
Near-Linear Time Approximations for Cut Problems via Fair Cuts∗

Jason Li† Danupon Nanongkai‡ Debmalya Panigrahi§ Thatchaphol Saranurak¶

Abstract

We introduce the notion of fair cuts as an approach to leverage approximate (s, t)-mincut (equivalently
(s, t)-maxflow) algorithms in undirected graphs to obtain near-linear time approximation algorithms for several
cut problems. Informally, for any α ≥ 1, an α-fair (s, t)-cut is an (s, t)-cut such that there exists an (s, t)-flow
that uses 1/α fraction of the capacity of every edge in the cut. (So, any α-fair cut is also an α-approximate

mincut, but not vice-versa.) We give an algorithm for (1 + ε)-fair (s, t)-cut in Õ(m)-time, thereby matching
the best runtime for (1 + ε)-approximate (s, t)-mincut [Peng, SODA ’16]. We then demonstrate the power of
this approach by showing that this result almost immediately leads to several applications:

• the first nearly-linear time (1 + ε)-approximation algorithm that computes all-pairs maxflow values (by
constructing an approximate Gomory-Hu tree). Prior to our work, such a result was not known even for
the special case of Steiner mincut [Dinitz and Vainstein, STOC ’94; Cole and Hariharan, STOC ’03];

• the first almost-linear-work subpolynomial-depth parallel algorithms for computing (1+ε)-approximations
for all-pairs maxflow values (again via an approximate Gomory-Hu tree) in unweighted graphs;

• the first near-linear time expander decomposition algorithm that works even when the expansion
parameter is polynomially small; this subsumes previous incomparable algorithms [Nanongkai and
Saranurak, STOC ’17; Wulff-Nilsen, STOC ’17; Saranurak and Wang, SODA ’19].

1 Introduction

In the (s, t)-mincut problem, we are given an n-vertex m-edge graph G = (V,E) with integer edge weights
w : E → Z+ bounded by U . The goal is to minimize the sum of the weight of edges whose removal make s unable
to reach t. Unless stated otherwise, the input graphs are assumed to be undirected throughout the paper.

The (s, t)-mincut problem and its dual—(s, t)-maxflow—are among the most fundamental tools in graph
algorithms and optimization. In particular, many reductions have been recently developed to show that if
(s, t)-mincut (equivalently, (s, t)-maxflow) can be solved in almost or nearly linear time, then so are a number
of fundamental graph problems. These problems include vertex connectivity [29] and Gomory-Hu tree [1] in
unweighted graphs, deterministic global mincut and Steiner mincut [30], edge connectivity augmentation and
edge splitting-off [10], and hypergraph global mincut [12, 37].

All these results require exact (s, t)-mincut algorithms. In other words, these reductions cannot exploit approx-
imate (s, t)-mincut algorithms which can offer many advantages. For example, while the best randomized (1 + ε)-
approximate (s, t)-mincut algorithm takes nearly-linear1 time on weighted graphs [40] (and almost-linear2 time for

deterministic algorithms [43, 26]), the fastest exact algorithms require Õ
(

min(m+ n3/2,m
3
2−

1
328 ,m4/3+o(1)U1/3)

)
time [19, 33, 46, 47]3 and are all inherently randomized.4

Moreover, in many popular models of computation such as parallel computing, distributed computing, etc.,
computing exact (s, t)-mincut is still far from efficient, and using approximation algorithms might be the only
alternative. For example, it is known that the (1+ ε)-approximation algorithm (implied by [11, 43]) on undirected

∗The full version of the paper can be accessed at https://arxiv.org/abs/2203.00751
†Simons Institute for Theory of Computing, UC Berkeley. Email: jmli@alumni.cmu.edu.
‡Max Planck Institute for Informatics & University of Copenhagen & KTH. Email: danupon@gmail.com.
§Department of Computer Science, Duke University. Email: debmalya@cs.duke.edu.
¶University of Michigan, Ann Arbor. Email: thsa@umich.edu.
1By nearly-linear time, we mean a running time of Õ(m).
2By almost-linear time, we mean a running time of m1+o(1).
3Throughout, we use Õ to hide poly log(n).
4In an independent result [14], an almost-linear time randomized algorithm has been shown for the (s, t)-mincut problem. Even

when this independent result is taken into account, the best (1 + ε)-approximation algorithms are still superior to the best exact
algorithm with respect to time complexities and randomness requirements.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2203.00751

unweighted graphs requires almost-linear work and sub-polynomial depth in PRAM. In contrast, we are far from
emulating this result for exact algorithms. In fact, the first small step toward solving exact (s, t)-mincut with
almost-linear work and sub-polynomial depth would be doing so for the much simpler problem of (s, t)-reachability.
And, the latter would involve breaking a major Ω(

√
n) depth barrier.5 Another example is in the distributed

setting (the CONGEST model), where a nearly optimal algorithm for computing (1+ε)-approximate (s, t)-mincut
exists [21] while no nontrival algorithm is known for the exact version. These advantages of approximate (s, t)-
mincuts motivate a natural question: Can the existing reductions work with approximate (s, t)-mincut algorithms
instead of the exact ones?

To answer the above question, let us discuss first why many reductions work only with exact (s, t)-mincut. A
crucial property of exact (s, t)-mincuts in undirected graphs that is used by these reductions (e.g., for Gomory-
Hu tree, deterministic global mincut, Steiner cut, edge connectivity augmentation, and edge splitting-off) is the
following uncrossing property:

(Uncrossing Property) For any vertices s and t, let X ⊂ V be an (s, t)-mincut. Then, for any u, v ∈ X,
there exists Y ⊂ X that is a (u, v)-mincut.

The uncrossing property is very useful from an algorithmic perspective since it gives a natural recursive tool –
after finding an (s, t)-mincut, we can recurse on each side of the cut to find a (u, v)-mincut for every pair of
vertices (u, v) on the same side of the cut. Indeed, the uncrossing property is more generally true for symmetric,
submodular minimization problems and is at the heart of most of the beautiful structure displayed by undirected
graph cuts and other symmetric, submodular functions. The uncrossing property, however, does not hold for
(1 + ε)-approximate mincuts in general. This is the main bottleneck that prevents these reductions from being
robust to approximation. As a result, for these problems, we fail to exploit the benefits of (1 + ε)-approximate
(s, t)-mincut algorithms.

1.1 Our contributions We subvert the above bottleneck by introducing a more robust notion of approximate
mincuts called fair cuts. Informally, an α-fair (s, t)-cut is an (s, t)-cut such that there exists an (s, t)-flow f that
uses 1/α fraction of the capacity of every edge in the cut. (The reader should think of α as being close to 1.)
Formally:

Definition 1.1. (Fair Cut) Let G = (V,E) be an undirected graph with edge capacities c ∈ RE>0. Let s, t be
two vertices in V . For any parameter α ≥ 1, we say that a cut (S, T) is a α-fair (s, t)-cut if there exists a feasible
(s, t)-flow f such that f(u, v) ≥ 1

α · c(u, v) for every (u, v) ∈ E(S, T) where u ∈ S and v ∈ T .

Observe that a 1-fair (s, t)-cut is an exact (s, t)-mincut. Moreover, an α-fair (s, t)-cut is also an α-approximate
(s, t)-mincut. However, not all α-approximate (s, t)-mincuts are α-fair (s, t)-cuts.6 In other words, a set of α-fair
cuts is a proper subset of α-approximate cuts and a superset of exact (s, t)-mincuts.

We show that the notion of fair cuts allow us to combine the key features of both approximate cuts and exact
cuts. First, fair cuts admit a property for approximate cuts that is analogous to uncrossing for exact mincuts,
which we prove in Section B for completeness.

Lemma 1.1. (Approximate Uncrossing Property) For any vertices s and t, let (S, T) be an α-fair (s, t)-
mincut. Then, for any u, v ∈ S, there exists R ⊂ S such that (R, V \R) is an α-approximate (u, v)-mincut.

Second, while computing a fair cut can be harder than an approximate mincut (since any fair cut is an
approximate mincut but not vice-versa), we give a nearly-linear time algorithm for computing a (1 + ε)-fair
(s, t)-mincut.

5This is due to the reduction from directed maxflow to undirected maxflow (see e.g. [34]) which works in the parallel setting.

The reduction implies that if we can solve (s, t)-mincut exactly on undirected unweighted graphs in O(W) work and O(D) depth,

then we can solve (s, t)-mincut exactly on directed unweighted graphs with Õ(W) work and Õ(D) depth. The latter captures the
st-reachability problem as a special case.

6As a simple example, consider a path v − s − t on three vertices. Clearly, the cut {s} contains both edges and is therefore a

2-approximate (s, t)-mincut. However, there is no (s, t)-flow that can saturate both edges to fraction 1
2

. To motivate our choice of
terminology (fair cuts), note that if an (s, t)-cut is a α-approximate (s, t)-mincut, it follows by flow-cut duality that any (s, t)-maxflow
will cumulatively saturate the edges of the cut to a fraction ≥ 1

1+α
. But, as we saw in the previous example, this saturation need

not be fair in the sense that some edges might not be saturated at all. In this context, a α-fair cut demands the additional property
that each edge be saturated to a fraction ≥ 1

α
(in the sense of “max-min” fairness).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 1.1. (Fair Cut) Given a graph G = (V,E), two vertices s, t ∈ V , and ε ∈ (0, 1], we can compute with
high probability a (1 + ε)-fair (s, t)-cut in Õ(m/ε3) time.

We note that the only reason why our algorithm is randomized is because we use the congestion approximator
by [41, 40]. This can be made deterministic based on an algorithm by [15], but the running time would be
m1+o(1)/ε3 instead. Moreover, we remark that although we will focus on (1 + ε)-fair (s, t)-cuts, the corresponding
(s, t)-flow can be obtained from a fair cut in Õ(m/ε) time using a standard application of a (1 + ε)-approximate
max-flow algorithm of Sherman [44].

1.2 Applications We demonstrate the power of fair cuts by using it to improve the time complexity of several
problems.

Gomory-Hu Tree. The Gomory-Hu (GH) tree is a compact representation of a (u, v)-mincut (and therefore,
(u, v)-maxflow values) between every pair of vertices (u, v) of a graph, and has a large number of applications. It
captures fundamental questions such as global, (s, t)−, and Steiner mincuts as special cases. There has been much
progress on exact and approximation algorithms for this problem recently (e.g., [31, 2, 3, 6, 1, 4, 5, 32, 49, 50]). The
fastest among these is the (1+ε)-approximation algorithm by Li and Panigrahi [31] whose time complexity is equal

to poly-logarthmic calls to any exact (s, t)-mincut algorithm, i.e. Õ
(

min(m+ n3/2,m
3
2−

1
328 ,m4/3+o(1)U1/3)

)
.

By replacing the exact max-flow calls by our (1 + ε)-fair cut algorithm in [31], we get a nearly-linear time
algorithm for approximating the Gomory-Hu tree (which is equivalent to finding all-pairs maxflow values by
known reductions, e.g., [2]):

Theorem 1.2. (Nearly-linear time Gomory-Hu tree) For any ε > 0, there is a Õ(m · poly(1/ε))-time
randomized algorithm that constructs, with high probability, a (1 + ε)-approximate Gomory-Hu tree in weighted
undirected graphs.

Prior to our work, a nearly-linear time (approximation) algorithm was not known even for the special case
of the Steiner mincut problem. In this problem [18, 17, 24, 9, 30], we are interested in finding a cut of minimum
value that disconnects a given set of terminal vertices. For this problem, Li and Panigrahi [30] gave an exact
algorithm using poly-logarithmic exact max-flow calls. Before our work, no improvement in the running time
was known if we allow (1 + ε)-approximation instead of the exact Steiner mincut. Since the Steiner mincut
problem is a minimal generalization of global and (s, t)-mincuts, our paper is the first to obtain nearly-linear time
(approximation) algorithms for cut problems that go beyond these two problems.

Parallelization. Since the use of exact max-flow is the only bottlenect to parallelize the approximate GH tree
algorithm of [31], the following parallel algorithm also follows.

Theorem 1.3. (Parallel GH-tree) For any ε > 0, there is a Õ(m1+o(1)/poly(ε))-work (mo(1)/poly(ε))-depth
randomized algorithm that constructs, with high probability, a (1 + ε)-approximate Gomory-Hu tree in unweighted
undirected graphs.

We are not aware of prior work on parallel GH algorithms (except some experiments, e.g. [35, 16]). This is
likely because previous GH trees algorithms, even the approximate ones [31], inherently require solving max-flow
exactly, which is well beyond current techniques in the parallel setting.

Expander Decomposition. In the last decade, numerous fast graph algorithms are based on fast algorithms
for computing an expander decomposition. For some examples of such applications, see e.g. [45, 26, 43, 39, 11, 8].

We say that a (weighted) graph G = (V,E) is a φ-expander if for every cut (S, V \S), we have that the cut size
δ(S) ≥ min{vol(S), vol(V \S)} where the volume of S is vol(S) =

∑
v∈S deg(v). A (ε, φ)-expander decomposition

of G is a partition {V1, . . . , Vk} of vertices such that each G[Vi] is a φ-expander and
∑
i δ(Vi) ≤ ε · vol(V), i.e.,

the total weight of edges crossing the partition is at most ε-fraction.
There are two incomparable fastest algorithms for computing expander decompositions. First, [38, 48] gave

m1+o(1)-time algorithms that computes a (φno(1), φ)-expander decomposition for any φ > 0. These subpolynomial
factors are sometimes undesirable. Second, [42] gave a Õ(m/φ)-time algorithm that computes a (Õ(φ), φ)-expander
decomposition for any φ > 0. This algorithm is slower than the first one when φ < 1/n0.1. Using fair cuts, we
obtain an algorithm that subsumes both these sets of results and is optimal up to poly-logarithmic factors.

Theorem 1.4. (Near-linear expander decomposition) For any φ > 0, there is a randomized Õ(m)-time
algorithm that with high probability computes a (Õ(φ), φ)-expander in weighted undirected graphs.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Open problems. We believe that our notion of fair cuts opens up many interesting directions for future
research. We mention some examples. (i) A natural goal is to extend our efficient (1 + ε)-fair (s, t)-cut to other
computational models, such as the distributed (CONGEST) setting, where exact (s, t)-mincut algorithms are
much slower/inefficient compared to approximate (s, t)-mincut algorithms. This will lead to efficient algorithms
for approximating, e.g., Gomory-Hu tree and Steiner mincut in these models as well. (ii) The notion of fair
vertex cuts can be defined in a similar fashion to fair (edge) cuts defined in this paper. It would be interesting
to design an efficient algorithm for finding a fair vertex cut and use it to obtain nearly-linear time algorithms
for approximating the vertex connectivity and hypergraph global mincut. These results can also be extended to
other computational models. (iii) We also hope that the notion of fair cuts can be extended to more general
contexts such as the minimization of symmetric, submodular functions. In turn, this will significantly improve
our understanding of the approximation-efficiency tradeoff in minimization problems defined for these function
classes.

Independent result. Our result is obtained independently from the recently announced almost-linear time
bound for min-cost flow by Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva [14]. Plugging this result into
existing reductions in [1, 29, 13, 36] help solve problems such as GH tree and vertex connectivity in unweighted
graphs, approximate GH tree in weighted graphs, and hypergraph global mincut in m1+o(1) time. Even assuming
this result, our algorithms are faster in both randomized and deterministic settings; for the latter, our running
time is m1+o(1) whereas the best exact (s, t)-mincut algorithm takes Õ(mmin(

√
m,n2/3)) time [22]. Finally, our

algorithms can be adapted to other models such as parallel computation whereas this is well beyond existing
techniques for exact (s, t)-mincut.

2 Overview of Techniques

2.1 Computing Fair Cuts (Proof Idea of Theorem 1.1) Our key subroutine for computing fair cuts is
called AlmostFair. Here, we describe at a high-level what the AlmostFair subroutine does, how to use it for
computing fair cuts, and finally how to obtain the AlmostFair subroutine itself.

Say we are given an (s, t)-cut (S, T) which may be far from being fair. The AlmostFair subroutine works
on one side of the (s, t)-cut, say T , and returns a partition (Pt, T

′) of T such that t ∈ T ′. We think of Pt as the
part that we “prune” out of T . Our first guarantee is that the remaining part T ′ is “almost fair” in the following
sense: each boundary edge in E(S, T ′) (i.e., those edges that are not in E(Pt, T

′)) can simultaneously send flow
of value at least (1− β)-fraction of its capacity to t, for a small parameter β that we can choose. This guarantee
alone would have been weak if the pruned set Pt is so big that there are few edges left in E(S, T ′). However, the
second guarantee of AlmostFair says that, if Pt is big, then (V \ T ′, T ′) is actually a much smaller (s, t)-cut
than the original cut (S, T) in terms of cut value. More formally, we have δG(T ′) ≤ δG(T)−β · δG(S, Pt) meaning
that the decrease in the cut size is at least β times the total capacity of E(S, Pt).

With these two guarantees of AlmostFair, given any (s, t)-cut (S, T), we can iteratively improve this cut to
make it fair as follows. We call AlmostFair on both S and T and obtain (Ps, S

′) and (Pt, T
′). Let’s consider

two extremes. If both pruned sets Ps and Pt are tiny, then there is an (s, t)-flow that almost fully saturates every
edge in E(S′, T ′). This certifies (S, T) is very close to being fair as Ps and Pt are tiny. However, if either Ps or Pt
is very big, say Pt, then (S ∪Pt, T ′) is an (s, t)-cut of much smaller value than the original cut (S, T). Therefore,
this is progress too and we can recursively work on this new cut (S ∪ Pt, T ′). To make the intuition on these two
extremes work, we iteratively call AlmostFair using a parameter β that increases slightly in every round. The
full algorithm is presented in Section 5.

Now, let us sketch the AlmostFair subroutine itself. This subroutine is based on Sherman’s algorithm for
computing a (1 + ε)-approximate max-flow [43] (for any ε > 0), which in turn uses the multiplicative weight
update (MWU) framework.7 Given the t-side T of an (s, t)-cut, if we call Sherman’s algorithm where the demand
is specified so that each boundary edge should send flow at its full capacity to sink t, then the algorithm would
either return a flow satisfying this demand with congestion (1 + ε) or return a “violating” cut certifying that the
demand is not feasible. In the former case, this would satisfy the guarantee of AlmostFair where Pt = ∅ after
scaling down the flow by a (1 + ε) factor. Unfortunately, in the latter case, the algorithm does not guarantee
the existence of the flow that we want. The reason behind this problem is that whenever the algorithm detects

7Sherman’s original presentation in [43] does not explicitly use the MWU framework. Although this alternative interpretation was
already known to experts, our MWU-based presentation of his algorithm is arguably simpler and more intuitive.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

a violating cut, the algorithm is just terminated. In a more general context, this holds for most (if not all)
MWU-based algorithms for solving linear programs; in each round of the MWU algorithm, whenever “the oracle”
certifies that the linear program is infeasible, then we just terminate the whole algorithm.

Interestingly, we fix this issue by “insisting on continuing” the MWU algorithm. Once we detect a violating
cut, we include it into the pruned set, cancel the demand inside this pruned set, and continue updating weights in
the MWU algorithm. After the last round, the flow constructed via MWU indeed sends flow from each remaining
boundary edge that is not pruned out, which is exactly our goal. The detailed algorithm is presented in Section 4.

2.2 From Fair Cuts to Approximate Isolating Cuts We believe that the notion of fair cuts can be useful
in many contexts since it offers a more robust alternative to approximate mincuts. In this paper, we first use it
to obtain an approximate isolating cuts algorithm. We define the isolating cuts problem first.

Definition 2.1. Given a weighted, undirected graph G = (V,E) and a subset of terminals S = {s1, s2, . . . , sk},
the goal of the isolating cuts problem is to find a set of disjoint sets S1, S2, . . . , Sk such that for each i, the
cut (Si, V \ Si) is a mincut that separates si ∈ Si from the remaining terminals S \ {si} ⊆ V \ Si. If Si is a
(1 + ε)-approximate mincut separating si from the remaining terminals, then the corresponding problem is called
the (1 + ε)-approximate isolating cuts problem.

Using fair cuts, we obtain a near-linear time algorithm for approximate isolating cuts.

Theorem 2.1. There is an algorithm for finding (1 + ε)-approximate isolating cuts that takes Õ(m · poly(1/ε))
time.

Li and Panigrahi [30] gave an algorithm for finding exact isolating cuts using O(log n) (s, t)-max-flow/mincut
computations that crucially relies on the uncrossing property of (s, t)-mincuts. This property ensures that if we
take a minimum isolating cut X containing a terminal vertex s and a crossing mincut Y , then their intersection
X ∩ Y or difference X \ Y (depending on which set the terminal vertex s is in) is also a minimum isolating cut.
This allows partitioning of the graph by removing edges corresponding to a set of mincuts, such that each terminal
is in one of the components of this partition. For each terminal, the corresponding minimum isolating cut is now
obtained by simply contracting the rest of the components and running a max-flow algorithm on this contracted
graph. The advantage of this contraction is that the total size of all the graphs on which we are running max-flows
is only a constant times the size of the overall graph.

Unfortunately, approximate mincuts don’t satisfy this uncrossing property, which renders this method
unusable if we replace exact mincut subroutines with faster (1 + ε)-approximate mincuts. But, if we instead
used fair cuts, then we can show the following: if X is a (1 + ε)-approximate minimum isolating cut containing
terminal s and Y is a (1 + α)-fair cut, then either X ∩ Y or X \ Y (whichever set contains s) is a (1 + ε)(1 + α)-
approximate minimum isolating cut. This allows us to use the framework in [30]. Since the number of fair cuts
we remove in forming the components is only O(log n), the multiplicative growth in the approximation factor can
be offset by scaling the parameter in fair cuts by the same logarithmic factor. The advantage in using fair cuts
over exact mincuts is that the running time of the former is near-linear by Theorem 1.1, which helps establish
Theorem 2.1. The details of this algorithm are presented in Section 6.

2.3 From Approximate Isolating Cuts to Approximate GH-trees Finally, we use approximate isolating
cuts to obtain an approximate GH tree algorithm. [31] gives a recursive algorithm for computing an approximate
GH tree but using exact isolating cuts. We observe that the latter can be replaced by approximate isolating cuts
provided the approximation is one-sided in the following sense: the “large” recursive subproblem needs to preserve
mincut values exactly. But, in general, if we use the approximate isolating cuts subroutine as a black box, this
would not be the case. To alleviate this concern, we augment the approximate isolating cuts procedure using an
additional fairness condition for the isolating cuts returned by the algorithm. This fairness condition ensures that
although we do not have one-sided approximation, the approximation factor in the “large” subproblem can be
controlled using a much finer parameter than the overall approximation factor of the algorithm, which then allows
us to run the recursion correctly. The details of the GH tree algorithm establishing Theorem 1.2 are presented in
Section 7.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

2.4 From Fair Cuts to Near-linear time Expander Decomposition Via fair cuts, we will speed up the
algorithm by [42] for computing a (Õ(φ), φ)-expander decomposition in time Õ(m/φ) to Õ(m). There are two
main steps in the algorithm by [42]: the cut-matching step and the trimming step. The cut-matching step can
be solved in Õ(m) time simply by applying the near-linear-time approximate maxflow algorithm by [40].8 The
harder step to speed up is the trimming step. However, we observe that the cut problem needed to be solved in
this step is actually a one-sided version of the fair cut problem, which is an easier problem. By calling our fair
cut algorithm, we immediately obtain a Õ(m)-time algorithm for the trimming step. See details in Section 8.

3 Preliminaries

Given a undirected capacitated/weighted graph G = (V,E) with edge capacities/weights is c ∈ RE≥0 and an edge
set E′ ⊆ E, we let c(E′) =

∑
e∈E′ c(e) be the total capacity of E′. For simplicity, we assume that the ratio

between the largest and lowest edge capacities or weights are poly(n). For any disjoint sets S, T ⊆ V , we let
δG(S) = c(E(S, V \ S)) denote the cut size of S and δG(S, T) = c(E(S, T)) denote the total capacity of edges
from S to T . For any distinct vertices s and t, let λG(s, t) be the minimum-weight s-t cut. We sometimes omit
G when it is clear from the context.

Flow. A flow f : V × V → R satisfies f(u, v) = −f(v, u) and f(u, v) = 0 for {u, v} /∈ E. The notation
f(u, v) > 0 means that mass is routed in the direction from u to v, and vice versa. The congestion of f is

max{u,v}∈E
|f(u,v)|
c(e) . If the congestion is at most 1, we say that f respects the capacity or f is feasible. For each

vertex u ∈ V , the net flow out of vertex u, denoted by f(u) =
∑
v∈V f(u, v), is the total mass going out of u minus

the total mass coming into u. More generally, for any vertex set S ⊆ V , we can define the net flow out of S as
f(S) =

∑
u∈S f(u) =

∑
u∈S,v∈V f(u, v). The net flow out from S to T is denoted by f(S, T) =

∑
u∈S,v∈T f(u, v).

Observe that we always have f(V) = 0.
A demand function ∆ : V → R is a function where

∑
v∈V ∆(v) = 0. We say that flow f satisfies demand

∆ if f(v) = ∆(v) for all v ∈ V . For any S ⊆ V , let ∆(S) =
∑
v∈S ∆(v) be the total demand on S. Observe

∆(V) = f(V) = 0. By the max-flow min-cut theorem, we have the following:

Fact 3.1. For any ε ≥ 0, |∆(S)| ≤ ε · δ(S) for all S ⊆ V iff there is a flow with congestion ε that satisfies ∆.

For a flow f and a demand function ∆, define the excess ∆f as ∆f (v) = ∆(v) − f(v) for every v ∈ V . We
think of excess as a remaining demand function. We say that f ε-satisfies ∆ if |∆f (S)| ≤ ε · δ(S) for all S ⊆ V .
That is, by Fact 3.1, there exists a flow faug with congestion ε where f + faug satisfies ∆. Note that f 0-satisfies
∆ iff f satisfies ∆.

For any two vertices s, t ∈ V , an (s, t)-cut (S, T) is a cut such that s ∈ S and t ∈ T . An (s, t)-flow f obeys
f(v) = 0 for all v 6= s, t. Similarly, an (s, t)-demand function ∆ obeys ∆(v) = 0 for all v 6= s, t. That is, an
(s, t)-demand function is satisfied only by an (s, t)-flow.

Congestion Approximators. When we want to argue that flow f ε-satisfies a demand function ∆, it can
be inconvenient to ensure that |∆f (S)| ≤ ε · δ(S) for all S ⊆ V because there are exponentially many sets.
Surprisingly, there is a collection S of linearly many sets of vertices, where if |∆(S)| ≤ ε ·δ(S) for each S ∈ S, then
this is also true for all S ⊆ V with some polylog(n) blow-up factor. Moreover, S can be computed in near-linear
time.

Theorem 3.1. (Congestion approximator [41, 40]) There is a randomized algorithm that, given a graph
G = (V,E) with n vertices and m edges, constructs in Õ(m) time with high probability a laminar family S of
subsets of V such that

1. S contains at most 2n sets,

2. each vertex appears in O(log n) sets of S, and

3. for any demand function ∆ on V , if |∆(S)| ≤ δ(S) for all S ∈ S, then |∆(R)| ≤ γSδ(R) for all R ⊆ V for
a quality factor γS = O(log4 n).

8For reader who are familiar with [42], their algorithm applies the push-relabel flow algorithm that takes Õ(m/φ) time, instead of
using an Õ(m)-time approximate max flow algorithm, because the push-relabel algorithm has fewer log factors in the running time.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Graphs with Boundary Vertices. Given a set U ⊆ V , let G{U} denote the following “induced subgraph
with boundary vertices”: start with induced subgraph G[U], and for each edge e = (u, v) ∈ E(U, V \ U) with
endpoint u in U , create a new vertex xe and add the edge (xe, u) to G{U} of the same capacity as e. Let NG{U}
be the vertex set of G{U} and define NG〈U〉 = NG{U} \ U . We call vertices in NG〈U〉 boundary vertices. We
simply write N{U} and N〈U〉 instead of NG{U} and NG〈U〉 when the context is clear. Observe that the degree
degG{U}(xe) of each boundary vertex xe ∈ N〈U〉 in G{U} is simply the capacity c(e) of edge e. We will use this
notation very often in the paper.

Boundary Demand Functions. In our context, the sink node t ∈ U is usually given. The full U -boundary
demand function ∆U : V (G{U})→ R is defined such that

∆U (v) =


degG{U}(v) if v ∈ N〈U〉
0 if v ∈ U \ t
−∆(N〈U〉) if v = t.

That is, any flow satisfying ∆U sends flow from each boundary vertex of G{U} at full capacity to t. We
also write ∆U,t when it is not clear from the context what t is. More generally, given any demand function
∆′ : V (G{U}) → R, we say that ∆′ is a U -boundary demand function if ∆′(v) = 0 for all v ∈ U \ t,
∆′(t) = −∆(N〈U〉). That is, ∆′ is completely determined once we specify the demand values on boundary
vertices N〈U〉.

One-Sided Fair Cut. Finally, the following “one-sided” version of a fair cut (Definition 1.1) will be useful.

Definition 3.1. (One-sided Fair Cut) Let G = (V,E) be an undirected graph with edge capacities c ∈ RE>0.
Let s be a vertex in V . For any parameter α ≥ 1, we say that a cut (S, T) is an s-sided α-fair cut if there exists
a feasible flow f such that

1. f(v) = 0 for all v ∈ S \ {s}

2. f(u, v) ≥ 1
α · c(u, v) for every (u, v) ∈ E(S, T) where u ∈ S and v ∈ T .

In other words, the flow f sends flow from s to the boundary E(S, T) in a way that almost saturates every edge
in E(S, T), but we do not care about the behavior of f beyond E(S, T).

Clearly, an α-fair (s, t)-cut is an s-sided α-fair cut since we can take the same flow f that witnesses the α-fair
(s, t)-cut. However, we will only require the one-sided version in our isolating cuts application in Section 6.

4 Almost Fair Cuts via Multiplicative Weight Updates

The key subroutine used for proving Theorem 1.1 is the algorithm below.

Theorem 4.1. (Almost Fair Cuts) There is an algorithm AlmostFair(G,U, t, ε, β) that, given a graph
G = (V,E) with a sink node t ∈ V , a set U ⊆ V where t ∈ U , and parameters β ≥ 0 and ε > 0, returns a
partition (P,U ′) of U where t ∈ U ′ with the following properties:

1. δG(U ′) ≤ δG(U)− βδG(P, V \ U) (equivalently, δG(P,U ′) ≤ (1− β)δG(P, V \ U)), and

2. There exists a flow f ′sat in G{U ′} with congestion (1 + ε) satisfying a U ′-boundary demand function ∆′ such
that

∆′(v) = (1− β) degG{U ′}(v) for all old boundary vertices v ∈ N〈U ′〉 ∩N〈U〉
|∆′(v)| ≤ (1 + ε) degG{U ′}(v) for all new boundary vertices v ∈ N〈U ′〉 \N〈U〉

The algorithm takes Õ(|E(G{U})|/ε2) time and is correct with high probability.9

9Note that the guarantee that |∆′(v)| ≤ (1 + ε) degG{U′}(v) for all new boundary vertices v ∈ N〈U ′〉 \N〈U〉 in fact follows from
the guarantee that f ′sat has congestion (1 + ε). We state both guarantees explicitly for convenience.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

The rest of this section is for proving Theorem 4.1. For convenience, we write H = G{U} and let n and
m denote the number of vertices and edges in H throughout this section. Let B be the incidence matrix of H.
Observe that, for any flow f on H, we have (Bf)v = f(v) is the net flow out of v. We can view Bf as a vector
in RV (H). Define

∆ = (1− β)∆U

as the full U -boundary demand function on G{U} after scaled down by (1 − β) factor. For any U ′ ⊆ U ,
the restriction ∆|U ′ of ∆ is a U -boundary demand function obtained from ∆ by zeroing out the entries on
N 〈U〉 \N 〈U ′〉, i.e., the boundary vertices of U which are not boundaries of U ′, and then setting the entry on t
so that

∑
v∈V (H) ∆|U ′(v) = 0. Similarly, we view ∆ and also ∆|U ′ as vectors in RV (H).

4.1 Algorithm
Initialization. We start by computing a congestion approximator S of H with quality γS = O(log4 n) using

Theorem 3.1. For a technical reason, it is more convenient if no set in S contains sink t. From now, we will
assume this, which is justified by the following observation:

Proposition 4.1. Given the family S from Theorem 3.1 and a vertex t, there is a linear time algorithm that
returns another family S ′ with the same guarantee as in Theorem 3.1 but with additional guarantee that each set
S ∈ S ′ does not contains t.

Proof. Replace each set S ∈ S where t ∈ S with its complement V (H) \ S. Observe that S is now a larminar
family on V (H) \ t where |S| does not change, and the number of sets containing each vertex may increase only
by O(log n). Hence, the first and second properties of Theorem 3.1 still hold. The third property still holds as
well because |∆(S)| = |∆(V (H) \ S)| for all S.

Our algorithm is based on the Multiplicative Weight Update framework and so it works in rounds. For round i,
we maintain weights wiS,◦ ≥ 0 for each S ∈ S and ◦ ∈ {+,−} and define the potential φi ∈ RV (H) where

φiv =
∑
S3v

1

δH(S)
(wiS,+ − wiS,−)

for each vertex v. As no set S ∈ S contains t, we will always have φit = 0 for all i. Initially, we set w1
S,◦ = 1 for

all S ∈ S, ◦ ∈ {+,−}.
The algorithm also maintains a decremental subset V i where t ∈ V i ⊆ V i−1 for all i. We initialize V 0 as

follows. First, set V 0 = V (H). While there exists S ∈ S where ∆|V 0(S) > δH(S), which certifies that there is no
feasible flow on H satisfying ∆|V 0 by Fact 3.1, we update V 0 ← V 0 \S (in particular, the function ∆|V 0 changes).
Let D0 contain all the vertices we removed from V 0. Now, we are ready to state the main algorithm.

Main Algorithm. For round i = 1, 2, . . . , T where T = Θ(log(n)/α2) and α = ε/γS , we do the following:

1. Define f i on H such that for each edge (u, v), f i(u, v) flows from high potential to low potential at maximum
capacity. That is, for every edge (u, v) in H,

f i(u, v) =


c(u, v) if φiu > φiv
0 if φiu = φiv
−c(u, v) if φiu < φiv.

2. Using Lemma 4.5, compute a deletion set Di ⊆ V (H) \ t and set V i ← V i−1 \Di, where Di satisfies the
following:

if Di 6= ∅, then ∆|V i−1(Di) > δH(Di), and

〈φi,∆|V i〉 = 〈φi,∆|V i−1\Di〉 ≤ 〈φi, Bf i〉.

3. For each S ∈ S, let

riS =
(∆|V i)f

i

(S)

δH(S)
=

∆|V i(S)− f i(S)

δH(S)

be the relative total excess at S compared to the cut size in round i.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

4. Update the weights

wi+1
S,+ = wiS,+ · eαr

i
S and wi+1

S,− = wiS,− · e−αr
i
S .

After T rounds, we compute the pruned set P = ∪Ti=0D
i and let U ′ = U \ P . Finally, we return the partition

(P,U ′).

4.2 Correctness We prove that the partition (P,U ′) outputted by our algorithm satisfies the requirement in
Theorem 4.1. The first important thing to understand our algorithm is to formally see how it is captured by the
Multiplicative Weight Update (MWU) algorithm, which we recall below:

Theorem 4.2. (Multiplicative Weights Update [7]) Let J be a set of indices, and let α ≤ 1 and ω > 0 be
parameters. Consider the following algorithm:

1. Set w
(1)
j ← 1 for all j ∈ J

2. For i = 1, 2, . . . , T where T = O(ω2 log(|J |)/α2):

(a) The algorithm is given a “gain” vector gi ∈ RJ satisfying ‖gi‖∞ ≤ ω and 〈gi, wi〉 ≤ 0

(b) For each j ∈ J , set wij ← wi−1
j exp(αgij) = exp(α

∑
i′∈[i] g

i′

j)

At the end of the algorithm, we have 1
T

∑
i∈[T] g

i
j ≤ α for all j ∈ J .10

To apply Theorem 4.2 into our setting, we define J = S × {+,−}. That is, we work with indices (S,+) and
(S,−) for S ∈ S. We use the same weights wi and error parameter α as the algorithm, and we set ω = 2. For
each iteration i and S ∈ S, we define

giS,± = ±riS = ±∆|V i(S)− f i(S)

δH(S)
.

Observe that the weights wiS,± are updated in Step 4 exactly as wiS,± ← wi−1
S,± exp(αgiS,±). With this setting, we

show that our gain vector gi indeed satisfies the condition in Step 2a of Theorem 4.2.

Lemma 4.1. For each i, we have ‖gi‖∞ ≤ 2 and 〈gi, wi〉 ≤ 0.

Proof. To show ‖gi‖∞ ≤ 2, we have

|giS,±| =
∣∣∣∣∆|V i(S)− f i(S)

δH(S)

∣∣∣∣ ≤ ∣∣∣∣∆|V i(S)

δH(S)

∣∣∣∣+

∣∣∣∣ f i(S)

δH(S)

∣∣∣∣ ≤ 1 + 1,

To see why the last inequality holds, we have (1) ∆|V 0(S) ≤ δH(S) for all S ∈ S by the initialization of V 0, (2)
∆|V i(S) ≥ 0 for all i because t /∈ S, and (3) ∆|V i(S) may only decrease as V i is a decremental set. Also, we have
|f i(S)| ≤δH(S) because each f i respects the capacity.

10More generally, for any value val, if we have 〈gi, wi〉 ≤ val for all i, the MWU algorithm guarantees that 1
T

∑
i∈[T] g

i
j ≤ val + α,

for all j. Here, we use a special case when val = 0.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

To show 〈gi, wi〉 ≤ 0, first observe that 〈gi, wi〉 = 〈φi,∆|V i〉 − 〈φi, Bf i〉 exactly.

〈gi, wi〉 =
∑
S∈S

(giS,+w
i
S,+ + giS,−w

i
S,−)

=
∑
S∈S

(wiS,+ − wiS,−)riS

=
∑
S∈S

wiS,+ − wiS,−
δH(S)

(
∆|V i(S)− f i(S)

)
=
∑
S∈S

wiS,+ − wiS,−
δH(S)

∑
v∈S

(
∆|V i(v)− (Bf i)v

)
=

∑
v∈V (H)

(
∆|V i(v)− (Bf i)v

)∑
S3v

wiS,+ − wiS,−
δH(S)

=
∑

v∈V (H)

(
∆|V i(v)− (Bf i)v

)
φiv

= 〈φi,∆|V i〉 − 〈φi, Bf i〉.

Since the deletion set Di from Step 2 is designed to guarantee that 〈φi,∆|V i〉 ≤ 〈φi, Bf i〉, we have that 〈gi, wi〉 ≤ 0.

From the above, we have verified that our algorithm is indeed captured by the MWU algorithm. Now, we derive
the implication of this fact. Only for analysis, we define the average flow f̄ = 1

T

∑T
i=1 f

i ∈ RE(H) on H and the

average U -boundary demand function ∆ = 1
T

∑T
i=1 ∆|V i ∈ RV (H) on H.

Lemma 4.2. We have f̄ ε-satisfies ∆ in H.

Proof. Define r̄ = 1
T

∑T
i=1 r

i ∈ RS . First, we prove that |r̄S | ≤ α for all S ∈ S. This is because

±r̄S =
1

T

∑
i∈[T]

±riS =
1

T

∑
i∈[T]

giS,± ≤ α

where the last inequality is precisely the guarantee of the MWU algorithm from Theorem 4.2. Next observe that
the excess is

∆
f̄
(S) = ∆(S)− f̄(S) = r̄SδH(S).

Therefore, we have that |∆f̄
(S)| ≤ αδH(S) for all S ∈ S. Since S is a congestion approximator, it follows by

Theorem 3.1 that

|∆f̄
(S)| ≤ γSαδH(S) = εδH(S)

for all S ⊆ V (H). This precisely means that f̄ ε-satisfies ∆.

Now, we are ready to prove Item 2 of Theorem 4.1. By Lemma 4.2, there exists a flow f̄aug in H with congestion
ε such that f̄sat := f̄ + f̄aug satisfies ∆. We define f ′sat as the restriction of f̄sat into G{U ′}. That is, for each
new boundary vertex xe ∈ N 〈U ′〉 \N 〈U〉 where u is its unique neighbor, we set f ′sat(xe, u) = f̄sat(e). For every
other edge e ∈ E(G{U ′}), we set f ′sat(e) = f̄sat(e). Let ∆′ be a U ′-boundary demand function where, for each
U ′-boundary vertex v ∈ N 〈U ′〉, we set ∆′(v) = f ′sat(v) as the net flow out of v via f ′sat.

Lemma 4.3. We have

1. f ′sat is a flow in G{U ′} with congestion at most (1 + ε) that satisfies ∆′.

2. ∆′ is a U ′-boundary demand function where

∆′(v) = (1− β) degG{U ′}(v) for all old boundary vertices v ∈ N〈U ′〉 ∩N〈U〉
|∆′(v)| ≤ (1 + ε) degG{U ′}(v) for all new boundary vertices v ∈ N〈U ′〉 \N〈U〉

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. (1) As f ′sat is a restriction of f̄sat into G{U ′}, then the congestion of f ′sat is at most that of f̄sat which
is (1 + ε). To see why f ′sat satisfies ∆′, we have that ∆′(v) = f ′sat(v) for all U ′-boundary vertex v ∈ N 〈U ′〉 by
construction. For non-boundary vertex v ∈ U ′ \ t, we have f ′sat(v) = f̄(v) = 0 = ∆′(v). So f ′sat(v) = ∆′(v) for all
v 6= t. This implies that f ′sat(t) = ∆′(t) too and so f ′sat satisfies ∆′.

(2) For each new boundary vertex v ∈ N〈U ′〉 \ N〈U〉, we have ∆′(v) = f ′sat(v) and so |∆′(v)| ≤
(1+ε) degG{U ′}(v) because f ′sat has congestion (1+ε) in G{U ′}. For each old boundary vertex v ∈ N〈U ′〉∩N〈U〉,
we have ∆′(v) = f ′sat(v) = f̄sat(v). As f̄sat satisfies ∆, we have f̄sat(v) = ∆(v). But ∆(v) = (1 − β) degG{U}(v)
as, for every i, ∆|V i(v) = (1− β) degG{U}(v) for every v /∈ P . Therefore, ∆′(v) = (1− β) degG{U ′}(v).

This proves Item 2 of Theorem 4.1. It remains to prove Item 1 of Theorem 4.1.

Lemma 4.4. δG{U}(P) ≤ ∆(P).

Proof. First observe that δH(D0) ≤ ∆(D0) because every time we remove a set S from V 0, we have
δH(S) < ∆|V 0(S) and we can charge δH(S) to the decrease of ∆|V 0(S). Next, the sets Di for i ≥ 1 satisfy
δH(Di) ≤ ∆|V i−1(Di), so

δG{U}(P) = δH(P) ≤
∑
i≥0

δH(Di) ≤ ∆(D0) +
∑
i≥1

∆|V i−1(Di) = ∆(P).

Corollary 4.1. δG(U ′) ≤ δG(U)− β · δG(P, V \ U).

Proof. We have δG{U}(P) = δG(P,U ′) and ∆(P) = (1− β)δG(V \U,P). By adding δG(V \U,U ′) into both sides
of the inequality of Lemma 4.4, we have

δG(V \ U,U ′) + δG(P,U ′) ≤ δG(V \ U,U ′) + δG(V \ U,P)− βδG(V \ U,P)

which concludes the proof because δG(U ′) = δG(V \ U,U ′) + δG(P,U ′) and δG(V \ U,U ′) + δG(V \ U,P) =
δG(V \ U) = δG(U).

This proves the correctness of Theorem 4.1.

4.3 Running Time Here, we explain some implementation details and analyze the total running time.
Computing the congestion approximator S takes Õ(m) by Theorem 3.1. The step which ensures that no set
in S contains t is at most O(n log n) time because t was contained in at most O(log n) sets S and the complement
of S has size at most n.

Next, we explain how to implement the initialization of V 0 efficiently. Observe that, for any S ∈ S, if
∆|V 0(S) > δH(S), then we set V 0 ← V 0 \S and then we have ∆|V 0(S) = 0. Otherwise, if ∆|V 0(S) ≤ δH(S), then
it remains so forever because ∆|V 0(S) is monotonically decreasing when V 0 is a decremental set. In any case, for
each S ∈ S, we only need to compare ∆|V 0(S) with δH(S) once, which takes time at most O(|S|+ |EH(S, V (H))|).
So the total time is O(m log n) because S can be partitioned into O(log n) layers of disjoint subsets by the second
property of Theorem 3.1.

In round i of the main algorithm, computing f i takes O(m) time. Using the fact that S is a laminar family
and S contains O(n) sets, we can compute riS for all S ∈ S in O(n) time, and so we can compute the weights
wi+1
S,◦ for all S ∈ S, ◦ ∈ {+,−} in O(n). The most technical step is Step 2 whose implementation details is shown

at the end of the section.

Lemma 4.5. The “deletion set” Di ⊆ V (H) \ t from Step 2 can be computed in O(m+ n log n) time.

In total, the running time is Õ(m) +T ·O(m+n log n) time. Recall that m = |E(H)| = O(|E(G{U})|) where
T is the number of rounds. So we conclude the running time analysis:

Lemma 4.6. The total running time of the algorithm for Theorem 4.1 is at most Õ(|E(G{U})|/ε2).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

4.4 Proof of Lemma 4.5 In this section, we show how to construction Di ⊆ V (H) \ t where

if Di 6= ∅, then ∆|V i−1(Di) > δH(Di)(4.1)

〈φi,∆|V i〉 = 〈φi,∆|V i−1\Di〉 ≤ 〈φi, Bf i〉.(4.2)

If 〈φi,∆|V i−1〉 ≤ 〈φi, Bf i〉, then we simply set Di = ∅, which trivially fulfills both conditions. For the remainder
of the proof, we assume that 〈φi,∆|V i−1〉 > 〈φi, Bf i〉.

For real number x, define V>x = {v ∈ V (H) : φiv > x}. Fix some large number M > max
v∈N{U}

|φiv|. We first

prove the chain of relations

(4.3)

∫ M

x=−M
∆|V i−1(V>x)dx = 〈φi,∆|V i−1〉 > 〈φi, Bf i〉 =

∫ M

x=−M
δH(V>x)dx.

We start with ∫ M

x=−M
∆|V i−1(V>x)dx =

∫ M

x=−M

 ∑
v∈V (H)

∆|V i−1(v) · 1{φiv > x}

 dx

=
∑

v∈V (H)

∆|V i−1(v)

∫ M

x=−M
1{φiv > x}dx

=
∑

v∈V (H)

∆|V i−1(v)(φiv − (−M)).

Since
∑
v∈V (H) ∆|V i−1(v) = 0 by construction, this is equal to∑

v∈V (H)

∆|V i−1(v)φiv = 〈φi,∆|V i−1〉.

By definition of the flow f i,

〈φi, Bf i〉 =
∑

(u,v)∈E(H)

cH(u, v)|φiu − φiv|

=
∑

(u,v)∈E(H)

cH(u, v)

∫ M

x=−M
1{(u, v) ∈ ∂H(V>x)}dx

=

∫ M

x=−M

∑
(u,v)∈E(H)

cH(u, v)1{(u, v) ∈ ∂H(V>x)}dx

=

∫ M

x=−M
δH(V>x)dx.

Together with the assumption 〈φi,∆|V i−1〉 > 〈φi, Bf i〉, we obtain (4.3).
Let x∗ be the largest value such that∫ x∗

x=−M
∆|V i−1(V>x)dx =

∫ x∗

x=−M
δH(V>x)dx,

which must exist since x∗ = −M works. Next, we claim that we must have

(4.4) ∆|V i−1(V>x∗) > δH(V>x∗).

Otherwise, for small enough ε > 0 we would have
∫ x∗+ε
x=−M ∆|V i−1(V>x)dx ≤

∫ x∗+ε
x=−M δH(V>x)dx, and since∫M

x=−M ∆|V i−1(V>x)dx >
∫M
x=−M δH(V>x)dx, there is another choice of x∗ between x∗ + ε and M that achieves

equality, a contradiction.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

We now claim that t /∈ V>x∗ . Otherwise, since ∆|V i−1(V (H)) = 0 and ∆|V i−1(t) is the only negative entry,
we would have ∆|V i−1(V>x∗) ≤ 0 which would violate (4.4). Since t /∈ V>x∗ and φit = 0, we conclude that x∗ ≥ 0.

Let φ
i

= min{φi, x∗} as φi truncated to a maximum of x∗. Then, similar to (4.3), we obtain

(4.5) 〈φi,∆|V i−1〉 =

∫ x∗

x=−M
∆|V i−1(V>x)dx =

∫ x∗

x=−M
δH(V>x)dx = 〈φi, Bf i〉.

Define our deletion set as Di , V>x∗ , so t /∈ Di and Equation (4.1) follows from (4.4). We now prove the chain
of relations

〈φi,∆|V i−1\Di〉 = 〈φi,∆|V i−1\Di〉 ≤ 〈φ
i
,∆|V i−1〉 = 〈φi, Bf i〉 ≤ 〈φi, Bf i〉,

which would fulfill Equation (4.2). For the first relation, if φiv 6= φ
i

v then v ∈ Di, which means that

∆|V i−1\Di(v) = 0. For the second relation, we use φ
i

t = φit = 0 to obtain

〈φi,∆|V i−1\Di〉 =
∑

v∈V (H)\t

φ
i
(v)∆|V i−1\Di(v) =

∑
v∈V (H)\t

φ
i
(v)∆|V i−1(v)− x∗∆|V i−1(Di)

= 〈φi,∆|V i−1〉 − x∗∆|V i−1(Di)

which is at most 〈φi,∆|V i−1〉 since x∗ ≥ 0. The third relation follows from (4.5). For the last relation, we have

〈φi, Bf i〉 =
∑

(u,v)∈E(H)

cH(u, v)|φiu − φ
i

v| ≤
∑

(u,v)∈E(H)

cH(u, v)|φiu − φiv| = 〈φi, Bf i〉.

This concludes Equation (4.2).
Finally, we claim the running time O(m + n log n). The only nontrivial step in the algorithm is computing

x∗. We first sort the values φiv in O(n log n) time. Then, by sweeping through the sorted list, we can compute
∆|V i−1(V>x)− δH(V>x) for all x ∈ {φiv : v ∈ V (H)} in O(m) time. The function ∆|V i−1(V>x)− δH(V>x) is linear
between consecutive values of φiv, so we can locate the largest value x∗ for which the function is 0.

5 From Almost Fair Cuts to Fair Cuts

In this section, we prove Theorem 1.1 using the AlmostFair subroutine.

5.1 Algorithm Let (G, s, t, α) be the input and we want to compute a (1 + α)-fair (s, t)-cut in G. Let
cmin = mine c(e) and let C = c(E)/cmin be the ratio between total capacity and the minimum capacity. Recall
that we assume C = poly(n). We also assume α ≥ 1

poly(n) , otherwise we could solve the problem using exact max

flow algorithms.

Our algorithm runs in iterations where in iteration j we compute (Sj , T j , kj , def
j
) where (Sj , T j) is an (s, t)-

cut where s ∈ Sj and t ∈ T j , kj ∈ Z≥0, and def
j ∈ R≥0 represents an upper bound of the deficit which will

be explained in the analysis. Define β = Θ(α/ log n) and ε = β/16. Initially, (S0, T 0) is an arbitrary (s, t)-cut,

def
0

= δG(S0, T 0), and k0 = 0.

While def
j
> βcmin, do the following starting from j = 0, 1, 2, . . .

1. Compute

(P js , S
j \ P js) = AlmostFair(G,Sj , s, ε, (kj + 1)β), and

(P jt , S
j \ P jt) = AlmostFair(G,T j , t, ε, (kj + 1)β)

by calling Theorem 4.1.

2. If max{δG(P js , T
j), δG(P jt , S

j)} ≤ def
j
/40, then we update

kj+1 = kj + 1, and

def
j+1

= def
j
/2.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Then, we set T j+1 = T j \ P jt and Sj+1 = V \ T j+1.11

3. Else, if max{δG(P js , T
j), δG(P jt , S

j)} > def
j
/40, then we update

kj+1 = kj , and

def
j+1

= (1− β/80)def
j

If δG(P js , T
j) > def

j
/40, then, we set Sj+1 = Sj\P js (and T j+1 = V \Sj+1). Otherwise, we set T j+1 = T j\P jt

(and Sj+1 = V \ T j+1).

After the while loop, we return (Sj , T j) as a (1 + α)-fair (s, t)-cut. As def
0 ≤ c(E) we have that def

j ≤
(1 − β/80)jc(E) for all j. So there are at most O(log(C/β)/β) iterations before def

j
< β · cmin. Therefore,

the algorithm takes O(log(C/β)/β) × Õ(m/ε2) = Õ(m/α3) total time by Theorem 4.1. It remains to show the
correctness of the algorithm.

5.2 Analysis For convenience, whenever we refer to an edge (a, b) ∈ E(A,B), we mean a ∈ A and b ∈ B. Only
for the analysis, we construct a feasible flow f j in G on each iteration j, and ensure that f j satisfies the following
two properties:

1. Define the deficit of flow f j as defj(f j) =
∑

(u,v)∈E(Sj ,T j) max{0, (1− kjβ)c(u, v)− f j(u, v)}. We maintain

an invariant that defj(f j) ≤ def
j
.

2. For all R ⊆ V \ {s, t}, we require that |f j(R)| ≤ εδG(R). Equivalently, f j ε-satisfies an (s, t)-demand
function in G.

In words, each cut edge (u, v) ∈ E(Sj , T j) contributes to the deficit of flow f j when the flow in f j from u to v is
less than (1 − kjβ)-fraction of its capacity. With our definition of deficit in Property 1, we have that the cut is
fair whenever the deficit is very small:

Proposition 5.1. If def
j
< βcmin, then (Sj , T j) is a (1 + α)-fair (s, t)-cut.

Proof. First we claim that kj = O(log n). This is because everytime kj increments, def is halved. So at the end

of the algorithm, we have βcmin

2 < def
j
< c(E)/2k

j

, which implies kj = O(log(C/β)) = O(log n). Now, by the
assumption and Property 1, for all (u, v) ∈ E(Sj , T j), we have (1− kjβ)c(u, v)− f j(u, v) < β · cmin and so

f j(u, v) > (1− (kj + 1)β)c(u, v) ≥ 1

(1 + α/2)
c(u, v)

where the last inequality is because kj = O(log n) and we can set the constant in β = Θ(α/ log n) to be small
enough. Since f j ε-satisfies an (s, t)-demand function, by the observation below Fact 3.1, there exists faug with
congestion ε such that f∗ = f j + faug is an (s, t)-flow. Now, we have that for all (u, v) ∈ E(Sj , T j),

f∗(u, v) ≥ f j(u, v)− εc(u, v) ≥ 1

(1 + α)
c(u, v)

because ε = β/16 = Θ(α/ log n) and the constant in it is small enough. Therefore, f∗ certifies that (Sj , T j) is a
(1 + α)-fair (s, t)-cut.

Initially, we set f0 as the zero flow, which satisfies both properties since def
0

= δG(S0, T 0). Property 2 will help
us show the following inductive step, which would conclude the correctness of Theorem 1.1.

Lemma 5.1. Suppose there exists a feasible flow f j satisfying Properties 1 and 2 for j. Then, we can construct
a feasible flow f j+1 satisfying Properties 1 and 2 for j + 1.

We analyze the two cases based on max{δG(P js , T
j), δG(P jt , S

j)} in the subsections below.

11We could also symmetrically set Sj+1 = Sj \ P js and T j+1 = V \ Sj+1. This choice is arbitrary.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Case 1: max{δG(P js , T
j), δG(P jt , S

j)} ≤ def
j
/40 Let S′j = Sj \ P js . By the guarantees of

AlmostFair(G,Sj , s, ε, (kj + 1)β), let ∆s be the S′j-boundary demand function satisfied by a flow fs in
G{S′j} with congestion (1 + ε). As kj+1 = kj + 1 in this case, by Theorem 4.1, we have fs(v) = ∆s(v) =
(1 − kj+1β) degG{Sj}(v) for all old boundary vertices v ∈ N〈Sj〉 ∩ N〈S′j〉. Let T ′j ,∆t, ft be defined symmetri-

cally. From fs and ft, we will construct a new flow f j+1 in three steps.
Step 1: Concatenate. Get f̂ . Consider the “concatenation” of fs and ft, denoted by fst, where we reverse

the direction of fs so that the flow is sent out of s. The concatenated flow fst is on the graph G{S′j} ∪G{T ′j}
where the two graphs share N〈S′j〉 ∩N〈T ′j〉 as common boundary vertices. Now, we want to define a flow f̂ on
G that corresponds to fst in a natural way. See Figure 1.

1. For each edge e ∈ E(G[S′j]) ∪ E(G[T ′j]) in the “interior” of S′j or T ′j , we set f̂(e) = fst(e).

2. For each common boundary vertex xe ∈ N〈S′j〉 ∩ N〈T ′j〉 where e = (u, v) ∈ E(S′j , T ′j), we have

fst(u, xe) = fst(xe, v) = (1− kj+1β)c(e) and so we set f̂(e) = (1− kj+1β)c(e).

3. For each new boundary vertex xe ∈ (N〈S′j〉 \ N〈Sj〉) ∪ (N〈T ′j〉 \ N〈T j〉) where e = (u, v) ∈ E(S′j , P js) ∪
E(T ′j , P jt), we set f̂(e) = fst(u, xe).

4. For each old boundary vertex xe ∈ N〈Sj〉 ∩ N〈T j〉 incident to the pruned set P js or P jt on one side, i.e.,

e = (u, v) ∈ E(S′j , P jt) ∪ E(T ′j , P js), we set f̂(e) = fst(u, xe).

5. For each old boundary vertex xe ∈ N〈Sj〉 ∩N〈T j〉 incident to the pruned set P js or P jt on both sides, i.e.,

e = (u, v) ∈ E(P js , P
j
t), we set f̂(e) = 0.

6. For each edge in the “interior” of P js or P jt , we set f̂(e) = 0.

By construction, f̂ satisfies some demand function ∆̂ where ∆̂(v) = 0 for v /∈ {s, t} ∪ V (P js) ∪ V (P jt).

Figure 1: A diagram indicating the cases for defining f̂ from fst.

Step 2: Remove Flow Paths Through New Boundaries. Get f̂ ′. Take a path decomposition of f̂ in
G, and then remove all paths starting or ending at vertices in V (P js) ∪ V (P jt); let the resulting flow be f̂ ′, which

satisfies some demand function that is only nonzero at s, t. That is, f̂ ′ is an (s, t)-flow. Note that f̂ ′ still has
congestion at most (1 + ε).

Step 3: Truncate to a Feasible Flow. Get f j+1. Finally, for any edges congested by more than 1 in f̂ ′,
lower the flow along that edge to congestion exactly 1. We define f j+1 as the resulting flow.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proving Properties of f j+1. Since f j+1 is obtained from the (s, t)-flow f̂ ′ by removing a flow of congestion
at most ε, Property 2 is satisfied. Now, we prove Property 1. We write the deficit of f j+1 as follows

defj+1(f j+1)

=
∑

e∈E(Sj+1,T j+1)

max{0, (1− kj+1β)c(e)− f j+1(e)}

≤
∑

e∈E(Sj+1,T j+1)

(
max{0, (1− kj+1β)c(e)− f̂(e)}+ |f̂(e)− f̂ ′(e)|+ |f̂ ′(e)− f j+1(e)|

)
=

∑
e∈E(Sj+1,T j+1)

max{0, (1− kj+1β)c(e)− f̂(e)}+

∑
e∈E(Sj+1,T j+1)

|f̂(e)− f̂ ′(e)|+
∑

e∈E(Sj+1,T j+1)

|f̂ ′(e)− f j+1(e)|

Now, we bound each of the three terms above. We use the fact T j+1 = T ′j and Sj+1 = S′j ∪ P js ∪ P
j
t .

For the first term, we consider the concatenated flow f̂ . We have f̂(e) = (1−kj+1β)c(e) for each old boundary
edge e ∈ E(S′j , T ′j). So, the first term is bounded by∑

e∈E(S′j∪P js∪P jt ,T ′j)

max{0, (1− kj+1β)c(e)− f̂(e)} ≤
∑

e∈E(P js∪P jt ,T ′j)

(1− kj+1β)c(e)− f̂(e)

≤ ((1− kj+1β) + (1 + ε)) · δ(P js ∪ P
j
t , T

′j)

≤ (2 + ε) · δ(P js ∪ P
j
t , T

′j)

where the second inequality is because f̂ has (1 + ε) congestion.

For the second term, consider the flow f̂ ′ obtained by the flow-path removal. We rewrite the second term as∑
e∈E(P js∪P jt ,T ′j)

|f̂(e)− f̂ ′(e)|+
∑

e∈E(S′j ,T ′j)

|f̂(e)− f̂ ′(e)|.

Trivially, we have ∑
e∈E(P js∪P jt ,T ′j)

|f̂(e)− f̂ ′(e)| ≤ (1 + ε)δ(P js ∪ P
j
t , T

′j)

because the flow has congestion (1 + ε). Now, we claim that∑
e∈E(S′j ,T ′j)

|f̂(e)− f̂ ′(e)| ≤
∑

e∈E(P js∪P jt ,S′j∪T ′j)

|f̂(e)− f̂ ′(e)| ≤ (1 + ε)δ(P js ∪ P
j
t , S

′j ∪ T ′j).

To see this, consider each flow-path P removed from f̂ to obtain f̂ ′. Observe that P cannot cross directly from
T ′j to S′j because, for every edge e ∈ E(S′j , T ′j), the flow is directed from S′j to T ′j as f̂(e) = (1− kj+1β)c(e).
Thus, between any two consecutive times that P crosses from S′j to T ′j , P must have crossed from T ′j to
P js ∪ P

j
t . Also, note that the first edge of P is from E(P js ∪ P

j
t , S

′j ∪ T ′j). Therefore, we can charge the flow

changes in edges of E(S′j , T ′j) to the changes in edges of E(P js ∪P
j
t , S

′j ∪ T ′j). So
∑
e∈E(S′j ,T ′j) |f̂(e)− f̂ ′(e)| ≤∑

e∈E(P js∪P jt ,S′j∪T ′j)
|f̂(e)− f̂ ′(e)| as claimed.

Finally, for the third term, we consider the truncated flow f j+1 with congestion at most 1 on all edges.
Again, we have f̂ ′(e) − f j+1(e) = 0 for all e ∈ E(S′j , T ′j) because 0 ≤ f̂ ′(e) ≤ (1 − kj+1β)c(e). In particular,

the congestion on e was already less than 1. Also, we have |f̂ ′(e) − f j+1(e)| ≤ εc(e) for any edges e as f̂ ′ has
congestion 1 + ε. Hence, we have∑

e∈E(Sj+1,T j+1)

|f̂ ′(e)− f j+1(e)| ≤
∑

e∈E(P js∪P jt ,T ′j)

εc(e) = εδ(P js ∪ P
j
t , T

′j).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

From the above bounds, we obtain

defj+1(f j+1) ≤ ((2 + ε) + (1 + ε) + (1 + ε) + ε)δ(P js ∪ P
j
t , S

′j ∪ T ′j).

Now, write δ(P js ∪P
j
t , S

′j∪T ′j) = δ(P js , S
′j)+δ(P jt , S

′j)+δ(P js , T
′j)+δ(P jt , T

′j). Note that δ(P jt , T
′j) ≤ δ(P jt , Sj)

and δ(P js , S
′j) ≤ δ(P js , T

j) by the guarantee of AlmostFair. Trivially, we also have δ(P jt , S
′j) ≤ δ(P jt , S

j) and

δ(P js , T
′j) ≤ δ(P js , T

j). But we have δ(P jt , S
j), δ(P js , T

j) ≤ def
j
/40 by the assumption of this case. So we have,

as ε ≤ 1/4,

defj+1(f j+1) ≤ (4 + 4ε) · 4 · def
j

40
≤ def

j
/2 = def

j+1

fulfilling Property 1.

Case 2: max{δG(P js , T
j), δG(P jt , S

j)} > def
j
/40 In this case, we set f j+1 as the same old flow f j . So Property 2

of f j+1 trivially continues to hold. For Property 1, assume without loss of generality the case δG(P jt , S
j) > defj/40,

so T j+1 = T j \ P jt . (The case δG(P js , T
j) > defj/40 is symmetric, so we omit it.) As f j+1 = f j and kj+1 = kj ,

we have

defj+1(f j+1)

=
∑

e∈E(Sj+1,T j+1)

max{0, (1− kjβ)c(e)− f j(e)}

= defj(f j)−
∑

e∈E(Sj ,P jt)

max{0, (1− kjβ)c(e)− f j(e)}+
∑

e∈E(P jt ,T
j+1)

max{0, (1− kjβ)c(e)− f j(e)}.

For the second term (without the minus sign), we can lower bound it as

≥
∑

e∈E(Sj ,P jt)

(1− kjβ)c(e)− f j(e) = (1− kjβ)δ(Sj , P jt)− f j(Sj , P jt).

For the third term, we can upper bound it as

≤
∑

e∈E(P jt ,T
j+1)

c(e)− f j(e) = δ(P jt , T
j+1)− f j(P jt , T j+1).

where the first inequality is because 0 ≤ c(e)− f j(e) as f j is feasible. Putting these together, we have

defj+1(f j+1) ≤ defj(f j)−
(

(1− kjβ)δ(Sj , P jt)− δ(P jt , T j+1)
)

+
(
f j(Sj , P jt)− f j(P jt , T j+1)

)
.

That is, the increase in deficit can be upper bounded as follows. It will decrease proportional to (1−kjβ)δ(Sj , P jt)−
δ(P jt , T

j+1) which is related cut size. It may increase proportional to f(Sj , P jt)− f(P jt , T
j+1) which is related to

flow.
For the decrease caused by cut size, AlmostFair(G,T j , t, ε, (kj + 1)β) guarantees that δ(P jt , T

j+1) ≤ (1 −
(kj+1)β)δ(Sj , P jt). So the deficit must decrease by at least

(
(1− kjβ)− (1− (kj + 1)β)

)
δ(Sj , P jt) ≥ βδ(Sj , P jt).

For the increase caused by flow, we have that f j(Sj , P jt)− f j(P jt , T j+1) = f j(Sj , P jt) + f j(T j+1, P jt) = −f j(P jt)
is exactly the net flow of f j into P jt . As |f j(P jt)| ≤ εδG(P jt) by Property 2 on P jt , we now have

defj+1(f j+1) ≤ defj(f j)− βδ(Sj , P jt) + εδG(P jt).

Observe that δG(P jt) = δG(Sj , P jt) + δG(P jt , T
j+1) but δ(P jt , T

j+1) ≤ δ(Sj , P jt) by AlmostFair again. So
εδG(P jt) ≤ 2εδG(Sj , P jt) ≤ β

2 δG(Sj , P jt) because ε ≤ β/4. Therefore,

defj+1(f j+1) ≤ defj(f j)− β

2
δ(Sj , P jt) ≤ (1− β

80
)defj(f j) = def

j+1

because δG(Sj , P jt) > defj/40 by our initial assumption.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

6 Approximate Isolating Cuts and Steiner Cut

The focus of this section is to compute approximate isolating cuts and show its application in the Steiner mincut
problem.

6.1 Approximate Minimum Isolating Cuts The approximate minimum isolating cuts problem is defined
below.

Definition 6.1. Given an undirected graph G = (V,E) with non-negative edge weights and a set of terminals
T ⊆ V , a cut ∅ ⊂ S ⊂ V is said to be an isolating cut for a terminal t ∈ T if T ∩ S = {t}. A minimum isolating
cut for t is a minimum value cut among all the isolating cuts for t. Similarly, a (1 + ε)-approximate minimum
isolating cut for t is an isolating cut for t whose value is at most (1 + ε) times that of a minimum isolating cut
for t.

Below is our main theorem. We state our result in general before plugging in the current best runtime from
Theorem 1.1.

Theorem 6.1. We can compute (1 + ε) approximate minimum isolating cuts in Õ(m) time.
More precisely, fix any ε < 1. Given an undirected graph G = (V,E) on m edges and n vertices with non-

negative edge weights and a set of terminals T ⊆ V , there is an algorithm that outputs a (1 + ε)-approximate
minimum isolating cut St for every terminal t ∈ T in O(m) time plus a set of (1 + γ)-fair (s, t)-cut calls
on undirected graphs that collectively contain O(m log |T |) edges and O(n log |T |) vertices, where γ = ε

4dlg |T |e .

Moreover, the sets St are disjoint, and for each t ∈ T , the cut (St, V \ St) is a t-sided (1 + γ)-fair cut. Using
Theorem 1.1 to compute (1 + γ)-fair (s, t)-cuts, our algorithm for (1 + ε)-approximate minimum isolating cuts
runs in Õ(m/ε3) time.

Algorithm 1 (1 + ε)-approximate Minimum Isolating Cuts Algorithm on terminal set T

1: Arbitrarily order the terminals in T = {t1, t2, . . . , t|T |}
2: Phase 1:
3: for i = 1 to dlg |T |e do
4: Xi ← {vj ∈ T : ith bit in j is 1}
5: Yi ← {vj ∈ T : ith bit in j is 0}
6: Use Theorem 1.1 to find a (1 + γ)-fair (Xi, Yi)-cut Si
7: end for
8: Phase 2:
9: for every terminal t ∈ T do

10: Let St be the connected component containing t in G \ ∪iδSi, i.e., the graph where we delete all the edges
in cuts δSi for all i.

11: Gt is obtained from G by contracting all vertices in V \ St into a single vertex s̄t. {To implement this step
efficiently, we construct a new graph that is identical to Gt instead of contracting G.}

12: Find a (1 + β)-approximate minimum (t, s̄t)-cut in graph Gt; call this cut Ct
13: end for
14: Return the cuts {Ct : t ∈ T}

To establish Theorem 6.1, we describe Algorithm 1 for finding (1 + ε)-approximate isolating cuts. First, we
establish correctness of the algorithm by showing that the cut Ct returned by Algorithm 1 for a terminal t ∈ T
is indeed a (1 + ε)-approximate minimum isolating cut for T . The following claim establishes an approximate
version of the standard uncrossing property of minimum cuts, and is crucial for the correctness of our algorithm.

Lemma 6.1. Let A be a (1+α)-approximate minimum isolating cut for some terminal t and let B be a (1+γ)-fair
(X,Y)-cut where X ∪Y = T , t ∈ X, and X ⊆ B. Then, A∩B is a (1+α)(1+γ)-approximate minimum isolating
cut for t.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. First, note that since A is an isolating cut for t and t ∈ X,X ⊆ B, it follows that A \B does not contain
any terminal and A∩B contains a single terminal t. Now, consider the two cuts A and A∩B. Using the notation
] for disjoint union, we can write

E(A, V \A) = E(A ∩B, V \ (A ∪B))] E(A ∩B,B \A)] E(A \B, V \A)

E(A ∩B, V \ (A ∩B)) = E(A ∩B, V \ (A ∪B))] E(A ∩B,B \A)] E(A ∩B,A \B).

Since the first two sets are identical, we only need to compare the third sets E(A\B, V \A) and E(A∩B,A \B).
Since B is a (1 + γ)-fair (X,Y)-cut, there is a feasible flow from X to Y that, for each edge in E(B, V \ B),
sends at least 1

1+γ times capacity in the direction from B to V \B. Now, consider the flow on the subset of edges

E(A∩B,A \B) ⊆ E(B, V \B). Since the flow must end at Y and since Y ∩ (A \B) = ∅, it follows that this flow
must exit the set A \B on the edges in E(A \B, V \ (A ∪B)). Thus,

δ(A ∩B,A \B) ≤ (1 + γ) · δ(A \B, V \ (A ∪B)) ≤ (1 + γ) · δ(A \B, V \A).

It follows that δ(A ∩B) ≤ (1 + γ) · δ(A), which proves the lemma.

Lemma 6.2. For γ = ε
4dlg |T |e and β = ε

4 , the cut Ct returned by Algorithm 1 is a (1 + ε)-approximate minimum

isolating cut for every t ∈ T .

Proof. Lemma 6.1 implies that in Algorithm 1, the minimum isolating cut of t in graph Gt, i.e., the minimum
t− s̄t cut, is a (1 + γ)dlg |T |e-approximate minimum isolating cut of t in the input graph G. Since Ct is a (1 + β)-
approximate minimum t − s̄t cut, it follows that Ct is a (1 + γ)dlg |T |e · (1 + β)-approximate minimum isolating
cut of t in the input graph G. Using the values of γ and β, we have(

1 +
ε

4dlg |T |e

)dlg |T |e
·
(

1 +
ε

4

)
≤ eε/4 · eε/4 = eε/2 ≤ 1 + ε since ε < 1.

For the (1 + β)-approximate mincut in Step 12, we can use Theorem 1.1 to compute a (1 + γ)-fair cut, which
is also a (1 + β)-approximate mincut since γ ≤ β. This also guarantees that the cut Ct is a t-sided (1 + γ)-fair
cut. Finally, it is clear from the algorithm that all cuts Ct are disjoint.

The runtime analysis is identical to that in [30], so we omit it for brevity.

6.2 (1 + ε)-approximate Minimum Steiner Cut As an immediate application of our isolating cut result,
we can solve the Steiner cut problem below efficiently.

Definition 6.2. Given an undirected graph G = (V,E) with non-negative edge weights and a set of terminals
T ⊆ V , a minimum Steiner cut is a cut of minimum value among all cuts ∅ ⊂ S ⊂ V that satisfy ∅ ⊂ S ∩ T ⊂ T .

Using Theorem 6.1, we give the following algorithm for finding a (1 + ε)-approximate minimum Steiner cut.

Algorithm 2 (1 + ε)-approximate minimum Steiner cut Algorithm on terminal set T

for i = 1 to dlg |T |e do
for j = 1 to dlog8/7 ne do
Tij is drawn i.i.d. from T where every vertex t ∈ T appears in Tij with probability 1/2i

Use Theorem 6.1 to find isolating cuts Sij = {St : t ∈ Tij} for the terminal set Tij
end for

end for
Return arg min{δ(S) : S ∈ Sij , i ∈ [dlg |T |e], j ∈ [dlog8/7 ne]}

Theorem 6.2. Given an undirected graph G = (V,E) on m edges and n vertices and with non-negative edge
weights and a set of terminals T ⊆ V , Algorithm 2 computes a (1+ε)-minimum Steiner cut for T wuth probability
at least 1− 1/n in Õ(m) time.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Fix a minimum Steiner cut for the terminal set T and let S denote the side of this cut such that
|T ∩ S| ≤ |T \ S|. Let i ∈ [dlg |T |e] such that 2i−1 ≤ |S ∩ T | < 2i. Then, Tij contains exactly one vertex
in T ∩ S with probability

|T ∩ S| · 1

2i
·
(

1− 1

2i

)|T∩S|−1

≥ 2i−1 · 1

2i
·
(

1− 1

2i

)2i

≥ 1

2
· 1

4
=

1

8
.

This implies that the probability that there is no index j ∈ [dlog8/7 ne] such that Tij contains exactly one terminal
in T ∩ S is at most 1/n, thereby establishing the correctness of the algorithm.

The running time bound follows from Theorem 6.1.

7 Approximate Gomory-Hu Tree Algorithm

The main result in this section is the near-linear time algorithm for computing an approximate Gomory-Hu tree.
In fact, our algorithm can solve a more general problem called approximate Gomory-Hu Steiner tree defined
below. (The definition is copied verbatim from [31].)

Definition 7.1. (Approximate Gomory-Hu Steiner tree) Given a graph G = (V,E) and a set of terminals
U ⊆ V , the (1 + ε)-approximate Gomory-Hu Steiner tree is a weighted tree T on the vertices U , together with a
function f : V → U , such that

• For all s, t ∈ U , consider the minimum-weight edge (u, v) on the unique s−t path in T . Let U ′ be the vertices
of the connected component of T − (u, v) containing s. Then, the set f−1(U ′) ⊆ V is a (1 + ε)-approximate
(s, t)-mincut, and its value is wT (u, v).

Our main result is stated below. Recall that we assume that the ratio between the largest and lowest edge
weights are poly(n).

Theorem 7.1. Let G be a weighted, undirected graph, and let U be a subset of vertices. There is a randomized
algorithm that w.h.p., outputs a (1 + ε)-approximate Gomory-Hu Steiner tree in Õ(m · poly(1/ε)) time.

The algorithm and analysis are similar to those in [31], except we replace (exact) minimum isolating cuts
with an approximate version, which requires overcoming a few more technical issues. For completeness, we redo
all the proofs. We also restate Theorem 6.1 below in the form we precisely need.

Theorem 7.2. Fix any ε < 1. Given an undirected graph G = (V,E) on m edges and n vertices with non-negative
edge weights and a set of terminals T ⊆ V , there is an algorithm that outputs a (1 + ε)-approximate minimum
isolating cut St ⊆ V for every terminal t ∈ T in Õ(m/εO(1)) time. Moreover, the sets St are disjoint, and for
each t ∈ T , the set St is a t-sided (1 + γ)-fair ({t}, T \ {t})-cut.

7.1 Cut Threshold Step Algorithm We begin with the following “Cut Threshold Step” subroutine from
[31], described in Algorithm 3 below. Loosely speaking, the algorithm inputs a source vertex s and a threshold
W , and aims to find a large fraction of vertices whose mincut from s is approximately at most W .

Lemma 7.1. For any i, each set Siv added to Di satisfies λ(s, v) ≤ (1 + γ)W .

Proof. For each v ∈ Di, the corresponding set Siv on line 5 contains v and not s, so λ(s, v) ≤ δSiv ≤ (1 + γ)W .

Lemma 7.2. Let D∗ be all vertices v ∈ U \ s for which there exists an (s, v)-cut in G of weight at most W whose
side containing v has at most |U |/2 vertices in U . Then, E[|D|] = Ω(|D∗|/ log |U |).

Proof. We will show that

E

blg |U |c∑
i=0

|Di|

 ≥ Ω(|D∗|),(7.6)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3 (1 + γ)-approximate “Cut Threshold Step” on inputs (G,U,W, s)

1: Initialize D ← ∅
2: for independent iteration i ∈ {0, 1, 2, . . . , blg |U |c} do
3: Ri ← sample of U where each vertex in U \ {s} is sampled independently with probability 1/2i, and s is

sampled with probability 1
4: Compute (1 + γ

2dlg |U |e)-approximate minimum isolating cuts {Siv : v ∈ Ri} on inputs G and Ri with the

additional guarantees of Theorem 7.2 (for large enough constant c > 0)
5: Let F i be the family of sets Siv satisfying δSiv ≤ (1 + γ)W , and let Di ←

⋃
Siv∈Fi

Siv ∩ U
6: Let R̃i ⊆ Ri be the set of all v ∈ Ri satisfying δSiv ≤ (1 + γ)W
7: end for
8: Let imax be the index i maximizing |Di|
9: Return D ← Dimax , R← R̃imax , and F ← F imax

which is sufficient, since the largest Di will have at least 1/(blg |U |c + 1) fraction of the total size. Fix a vertex
v ∈ D∗. For each 0 ≤ j ≤ dlg |U |e, define Cjv ⊆ V as the (s, v)-cut of weight at most (1 + γ

2dlg |U |e)
jW that

minimizes |Cjv ∩ U |, which must exist since v ∈ D∗. By construction, |Cjv ∩ U | is decreasing in j.
We focus on a value j∗ (0 ≤ j∗ < dlg |U |e) satisfying |Cj∗+1

v ∩U | ≥ |Cj∗v ∩U |/2, which is guaranteed to exist.
Consider sampling iteration i = blg |Cj∗v ∩ U |c, where each vertex in U \ {s} is sampled with probability 1/2i.
With probability Ω(1/|Cj∗v ∩ U |), we have Cj

∗

v ∩ Ri = {v}, i.e., we sampled v and nothing else in Cj
∗

v ∩ U . If
this occurs, then Cj

∗

v is a valid isolating cut separating v from Ri \ {v}. Since Siv is a (1 + γ
2dlg |U |e)-approximate

minimum isolating cut, we have

δSiv ≤
(

1 +
γ

2dlg |U |e

)
δCj

∗

v ≤
(

1 +
γ

2dlg |U |e

)j∗+1

W ≤
(

1 +
γ

2dlg |U |e

)dlg |U |e
W ≤ eγ/2W ≤ (1 + γ)W,

so Siv ∩ U is added to Di on line 5. By definition of Cj
∗+1
v , we have |Siv ∩ U | ≥ |Cj

∗+1
v ∩ U |, which is at least

|Cj∗v ∩U |/2 by our choice of j∗. In other words, if Cj
∗

v ∩Ri = {v}, which occurs with probability Ω(1/|Cj∗v ∩U |),
then v is “responsible” for adding at least |Cj∗v ∩ U |/2 vertices to Di.

Thus, each vertex v ∈ D∗ is responsible for adding Ω(1) vertices in expectation to some Di, which increases

E
[∑blg |U |c

i=0 |Di|
]

by Ω(1) in expectation. Finally, (7.6) follows by linearity of expectation over all v ∈ D∗.

For our approximate Gomory-Hu tree algorithm, we actually need a bound on E[|D ∩D∗|], not E[|D|], since
we want to remove D from U and claim that the size of the new D∗ drops by a large enough factor. Unfortunately,
it is possible that D is largely disjoint from D∗, so a bound on E[|D|] does not directly translate to a bound on
E[|D∩D∗|]. Therefore, we wrap Algorithm 3 into another routine that achieves a good bound on E[|D∩D∗|]. We
actually prove the stronger guarantee that D∗ can be any subset of all vertices v ∈ U \ s for which λ(s, v) ≤ W ,
which is needed in our Gomory-Hu tree algorithm.

Algorithm 4 (1 + γ)-approximate Gomory-Hu Steiner tree “step” on inputs (G,U0,W0, s)

Initialize U ← U0

for O(log3 n) sequential iterations do
for independent iteration j ∈ {0, 1, 2, . . . , dlg |U |e − 1} do

Call Algorithm 3 on parameter γ
2dlg |U |e and inputs (G,U, (1 + γ

2dlg |U |e)
jW0, s) and let (Dj , Rj ,Fj) be the

output
end for
Update U ← U \

⋃
j Dj for the values Dj computed on this sequential iteration

end for
Return an output (D,R,F) selected uniformly at random out of the O(log3 n log |U |) calls to Algorithm 3.

Lemma 7.3. Each set S ∈ F in the output (D,R,F) of Algorithm 4 satisfies δS ≤ (1 + γ)W0.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. By Lemma 7.1 applied to any j ∈ {0, 1, 2, . . . , dlg |U |e − 1}, each set S ∈ Fj satisfies

δS ≤
(

1 +
γ

2dlg |U |e

)
·
(

1 +
γ

2dlg |U |e

)j
W0 ≤

(
1 +

γ

2dlg |U |e

)dlg |U |e
W0 ≤ eγ/2W0 ≤ (1 + γ)W0.

So the same holds for the randomly chosen output (D,R,F).

Lemma 7.4. Let D∗ be an arbitrary set of vertices v ∈ U \ s satisfying λ(s, v) ≤ W0. The output (D,R,F)
satisfies E[D ∩D∗] ≥ Ω(|D∗|/ log4 n).

Proof. We claim that after O(log3 n) iterations of the main for loop, the set D∗ ∩ U becomes empty. This would
mean that D∗ is contained in the union of all O(log4 n) sets Dj computed over all iterations, so a random set Dj

must contain a Ω(1/ log4 n) fraction of D∗ in expectation. For the rest of the proof, we prove this claim.
For each 0 ≤ j ≤ dlg |U |e, let D∗j be all vertices v ∈ U \ s for which λ(s, v) ≤ (1 + γ

2dlg |U |e)
jW0. By

construction, D∗ ⊆ D∗0 ⊆ D∗1 ⊆ · · · ⊆ D∗dlg |U |e. We track the sets D∗j ∩ U throughout the algorithm.

Consider the set U at the beginning of one of the O(log3 |U |) sequential iterations. We focus on a value j∗

(0 ≤ j∗ < dlg |U |e) satisfying |D∗j∗ ∩ U | ≥ |D∗j∗+1|/2. Consider iteration j∗ of the inner for loop. By Lemma 7.1,

we have λ(s, v) ≤ (1 + γ
2dlg |U |e) · (1 + γ

2dlg |U |e)
j∗W0 = (1 + γ

2dlg |U |e)
j∗+1W0, so in particular, Dj∗ ⊆ D∗j∗+1. By

Lemma 7.2, we have E[|Dj∗ |] ≥ Ω(|D∗j∗ |/ log |U |) ≥ Ω(|D∗j∗+1|/ log |U |). Therefore, once we delete
⋃
j Dj at the

end of this sequential iteration, the size of D∗j∗+1 drops by factor (1− Ω(1/ log |U |)) in expectation.
In other words, on each sequential iteration, there exists j∗ (1 ≤ j∗ ≤ dlg |U |e) for which the size of D∗j ∩ U

drops by factor (1 − Ω(1/ log |U |)) in expectation. Since the other sets D∗j′ ∩ U can never increase in size, the

product
∏dlg |U |e
j=1 |D∗j ∩ U | decreases by factor (1 − Ω(1/ log |U |)) in expectation. Since the product is at most

|U |dlg |U |e ≤ 2O(log2 n) initially, it follows that after O(log3 n) sequential iterations, the product becomes zero
w.h.p. Therefore, at the end of the algorithm, there exists j (1 ≤ j∗ ≤ dlg |U |e) with D∗j ∩U = ∅. Since D∗ ⊆ D∗j ,
we also get D∗ ∩ U = ∅, which proves the claim.

7.2 The Algorithm for Approximating Gomory-Hu Steiner Tree We present our approximate Gomory-
Hu tree algorithm in Algorithm 5. It uses Algorithm 4 as a subroutine. See Figure 7.2 for a visual guide to the
algorithm. Once again, the algorithm and analysis closely follow those in [31].

We require the lemma below for both running time and approximation guarantee analysis.

Lemma 7.5. Each set S ∈ F satisfies δGS ≤ (1 + γ)(1 + 10ε)λ and |S ∩ U | ≤ 2|U |/3.

Proof. By Lemma 7.3 on the call to Algorithm 4 (line 6), each set S ∈ F satisfies δG′S ≤ (1 + γ) · (1 + 10ε)λ, so
δGS ≤ δG′S ≤ (1 + γ)(1 + 10ε)λ. We now prove the second statement. By construction, the cut ∂G′S has |S ∩U |
edges of weight 18ελ/|U | that were added to G′. Since ∂GS is a valid Steiner cut in G and the Steiner mincut is
at least (1− ε)λ, the cut ∂G′S has at least (1− ε)λ weight of edges from G. So δG′S ≥ (1− ε)λ+ |S∩U | ·18ελ/|U |.
Suppose for contradiction that |S ∩ U | > 2|U |/3; then, this becomes δG′S > (1− ε)λ+ 12ελ = (1 + 11ε)λ, which
contradicts the earlier statement δG′S ≤ (1 + γ)(1 + 10ε)λ.

7.3 Running Time Bound Let P (G,U,W) be the set of unordered pairs of distinct vertices whose mincut is
at most W :

P (G,U,W) =

{
{u, v} ∈

(
U

2

)
: λG(u, v) ≤W

}
.

In particular, we will consider its size |P (G,U,W)|, and show the following expected reduction:

Lemma 7.6. For any W that is at most (1 + ε) times the Steiner mincut of G, we have

E[|P (Glarge, Ularge,W)|] ≤
(

1− Ω

(
1

log4 n

))
|P (G,U,W)|,

where the expectation is taken over the random selection of s and the randomness in Algorithm 4.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 5 (1 + ε)-approximate Gomory-Hu Steiner tree on inputs (G0, U). Assume ε < 1/100.

1: If |U | = 1, then return the trivial Gomory-Hu Steiner tree (T, f) where T is the empty tree on the single
vertex u ∈ U , and f(v) = u for all vertices v. Otherwise, if |U | > 1, then do the steps below.

2: γ ← ε2/ log6 n
3: λ ← (1 + ε)-approximate global Steiner mincut of G with terminals U , so that the Steiner mincut is in the

range [(1− ε)λ, λ]
4: s← uniformly random vertex in U
5: Construct graph G′ by starting with G and adding an edge (s, u) of weight 18ελ/|U | for each u ∈ U
6: Call Algorithm 4 on parameter γ and inputs (G′, U, (1 + 10ε)λ, s), and let (D,R,F) be the output. Write
F = {Sv : v ∈ R} where v ∈ Sv for all v ∈ R.

7: Phase 1: Construct recursive graphs and apply recursion
8: for each v ∈ R do
9: Let Gv be the graph G with vertices V \ Sv contracted to a single vertex xv

10: Let Uv ← Sv ∩ U
11: Recursively call (Gv, Uv) to obtain output (Tv, fv)
12: end for
13: Let Glarge be the graph G with (disjoint) vertex sets Sv contracted to single vertices yv for all v ∈ R
14: Let Ularge ← U \

⋃
v∈R(Sv ∩ U)

15: Recursively call (Glarge, Ularge) to obtain (Tlarge, flarge)
16: Phase 2: Merge the recursive Gomory-Hu Steiner trees
17: Construct T by starting with the disjoint union Tlarge∪

⋃
v∈R Tv and, for each v ∈ R, adding an edge between

fv(xv) ∈ Uv and flarge(yv) ∈ Ularge of weight w(∂GSv)
18: Construct f : V → U by f(v′) = flarge(v′) if v′ ∈ Ularge and f(v′) = fv(v

′) if v′ ∈ Uv for some v ∈ R
19: Return (T, f)

v1

Si
v1

Si
v2v2

Si
v3v3

xv2

xv1
xv3

fv2

fv3

fv1

Tv2

Tv3

Tv1

flarge

Tlarge

T

Gv2

Glarge

Gv3

Gv1

G

yv1

yv3

yv2

recursive graphs

Combine

Figure 2: Recursive construction of Glarge and Gv for v ∈ R. Here, R = {v1, v2, v3}, denoted by red vertices
on the top left. The dotted blue curves on the right mark the boundaries of the regions f−1

vi (u) : u ∈ Uvi and
f−1
vlarge

(u) : u ∈ Ularge. The light green edges on the bottom left are the edges (fvi(xvi), flarge(yvi)) added on
line 17.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Before we prove Lemma 7.6, we show how it implies progress on the recursive call for Glarge.

Corollary 7.1. Let λ0 be the global Steiner mincut of G. W.h.p., after Ω(log5 n) recursive calls along Glarge

(replacing G← Glarge each time), the global Steiner mincut of G is at least (1 + ε)λ0 (where λ0 is still the global
Steiner mincut of the initial graph).

Proof. Let W = (1 + ε)λ0. Initially, we trivially have |P (G,U,W)| ≤
(|U |

2

)
. The global Steiner mincut can only

increase in the recursive calls, since Glarge is always a contraction of G, so W is always at most (1 + ε) times the
current Steiner mincut of G. By Lemma 7.6, the value |P (G,U,W)| drops by factor 1− Ω(1

log4 n
) in expectation

on each recursive call, so after Ω(log5 n) calls, we have

E[|P (G,U,W)|] ≤
(
|U |
2

)
·
(

1− Ω

(
1

log4 n

))Ω(log5 n)

≤ 1

poly(n)
.

In other words, w.h.p., we have |P (G,U,W)| = 0 at the end, or equivalently, the Steiner mincut of G is at least
(1 + ε)λ0.

Combining both recursive measures of progress together, we obtain the following bound on the recursion
depth:

Lemma 7.7. W.h.p., each path down the recursion tree of Algorithm 5 has O(log n) calls on a graph Gv, and
between two consecutive such calls, there are O(ε−1 log6 n) calls on the graph Glarge.

Proof. For any Θ(log5 n) successive recursive calls down the recursion tree, either one call was on a graph Gv,
or all Θ(log5 n) of them were on the graph Glarge. In the former case, |U | drops by a constant factor by
Lemma 7.5, so it can happen O(log n) times total. In the latter case, by Corollary 7.1, the global Steiner
mincut increases by factor (1 + ε). Let wmin and wmax be the minimum and maximum weights in G, so
that ∆ = wmax/wmin, which we assume to be poly(n). Note that for any recursive instance (G′, U ′) and any
s, t ∈ U ′, we have wmin ≤ λG′(s, t) ≤ w(∂({s})) ≤ nwmax, so the global Steiner mincut of (G′, U ′) is always
in the range [wmin, nwmax]. It follows that the global Steiner mincut can increase by factor (1 + ε) at most
O(ε−1 log(nwmax/wmin)) = O(ε−1 log n) times. Therefore, there are at most O(ε−1 log6 n) consecutive calls on
Glarge before a call on some Gv must occur.

Lemma 7.8. For an unweighted/weighted graph G = (V,E), and terminals U ⊆ V , Algorithm 5 takes time
Õ(mε−1) plus calls to Theorem 7.2 with parameter γ = ε2/ log6 n on unweighted/weighted instances with a total
of Õ(nε−1) vertices and Õ(mε−1) edges.

Proof. For a given recursion level, consider the instances {(Gi, Ui,Wi)} across that level. By construction, the
terminals Ui partition U . Moreover, the total number of vertices over all Gi is at most n + 2(|U | − 1) = O(n)
since each branch creates 2 new vertices and there are at most |U | − 1 branches.

To bound the total number of edges, we consider the unweighted and weighted cases separately, starting with
the unweighted case. The total number of new edges created is at most the sum of weights of the edges in the final
(1 + ε)-approximate Gomory-Hu Steiner tree. For an unweighted graph, this is O(m) by the following well-known
argument. Root the Gomory-Hu Steiner tree T at any vertex r ∈ U ; for any v ∈ U \ r with parent u, the cut
∂{v} in G is a (u, v)-cut of value deg(v), so wT (u, v) ≤ (1 + ε)λG(u, v) ≤ (1 + ε) deg(v). Overall, the sum of the
edge weights in T is at most (1 + ε)

∑
v∈U deg(v) ≤ (1 + ε) · 2m.

For the weighted case, define a parent vertex in an instance as a vertex resulting from either (1) contracting
V \ Sv in some previous recursive Gv call, or (2) contracting a component containing a parent vertex in some
previous recursive call. There are at most O(log n) parent vertices: at most O(log n) can be created by (1) since
each Gv call decreases |U | by a constant factor (Lemma 7.5), and (2) cannot increase the number of parent
vertices. Therefore, the total number of edges adjacent to parent vertices is at most O(log n) times the number
of vertices. Since there are O(n) vertices in a given recursion level, the total number of edges adjacent to parent
vertices is O(n log n) in this level. Next, we bound the number of edges not adjacent to a parent vertex by m.
To do so, we first show that on each instance, the total number of these edges over all recursive calls produced
by this instance is at most the total number of such edges in this instance. Let P ⊆ V be the parent vertices;

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

then, each Gv call has exactly |E(G[Sv \ P])| edges not adjacent to parent vertices (in the recursive instance),
and the Glarge call has at most |E(G[V \P]) \

⋃
v∈RE(G[Sv \P])|, and these sum to |E(G[V \P])|, as promised.

This implies that the total number of edges not adjacent to a parent vertex at the next level is at most the total
number at the previous level. Since the total number at the first level is m, the bound follows.

Therefore, there are O(n) vertices and Õ(m) edges in each recursion level. By Lemma 7.7, there are
O(ε−1 log6 n) levels, for a total of Õ(nε−1) vertices and Õ(mε−1) edges. In particular, the instances to the
max-flow calls have Õ(nε−1) vertices and Õ(mε−1) edges in total.

Finally, we prove Lemma 7.6, restated below.

Lemma 7.6. For any W that is at most (1 + ε) times the Steiner mincut of G, we have

E[|P (Glarge, Ularge,W)|] ≤
(

1− Ω

(
1

log4 n

))
|P (G,U,W)|,

where the expectation is taken over the random selection of s and the randomness in Algorithm 4.

Proof. Define D∗ as the set of vertices v ∈ U \ s for which there exists an (s, v)-cut in G of weight at most
W whose side containing v has at most |U |/2 vertices in U . Let Pordered(G,U,W) be the set of ordered pairs
(u, v) : u, v ∈ V for which there exists a (u, v)-mincut of weight at most W with at most |U |/2 vertices in U on
the side S(u, v) ⊆ V containing u. We now state and prove the following four properties:

(a) For all u, v ∈ U , {u, v} ∈ P (G,U,W) if and only if either (u, v) ∈ Pordered(G,U,W) or (v, u) ∈
Pordered(G,U,W) (or both).

(b) For each pair (u, v) ∈ Pordered(G,U,W), we have u ∈ D∗ with probability at least 1/2,

(c) For each u ∈ D∗, there are at least |U |/2 vertices v ∈ U for which (u, v) ∈ Pordered(G,U,W).

(d) Over the randomness in Algorithm 3 on (G,U, (1 + ε)λ), E[|D ∩D∗|] ≥ Ω(|D∗|/ log4 |U |).

Property (a) follows by definition. Property (b) follows from the fact that u ∈ D∗ whenever s /∈ S(u, v),
which happens with probability at least 1/2. Property (c) follows because any vertex v ∈ U \ S(u, v) satisfies
(u, v) ∈ Pordered(G,U,W), of which there are at least |U |/2. For property (d), observe by construction of G′

that for each vertex v ∈ D∗, the (s, v)-mincut has weight at most W + |U |/2 · 18ελ/|U |. This is at most
(1 + ε)λ + 9ελ = (1 + 10ε)λ since W is at most (1 + ε) times the Steiner mincut of G (which is at most λ). It
follows that each v ∈ D∗ satisfies λG′(s, v) ≤ (1 + 10ε)λ. Property (d) follows from Lemma 7.4 applied to input
(G,U, (1 + 10ε)λ, s) and set D∗.

With properties (a) to (d) in hand, we now finish the proof of Lemma 7.6. For any vertex u ∈ D, all pairs
(u, v) ∈ Pordered(G,U,W) (over all v ∈ U) disappear from Pordered(G,U,W), which is at least |U |/2 many by (c).
In other words,

|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)| ≥ |U | · |D|
2

.

Taking expectations and applying (d),

E[|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|] ≥ |U | · E[|D|]
2

≥ Ω

(
|U | · |D∗|
log4 |U |

)
.

Moreover,

|U | · |D∗| ≥ E
[∣∣{(u, v) : u ∈ D∗}

∣∣] ≥ 1

2
|Pordered(G,U,W)|,

where the second inequality follows by (b). Putting everything together, we obtain

E[|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|] ≥ Ω

(
|Pordered(G,U,W)|

log4 |U |

)
.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Finally, applying (a) gives

E[|P (G,U,W) \ P (Glarge, Ularge,W)|] ≥ Ω

(
|P (G,U,W)|

log4 |U |

)
.

Finally, we have P (Glarge, Ularge,W) ⊆ P (G,U,W) since the (u, v)-mincut for u, v ∈ Ularge can only increase in
Glarge due to Glarge being a contraction of G. Therefore,

|P (G,U,W)| − |P (Glarge, Ularge,W)| = |P (G,U,W) \ P (Glarge, Ularge,W)|,

and combining with the bound on E[|P (G,U,W) \ P (Glarge, Ularge,W)|] concludes the proof.

7.4 Approximation We first prove the two lemmas below before concluding the approximation guarantee.

Lemma 7.9. For any distinct vertices p, q ∈ Ularge, we have λG(p, q) ≤ λGlarge
(p, q) ≤ (1 + γ)λG(p, q).

Proof. Since Glarge is a contraction of G, we have λG(p, q) ≤ λGlarge
(p, q). To show the other inequality, fix any

(p, q)-mincut (A,B) in G. We iteratively “uncross” the cut (A,B) with each set Sv ∈ F (v ∈ R) as follows: if
v ∈ A, then replace (A,B) with (A ∪ Sv, B \ Sv), and if v ∈ B, then replace (A,B) with (A \ Sv, B ∪ Sv). By
construction, the final cut is a (p, q)-cut that contains each Sv on one side of the cut, so it survives upon contraction
into Glarge and is a valid (p, q)-cut in Glarge. We claim that the final cut has weight at most (1+γ)λG(p, q), which
would prove λGlarge

(p, q) ≤ (1 + γ)λG(p, q).
Let (A,B) be the current cut in the iterative process, and let Sv be the next cut we wish to uncross. Since

Sv is a v-sided (1 + γ)-fair cut on G′, there is a feasible flow with no source/sink in Sv \ {v} and which saturates
∂G′Sv up to factor 1

1+γ (in the direction from Sv to V \ Sv). By ignoring the flow outside G′[Sv]∪ ∂G′Sv, we can

view it as a flow from v to the boundary ∂G′Sv that saturates the boundary up to 1
1+γ factor. Decompose the

flow into paths and ignore the paths ending at edges in G′ −G (which are all in ∂G′Sv), obtaining a feasible flow
from v to δGSv that saturates ∂GSv to factor 1

1+γ .
Suppose first that v ∈ B. Further restrict the flow paths to only those ending at the edges in the

subset EG(A \ Sv, A ∩ Sv) of ∂GSv. Each of these paths must cross EG(A ∩ Sv, B ∩ Sv). There is at least
1

1+γw(EG(A \Sv, A∩Sv)) flow along these paths, and they must cross a total capacity of w(EG(A∩Sv, B ∩Sv)).
Since the flow is feasible, we conclude that 1

1+γw(EG(A \ Sv, A ∩ Sv)) ≤ w(EG(A ∩ Sv, B ∩ Sv). In the operation

that uncrosses Sv, the newly cut edges are precisely EG(A \ Sv, A ∩ Sv), and all edges in EG(A ∩ Sv, B ∩ Sv)
disappear. We charge the newly cut edges EG(A \ Sv, A∩ Sv) to the deleted edges EG(A∩ Sv, B ∩ Sv) at a 1 + γ
to 1 ratio. Finally, if v ∈ A, then the argument is symmetric by replacing A and B, and the charging is identical.

Since the sets Sv : v ∈ R are disjoint, each edge is either charged to or charged from, but not both. If the
total weight of charged-to edges is W , then the total weight of newly cut edges is at most (1 + γ)W , so the final
cut has weight at most λG(p, q)−W + (1 + γ)W ≤ (1 + γ)λG(p, q), as promised.

Lemma 7.10. For any v ∈ R and any distinct vertices p, q ∈ Uv, we have λG(p, q) ≤ λGv (p, q) ≤ (1+13ε)λG(p, q).

Proof. The lower bound λG(p, q) ≤ λGv (p, q) holds because Gv is a contraction of G, so we focus on the upper
bound. Fix any (p, q)-mincut in G, and let S be the side of the mincut not containing s (recall that s ∈ U
and s /∈ Sv). Since Sv ∪ S is a (p, s)-cut (and also a (q, s)-cut), it is in particular a Steiner cut for terminals
U , so δG(Sv ∪ S) ≥ (1 − ε)λ. Also, δGSv ≤ (1 + γ)(1 + 10ε)λ ≤ (1 + 11ε)λ by Lemma 7.5. Together with the
submodularity of cuts, we obtain

(1 + 11ε)λ+ δGS ≥ δGSv + δGS ≥ δG(Sv ∪ S) + δG(Sv ∩ S) ≥ (1− ε)λ+ δG(Sv ∩ S),

The set Sv ∩ S stays intact under the contraction from G to Gv, so δGv (Sv ∩ S) = δG(Sv ∩ S). Therefore,

λGv (p, q) ≤ δGv (Sv ∩ S) = δG(Sv ∩ S) ≤ δGS + 12ελ = λG(p, q) + 12ελ.

Finally, λG(p, q) is at least the Steiner mincut of G, which is at least (1 − ε)λ, so the above is at most
λG(p, q) + 12ε · λG(p, q)/(1− ε) ≤ (1 + 13ε)λG(p, q), as promised.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Combining the lemmas above, we can conclude the following.

Lemma 7.11. Algorithm 5 outputs a
(
(1 + 13ε)(1 + γ)O(ε−1 log6 n)

)log1.5 |U |-approximate Gomory-Hu Steiner tree.

With γ = ε2/ log6 n, the approximation factor is (1 + ε)O(log |U |).

Proof. To avoid clutter, define α = Cε−1 log6 n for large enough constant C > 0. Consider the path down the
recursion tree leading up to the current recursive instance, and let k be the number of consecutive recursive
calls of type Glarge directly preceding the current instance. We apply induction on |U | and k to prove an
((1 + 13ε)(1 + γ)α)log1.5 |U |(1 + γ)−k-approximation factor. By Lemma 7.5, we have |Uv| ≤ 2|U |/3 for all
v ∈ R, so by induction, the recursive outputs (Tv, fv) are Gomory-Hu Steiner trees with approximation
((1+13ε)(1+γ)α)log1.5 |Uv| ≤ ((1+13ε)(1+γ)α)log1.5 |U |−1. By definition, this means that for all s, t ∈ Uv and the
minimum-weight edge (u, u′) on the s–t path in Tv, letting U ′v ⊆ Uv be the vertices of the connected component of
Tv − (u, u′) containing s, we have that f−1

v (U ′v) is a ((1 + 13ε)(1 + γ)α)log1.5 |U |−1-approximate (s, t)-mincut in Gv
with value wT (u, u′). Define U ′ ⊆ U as the vertices of the connected component of T − (u, u′) containing s. By
construction of (T, f) (lines 17 and 18), the set f−1(U ′) is simply f−1

v (U ′v) with the vertex xv replaced by V \ Sv
in the case that xv ∈ f−1(U ′). Since Gv is simply G with all vertices V \ Sv contracted to xv, we conclude that
δGv (f−1

v (U ′v)) = δG(f−1(U ′)). By Lemma 7.10, the values λG(s, t) and λGv (s, t) are within factor (1 + 13ε) of
each other, so δG(f−1(U ′)) approximates the (s, t)-mincut in G to a factor (1+13ε) · ((1+13ε)(1+γ)α)log1.5 |U |−1,
which we want to show is at most ((1+13ε)(1+γ)α)log1.5 |U |(1+γ)−k. This follows by Lemma 7.7 since w.h.p., we
always have k ≤ Cε−1 log6 n = α for large enough constant C > 0. Thus, the Gomory-Hu Steiner tree condition
for (T, f) is satisfied for all s, t ∈ Uv for some v ∈ R.

We now focus on the case s, t ∈ Ularge. By induction, the recursive output (Tlarge, flarge) is a Gomory-Hu
Steiner tree with approximation ((1 + 13ε)(1 + γ)α)log1.5 |U |(1 + γ)−(k+1). Again, consider s, t ∈ Ularge and the
minimum-weight edge (u, u′) on the s–t path in Tlarge, and let U ′large ⊆ Ularge be the vertices of the connected
component of Tlarge−(u, u′) containing s. Define U ′ ⊆ U as the vertices of the connected component of T −(u, u′)
containing s. By a similar argument, we have δGlarge

(f−1
large(U ′large)) = δG(f−1(U ′)). By Lemma 7.9, we also have

λGlarge
(s, t) = (1+γ)λG(s, t), so δG(f−1(U ′)) is a

(
((1 + 13ε)(1 + γ)α)log1.5 |U |(1 + γ)−(k+1) · (1 + γ)

)
-approximate

(s, t)-mincut in G, fulfilling the Gomory-Hu Steiner tree condition for (T, f) in the case s, t ∈ Ularge.
There are two remaining cases: s ∈ Uv and t ∈ Uv′ for distinct v, v′ ∈ R, and s ∈ Uv and t ∈ Ularge; we treat

both cases simultaneously. Since G has Steiner mincut at least λ, each of the contracted graphs Glarge and Gv
also has Steiner mincut at least λ. Since all edges on the approximate Gomory-Hu Steiner tree correspond to
actual cuts in the graph, every edge in Tv and Tlarge has weight at least λ. By construction, the s–t path in T has
at least one edge of the form (fv(xv), flarge(yv)), added on line 17; this edge has weight δGSv ≤ (1 + ε)(1 + γ)λ
by Lemma 7.5. Therefore, the minimum-weight edge on the s–t path in T has weight at least λ and at most
(1 + ε)(1 + γ)λ; in particular, it is a (1 + ε)(1 + γ)-approximation of λG(s, t), which fits the bound since |U | ≥ 2.
If the edge is of the form (fv(xv), flarge(yv)), then by construction, the relevant set f−1(U ′) is exactly Sv, which
is a (1 + ε)-approximate (s, t)-mincut in G. If the edge is in Tlarge or Tv or Tv′ , then we can apply the same
arguments used previously.

Finally, we can reset ε← Θ(ε/ log n) so that the (1+ε)O(log |U |)-approximation becomes (1+ε). This concludes
Theorem 7.1.

8 Expander Decomposition

In this section, we show how the fair cut algorithm implies a near-optimal expander decomposition algorithm,
following the framework of Saranurak and Wang [42]. We first begin with some notation exclusive to this section.
Define the volume of a set of vertices S as vol(S) =

∑
v∈S deg(v), and let G{S} denote the subgraph G[S] with

(weighted) self-loops added to vertices so that all vertex degrees are preserved, i.e., degG(v) = degG{S}(v) for all
v ∈ S. For a graph G, define its conductance as

ΦG = min
∅(S(V

c(E(S, V \ S))

min{vol(S),vol(V \ S)}
.

We call G a φ-expander if ΦG ≥ φ.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 8.1. (Near-linear expander decomposition) Given a graph G = (V,E) and a parameter φ, there
is a randomized Õ(m)-time algorithm that with high probability finds a partitioning of V into V1, . . . , Vk such that
ΦG{Vi} ≥ φ for all i ∈ [k] and

∑
i δ(Vi) = Õ(φm).

Note that if G{Vi} is a φ-expander, then so is the induced subgraph G[Vi] (which is sometimes more directly
applicable). We also remark that [42] prove almost the exact same theorem, except their running time is Õ(m/φ),
and is therefore slower for small values of φ.

At a high level, we use the same high-level recursive approach, except we replace the flow subroutines in
their trimming and cut-matching steps of [42] with a fair cut computation. We note that there are known black-
box reductions from expander decomposition to computing (approximately) most-balanced sparse cuts. But these
reductions have some drawbacks and do not lead to near-optimal algorithms as in Theorem 8.1. The first reduction
is implicit by Spielman and Teng [45]. However, they can only obtain a weak expander decomposition from most-
balanced sparse cut algorithms. It is weak in the sense that each part is only guaranteed to be contained in
some expanders, but may not induce an expander itself. Another reduction by Nanongkai and Saranurak [38]
suffers from an inherent no(1) factor loss in both quality and running time. By refining the non-blackbox approach
of [42] via fair cuts, we successfully obtain the first expander decomposition algorithm that are optimal up to
polylogarithmic factors.

8.1 Algorithm overview We begin by describing the recursive algorithm of [42] at a high level. There are two
main subroutines, cut-matching and trimming, to be described later. On input graph G = (V,E) and parameter
φ, the algorithm Decomp(G,φ) outputs a partition of V as follows.

1. Call Cut-Matching(G,φ), which either certifies that ΦG ≥ φ or finds a cut (A,R)

2. If we certify ΦG ≥ φ, then return {V } (the trivial partition)

3. Else if we find a relatively balanced cut (A,R), where vol(A) and vol(R) are both Ω(vol(V)/ log2m):

(a) Return Decomp(G{A}, φ) ∪ Decomp(G{R}, φ)

4. Else, suppose that vol(R) ≤ O(vol(V)/ log2m):

(a) A′ = Trimming(G,A, φ)

(b) Return {A′} ∪Decomp(G{A′}, φ)

If Cut-Matching and Trimming run in T time, then the entire recursive algorithm takes Õ(T) time. In [42],
the two subroutines are solved in Õ(m/φ) time. In this section, we improve both running times to Õ(m) by
substituting their flow subroutines with fair cuts/flows.

8.2 Trimming step To describe the trimming step formally, we need the concept of a nearly expander.

Definition 8.1. (nearly φ-expander) Given G = (V,E) and a set of vertices A ⊆ V , we say that A is a
nearly φ-expander in G if for all subsets S ⊆ A with vol(S) ≤ vol(A)/2, we have c(E(S, V \ S)) ≥ φvol(S).

In the trimming step, we are given a set A ⊆ V such that A is a nearly φ-expander in G, and the goal is
to “trim” A to a subset A′ ⊆ A such that G{A′} is a φ/6-expander. The formal subroutine is described in the
theorem below, copied almost identically to Theorem 2.1 of [42] except for the improved Õ(m) running time.

Theorem 8.2. (Trimming, Theorem 2.1 of [42]) Given graph G = (V,E) and A ⊆ V such that

1. A is a nearly φ-expander in G, and

2. c(E(A,A)) ≤ φvol(A)/10,

the trimming step finds A′ ⊆ A in time Õ(m) such that ΦG{A′} ≥ φ/6. Moreover, vol(A′) ≥ vol(A) −
4c(E(A,A))/φ and c(E(A′, A′)) ≤ 2c(E(A,A)).

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Consider the following (s, t)-flow problem on a new graph H = (VH , EH). Start from G{A}, and contract
V \A into a single vertex and label it the source s. Next, multiply the capacity of each edge by 3/φ. Finally, add
a new sink vertex t and connect it to each vertex v ∈ A with an edge of capacity degG{A}(v). Let α = 0.1, and
compute a (1 + α)-fair cut (S, T). Let A′ = T \ {t}, which we now show satisfies the properties of the lemma.

First, suppose for contradiction that G{A′} is not a φ/6-expander. Then, there is a violating set U ⊆ A′

satisfying

c(E(U,A′ \ U)) ≤ φ

6
vol(U).

Since A is a nearly φ-expander,

c(E(U, V \ U)) ≥ φvol(U).

Taking the difference of the two inequalities above,

c(E(U, V \A′)) = c(E(U, V \ U))− c(E(U,A′ \ U)) ≥ 5φ

6
vol(U).

Since (S, T) is a (1 + α)-fair cut, there is a feasible flow f that saturates each edge of EH(S, T) to factor 1
1+α .

Each edge (u, v) in E(U, V \A′) corresponds to an edge in EH(S, T) of capacity 3
φcG{A}(u, v), and the flow f must

send at least 1
1+α ·

3
φcG{A}(u, v) ≥ 2

φcG{A}(u, v) flow along that edge (in the direction from S to T). In total, the
amount of flow entering U in H is at least

2

φ
cG{A}(E(U, V \A′)) ≥ 2

φ
· 5φ

6
vol(U) =

5

3
vol(U).

On the other hand, at most vol(U) flow can leave U along the edges incident to t, and at most

3

φ
cG{A}(E(U,A′ \ U)) ≤ 3

φ
· φ

6
vol(U) =

1

2
vol(U)

flow can cross from U to A′ \U . This totals at most 3
2vol(U) flow that can exit U , which is strictly less than the

≥ 5
3vol(U) flow that enters U , a contradiction. Thus, G{A′} is a φ/6-expander.

Finally, we show the properties vol(A′) ≥ vol(A)− 4c(E(A,A))/φ and c(E(A′, A′)) ≤ 2c(E(A,A)) promised
by the lemma. Since (S, T) is a (1 + α)-fair cut, it is in particular a (1 + α)-approximate (s, t)-mincut. Since
({s}, VH \ {s}) is an (s, t)-cut of capacity 3

φc(E(A,A)), it follows that the cut (S, T) has capacity at most

(1 + α) · 3
φc(E(A,A)). To prove the first property above, note that each vertex v ∈ A \ A′ is on the S-side of

the cut (S, T), and therefore contributes degG{A}(v) to the cut (S, T) from the edge (v, t). Summing over all
v ∈ A \A′, we obtain

vol(A \A′) ≤ cH(E(S, T)) ≤ (1 + α) · 3

φ
c(E(A,A)) ≤ 4

φ
c(E(A,A)),

which proves the first property. For the second property above, note that each edge (u, v) in E(A′, A′) corresponds
to an edge in E(S, T) with 3/φ times the capacity, so summing over all such edges,

3

φ
c(E(A′, A′)) ≤ cH(E(S, T)) ≤ (1 + α) · 3

φ
c(E(A,A)),

which proves the second property.

8.3 Cut-matching step In the cut-matching step, the goal is to either certify that the input graph is an
expander, or find a low-conductance cut with a special property: either it is balanced, or if not, we guarantee that
the larger side is a nearly expander. The name “cut-matching” comes from the cut-matching game framework [27]
that this step uses, though its description is not required in this section.

The formal subroutine is described in the theorem below, copied almost identically to Theorem 2.2 of [42]
except for the improved Õ(m) running time.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 8.3. (Cut-Matching, Theorem 2.2 of [42]) Given a graph G = (V,E) and a parameter φ, the
cut-matching step takes Õ(m) time and must end with one of the three cases:

1. We certify G has conductance ΦG ≥ φ.

2. We find a cut (A,A) in G of conductance ΦG(A) = O(φ2m), and vol(A),vol(A) are both Ω(m/ log2m),
i.e., we find a relatively balanced low conductance cut.

3. We find a cut (A,A) with ΦG(A) ≤ c0φ log2m for some constant c0, and vol(A) ≤ m/(10c0 log2m), and A
is a nearly φ-expander.

We will not present the entire proof of this theorem, since most of the steps remain unchanged from [42]. The
only step that takes Õ(m/φ) time in [42] is their subroutine Lemma B.6, so it suffices to describe it and improve
its running time to Õ(m).

First, we introduce some notation from [42]. Given a graph G = (V,E) and a subset of vertices A ⊆ V ,
denote by G{S} the induced subgraph G[S] but with self-loops added to vertices so that any vertex in S has
the same degree as its degree in G. Given a multi-graph G = (V,E), its subdivision graph GE = (V ′, E′) is the
graph where we put a split node xe on each edge e ∈ E (including the self-loops). Formally, V ′ = V ∪XE where
XE = {xe | e ∈ E}, and E′ = {(u, xe), (v, xe) | e = (u, v) ∈ E}. While [42] only defines the subdivision graph
for unweighted graphs, we can extend the definition to weighted graphs by assigning the edges (u, xe), (v, xe) ro
have capacity c(e) for each edge e = (u, v) ∈ E. For a split node x(u,v), we abuse notation and define its capacity
c(x(u,v)) to be the capacity c(u, v) of the edge (u, v) in G. For a set of split nodes S, its total capacity c(S) is the
sum of the capacities of the split nodes in S.

The input to the subroutine of Lemma B.6 is

1. A set of vertices A ⊆ V ′,

2. A set of source split nodes Al ⊆ A ∩XE of total capacity at most cG{A}(A ∩XE)/8, and

3. A set of target split nodes Ar ⊆ A ∩XE of total capacity at least cG{A}(A ∩XE)/2.

For any graph H and positive number U , let HU be the graph where each edge has its capacity multiplied by U .
Let U = 1/(φ log2m), and consider a flow problem on (GE{A})U where each split node x(u,v) ∈ Al is a source
of c(u, v) units of mass (where c(u, v) is the original capacity in GE , not multiplied by U) and each split node
x(u,v) ∈ Ar is a sink with capacity c(u, v). The task is to either find

1. A feasible flow f for the above problem, or

2. A cut S where ΦG{A}(S) = O(φ log2m) and a feasible flow for the above flow problem when only split nodes

x(u,v) in Al \ S are sources of c(u, v) units.

Lemma B.6 of [42] uses a push-relabel or blocking-flow algorithm that runs in O(m/(φ logm)) time. Using fair
cuts, we improve the running time to Õ(m), independent of φ, in the lemma below.

Lemma 8.1. We can solve the task above in Õ(m) time.

Proof. Let α = 0.1, and consider the flow problem on the graph H = (GE{A})U/(1+α) instead. First, convert it
to an (s, t)-flow problem by adding a source vertex s, connected to each x(u,v) ∈ Al with capacity cG{A}(u, v), and
a sink vertex t, connected to each x(u,v) ∈ Ar with capacity cG{A}(u, v)/(1 +α). Next, we compute a (1 +α)-fair

cut (S, T) and corresponding feasible flow f ′ in Õ(m) time. There are two cases below:

1. S = {s}. In this case, by definition of fair cuts, the flow f ′ sends at least cG{A}(u, v)/(1 + α) flow out of
each edge from s. By computing a path decomposition and removing paths accordingly, we can modify f ′

to a new feasible flow f ′′ that sends exactly cG{A}(u, v)/(1 + α) flow along each edge out of s, and at most
cG{A}(u, v)/(1 +α) flow along each edge into t. Finally, we let flow f be f ′′ multiplied by (1 +α), and then

restricted to graph (GE{A})U . Since f ′′ is feasible on the edges in (GE{A})U/(1+α), we conclude that f is
feasible on (GE{A})U .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

2. S 6= {s}. In this case, let Es ⊆ EH(S, T) be the edges of the cut incident to s, let Et ⊆ EH(S, T) be those
incident to t, and let Em = EH(S, T) \ (Es ∪ Et) be the remaining cut edges. Recall that edges in Es and
Et retain their original capacity from GE{A}, while edges in Em have their capacity scaled by U/(1 + α).
Also, note that Em is, up to this scaling factor, exactly the cut E(S \ {s}, T \ {t}) in the original graph
G{A}.12 In other words,

cG{A}(E(S \ {s}, T \ {t})) =
1 + α

U
· cH(Em).(8.7)

Let Es be the edges incident to s that are not in Es. Since (S, T) is a (1 + α)-fair cut, there is a flow f
from s to t that saturates each edge in EH(S, T) to fraction at least 1

1+α . In particular, this means that the

sub-flow from s starting from edges Es must saturate edges in EH(S, T) \Es to fraction at least 1
1+α . This

implies that cH(EH(S, T) \Es) ≤ (1 + α)cH(Es). Moreover, for each edge (s, xe) ∈ Es, the split node xe is
on the S \ {s} side of the cut E(S \ {s}, T \ {t}) in G{A}, so

volG{A}(S \ {s}) ≥
∑

(s,xe)∈Es

degG{A}(xe) = 2cH(Es) ≥
2

1 + α
cH(EH(S, T) \ Es) ≥

2

1 + α
cH(Em).(8.8)

Putting (8.7) and (8.8) together, we obtain

volG{A}(S \ {s}) ≥
2U

(1 + α)2
cG{A}(E(S \ {s}, T \ {t})),(8.9)

so we would be done as long as we show that volG{A}(S \ {s}) ≤ O(volG{A}(T \ {t})).
Consider now the edges Et. Their capacities are scaled down by 1/(1 +α), so their total original capacity is
at most (1 +α)2cG{A}(A

l), which is at most (1 +α)2cG{A}(A∩XE)/8 by property (2). On the other hand,
the total capacity of edges incident to t is cG{A}(A

r)/(1 + α), which is at least cG{A}(A ∩XE)/(2(1 + α))
by property (3). It follows that at least

cG{A}(A ∩XE)/(2(1 + α))− (1 + α)2cG{A}(A ∩XE)/8 ≥ Ω(cG{A}(A ∩XE))

total capacity of edges incident to t are not in Et. In other words, their corresponding split nodes are on the
T \ {t} side of the cut E(S \ {s}, T \ {t}), which means that volG{A}(T \ {t}) ≥ Ω(cG{A}(A ∩ XE)).
Now observe that cG{A}(A ∩ XE) is a constant fraction of the total volume of the graph G{A}, so
volG{A}(T \ {t}) ≥ Ω(volG{A}(A)). Together with (8.9), we obtain the desired

ΦG{A}(S \ {s}) =
cG{A}(S \ {s}, T \ {t})

min{volG{A}(S \ {s}),volG{A}(T \ {t})}
≤ O(1/U) = O(φ log2m).

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 715672. Danupon Nanongkai was
also supported by the Swedish Research Council (Reg. No. 2019-05622). Debmalya Panigrahi was supported in
part by NSF grants CCF-1750140 (CAREER Award) and CCF-1955703.

References

[1] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak, and Ohad Trabelsi.
Gomory-hu tree in subcubic time. CoRR, abs/2111.04958, 2021. 1, 3, 4

12We show later that the degenerate case T = {t} cannot happen.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[2] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Cut-equivalent trees are optimal for min-cut queries. In
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 105–118. IEEE, 2020. 3

[3] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. New algorithms and lower bounds for all-pairs max-flow in
undirected graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 48–61. SIAM, 2020. 3

[4] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF < apsp? gomory-hu tree for unweighted graphs in
almost-quadratic time. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 1135–1146. IEEE, 2021. 3

[5] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Friendly cut sparsifiers and faster gomory-hu trees. CoRR,
abs/2110.15891, 2021. 3

[6] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for gomory-hu tree in unweighted
graphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1725–1737. ACM, 2021. 3

[7] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and
applications. Theory of Computing, 8(1):121–164, 2012. 9

[8] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai, Thatchaphol Saranurak,
Aaron Sidford, and He Sun. Fully-dynamic graph sparsifiers against an adaptive adversary. arXiv preprint
arXiv:2004.08432, 2020. 3

[9] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. An Õ(mn) Gomory-Hu tree
construction algorithm for unweighted graphs. In 39th Annual ACM Symposium on Theory of Computing, STOC’07,
pages 605–614, 2007. 3

[10] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via isolating cuts. In Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), 2022. 1

[11] Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition and nearly optimal triangle
enumeration. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 66–73, 2019.
1, 3, 34

[12] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster algorithms for connectivity. In
Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs,
pages 50:1–50:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 1

[13] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster algorithms for connectivity. In
ICALP, volume 198 of LIPIcs, pages 50:1–50:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 4

[14] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum
flow and minimum-cost flow in almost-linear time. March 2022. 1, 4

[15] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A deterministic
algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 1158–1167. IEEE, 2020. 3

[16] Jaime Cohen, Luiz A. Rodrigues, and Elias P. Duarte Jr. Parallel cut tree algorithms. J. Parallel Distributed Comput.,
109:1–14, 2017. 3

[17] Richard Cole and Ramesh Hariharan. A fast algorithm for computing steiner edge connectivity. In Lawrence L.
Larmore and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
June 9-11, 2003, San Diego, CA, USA, pages 167–176. ACM, 2003. 3

[18] Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a graph and its incremental
maintenance. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 716–725. ACM, 1994.
3

[19] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster than goldberg-rao.
FOCS, 2021. 1

[20] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work and low depth. In Proceedings
of the 30th on Symposium on Parallelism in Algorithms and Architectures, pages 1–11, 2018. 35

[21] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-Shamir. Near-optimal
distributed maximum flow. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
pages 81–90, 2015. 2

[22] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM, 45(5):783–797, 1998. 4
[23] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander hierarchy and its applications

to dynamic graph algorithms. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2212–2228. SIAM, 2021. 34

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[24] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient algorithms for computing all low s-t edge
connectivities and related problems. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 127–136, 2007. 3

[25] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM), 47(1):46–76, 2000. 35
[26] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-time algorithm for

approximate max flow in undirected graphs, and its multicommodity generalizations. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 217–226. SIAM, 2014. 1, 3

[27] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single commodity flows. Journal of the
ACM (JACM), 56(4):1–15, 2009. 29

[28] Richard E Ladner and Michael J Fischer. Parallel prefix computation. Journal of the ACM (JACM), 27(4):831–838,
1980. 35

[29] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai.
Vertex connectivity in poly-logarithmic max-flows. In STOC, pages 317–329. ACM, 2021. 1, 4

[30] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020. IEEE Computer Society, 2020. 1, 3, 5, 19

[31] Jason Li and Debmalya Panigrahi. Approximate Gomory-Hu tree is faster than n − 1 max-flows. In Proceedings of
the 53rd Annual ACM Symposium on Theory of Computing, 2021. 3, 5, 20, 22

[32] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A nearly optimal all-pairs min-cuts algorithm in simple
graphs. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1124–1134. IEEE, 2021. 3

[33] Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 803–
814. ACM, 2020. 1

[34] Aleksander Madry. From graphs to matrices, and back: new techniques for graph algorithms. PhD thesis,
Massachusetts Institute of Technology, 2011. 2

[35] Charles Maske, Jaime Cohen, and Elias P. Duarte Jr. Speeding up the gomory-hu parallel cut tree algorithm with
efficient graph contractions. Algorithmica, 82(6):1601–1615, 2020. 3

[36] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and streaming algorithms.
In STOC, pages 496–509. ACM, 2020. 4

[37] Sagnik Mukhopadhyay and Danupon Nanongkai. A note on isolating cut lemma for submodular function
minimization. CoRR, abs/2103.15724, 2021. 1

[38] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case update time: adaptive,

las vegas, and o(n1/2 - ε)-time. In STOC, pages 1122–1129. ACM, 2017. 3, 28
[39] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum spanning forest with

subpolynomial worst-case update time. In FOCS, pages 950–961. IEEE Computer Society, 2017. 3
[40] Richard Peng. Approximate undirected maximum flows in o (m polylog (n)) time. In Proceedings of the twenty-seventh

annual ACM-SIAM symposium on Discrete algorithms, pages 1862–1867. SIAM, 2016. 1, 3, 6
[41] Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchical decompositions in almost linear

time. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 227–238. SIAM,
2014. 3, 6

[42] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger, and simpler. 2019.
To appear in SODA’19. 3, 6, 27, 28, 29, 30

[43] Jonah Sherman. Nearly maximum flows in nearly linear time. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 263–269. IEEE, 2013. 1, 3, 4

[44] Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity flow. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 452–460, 2017. 3

[45] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 81–90, 2004. 3, 28

[46] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang.
Minimum cost flows, mdps, and `1-regression in nearly linear time for dense instances. 2021. arXiv:2101.05719. 1

[47] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Bipartite matching in nearly-linear time on moderately dense graphs. In FOCS, pages 919–930.
IEEE, 2020. 1

[48] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case update time. In STOC,
pages 1130–1143. ACM, 2017. 3

[49] Tianyi Zhang. Faster cut-equivalent trees in simple graphs. CoRR, abs/2106.03305, 2021. 3

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[50] Tianyi Zhang. Gomory-hu trees in quadratic time. CoRR, abs/2112.01042, 2021. 3

A Parallel Algorithms

The goal of this section to prove Theorem 1.3. Along the way, we will show that all algorithmic components we
use and develop can be parallelized.

A.1 Congestion Approximators The first thing we need is a parallel construction of congestion approxima-
tors (see Theorem 3.1).

Theorem A.1. (Parallel Congestion approximator) There is a randomized algorithm that, given an
unweighted graph G = (V,E) with n vertices and m edges, constructs in m1+o(1) work and mo(1) depth with
high probability same laminar as in Theorem 3.1 except that γS = no(1).

We only state the result for unweighted graphs as it follows quite easily from [11, 23]. We believe that known
techniques also imply the same for weighted graphs. Below, we sketch the proof of Theorem A.1.

First, we need a definition of boundary-linked expander decomposition introduced in [23]. For any graph
G = (V,E) and any set S ⊂ V , let G[S] denote the subgraph of G induced by S. For any w ≥ 0, let G[S]w be
obtained from G[S] by adding w self-loops to each vertex v ∈ S for every boundary edge (v, x), x /∈ S.

Definition A.1. For any graph G = (V,E) with m edges, a (ε, φ, α)-boundary-linked expander decomposition
is partition U = (U1, . . . , Uk) of vertex set V such that

∑
i |E(Ui, V \Ui)| ≤ εm and G[Ui]

α/φ is a φ-expander for
all i.

Note that (ε, φ, 0)-boundary-linked expander decomposition is the standard (ε, φ)-expander decomposition.
A parallel algorithm for computing an expander decomposition of an unweighted graph was explicitly shown in
[11]. In fact, the algorithm works even in the distributed model called CONGEST.

Theorem A.2. ([11]) For any positive integer k, ε ∈ (0, 1), and φ ≥ (ε/ log n)2O(k)

, there is an algorithm for
computing an (ε, φ)-expander decomposition of an unweighted graph in CONGEST in O(n2/kpoly(1/φ, log n))
rounds w.h.p. In fact, this algorithm has n1/O(log log log n)-depth and m1+o(1) work.

We will choose k = log log log n from now on. This algorithm can be easily extended to compute a (ε, φ, ε)-
boundary-linked expander decomposition. The idea is as follows: whenever we find a φ-sparse cut, for each cut
edge (u, v), we add (α/φ) self-loops on both u and v before recursing on both sides. The largest boundary-linked
parameter α we can get can be derived by setting ε = 1/O(log n) and see the largest value of φ we can get. In

this case, it is 1/2Θ(log log n)2) when ε = 1/O(log n) and k = log log log n. From this, it implies the following:

Theorem A.3. When ε = 1/2Θ(
√

logn), φ ≥ (ε/ log n)2O(log log log) ≥ 1/2Θ(
√

logn·log log n), and α ≥ 1/2Θ(log log n)2),
there is an algorithm that w.h.p. computes a (ε, φ, α)-boundary-linked expander decomposition in n1/O(log log log n)-
depth and m1+o(1) work. (In fact, the algorithm is implementable in CONGEST in n1/O(log log log n) rounds.)

In [23], it is shown that constructing congestion approximators can be reduced to computing boundary-linked
expander decomposition a few times, which is summarized as follows:

Lemma A.1. By calling an algorithm for computing a (ε, φ, α)-boundary-linked expander decomposition for
O(log(1/ε)m) times, one can construct a congestion approximator S with quality γS = O((1/φ) · (1/α)log(1/ε)m).

Plugging Theorem A.3 into the above lemma, this implies an algorithm for Theorem A.1 where n1/O(log log log n)

depth andm1+o(1) work that computes a congestion approximator S with quality γS = 2Θ(
√

logn·(log log n)2) = no(1).

A.2 Fair Cuts Given the above parallel construction for congestion approximator, we can obtain the following
parallel fair cut algorithm:

Theorem A.4. (Parallel Fair Cut) Given an unweighted graph G = (V,E), two vertices s, t ∈ V , and
ε ∈ (0, 1], we can compute with high probability a (1 + ε)-fair (s, t)-cut in no(1)/poly(ε) depth and m1+o(1)/poly(ε)
work.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Before proving the above theorem, we first argue how to obtain a parallel version of the AlmostFair algorithm.
See the running time analysis of AlmostFair in Section 4.3. We can parallelize it as follows. We initialize

by computing a congestion approximator S with quality γS = no(1) via Theorem A.1. The other initialization
steps consist of elementary operations which can be parallelized in Õ(1) depth and Õ(m) work.

For each round of the multiplicative weight update algorithm, the only non-trivial step is to a compute the
“deletion set” Di via a sweep cut (Lemma 4.5).

We will prove the below claim at the end.

Claim A.1. Lemma 4.5 admits a parallel implementation with Õ(1) depth and Õ(m) work.

Since our multiplicative weight update algorithm consists of T = O(log(n)/α2) = mo(1)/poly(ε) rounds (recall
that α = ε/γS), we can implement the AlmostFair algorithm from Theorem 4.1 in mo(1)/poly(ε) depth and
m1+o(1)/poly(ε) work.

Given the parallel implementation of the AlmostFair algorithm, we are almost done. The algorithm for
computing fair cuts in Section 5.1 simply calls the AlmostFair subroutine for O(log(C/β)/β) times where we set
β = Θ(α/ log n). Therefore, the algorithm require mo(1)/poly(ε) depth and m1+o(1)/poly(ε) work. This concludes
Theorem A.4.

Proof. [Proof of Claim A.1] Recall that the problem is to compute x∗ which is the largest x such that
∆|V i−1(V>x)− δH(V>x) > 0 where V>x = {v ∈ V (H) : φiv > x}.

We start by parallel sorting vertices v according to their potential φiv in decreasing order. Let v1, . . . , vn be
the vertices after sorting. Let Sk = {v1, . . . , vk}. We can compute the list of values of ∆|V i−1(Sk) for all k ∈ [n]
in O(log n) depth and O(n) work using a classic parallel prefix sum algorithm [28].

Observe that our goal is equivalent to finding the largest k where δH(Sk)−∆|V i−1(Sk) < 0. By binary search,
we can reduce the problem to checking if there is k where δH(Sk)−∆|V i−1(Sk) < 0.

Now, this problem can be solved using a parallel 1-respecting mincut algorithm by Karger [25] (see also Lemma
11 of [20]) with O(log n) depth and O(m) work. The reduction is as follows. Let H ′ be the graph obtained from
H by inserting the tree P = (v1, . . . , vn), which is a path. Let M be a big number such that M −∆|V i−1(Sk) > 0.
Each tree edge (vk, vk+1) ∈ P , we set its weight to be M − ∆|V i−1(Sk). By computing a mincut in H ′ that
1-respect the tree P , we will obtain k such that δH′(Sk) is minimized. Since δH′(Sk) = δH(Sk)+M −∆|V i−1(Sk),
we can just check if δH′(Sk)−M < 0.

A.3 Isolating Cuts and Gomory-Hu Tree Here, we finally prove Theorem 1.3. We first briefly explain
how the approximate isolating cuts algorithm (Algorithm 1) and Gomory-Hu tree algorithm (Algorithm 5) can
be parallelized to run in Õ(m) work and polylog(n) parallel time.

For approximate isolating cuts, Phase 1 of Algorithm 1 requires O(log n) many calls to (1 +γ)-fair cut, which
has a parallel algorithm by Theorem A.4. For Phase 2, the sets St and graphs Gt can be constructed independently
for different t in parallel, and for the (1 + β)-approximate minimum cut computation, we can use the parallel
(1 + β)-fair cut algorithm of Theorem A.4, which is also a (1 + β)-approximate minimum cut.

For Gomory-Hu tree, there are a few additional algorithms that need to be investigated. For the “Cut
Threshold Step” algorithm (Algorithm 3), the O(log n) independent iterations can be executed in parallel, so
the entire algorithm can as well. The (1 + γ)-approximate Gomory-Hu Steiner tree “step” (Algorithm 4) makes
O(log3 n) (sequential) calls to Algorithm 3, so it can also be parallelized. The Gomory-Hu tree algorithm itself
(Algorithm 5) makes one call to Algorithm 4 and, aside from the recursive call on line 11, consists of elementary
operations that can directly be parallelized. For the recursive calls, we use Lemma 7.7 to argue that the recursion
tree has depth polylog(n) w.h.p., so the recursive calls can be parallelized as well. (We stop the recursion after a
large enough polylog(n) many recursive calls, which is all we need w.h.p.)

B Proof of Uncrossing Property

Here, we prove the uncrossing property (Lemma 1.1), restated below. We remark that the proof follows the same
outline as the proof of Lemma 6.1 for approximate isolating cuts.

Lemma 1.1. (Approximate Uncrossing Property) For any vertices s and t, let (S, T) be an α-fair (s, t)-
mincut. Then, for any u, v ∈ S, there exists R ⊂ S such that (R, V \R) is an α-approximate (u, v)-mincut.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. Let (U, V \U) be a (u, v)-mincut. Without loss of generality, assume that t /∈ U . (Otherwise, we can swap
u and v and use V \U in place of U .) Our goal is to show that U ∩S is an α-approximate (u, v)-mincut contained
in S, so that setting R = U ∩ S proves the lemma. Equivalently, we want to show that δ(U ∩ S) ≤ α · δ(U).

Using the notation] for disjoint union, we can write

E(U, V \ U) = E(U ∩ S, V \ (U ∪ S))] E(U ∩ S, S \ U)] E(U \ S, V \ U)

E(U ∩ S, V \ (U ∩ S)) = E(U ∩ S, V \ (U ∪ S))] E(U ∩ S, S \ U)] E(U ∩ S,U \ S).

Since the first two sets are identical, we only need to compare the third sets E(U \S, V \U) and E(U ∩S,U \S).
Since (S, T) is an α-fair (s, t)-cut, there is a feasible flow from s to t that, for each edge in E(S, T), sends at least 1/α
times capacity in the direction from S to T . Now, consider the flow on the subset of edges E(U∩S,U\S) ⊆ E(S, T).
This flow must reach t eventually, and it must exit U \ S along the edges in E(U \ S, V \ (U ∪ S)). Thus,

δ(U ∩ S,U \ S) ≤ α · δ(U \ S, V \ (U ∪ S)) ≤ α · δ(U \ S, V \ U).

It follows that δ(U ∩ S) ≤ α · δ(U), which proves the lemma.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	1.1 Our contributions
	1.2 Applications
	2 Overview of Techniques
	2.1 Computing Fair Cuts (Proof Idea of thm:fair)
	2.2 From Fair Cuts to Approximate Isolating Cuts
	2.3 From Approximate Isolating Cuts to Approximate GH-trees
	2.4 From Fair Cuts to Near-linear time Expander Decomposition

	3 Preliminaries
	4 Almost Fair Cuts via Multiplicative Weight Updates
	4.1 Algorithm
	4.2 Correctness
	4.3 Running Time
	4.4 Proof of lem:1

	5 From Almost Fair Cuts to Fair Cuts
	5.1 Algorithm
	5.2 Analysis

	6 Approximate Isolating Cuts and Steiner Cut
	6.1 Approximate Minimum Isolating Cuts
	6.2 (1+)-approximate Minimum Steiner Cut

	7 Approximate Gomory-Hu Tree Algorithm
	7.1 Cut Threshold Step Algorithm
	7.2 The Algorithm for Approximating Gomory-Hu Steiner Tree
	7.3 Running Time Bound
	7.4 Approximation

	8 Expander Decomposition
	8.1 Algorithm overview
	8.2 Trimming step
	8.3 Cut-matching step

	A Parallel Algorithms
	A.1 Congestion Approximators
	A.2 Fair Cuts
	A.3 Isolating Cuts and Gomory-Hu Tree
	B Proof of Uncrossing Property

