) max-flow algorithm.

It is an interesting open question as to whether our tech-
niques can be extended to obtain an m!'t°()-time GHTREE
algorithm for weighted graphs as well. In particular, the most
significant challenge is to design a new dynamic Steiner
tree subroutine that can be used for packing Steiner trees in
weighted graphs in almost-linear time.

9Strictly speaking, Definition 7 defines 4-respecting only relative to a tree
T, but the same wording extends immediately to any graph 1" (not necessarily
a tree).

REFERENCES

[1] ABBOUD, A., COHEN-ADDAD, V., AND KLEIN, P. N. New hardness
results for planar graph problems in p and an algorithm for sparsest
cut. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020
(2020), K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and
J. Chuzhoy, Eds., ACM, pp. 996-1009.

894

[2

[3]

[9

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

ABBOUD, A., AND DAHLGAARD, S. Popular conjectures as a barrier
for dynamic planar graph algorithms. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA (2016), 1. Dinur, Ed.,
IEEE Computer Society, pp. 477-486.

ABBOUD, A., GEORGIADIS, L., ITALIANO, G. F., KRAUTHGAMER,
R., PAROTSIDIS, N., TRABELSI, O., UZNANSKI, P., AND WOLLEB-
GRAF, D. Faster Algorithms for All-Pairs Bounded Min-Cuts. In 46th
International Colloquium on Automata, Languages, and Programming
(ICALP 2019) (2019), vol. 132, pp. 7:1-7:15.

ABBOUD, A., GRANDONI, F., AND WILLIAMS, V. V. Subcubic
equivalences between graph centrality problems, APSP and diameter.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015 (2015), P. Indyk, Ed., SIAM, pp. 1681-1697.

ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. Cut-equivalent
trees are optimal for min-cut queries. In 6/st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020 (2020), pp. 105-118.
ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. APMF <
APSP? Gomory-Hu tree for unweighted graphs in almost-quadratic time.
Accepted to FOCS’21 (2021). arXiv:2106.02981.

ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. New algo-
rithms and lower bounds for all-pairs max-flow in undirected graphs.
Theory of Computing 17, 5 (2021), 1-27.

ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. Subcubic
algorithms for gomory-hu tree in unweighted graphs. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
(2021), pp. 1725-1737.

ABBOUD, A., KRAUTHGAMER, R., AND TRABELSI, O. Friendly cut
sparsifiers and faster Gomory-Hu trees. Accepted to SODA’22 (2022).
arXiv:2110.15891.

ABBOUD, A., VASSILEVSKA WILLIAMS, V., AND YU, H. Matching
triangles and basing hardness on an extremely popular conjecture. In
Proc. of 47th STOC (2015), pp. 41-50.

ABBOUD, A., AND WILLIAMS, V. V. Popular conjectures imply strong
lower bounds for dynamic problems. In 55¢th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014 (2014), pp. 434-443.
AHUJA, R., MAGNANTI, T., AND ORLIN, J. Network Flows. Prentice
Hall, 1993.

AKIBA, T., IWATA, Y., SAMESHIMA, Y., MIZUNO, N., AND YANO, Y.
Cut tree construction from massive graphs. In 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM) (2016), IEEE, pp. 775-780.
ALMAN, J., AND WILLIAMS, V. V. A refined laser method and
faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021 (2021), pp. 522-539.
ANARI, N., AND VAZIRANI, V. V. Planar graph perfect matching is in
NC. Journal of the ACM 67, 4 (2020), 1-34.

ARIKATI, S. R., CHAUDHURI, S., AND ZAROLIAGIS, C. D. All-pairs
min-cut in sparse networks. J. Algorithms 29, 1 (1998), 82-110.
ARORA, S., HAZAN, E., AND KALE, S. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing
8, 1 (2012), 121-164.

BACKURS, A., DIKKALA, N., AND TzAaMoOS, C. Tight hardness results
for maximum weight rectangles. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-
15, 2016, Rome, Italy (2016), 1. Chatzigiannakis, M. Mitzenmacher,
Y. Rabani, and D. Sangiorgi, Eds., vol. 55 of LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, pp. 81:1-81:13.

BACKURS, A., AND Tzamos, C. Improving viterbi is hard: Better
runtimes imply faster clique algorithms. In International Conference on
Machine Learning (2017), PMLR, pp. 311-321.

BARTH, D., BERTHOME, P., DIALLO, M., AND FERREIRA, A. Revisit-
ing parametric multi-terminal problems: Maximum flows, minimum cuts
and cut-tree computations. Discrete Optimization 3, 3 (2006), 195-205.
BASWANA, S., GUPTA, S., AND KNOLLMANN, T. Mincut sensitivity
data structures for the insertion of an edge. In 28th Annual European
Symposium on Algorithms (ESA 2020) (2020).

BENCZUR, A. A., AND KARGER, D. R. Randomized approximation
schemes for cuts and flows in capacitated graphs. SIAM J. Comput. 44,
2 (2015), 290-319.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

BERNSTEIN, A., GUTENBERG, M. P., AND SARANURAK, T. Deter-
ministic decremental sssp and approximate min-cost flow in almost-
linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS) (2022), IEEE, pp. 1000-1008.

BHALGAT, A., HARIHARAN, R., KAVITHA, T., AND PANIGRAHI, D.
An O(mn) Gomory-Hu tree construction algorithm for unweighted
graphs. In 39th Annual ACM Symposium on Theory of Computing
(2007), STOC’07, pp. 605-614.

BORRADAILE, G., EPPSTEIN, D., NAYYERI, A., AND WULFF-NILSEN,
C. All-pairs minimum cuts in near-linear time for surface-embedded
graphs. In 32nd International Symposium on Computational Geometry
(2016), vol. 51 of SoCG ’16, pp. 22:1-22:16.

BORRADAILE, G., SANKOWSKI, P., AND WULFF-NILSEN, C. Min st-
cut oracle for planar graphs with near-linear preprocessing time. ACM
Trans. Algorithms 11, 3 (2015).

BRINGMANN, K., GAWRYCHOWSKI, P., MOZES, S., AND WEIMANN,
O. Tree edit distance cannot be computed in strongly subcubic time
(unless apsp can). ACM Transactions on Algorithms (TALG) 16, 4
(2020), 1-22.

CEN, R., L1, J., AND PANIGRAHI, D. Augmenting edge connectivity
via isolating cuts. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022 (2022).

CHEKURI, C., AND QUANRUD, K. Isolating cuts,(bi-) submodularity,
and faster algorithms for connectivity. In 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021) (2021),
Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

CHEN, L., KYNG, R., L1U, Y. P,, PENG, R., GUTENBERG, M. P., AND
SACHDEVA, S. Maximum flow and minimum-cost flow in almost-linear
time. CoRR abs/2203.00671 (2022).

CoOK, W., CUNNINGHAM, W., PULLEYBANK, W., AND SCHRIJVER,
A. Combinatorial Optimization. Wiley, 1997.

CYGAN, M., MUCHA, M., WEGRZYCKI, K., AND WLODARCZYK, M.
On problems equivalent to (min,+)-convolution. ACM Transactions on
Algorithms (TALG) 15, 1 (2019), 1-25.

DUKSTRA, E. W. A note on two problems in connexion with graphs.
Numerische mathematik 1, 1 (1959), 269-271.

ELMAGHRABY, S. E. Sensitivity analysis of multiterminal flow net-
works. Operations Research 12, 5 (1964), 680-688.

FLEISCHER, L. K. Approximating fractional multicommodity flow
independent of the number of commodities. SIAM Journal on Discrete
Mathematics 13, 4 (2000), 505-520.

GARG, N., AND KONEMANN, J. Faster and simpler algorithms for
multicommodity flow and other fractional packing problems. SIAM
Journal on Computing 37, 2 (2007), 630-652.

GAWRYCHOWSKI, P., MOZES, S., AND WEIMANN, O. Planar negative
k-cycle. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021
(2021), D. Marx, Ed., SIAM, pp. 2717-2724.

GOLDBERG, A. V., AND RAO, S. Beyond the flow decomposition
barrier. J. ACM 45, 5 (1998), 783-797.

GOLDBERG, A. V., AND TSIOUTSIOULIKLIS, K. Cut tree algorithms:
an experimental study. Journal of Algorithms 38, 1 (2001), 51-83.
GOMORY, R. E., AND HuU, T. C. Multi-terminal network flows. Journal
of the Society for Industrial and Applied Mathematics 9 (1961), 551—
570.

GUSFIELD, D. Very simple methods for all pairs network flow analysis.
SIAM Journal on Computing 19, 1 (1990), 143-155.

HARTMANN, T., AND WAGNER, D. Dynamic Gomory-Hu tree
construction—fast and simple. arXiv preprint arXiv:1310.0178 (2013).
HASSIN, R., AND LEVIN, A. Flow trees for vertex-capacitated net-
works. Discrete Appl. Math. 155, 4 (2007), 572-578.

HENZINGER, M., KRINNINGER, S., AND NANONGKAI, D. Decremen-
tal single-source shortest paths on undirected graphs in near-linear total
update time. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science (2014), IEEE, pp. 146-155.

Hu, T. C. Optimum communication spanning trees. SIAM Journal on
Computing 3, 3 (1974), 188-195.

JELINEK, F. On the maximum number of different entries in the terminal
capacity matrix of oriented communication nets. /EEE Transactions on
Circuit Theory 10, 2 (1963), 307-308.

895

[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]
[63]

[64

[65]

[66]

[67
[68

[69]

[70]

[71]

[72]

KARGER, D. R. Minimum cuts in near-linear time. Journal of the ACM
47, 1 (2000), 46-76.

KARGER, D. R., AND LEVINE, M. S. Fast augmenting paths by random
sampling from residual graphs. SIAM J. Comput. 44, 2 (2015), 320-339.
KORTE, B., AND VYGEN, J. Combinatorial optimization, vol. 2.
Springer, 2012.

KRAUTHGAMER, R., AND TRABELSI, O. Conditional lower bounds for
all-pairs max-flow. ACM Trans. Algorithms 14, 4 (2018), 42:1-42:15.
L1, J. Preconditioning and Locality in Algorithm Design. PhD thesis,
Carnegie Mellon University, 2021.

L1, J., NANONGKAI, D., PANIGRAHI, D., SARANURAK, T., AND
YINGCHAREONTHAWORNCHAI, S. Vertex connectivity in poly-
logarithmic max-flows. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (2021), pp. 317-329.

L1, J., AND PANIGRAHI, D. Deterministic min-cut in poly-logarithmic
max-flows. In 61st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2020 (2020), pp. 85-92.

L1, J., AND PANIGRAHI, D. Approximate Gomory-Hu tree is faster than
n — 1 max-flows. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing (2021), ACM, pp. 1738-1748.

L1, J., PANIGRAHI, D., AND SARANURAK, T. A nearly optimal all-
pairs min-cuts algorithm in simple graphs. Accepted to FOCS’21 (2021).
arXiv:2106.02233.

MADER, W. A reduction method for edge-connectivity in graphs. In
Advances in Graph Theory, B. Bollobds, Ed., vol. 3 of Annals of Discrete
Mathematics. Elsevier, 1978, pp. 145-164.

MAYEDA, W. On oriented communication nets. IRE Transactions on
Circuit Theory 9, 3 (1962), 261-267.

MEHLHORN, K. A faster approximation algorithm for the steiner
problem in graphs. Information Processing Letters 27, 3 (1988), 125—
128.

MUKHOPADHYAY, S., AND NANONGKAI, D. A note on isolating
cut lemma for submodular function minimization. arXiv preprint
arXiv:2103.15724 (2021).

NASH-WILLIAMS, C. S. A. Edge-Disjoint Spanning Trees of Finite
Graphs. Journal of the London Mathematical Society s1-36, 1 (01 1961),
445-450.

NAVES, G., AND SHEPHERD, F. B. When do Gomory-Hu subtrees
exist? CoRR (2018).

PADBERG, M. W., AND RAO, M. R. Odd minimum cut-sets and b-
matchings. Mathematics of Operations Research 7, 1 (1982), 67-80.
PANIGRAHI, D. Gomory-Hu trees. In Encyclopedia of Algorithms, M.-
Y. Kao, Ed. Springer New York, 2016, pp. 858-861.

PICARD, J.-C., AND QUEYRANNE, M. On the structure of all minimum
cuts in a network and applications. In Combinatorial Optimization II.
Springer, 1980, pp. 8-16.

RODITTY, L., AND ZWICK, U. On dynamic shortest paths problems. In
European Symposium on Algorithms (2004), Springer, pp. 580-591.
SAHA, B. Language edit distance and maximum likelihood parsing of
stochastic grammars: Faster algorithms and connection to fundamental
graph problems. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015
(2015), V. Guruswami, Ed., IEEE Computer Society, pp. 118-135.
SCHRUVER, A. Combinatorial Optimization. Springer, 2003.

SEIDEL, R. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of computer and system sciences 51, 3
(1995), 400-403.

TUTTE, W. T. On the Problem of Decomposing a Graph into n
Connected Factors. Journal of the London Mathematical Society sl-
36, 1 (01 1961), 221-230.

WILLIAMS, V. V., AND WILLIAMS, R. R. Subcubic equivalences
between path, matrix, and triangle problems. J. ACM 65, 5 (2018),
27:1-27:38.

Wu, Z., AND LEAHY, R. An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation. [EEE
transactions on pattern analysis and machine intelligence 15, 11 (1993),
1101-1113.

ZHANG, T. Faster Cut-Equivalent Trees in Simple Graphs. In 49th
International Colloquium on Automata, Languages, and Programming
(ICALP 2022) (Dagstuhl, Germany, 2022), vol. 229 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pp. 109:1-109:18.

