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Abstract

We introduce the notion of fair cuts as an approach to leverage approximate (s,t)-mincut (equivalently
(s, t)-maxflow) algorithms in undirected graphs to obtain near-linear time approximation algorithms for several
cut problems. Informally, for any o > 1, an a-fair (s,t)-cut is an (s, t)-cut such that there exists an (s, t)-flow
that uses 1/« fraction of the capacity of every edge in the cut. (So, any a-fair cut is also an a-approximate

mincut, but not vice-versa.) We give an algorithm for (1 + €)-fair (s,t)-cut in O(m)-time, thereby matching
the best runtime for (1 + €)-approximate (s, t)-mincut [Peng, SODA ’16]. We then demonstrate the power of
this approach by showing that this result almost immediately leads to several applications:

e the first nearly-linear time (1 + €)-approximation algorithm that computes all-pairs maxflow values (by
constructing an approximate Gomory-Hu tree). Prior to our work, such a result was not known even for
the special case of Steiner mincut [Dinitz and Vainstein, STOC ’94; Cole and Hariharan, STOC ’03];

e the first almost-linear-work subpolynomial-depth parallel algorithms for computing (1+€)-approximations
for all-pairs maxflow values (again via an approximate Gomory-Hu tree) in unweighted graphs;

e the first near-linear time expander decomposition algorithm that works even when the expansion
parameter is polynomially small; this subsumes previous incomparable algorithms [Nanongkai and
Saranurak, STOC ’17; Wulff-Nilsen, STOC ’17; Saranurak and Wang, SODA ’19].

1 Introduction

In the (s,t)-mincut problem, we are given an n-vertex m-edge graph G = (V, E) with integer edge weights
w: E — Z, bounded by U. The goal is to minimize the sum of the weight of edges whose removal make s unable
to reach ¢t. Unless stated otherwise, the input graphs are assumed to be undirected throughout the paper.

The (s,t)-mincut problem and its dual—(s,¢)-maxflow—are among the most fundamental tools in graph
algorithms and optimization. In particular, many reductions have been recently developed to show that if
(s,t)-mincut (equivalently, (s,t)-maxflow) can be solved in almost or nearly linear time, then so are a number
of fundamental graph problems. These problems include vertex connectivity [29] and Gomory-Hu tree [1] in
unweighted graphs, deterministic global mincut and Steiner mincut [30], edge connectivity augmentation and
edge splitting-off [10], and hypergraph global mincut [12, 37].

All these results require ezact (s, t)-mincut algorithms. In other words, these reductions cannot exploit approz-
imate (s,t)-mincut algorithms which can offer many advantages. For example, while the best randomized (1 + ¢€)-
approzimate (s,t)-mincut algorithm takes nearly-linear' time on weighted graphs [40] (and almost-linear® time for

deterministic algorithms [43, 26]), the fastest exzact algorithms require 0 (min(m +n3/2 ms s, m4/3+0(1)U1/3)>

time [19, 33, 46, 47]* and are all inherently randomized.*

Moreover, in many popular models of computation such as parallel computing, distributed computing, etc.,
computing exact (s,t)-mincut is still far from efficient, and using approximation algorithms might be the only
alternative. For example, it is known that the (14 ¢)-approximation algorithm (implied by [11, 43]) on undirected
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1By nearly-linear time, we mean a running time of O(m)

2By almost-linear time, we mean a running time of m!+o(1),

3Throughout, we use O to hide poly log(n).

4In an independent result [14], an almost-linear time randomized algorithm has been shown for the (s,t)-mincut problem. Even
when this independent result is taken into account, the best (1 + €)-approximation algorithms are still superior to the best exact
algorithm with respect to time complexities and randomness requirements.
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unweighted graphs requires almost-linear work and sub-polynomial depth in PRAM. In contrast, we are far from
emulating this result for exact algorithms. In fact, the first small step toward solving exact (s,t)-mincut with
almost-linear work and sub-polynomial depth would be doing so for the much simpler problem of (s, t)-reachability.
And, the latter would involve breaking a major Q(y/n) depth barrier.” Another example is in the distributed
setting (the CONGEST model), where a nearly optimal algorithm for computing (1+ €)-approximate (s, t)-mincut
exists [21] while no nontrival algorithm is known for the exact version. These advantages of approximate (s,t)-
mincuts motivate a natural question: Can the existing reductions work with approzimate (s, t)-mincut algorithms
instead of the exact ones?

To answer the above question, let us discuss first why many reductions work only with exact (s, ¢)-mincut. A
crucial property of exact (s,¢)-mincuts in undirected graphs that is used by these reductions (e.g., for Gomory-
Hu tree, deterministic global mincut, Steiner cut, edge connectivity augmentation, and edge splitting-off) is the
following uncrossing property:

(Uncrossing Property) For any vertices s and ¢, let X C V be an (s, ¢)-mincut. Then, for any u,v € X,
there exists Y C X that is a (u,v)-mincut.

The uncrossing property is very useful from an algorithmic perspective since it gives a natural recursive tool —
after finding an (s,t)-mincut, we can recurse on each side of the cut to find a (u,v)-mincut for every pair of
vertices (u,v) on the same side of the cut. Indeed, the uncrossing property is more generally true for symmetric,
submodular minimization problems and is at the heart of most of the beautiful structure displayed by undirected
graph cuts and other symmetric, submodular functions. The uncrossing property, however, does not hold for
(1 + e)-approximate mincuts in general. This is the main bottleneck that prevents these reductions from being
robust to approximation. As a result, for these problems, we fail to exploit the benefits of (1 + ¢)-approximate
(s,t)-mincut algorithms.

1.1 Our contributions We subvert the above bottleneck by introducing a more robust notion of approximate
mincuts called fair cuts. Informally, an a-fair (s,t)-cut is an (s,t)-cut such that there exists an (s,t)-flow f that
uses 1/« fraction of the capacity of every edge in the cut. (The reader should think of « as being close to 1.)
Formally:

DEFINITION 1.1. (FAIR CUT) Let G = (V, E) be an undirected graph with edge capacities ¢ € RY. Let s,t be
two vertices in V. For any parameter o > 1, we say that a cut (S,T) is a a-fair (s,t)-cut if there exists a feasible
(s,t)-flow f such that f(u,v) > L -c(u,v) for every (u,v) € E(S,T) whereu € S andv € T.

Observe that a 1-fair (s, t)-cut is an exact (s, t)-mincut. Moreover, an a-fair (s, t)-cut is also an a-approximate
(s,t)-mincut. However, not all a-approximate (s, t)-mincuts are a-fair (s,t)-cuts.® In other words, a set of a-fair
cuts is a proper subset of a-approximate cuts and a superset of exact (s, t)-mincuts.

We show that the notion of fair cuts allow us to combine the key features of both approximate cuts and exact
cuts. First, fair cuts admit a property for approximate cuts that is analogous to uncrossing for exact mincuts,
which we prove in Section B for completeness.

LEMMA 1.1. (APPROXIMATE UNCROSSING PROPERTY) For any vertices s and t, let (S,T) be an a-fair (s,t)-
mincut. Then, for any u,v € S, there exists R C S such that (R,V \ R) is an a-approzimate (u,v)-mincut.

Second, while computing a fair cut can be harder than an approximate mincut (since any fair cut is an
approximate mincut but not vice-versa), we give a nearly-linear time algorithm for computing a (1 + €)-fair
(s, t)-mincut.

5This is due to the reduction from directed maxflow to undirected maxflow (see e.g. [34]) which works in the parallel setting.
The reduction implies that if we can solve (s,t)-mincut exactly on undirected unweighted graphs in O(W') work and O(D) depth,
then we can solve (s,t)-mincut exactly on directed unweighted graphs with O(W) work and O(D) depth. The latter captures the
st-reachability problem as a special case.

6As a simple example, consider a path v — s — ¢ on three vertices. Clearly, the cut {s} contains both edges and is therefore a
2-approximate (s,t)-mincut. However, there is no (s,t)-flow that can saturate both edges to fraction % To motivate our choice of
terminology (fair cuts), note that if an (s, ¢)-cut is a a-approximate (s, t)-mincut, it follows by flow-cut duality that any (s, ¢)-maxflow
will cumulatively saturate the edges of the cut to a fraction > ﬁ But, as we saw in the previous example, this saturation need
not be fair in the sense that some edges might not be saturated at all. In this context, a a-fair cut demands the additional property

that each edge be saturated to a fraction > é (in the sense of “max-min” fairness).
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THEOREM 1.1. (FAIR CUT) Given a graph G = (V, E), two vertices s,t € V', and ¢ € (0, 1], we can compute with
high probability a (1 + €)-fair (s,t)-cut in O(m/e?) time.

We note that the only reason why our algorithm is randomized is because we use the congestion approzximator
by [41, 40]. This can be made deterministic based on an algorithm by [15], but the running time would be
m!*+e() /&3 instead. Moreover, we remark that although we will focus on (1 + ¢)-fair (s, )-cuts, the corresponding
(s,t)-flow can be obtained from a fair cut in O(m/e) time using a standard application of a (1 + €)-approximate
max-flow algorithm of Sherman [44].

1.2 Applications We demonstrate the power of fair cuts by using it to improve the time complexity of several
problems.

Gomory-Hu Tree. The Gomory-Hu (GH) tree is a compact representation of a (u, v)-mincut (and therefore,
(u, v)-maxflow values) between every pair of vertices (u,v) of a graph, and has a large number of applications. It
captures fundamental questions such as global, (s,t)—, and Steiner mincuts as special cases. There has been much
progress on exact and approximation algorithms for this problem recently (e.g., [31, 2, 3, 6, 1, 4, 5, 32, 49, 50]). The
fastest among these is the (1+¢€)-approzimation algorithm by Li and Panigrahi [31] whose time complexity is equal

to poly-logarthmic calls to any ezact (s,t)-mincut algorithm, i.e. O (min(m +n3/2, m%*ﬁ,m4/3+0(1)U1/3)).
By replacing the exact max-flow calls by our (1 4 €)-fair cut algorithm in [31], we get a nearly-linear time

algorithm for approximating the Gomory-Hu tree (which is equivalent to finding all-pairs maxflow values by
known reductions, e.g., [2]):

THEOREM 1.2. (NEARLY-LINEAR TIME GOMORY-HU TREE) For any € > 0, there is a O(m - poly(1/e))-time
randomized algorithm that constructs, with high probability, a (1 + €)-approzimate Gomory-Hu tree in weighted
undirected graphs.

Prior to our work, a nearly-linear time (approximation) algorithm was not known even for the special case
of the Steiner mincut problem. In this problem [18, 17, 24, 9, 30], we are interested in finding a cut of minimum
value that disconnects a given set of terminal vertices. For this problem, Li and Panigrahi [30] gave an exact
algorithm using poly-logarithmic exact max-flow calls. Before our work, no improvement in the running time
was known if we allow (1 + €)-approximation instead of the exact Steiner mincut. Since the Steiner mincut
problem is a minimal generalization of global and (s, t)-mincuts, our paper is the first to obtain nearly-linear time
(approximation) algorithms for cut problems that go beyond these two problems.

Parallelization. Since the use of exact max-flow is the only bottlenect to parallelize the approximate GH tree
algorithm of [31], the following parallel algorithm also follows.

THEOREM 1.3. (PARALLEL GH-TREE) For any e > 0, there is a O(m't°(M) /poly(e))-work (m°M /poly(e))-depth
randomized algorithm that constructs, with high probability, a (14 €)-approzimate Gomory-Hu tree in unweighted
undirected graphs.

We are not aware of prior work on parallel GH algorithms (except some experiments, e.g. [35, 16]). This is
likely because previous GH trees algorithms, even the approximate ones [31], inherently require solving max-flow
exactly, which is well beyond current techniques in the parallel setting.

Expander Decomposition. In the last decade, numerous fast graph algorithms are based on fast algorithms
for computing an expander decomposition. For some examples of such applications, see e.g. [45, 26, 43, 39, 11, §].

We say that a (weighted) graph G = (V, E) is a ¢-expander if for every cut (S, V'\S), we have that the cut size
§(8) > min{vol(S), vol(V'\ S)} where the volume of S is vol(S) = ) g deg(v). A (¢, ¢)-expander decomposition
of G is a partition {Vi,...,V} of vertices such that each G[V;] is a ¢-expander and ), §(V;) < e-vol(V), i.e.,
the total weight of edges crossing the partition is at most e-fraction.

There are two incomparable fastest algorithms for computing expander decompositions. First, [38, 48] gave
m**t°(M_time algorithms that computes a (éno(l), ¢)-expander decomposition for any ¢ > 0. These subpolynomial
factors are sometimes undesirable. Second, [42] gave a O(m/$)-time algorithm that computes a (O(¢), ¢)-expander
decomposition for any ¢ > 0. This algorithm is slower than the first one when ¢ < 1/n°!. Using fair cuts, we
obtain an algorithm that subsumes both these sets of results and is optimal up to poly-logarithmic factors.

THEOREM 1.4. (NEAR-LINEAR EXPANDER DECOMPOSITION) For any ¢ > 0, there is a randomized O(m)-time

algorithm that with high probability computes a (O(), ¢)-expander in weighted undirected graphs.

Copyright (© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Open problems. We believe that our notion of fair cuts opens up many interesting directions for future
research. We mention some examples. (i) A natural goal is to extend our efficient (1 + €)-fair (s, t)-cut to other
computational models, such as the distributed (CONGEST) setting, where exact (s,t)-mincut algorithms are
much slower /inefficient compared to approximate (s,t)-mincut algorithms. This will lead to efficient algorithms
for approximating, e.g., Gomory-Hu tree and Steiner mincut in these models as well. (ii) The notion of fair
vertex cuts can be defined in a similar fashion to fair (edge) cuts defined in this paper. It would be interesting
to design an efficient algorithm for finding a fair vertex cut and use it to obtain nearly-linear time algorithms
for approximating the vertex connectivity and hypergraph global mincut. These results can also be extended to
other computational models. (iii) We also hope that the notion of fair cuts can be extended to more general
contexts such as the minimization of symmetric, submodular functions. In turn, this will significantly improve
our understanding of the approximation-efficiency tradeoff in minimization problems defined for these function
classes.

Independent result. Our result is obtained independently from the recently announced almost-linear time
bound for min-cost flow by Chen, Kyng, Liu, Peng, Gutenberg, and Sachdeva [14]. Plugging this result into
existing reductions in [1, 29, 13, 36] help solve problems such as GH tree and vertex connectivity in unweighted
graphs, approximate GH tree in weighted graphs, and hypergraph global mincut in m!'T°( time. Even assuming
this result, our algorithms are faster in both randomized and deterministic settings; for the latter, our running
time is !+ whereas the best exact (s, t)-mincut algorithm takes O(m min(y/m,n?/3)) time [22]. Finally, our
algorithms can be adapted to other models such as parallel computation whereas this is well beyond existing
techniques for exact (s,t)-mincut.

2 Overview of Techniques

2.1 Computing Fair Cuts (Proof Idea of Theorem 1.1) Our key subroutine for computing fair cuts is
called ALMOSTFAIR. Here, we describe at a high-level what the ALMOSTFAIR subroutine does, how to use it for
computing fair cuts, and finally how to obtain the ALMOSTFAIR subroutine itself.

Say we are given an (s,t)-cut (S,7) which may be far from being fair. The ALMOSTFAIR subroutine works
on one side of the (s,t)-cut, say T, and returns a partition (P, T") of T such that ¢t € T'. We think of P, as the
part that we “prune” out of 7. Our first guarantee is that the remaining part 7" is “almost fair” in the following
sense: each boundary edge in E(S,T”) (i.e., those edges that are not in E(P;,T”)) can simultaneously send flow
of value at least (1 — §8)-fraction of its capacity to t, for a small parameter 8 that we can choose. This guarantee
alone would have been weak if the pruned set P; is so big that there are few edges left in E(S,T"). However, the
second guarantee of ALMOSTFAIR says that, if P; is big, then (V \ T",T") is actually a much smaller (s,t)-cut
than the original cut (S,7T') in terms of cut value. More formally, we have dg(T") < 6g(T) — B+ d¢(S, P;) meaning
that the decrease in the cut size is at least S times the total capacity of E(S, P;).

With these two guarantees of ALMOSTFAIR, given any (s,t)-cut (S,T), we can iteratively improve this cut to
make it fair as follows. We call ALMOSTFAIR on both S and T and obtain (Ps, S’) and (P, T”). Let’s consider
two extremes. If both pruned sets P and P; are tiny, then there is an (s, t)-flow that almost fully saturates every
edge in F(S’,T"). This certifies (5, T) is very close to being fair as Ps; and P; are tiny. However, if either P; or P,
is very big, say P, then (SUP,,T") is an (s,t)-cut of much smaller value than the original cut (S,T). Therefore,
this is progress too and we can recursively work on this new cut (SU P;, T"). To make the intuition on these two
extremes work, we iteratively call ALMOSTFAIR using a parameter § that increases slightly in every round. The
full algorithm is presented in Section 5.

Now, let us sketch the ALMOSTFAIR subroutine itself. This subroutine is based on Sherman’s algorithm for
computing a (1 + €)-approximate max-flow [43] (for any € > 0), which in turn uses the multiplicative weight
update (MWU) framework.” Given the t-side T of an (s, t)-cut, if we call Sherman’s algorithm where the demand
is specified so that each boundary edge should send flow at its full capacity to sink ¢, then the algorithm would
either return a flow satisfying this demand with congestion (1 + €) or return a “violating” cut certifying that the
demand is not feasible. In the former case, this would satisfy the guarantee of ALMOSTFAIR where P; = () after
scaling down the flow by a (1 + €) factor. Unfortunately, in the latter case, the algorithm does not guarantee
the existence of the flow that we want. The reason behind this problem is that whenever the algorithm detects

Sherman’s original presentation in [43] does not explicitly use the MWU framework. Although this alternative interpretation was

already known to experts, our MWU-based presentation of his algorithm is arguably simpler and more intuitive.
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a violating cut, the algorithm is just terminated. In a more general context, this holds for most (if not all)
MWU-based algorithms for solving linear programs; in each round of the MWU algorithm, whenever “the oracle”
certifies that the linear program is infeasible, then we just terminate the whole algorithm.

Interestingly, we fix this issue by “insisting on continuing” the MWU algorithm. Once we detect a violating
cut, we include it into the pruned set, cancel the demand inside this pruned set, and continue updating weights in
the MWU algorithm. After the last round, the flow constructed via MWU indeed sends flow from each remaining
boundary edge that is not pruned out, which is exactly our goal. The detailed algorithm is presented in Section 4.

2.2 From Fair Cuts to Approximate Isolating Cuts We believe that the notion of fair cuts can be useful
in many contexts since it offers a more robust alternative to approximate mincuts. In this paper, we first use it
to obtain an approximate isolating cuts algorithm. We define the isolating cuts problem first.

DEFINITION 2.1. Given a weighted, undirected graph G = (V, E) and a subset of terminals S = {s1,82,..., Sk},
the goal of the isolating cuts problem is to find a set of disjoint sets S1,Ss,...,Sk such that for each i, the
cut (S;,V '\ Si) is a mincut that separates s; € S; from the remaining terminals S\ {s;} C V\S;. If S; is a
(1 + €)-approzimate mincut separating s; from the remaining terminals, then the corresponding problem is called
the (1 + €)-approzimate isolating cuts problem.

Using fair cuts, we obtain a near-linear time algorithm for approximate isolating cuts.

THEOREM 2.1. There is an algorithm for finding (1 + €)-approzimate isolating cuts that takes O(m - poly(1/e))
time.

Li and Panigrahi [30] gave an algorithm for finding ezact isolating cuts using O(logn) (s, t)-max-flow/mincut
computations that crucially relies on the uncrossing property of (s,t)-mincuts. This property ensures that if we
take a minimum isolating cut X containing a terminal vertex s and a crossing mincut Y, then their intersection
X NY or difference X \ Y (depending on which set the terminal vertex s is in) is also a minimum isolating cut.
This allows partitioning of the graph by removing edges corresponding to a set of mincuts, such that each terminal
is in one of the components of this partition. For each terminal, the corresponding minimum isolating cut is now
obtained by simply contracting the rest of the components and running a max-flow algorithm on this contracted
graph. The advantage of this contraction is that the total size of all the graphs on which we are running max-flows
is only a constant times the size of the overall graph.

Unfortunately, approximate mincuts don’t satisfy this uncrossing property, which renders this method
unusable if we replace exact mincut subroutines with faster (1 + ¢)-approximate mincuts. But, if we instead
used fair cuts, then we can show the following: if X is a (1 + €)-approximate minimum isolating cut containing
terminal s and Y is a (1 + «)-fair cut, then either X NY or X \ Y (whichever set contains s) is a (14 €)(1 + a)-
approximate minimum isolating cut. This allows us to use the framework in [30]. Since the number of fair cuts
we remove in forming the components is only O(logn), the multiplicative growth in the approximation factor can
be offset by scaling the parameter in fair cuts by the same logarithmic factor. The advantage in using fair cuts
over exact mincuts is that the running time of the former is near-linear by Theorem 1.1, which helps establish
Theorem 2.1. The details of this algorithm are presented in Section 6.

2.3 From Approximate Isolating Cuts to Approximate GH-trees Finally, we use approximate isolating
cuts to obtain an approximate GH tree algorithm. [31] gives a recursive algorithm for computing an approximate
GH tree but using exact isolating cuts. We observe that the latter can be replaced by approximate isolating cuts
provided the approximation is one-sided in the following sense: the “large” recursive subproblem needs to preserve
mincut values exactly. But, in general, if we use the approximate isolating cuts subroutine as a black box, this
would not be the case. To alleviate this concern, we augment the approximate isolating cuts procedure using an
additional fairness condition for the isolating cuts returned by the algorithm. This fairness condition ensures that
although we do not have one-sided approximation, the approximation factor in the “large” subproblem can be
controlled using a much finer parameter than the overall approximation factor of the algorithm, which then allows
us to run the recursion correctly. The details of the GH tree algorithm establishing Theorem 1.2 are presented in
Section 7.
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2.4 From Fair Cuts to Near-linear time Expander Decomposition Via fair cuts, we will speed up the
algorithm by [42] for computing a (O(¢), ¢)-expander decomposition in time O(m/$) to O(m). There are two
main steps in the algorithm by [42]: the cut-matching step and the trimming step. The cut-matching step can
be solved in O(m) time simply by applying the near-linear-time approximate maxflow algorithm by [40].® The
harder step to speed up is the trimming step. However, we observe that the cut problem needed to be solved in
this step is actually a one-sided version of the fair cut problem, which is an easier problem. By calling our fair
cut algorithm, we immediately obtain a O(m)—time algorithm for the trimming step. See details in Section 8.

3 Preliminaries

Given a undirected capacitated/weighted graph G = (V, E) with edge capacities/weights is ¢ € RE; and an edge
set B/ C E, we let c(E') = > cp c(e) be the total capacity of E'. For simplicity, we assume that the ratio
between the largest and lowest edge capacities or weights are poly(n). For any disjoint sets S, T C V, we let
0c(S) = ¢(E(S,V \ S)) denote the cut size of S and §¢(S,T) = ¢(E(S,T)) denote the total capacity of edges
from S to T. For any distinct vertices s and ¢, let Ag(s,t) be the minimum-weight s-t cut. We sometimes omit
G when it is clear from the context.

Flow. A flow f : V xV — R satisfies f(u,v) = —f(v,u) and f(u,v) = 0 for {u,v} ¢ E. The notation
f(u,v) > 0 means that mass is routed in the direction from u to v, and vice versa. The congestion of f is
maxy v}ek % If the congestion is at most 1, we say that f respects the capacity or f is feasible. For each

vertex u € V, the net flow out of vertex u, denoted by f(u) = > . f(u,v), is the total mass going out of v minus
the total mass coming into u. More generally, for any vertex set S C V', we can define the net flow out of S as
f(8) = ues (W) =X es ey f(u,v). The net flow out from S to T is denoted by f(S,T) =3, cger f(u,v).
Observe that we always have f(V) = 0.

A demand function A :'V — R is a function where ) .\, A(v) = 0. We say that flow f satisfies demand
A if f(v) = A(v) for all v € V. For any S C V, let A(S) = > g A(v) be the total demand on S. Observe
A(V) = f(V) = 0. By the max-flow min-cut theorem, we have the following:

FacT 3.1. For any € > 0, |A(S)| < e-(S) for all S CV iff there is a flow with congestion € that satisfies A.

For a flow f and a demand function A, define the excess A as Af(v) = A(v) — f(v) for every v € V. We
think of excess as a remaining demand function. We say that f e-satisfies A if |Af(S)| < e-(S) for all S C V.
That is, by Fact 3.1, there exists a flow fq.,, With congestion € where f + fq.4 satisfies A. Note that f 0-satisfies
A iff f satisfies A.

For any two vertices s,t € V, an (s,t)-cut (S,T) is a cut such that s € S and ¢t € T. An (s,t)-flow f obeys
f(v) = 0 for all v # s,t. Similarly, an (s,t)-demand function A obeys A(v) = 0 for all v # s,¢. That is, an
(s,t)-demand function is satisfied only by an (s, ¢)-flow.

Congestion Approximators. When we want to argue that flow f e-satisfies a demand function A, it can
be inconvenient to ensure that |Af(S)| < e-6(S) for all S C V because there are exponentially many sets.
Surprisingly, there is a collection S of linearly many sets of vertices, where if |A(S)| < e-(S) for each S € S, then
this is also true for all S C V with some polylog(n) blow-up factor. Moreover, S can be computed in near-linear
time.

THEOREM 3.1. (CONGESTION APPROXIMATOR [41, 40]) There is a randomized algorithm that, given a graph
G = (V,E) with n vertices and m edges, constructs in O(m) time with high probability a laminar family S of
subsets of V' such that

1. S contains at most 2n sets,

2. each vertex appears in O(logn) sets of S, and

3. for any demand function A on 'V, if |A(S)]| < §(S) for all S € S, then |A(R)| < vsd(R) for all RCV for
a quality factor vs = O(log*n).

8For reader who are familiar with [42], their algorithm applies the push-relabel flow algorithm that takes O(m/$) time, instead of
using an O(m)-time approximate max flow algorithm, because the push-relabel algorithm has fewer log factors in the running time.
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Graphs with Boundary Vertices. Given a set U C V, let G{U} denote the following “induced subgraph
with boundary vertices”: start with induced subgraph G[U], and for each edge e = (u,v) € E(U,V \ U) with
endpoint u in U, create a new vertex z. and add the edge (z.,u) to G{U} of the same capacity as e. Let Ng{U}
be the vertex set of G{U} and define Ng(U) = Ng{U} \ U. We call vertices in Ng(U) boundary vertices. We
simply write N{U} and N(U) instead of Ng{U} and Ng(U) when the context is clear. Observe that the degree
degg vy (2e) of each boundary vertex z. € N(U) in G{U} is simply the capacity c(e) of edge e. We will use this
notation very often in the paper.

Boundary Demand Functions. In our context, the sink node ¢t € U is usually given. The full U-boundary
demand function Ay : V(G{U}) — R is defined such that

degg{U}(v) ifve N<U>
Ay(v) =40 ifoeU\t
—A(N(U)) ifv=t.

That is, any flow satisfying Ay sends flow from each boundary vertex of G{U} at full capacity to t. We
also write Ay, when it is not clear from the context what ¢ is. More generally, given any demand function
A" . V(G{U}) — R, we say that A’ is a U-boundary demand function if A’(v) = 0 for all v € U\ ¢,
A'(t) = —A(N(U)). That is, A’ is completely determined once we specify the demand values on boundary
vertices N(U).

One-Sided Fair Cut. Finally, the following “one-sided” version of a fair cut (Definition 1.1) will be useful.

DEFINITION 3.1. (ONE-SIDED FAIR CUT) Let G = (V, E) be an undirected graph with edge capacities ¢ € RZ.
Let s be a vertex in V. For any parameter o > 1, we say that a cut (S,T) is an s-sided a-fair cut if there exists

a feasible flow f such that
1. f(v) =0 for allv e S\ {s}

2. flu,v) > = - c(u,v) for every (u,v) € E(S,T) whereu € S andv € T.

1
In other words, the flow f sends flow from s to the boundary E(S,T) in a way that almost saturates every edge
in E(S,T), but we do not care about the behavior of f beyond E(S,T).

Clearly, an a-fair (s,t)-cut is an s-sided a-fair cut since we can take the same flow f that witnesses the a-fair
(s,t)-cut. However, we will only require the one-sided version in our isolating cuts application in Section 6.

4 Almost Fair Cuts via Multiplicative Weight Updates
The key subroutine used for proving Theorem 1.1 is the algorithm below.

THEOREM 4.1. (ALMOST FAIR CuTs) There is an algorithm ALMOSTFAIR(G,U,t, ¢, () that, given a graph
G = (V,E) with a sink node t € V, a set U C V where t € U, and parameters 5 > 0 and ¢ > 0, returns a
partition (P,U") of U where t € U’" with the following properties:

1. 5¢(U") <6c(U) — Béa(P,V\U) (equivalently, (P, U") < (1 — B)oq(P,V\U)), and

2. There ezists a flow fl,, in G{U'} with congestion (1+€) satisfying a U'-boundary demand function A’ such
that

A'(v) = (1 = B) deggpr (v) for all old boundary vertices v € N{U') N N(U)
|A"(v)| < (14 ¢€)deggrn (v) for all new boundary vertices v € N(U') \ N(U)

The algorithm takes O(|E(G{U})|/€?) time and is correct with high probability.’

YNote that the guarantee that |A’(v)| < (1 +¢) deggyry(v) for all new boundary vertices v € N(U’) \ N(U) in fact follows from
the guarantee that f,, has congestion (1 + €). We state both guarantees explicitly for convenience.
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The rest of this section is for proving Theorem 4.1. For convenience, we write H = G{U} and let n and
m denote the number of vertices and edges in H throughout this section. Let B be the incidence matrix of H.
Observe that, for any flow f on H, we have (Bf), = f(v) is the net flow out of v. We can view Bf as a vector
in RV Define
A=(1-8)Ay

as the full U-boundary demand function on G{U} after scaled down by (1 — 8) factor. For any U’ C U,
the restriction Aly: of A is a U-boundary demand function obtained from A by zeroing out the entries on
N{(U)\ N (U, i.e., the boundary vertices of U which are not boundaries of U’, and then setting the entry on ¢
so that 3,y (s Alv/(v) = 0. Similarly, we view A and also Ay as vectors in RV (H),

4.1 Algorithm

Initialization. We start by computing a congestion approximator & of H with quality vs = O(log4 n) using
Theorem 3.1. For a technical reason, it is more convenient if no set in S contains sink ¢. From now, we will
assume this, which is justified by the following observation:

PROPOSITION 4.1. Given the family S from Theorem 3.1 and a vertex t, there is a linear time algorithm that
returns another family 8’ with the same guarantee as in Theorem 3.1 but with additional guarantee that each set
S € 8’ does not contains t.

Proof. Replace each set S € S where t € S with its complement V(H) \ S. Observe that S is now a larminar
family on V(H) \ t where |S| does not change, and the number of sets containing each vertex may increase only
by O(logn). Hence, the first and second properties of Theorem 3.1 still hold. The third property still holds as
well because |A(S)| = |A(V(H)\ S)| for all S. 0

Our algorithm is based on the Multiplicative Weight Update framework and so it works in rounds. For round i,
we maintain weights wg’o >0 for each S € S and o € {+,—} and define the potential ¢* € RV ) where

=Y g (k)
55 9 (8)

’U(SH

for each vertex v. As no set S € S contains ¢, we will always have ¢! = 0 for all i. Initially, we set w}io =1 for
all Se€S,0e{+,—-}

The algorithm also maintains a decremental subset Vi where t € Vi C Vi1 for all i. We initialize V0 as
follows. First, set V0 = V(H). While there exists S € S where Alyo(S) > 65 (5), which certifies that there is no
feasible flow on H satisfying Alyo by Fact 3.1, we update V° +— VO\ S (in particular, the function Alyo changes).
Let D° contain all the vertices we removed from V°. Now, we are ready to state the main algorithm.

Main Algorithm. For round i = 1,2,...,T where T = O(log(n)/a?) and a = €/vs, we do the following:

1. Define f% on H such that for each edge (u,v), f*(u,v) flows from high potential to low potential at maximum
capacity. That is, for every edge (u,v) in H,
c(u,v) if ¢, > @b
Filu,v) =40 if ¢, = ¢},
—c(u,v) if ¢f, < ¢L.
2. Using Lemma 4.5, compute a deletion set D' C V(H) \ t and set V¢ < V=1 \ D? where D’ satisfies the
following;:

if D' # (), then Alyi-1(D") > 6 (D), and
<¢i7A V’7> = <¢i3A Vi_l\Di> < <¢lvaZ>

3. For each S € S, let

(Aly)F'(S) _ Al(S) = £1(S)
om(S) du(9)

be the relative total excess at S compared to the cut size in round 1.

rg =
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4. Update the weights

+1 4 art i+1 4 —art
wg =wgy-e”S and wg - =wg_-e” 5.

After T rounds, we compute the pruned set P = U;fF:ODi and let U’ = U \ P. Finally, we return the partition
(P,U").

4.2 Correctness We prove that the partition (P,U’) outputted by our algorithm satisfies the requirement in
Theorem 4.1. The first important thing to understand our algorithm is to formally see how it is captured by the

Multiplicative Weight Update (MWU) algorithm, which we recall below:

THEOREM 4.2. (MULTIPLICATIVE WEIGHTS UPDATE [7]) Let J be a set of indices, and let « <1 and w > 0 be
parameters. Consider the following algorithm:

1. Set w§-1) +—1foralljeJ
2. Fori=1,2,...,T where T = O(w?log(|J])/a?):

(a) The algorithm is given a “gain” vector g' € R” satisfying ||g*||co < w and (g*,w?’) <0

(b) For each j € J, set wh w;-fl exp(ag}) = exp(a el g;:/)

At the end of the algorithm, we have - el gi < aforallje .’

To apply Theorem 4.2 into our setting, we define J = S x {4, —}. That is, we work with indices (S, +) and
(S,—) for S € S. We use the same weights w’ and error parameter o as the algorithm, and we set w = 2. For
each iteration ¢ and S € S, we define

Alv:(8) = f(9)

du(S)

g‘is’:t = j:rfg =+

Observe that the weights wgi are updated in Step 4 exactly as wg,i — wf{il exp(agéi). With this setting, we
show that our gain vector ¢g* indeed satisfies the condition in Step 2a of Theorem 4.2.

LEMMA 4.1. For each i, we have ||g'||oc <2 and {g*, w*) < 0.

Proof. To show ||¢]|sc < 2, we have

f1(S)
du(S)

: AVi(S)—fi(S)‘ ‘AVi(S)‘ ‘ ’

L= < + <1+1,
K i e B T :
To see why the last inequality holds, we have (1) Alyo(S) < 0 (S) for all S € S by the initialization of V. (2)
Alyi(S) > 0 for all i because t ¢ S, and (3) Aly+(S) may only decrease as V' is a decremental set. Also, we have

|£2(S)| <61 (S) because each f* respects the capacity.
10More generally, for any value val, if we have (g*, w®) < val for all i, the MWU algorithm guarantees that % Zie[T] g;. <val+a,

for all j. Here, we use a special case when val = 0.
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To show (g%, w’) < 0, first observe that (g%, w?) = (¢*, A

vi) — (¢, Bf?) exactly.

(g'w') = > (g5 4w 4 + 95w )

Ses
= Z(ws+ wg )T
SeSs
—Z%+ = (Al (S) - F1(9))
SeS
—§3%+ T‘X}Awm—wﬂm
SeS vES
_ (v) — (BF W, — W
S, S

>, (&

veV (H)
= <¢l7A Vi> - <¢lval>

Since the deletion set D? from Step 2 is designed to guarantee that (¢%, Aly:) < (¢°, Bf*), we have that (g%, w*) < 0.
]

vi(v) = (Bf')v) &,

From the above, we have verified that our algorithm is indeed captured by the MWU algorithm. Now, we derive
the implication of this fact. Only for analysis, we define the average flow f = % Z¢T=1 fi e REW) on H and the

average U-boundary demand function A = £ ZiT:1 Aly: e RVE) on H.
LEMMA 4.2. We have f e-satisfies A in H.

Proof. Define 7 = % ZiT:1 rt € RS. First, we prove that |Fg| < a for all S € S. This is because

ifg:%zj[rs =Y g5 <a

i€[T] 16 [T

where the last inequality is precisely the guarantee of the MWU algorithm from Theorem 4.2. Next observe that
the excess is

&7 (8) = A(S) = F(S) = Fs0u(S).

Therefore, we have that |Zf(5)\ < ady(S) for all S € S. Since S is a congestion approximator, it follows by
Theorem 3.1 that

&7 (8)] < Asadu(S) = e (S)
for all S C V(H). This precisely means that f e-satisfies A. O

Now, we are ready to prove Item 2 of Theorem 4.1. By Lemma 4.2, there exists a flow faug in H with congestion
e such that feq = f + faug satisfies A. We define f/ , as the restriction of f..; into G{U’}. That is, for each
new boundary vertex z, € N (U’) \ N (U) where u is its unique neighbor, we set f’,,(,u) = fsat(€). For every
other edge e € E(G{U'}), we set f!,,(e) = fsat(e). Let A’ be a U’-boundary demand function where, for each
U’-boundary vertex v € N (U’), we set A'(v) = f!,,(v) as the net flow out of v via f/,,.

LEMMA 4.3. We have
1. fl.e is a flow in G{U'} with congestion at most (1 + €) that satisfies A'.
2. A’ is a U'-boundary demand function where

A'(v) = (1 = B) deggp (v) for all old boundary vertices v € N{U') N N(U)
|A"(v)| < (14 ¢€)deggrn (v) for all new boundary vertices v € N(U') \ N(U)
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Proof. (1) As f!,, is a restriction of fs,; into G{U’}, then the congestion of f!,, is at most that of f.,; which
is (1 +€). To see why f! , satisfies A’, we have that A’(v) = f!_,(v) for all U'-boundary vertex v € N (U’) by
construction. For non-boundary vertex v € U’ \ t, we have f!_,(v) = f(v) = 0= A’(v). So f’,.(v) = A’(v) for all
v # t. This implies that f_,(t) = A’(¢) too and so f.,, satisfies A’.

(2) For each new boundary vertex v € N(U’) \ N(U), we have A’(v) = fi.,(v) and so |A'(v)] <
(1+e€) deggpry(v) because f,, has congestion (1+¢) in G{U'}. For each old boundary vertex v € N(U")NN(U),
we have A'(v) = f,,(v) = feat(v). As foas satisfies A, we have foqi(v) = A(v). But A(v) = (1 —3) deggy(v)

sat
as, for every i, Aly:i(v) = (1 — ) deggpy (v) for every v ¢ P. Therefore, A'(v) = (1 — 8) deggpry (v). 0

This proves Item 2 of Theorem 4.1. It remains to prove Item 1 of Theorem 4.1.
LEMMA 4.4. Sy (P) < A(P).

Proof. First observe that dy(D°) < A(D°) because every time we remove a set S from VO we have
Su(S) < Alyo(S) and we can charge 6y (S) to the decrease of Alyo(S). Next, the sets D' for i > 1 satisfy
5H(Di) <A Vi—l(Di), SO

Sy (P) = 0u(P) < 3 0u(D%) < A(D®) + 3 Al 1 (D) = A(P).

i>0 i>1
|
COROLLARY 4.1. 6g(U’) < ég(U) — 8- 6a(P,V\U).

Proof. We have dqquy(P) = 6a(P,U’) and A(P) = (1 - 8)éc(V \ U, P). By adding dg(V '\ U,U’) into both sides
of the inequality of Lemma 4.4, we have

Se(V\U,U") + 66(P,U") < 5a(V\U,U') + 6a(V\ U, P) — B5c(V \ U, P)

which concludes the proof because g (U’) = dg(V \ U,U’) 4+ 6c(P,U’) and 6c(V \ U,U’) + é¢(V \ U, P) =
da¢(V\U) =d¢(U). O

This proves the correctness of Theorem 4.1.

4.3 Running Time Here, we explain some implementation details and analyze the total running time.
Computing the congestion approximator S takes O(m) by Theorem 3.1. The step which ensures that no set
in S contains ¢ is at most O(nlogn) time because ¢t was contained in at most O(logn) sets S and the complement
of S has size at most n.

Next, we explain how to implement the initialization of VO efficiently. Observe that, for any S € S, if
Alyo(S) > 51 (S), then we set VO «— VO\ S and then we have Aly0(S) = 0. Otherwise, if Aly0(S) < §g(S), then
it remains so forever because Aly0(S) is monotonically decreasing when V9 is a decremental set. In any case, for
each S € S, we only need to compare Alyo(S) with 65 (S) once, which takes time at most O(|S|+|Eg (S, V(H))]).
So the total time is O(mlogn) because S can be partitioned into O(logn) layers of disjoint subsets by the second
property of Theorem 3.1.

In round i of the main algorithm, computing f¢ takes O(m) time. Using the fact that S is a laminar family
and S contains O(n) sets, we can compute 7% for all S € S in O(n) time, and so we can compute the weights
wf;’rol forall S € S, 0 € {+,—} in O(n). The most technical step is Step 2 whose implementation details is shown
at the end of the section.

LEMMA 4.5. The “deletion set” D* C V(H) \ t from Step 2 can be computed in O(m + nlogn) time.

In total, the running time is O(m) +T - O(m +nlogn) time. Recall that m = |E(H)| = O(|E(G{U})|) where
T is the number of rounds. So we conclude the running time analysis:

LEMMA 4.6. The total running time of the algorithm for Theorem 4.1 is at most O(|E(G{U})|/€?).
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4.4 Proof of Lemma 4.5 In this section, we show how to construction D C V(H) \ t where

(4.1) if D' # §, then Alyi-1(D") > 6 (D")
(4.2) (0", Alyi) = (9", Alvi-i\pi) < (¢", Bf*).
If (¢, Alyio1) < (¢?, Bf*%), then we simply set D* = (), which trivially fulfills both conditions. For the remainder

of the proof, we assume that (¢¢, Alyi-1) > (¢°, Bf?). _
For real number z, define V-, = {v € V(H) : ¢! > x}. Fix some large number M > Hzlvé?é} |ps,|. We first
ve

prove the chain of relations

(4.3) / Alyioi (Vag)da = (67, Alyio) > (67, Bf) = /:_M S (Vo)dz.

=M

We start with

M

vi—l(V>z)dx:/ Z A

r=-M \ ,ev(H)
M
> Avi_l(v)/ 1{¢} > x}dx
veV (H) z=—M

Y Al ()@ - (-M)).

veV (H)

viei(v) - 1{¢} >z} | do

M
/ A
r=—M

Since ey () Alvi-1(v) = 0 by construction, this is equal to

> Alyimi(v) 6l = (@', Alyia).

veV (H)

By definition of the flow f?,

@ Bfy=">Y_  cu(w,v)d), -}
(u,v)EE(H)
M

= Y o) [ ) on(Vin)do

(uw)EE(H) =—M

M
/ S el 0)1{(u,v) € O (Vay) o

==M , vyeE(H)

/M 0 (Vsy)de.

z=—M

Together with the assumption (¢!, Alyi-1) > (¢°, Bf?), we obtain (4.3).
Let x* be the largest value such that

/ A Vi—l(V>a;)d$ = / 5H(V>m)d-757

=M x=—M
which must exist since x* = —M works. Next, we claim that we must have

Otherwise, for small enough ¢ > 0 we would have f;itjv[A vie1(Vag)dr < fm:tjw 0 (Vag)dx, and since

sz:[—M Alyi-1(Vsg)dx > fw]\i_M 0m (Vsz)dz, there is another choice of z* between z* + € and M that achieves
equality, a contradiction.
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We now claim that ¢ ¢ V5 ,-. Otherwise, since Alyi-1(V(H)) = 0 and Alyi-1(t) is the only negative entry,
we would have Alyi-1(Vs,+) < 0 which would violate (4.4). Since ¢ ¢ V5,- and ¢} = 0, we conclude that z* > 0.

Let ¢ = min{¢’, x*} as ¢ truncated to a maximum of x*. Then, similar to (4.3), we obtain

(4.5) @', A

i) = / Alyio1(Vog)dz = / 5 (Voz)dz = (&, BfY).

=M r=—M

A

Define our deletion set as D* = V5 .+, so t ¢ D* and Equation (4.1) follows from (4.4). We now prove the chain
of relations

(@, Alyionps) = (@, Alyionypi) < (@, Alyicr) = (&, By < (¢, Bf?),

which would fulfill Equation (4.2). For the first relation, if o # @:) then v € D! which means that
A

vi-1\pi(v) = 0. For the second relation, we use a = ¢! = 0 to obtain

@ Alyinp) = Y P @A) = Y. @)A1 (v) - 2 Alyii (DY)
veV (H)\t veV (H)\t
= <$z, A Vi*1> — .Z‘*A Vi—l(Di)

which is at most @Z, A

yi-1) since * > 0. The third relation follows from (4.5). For the last relation, we have

@.Bfy= Y env)d,~dl< Y. en(wo)ls, -6yl = (&' Bf).
(u,v)EE(H) (u,v)EE(H)
This concludes Equation (4.2).
Finally, we claim the running time O(m + nlogn). The only nontrivial step in the algorithm is computing
x*. We first sort the values ¢! in O(nlogn) time. Then, by sweeping through the sorted list, we can compute
Alyi-1(Vay) =6 (Vay) for all z € {¢! : v € V(H)} in O(m) time. The function Alyi-1(Vsy) — 3 (Vs,) is linear
between consecutive values of ¢, so we can locate the largest value x* for which the function is 0.

5 From Almost Fair Cuts to Fair Cuts
In this section, we prove Theorem 1.1 using the ALMOSTFAIR subroutine.

5.1 Algorithm Let (G,s,t,a) be the input and we want to compute a (1 + «)-fair (s,t)-cut in G. Let
Cmin = mine ¢(e) and let C = ¢(F)/cmin be the ratio between total capacity and the minimum capacity. Recall
that we assume C' = poly(n). We also assume a > otherwise we could solve the problem using exact max
flow algorithms.

1
poly(n)’

Our algorithm runs in iterations where in iteration j we compute (87,79 kI ,@j) where (S7,T7) is an (s, t)-
cut where s € 7 and t € T9, kJ € Zsg, and def’ € Rs represents an upper bound of the deficit which will
be explained in the analysis. Define 8 = O(a/logn) and € = 3/16. Initially, (S°,7°) is an arbitrary (s,t)-cut,

def’ = 66(S°, %), and K° = 0.
While def’ > Bcmin, do the following starting from j =0,1,2,...

1. Compute
(P7,87\ P?) = ALMOSTFAIR(G, S7, s, ¢, (k' + 1)), and
(P},57\ P/) = ALMOSTFAIR(G, T, t,¢, (k' +1)5)
by calling Theorem 4.1.
2. If max{dq(P?,T7),6q(P!,57)} < def’ /40, then we update
kY =k 41, and
def T = def’ /2.
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Then, we set 791 =77\ P/ and $i+1 = v\ T9+1.11
3. Else, if max{dg(PJ, T7),0c(P},S7)} > def’ /40, then we update

Kt =k, and
def’ " = (1 B/80)def’
If 6¢(PI,T7) > @j/él(), then, we set S9! = §7\ P7 (and 791! = V\S7+1). Otherwise, we set 7911 = 79\ P/
(and 7t =V \ TI+1).

After the while loop, we return (S7,77) as a (1 + «a)-fair (s,t)-cut. As def < ¢(E) we have that def’ <

(1 — 3/80) ¢(E) for all j. So there are at most O(log(C/f)/f) iterations before def’ < B - ¢min. Therefore,
the algorithm takes O(log(C/B)/B) x O(m/e?) = O(m/a?) total time by Theorem 4.1. It remains to show the
correctness of the algorithm.

5.2 Analysis For convenience, whenever we refer to an edge (a,b) € E(A, B), we mean a € A and b € B. Only
for the analysis, we construct a feasible flow f7 in G on each iteration j, and ensure that f7 satisfies the following
two properties:

1. Define the deficit of flow f7 as def’ (f7) = Z(
an invariant that def’(f7) < def’.

u,v

yem(si,ri) max{0, (1 — kI B)c(u,v) — fi(u,v)}. We maintain

2. For all R C V \ {s,t}, we require that |f/(R)| < efg(R). Equivalently, f/ e-satisfies an (s,t)-demand
function in G.

In words, each cut edge (u,v) € E(S7,T7) contributes to the deficit of flow f7 when the flow in f7 from u to v is
less than (1 — k7 3)-fraction of its capacity. With our definition of deficit in Property 1, we have that the cut is
fair whenever the deficit is very small:

PROPOSITION 5.1. If@j < BCmin, then (S7,T7) is a (1 + a)-fair (s,t)-cut.

Proof. First we claim that k/ = O(log n). This is because everytime k7 increments, def is halved. So at the end
of the algorithm, we have 5("% < def’ < ¢(E)/2F, which implies k7 = O(log(C/f8)) = O(logn). Now, by the
assumption and Property 1, for all (u,v) € E(S7,T7), we have (1 — k7 8)c(u,v) — fI(u,v) < B+ cmin and so

1

Fu,v) > (1= (K + 1)8)c(u,v) > A+a/2)

c(u,v)

where the last inequality is because k/ = O(logn) and we can set the constant in 3 = ©(a/logn) to be small
enough. Since f7 e-satisfies an (s,t)-demand function, by the observation below Fact 3.1, there exists faug With
congestion € such that f* = fJ + fau, is an (s, t)-flow. Now, we have that for all (u,v) € E(S7,T7),

1
1+«

fH(u,v) > f(u,v) — ec(u,v) > c(u,v)

because ¢ = 3/16 = O(a/logn) and the constant in it is small enough. Therefore, f* certifies that (S7,77) is a
(1 + a)-fair (s, t)-cut. d

Initially, we set f9 as the zero flow, which satisfies both properties since def = §5(S°, T). Property 2 will help
us show the following inductive step, which would conclude the correctness of Theorem 1.1.

LEMMA 5.1. Suppose there exists a feasible flow f7 satisfying Properties 1 and 2 for j. Then, we can construct
a feasible flow fiT1 satisfying Properties 1 and 2 for j + 1.

We analyze the two cases based on max{dg(PJ,T7),5¢(P?,57)} in the subsections below.

HWe could also symmetrically set S7T1 = 57\ st and T9t1 =V \ S9F1. This choice is arbitrary.

Copyright (© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Case 1: max{0g(P!,T9),66(P/,S7)} < def’ /40 Let S9 = S7 \ PJ. By the guarantees of
ALMOSTFAIR(G, S7, s,¢, (k7 + 1)B), let A, be the S-boundary demand function satisfied by a flow f, in
G{S"”} with congestion (1 +¢€). As k't = kJ 4+ 1 in this case, by Theorem 4.1, we have fs(v) = A (v) =
(1 — k%1 3) deggygiy (v) for all old boundary vertices v € N(S7) N N(S"). Let T", Ay, f; be defined symmetri-
cally. From f, and f;, we will construct a new flow f7*! in three steps.

Step 1: Concatenate. Get f . Consider the “concatenation” of fs and f;, denoted by fs:, where we reverse
the direction of f5 so that the flow is sent out of s. The concatenated flow f; is on the graph G{S"} U G{T"}
where the two graphs share N(S"7) N N(T"7) as common boundary vertices. Now, we want to define a flow f on
G that corresponds to fg in a natural way. See Figure 1.

1. For each edge e € E(G[S"]) U E(G[T"7]) in the “interior” of S or T, we set f(e) = fu(e).

2. For each common boundary vertex xz, € N(S”) N N(T") where e = (u,v) € E(S”,T"), we have
fst(u,ze) = fs(we,v) = (1 — K31 B)c(e) and so we set f(e) = (1 — k71B8)c(e).

3. For each new boundary vertex z, € (N(S"7) \ N(S7)) U (N(T") \ N(T7)) where e = (u,v) € E(S”,P])U
E(T9, P]), we set f(e) = foi(u, ae).

4. For each old boundary vertex z. € N(S7) N N(T7) incident to the pruned set PJ or P/ on one side, i.e.,
e = (u,v) € E(S7,P}YUE(T",P!), we set f(e) = fo(u,x.).

5. For each old boundary vertex z. € N(S7) N N(T7) incident to the pruned set PJ or P/ on both sides, i.e.,
e = (u,v) € BE(P!, P}), we set f(e) =0.

6. For each edge in the “interior” of PJ or Ptj, we set f(e) =0.

By construction, f satisfies some demand function A where A(v) = 0 for v ¢ {s,¢} UV (P} UV (P}).

Figure 1: A diagram indicating the cases for defining f from fg.

Step 2: Remove Flow Paths Through New Boundaries. Get f’ . Take a path decomposition of f in
G, and then remove all paths starting or ending at vertices in V(PJ) UV (P?); let the resulting flow be f’, which
satisfies some demand function that is only nonzero at s,t. That is, f’ is an (s,t)-flow. Note that f’ still has
congestion at most (1 + ¢).

Step 3: Truncate to a Feasible Flow. Get f/t!. Finally, for any edges congested by more than 1 in f’ ,
lower the flow along that edge to congestion exactly 1. We define f7*! as the resulting flow.
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Proving Properties of 711, Since fi*! is obtained from the (s, ¢)-flow f’ by removing a flow of congestion
at most €, Property 2 is satisfied. Now, we prove Property 1. We write the deficit of fi*! as follows

def/ 1 (fIt1)
= Z max{0, (1 — k:j"'lﬁ)c(e) - fj+1(€)}
e€E(Si+1 Ti+l)

< Y (max{0,0 - KHB)e(e) — Fe)} +If(@) — F @)+ F(e) — £ )

e€E(Si+1,Ti+1)

= 3 max{0,(1- K B)e(e) - fle)}+

eC€E(Si+1,Ti+1)

Yoo e-Ffel+ > 1)

e€E(Si+1,Ti+1) e€E(Si+1,Ti+1)

Now, we bound each of the three terms above. We use the fact 79+ = 7% and S+ = §7 U PJ U P/ .
For the first term, we consider the concatenated flow f. We have f(e) = (1—k’*1)c(e) for each old boundary
edge e € E(S"7,T"). So, the first term is bounded by

> max{0, (1 — K+ B)c(e) — f(e)} < > (1=K B)e(e) — fle)
e€E(S"IUPIUP] T"9) ecE(PIUP] T")
<((L=K*B)+(1+€) - 8(PUF,TY)
<(24¢€)-8(PJUF,TY)

where the second inequality is because f has (1 + €) congestion.
For the second term, consider the flow f’ obtained by the flow-path removal. We rewrite the second term as

Yo Hfeo-FEl+ Y Ife)-Ffel

e€E(PIUP] T7) e€E(S",T")

Trivially, we have
> [f(e) = f'(e)l < (1 +€)8(P{ U P!, T7)
e€E(PIUP] T")

because the flow has congestion (1 4 €). Now, we claim that

Yo -l > () = f'(e)l < (1 +e)d(PIU P/, 87 uTY).

e€E(S8"7,T") e€cE(PIUP],S13UT)

To see this, consider each flow-path P removed from f to obtain f’ . Observe that P cannot cross directly from
T to S because, for every edge e € E(S",T'7), the flow is directed from S"7 to T" as f(e) = (1 — kit B)c(e).
Thus, between any two consecutive times that P crosses from S to T4, P must have crossed from T to
PJ U P/. Also, note that the first edge of P is from E(PJ U P/, S UT'7). Therefore, we can charge the flow
changes in edges of E(S"7,T"7) to the changes in edges of E(PJ U P!, 87 UT49). So D ecm(s, ) |F(e) = f'(e)] <
ZeeE(PSjUpZ’S,juT/j) |f(e) — f'(e)| as claimed.

Finally, for the third term, we consider the truncated flow f/*! with congestion at most 1 on all edges.
Again, we have f'(e) — fit1(e) = 0 for all e € E(S7,T") because 0 < f'(e) < (1 — ki*!8)¢(e). In particular,
the congestion on e was already less than 1. Also, we have |f’(e) — fiT1(e)| < ec(e) for any edges e as f’ has
congestion 1 4 €. Hence, we have

Yo flo-Frels Y ele)=es(PIUP,TY).

eeE(SjJrl,TjJrl) eEE(P_gUPtj,T'j)
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From the above bounds, we obtain
def () < (24 €) + (1 +€)+ (1+€) +e)d(PIUP! ST UTH).

Now, write §(PJUP/, SUT") = §(PJ,87)+68(P},8"7)+5(PJ, T")+35(P], T"). Note that §(P}, T"7) < §(P/, S7)
and 5(P] Sy < §(PJ T7) by the guarantee of ALMOSTFAIR. Trivially, we also have §(P/,57) < §(P/,S7) and
§(P3, T"7) < §(PJ, T7). But we have (P!, S7),6(PJ, T7) < def’ /40 by the assumption of this case. So we have,
as e <1/4,

def (1) < (4 + 4e) - 4 % < def’ /2 = def

fulfilling Property 1.

Case 2: max{6g(P?,T7),05(P},57)} > def’ /40 In this case, we set f/*1 as the same old flow f7. So Property 2
of f7*1 trivially continues to hold. For Property 1, assume without loss of generality the case g (P, S7) > def? /40,
so T7t1 = 79\ P/. (The case q(P?,T7) > defj/40 is symmetric, so we omit it.) As f/*! = fJ and k/*! = kI,
we have

def "1 (f71)
= Z max{0, (1 — k7 B)c(e) — f7(e)}
e€E(Si+1,Ti+1)

=def(f1)— > max{0,(1-kB)c(e) = Fle)}+ Y.  max{0,(1—kB)e(e) — f/(e)}.

e€E(Si,P]) e€E(P],Ti+1)

For the second term (without the minus sign), we can lower bound it as

> > (I=kB)ele) = fi(e) = (1 - KB)S(S, P]) — (57, P).

e€E(S7,P7)

For the third term, we can upper bound it as

< S ele) = Fle) = 8P T — FI(P, T,

eCE(P] Ti+1)
where the first inequality is because 0 < c(e) — f7(e) as f7 is feasible. Putting these together, we have
def 1 (/1) < defl (1) — (1= WB)O(S’, PY) = 6(P}, T ) + (F/ (57, PY) = f (P, 174

That is, the increase in deficit can be upper bounded as follows. It will decrease proportional to (1—k78)8(57, Ptj )—
§(P},T7%1) which is related cut size. It may increase proportional to f(S7, P/) — f(P/,T9*1) which is related to
flow.

For the decrease caused by cut size, ALMOSTFAIR(G, TV, t,¢, (k7 4+ 1)) guarantees that (5(P] T+ < (1 -
(k7 +1)B)6(S7, P/). So the deficit must decrease by at least ((1 — k/8) — (1 — (k¥ + 1)6)) 5(S9, Py > Bo(S7, P).
For the increase caused by flow, we have that f7(S7, P}) — fi(P},T7+') = fi(87, P}) + fi(T9+', P}) = —fi(P})
is exactly the net flow of f7 into P/. As |fi(P/)| < edq(P}) by Property 2 on P/, we now have

def*1(f7+1) < def! (f7) — B6(S7, P) + eda(P)).

Observe that 6g(P}) = 6g(S7, P}) + 6c(P}, T7+") but 6(P},T7+') < §(S7,P]) by ALMOSTFAIR again. So
edg(PY) < 2e66(57, PY) < 856(S87, P]) because € < 3/4. Therefore,

B

SRR

defi L (fi+1) < def (f9) )def](fj) def’ !

because d¢(S7, P!) > def? /40 by our initial assumption.
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6 Approximate Isolating Cuts and Steiner Cut

The focus of this section is to compute approximate isolating cuts and show its application in the Steiner mincut
problem.

6.1 Approximate Minimum Isolating Cuts The approximate minimum isolating cuts problem is defined
below.

DEFINITION 6.1. Given an undirected graph G = (V, E) with non-negative edge weights and a set of terminals
TCV,acut® CSCV issaid to be an isolating cut for a terminal t € T if TN S = {t}. A minimum isolating
cut for t is a minimum value cut among all the isolating cuts for t. Similarly, a (1 + €)-approzimate minimum
isolating cut for t is an isolating cut for t whose value is at most (1 + €) times that of a minimum isolating cut
fort.

Below is our main theorem. We state our result in general before plugging in the current best runtime from
Theorem 1.1.

THEOREM 6.1. We can compute (1 + €) approzimate minimum isolating cuts in O(m) time.

More precisely, fix any € < 1. Given an undirected graph G = (V, E) on m edges and n vertices with non-
negative edge weights and a set of terminals T C V, there is an algorithm that outputs a (1 + €)-approzimate
minimum isolating cut Sy for every terminal t € T in O(m) time plus a set of (1 + ~)-fair (s,t)-cut calls
on undirected graphs that collectively contain O(mlog|T|) edges and O(nlog|T|) vertices, where v = TR
Moreover, the sets Sy are disjoint, and for each t € T, the cut (S, V' \ St) is a t-sided (1 + )-fair cut. Using
Theorem 1.1 to compute (1 + ~y)-fair (s,t)-cuts, our algorithm for (1 + €)-approzimate minimum isolating cuts
runs in O(m/e3) time.

Algorithm 1 (1 + ¢)-approximate Minimum Isolating Cuts Algorithm on terminal set T'

1: Arbitrarily order the terminals in 7" = {t1,%2,...,t 7}

2: Phase 1:

3: for i =1 to [lg|T|] do

4 X; « {v; €T :ih bit in j is 1}

5: E(—{UjET:ithbitinjisO}

6:  Use Theorem 1.1 to find a (1 + v)-fair (X;,Y;)-cut S;

7: end for

8: Phase 2:

9: for every terminal t € T do

10:  Let S; be the connected component containing ¢ in G \ U;0.5;, i.e., the graph where we delete all the edges
in cuts 4.5; for all i.

11: Gy is obtained from G by contracting all vertices in V' \ S; into a single vertex 5;. {To implement this step
efficiently, we construct a new graph that is identical to G; instead of contracting G.}

12:  Find a (1 4 f8)-approximate minimum (¢, 5;)-cut in graph Gy; call this cut Cy

13: end for

14: Return the cuts {Cy : t € T}

To establish Theorem 6.1, we describe Algorithm 1 for finding (1 + €)-approximate isolating cuts. First, we
establish correctness of the algorithm by showing that the cut C; returned by Algorithm 1 for a terminal ¢t € T'
is indeed a (1 + €)-approximate minimum isolating cut for T. The following claim establishes an approximate
version of the standard uncrossing property of minimum cuts, and is crucial for the correctness of our algorithm.

LEMMA 6.1. Let A be a (14 «)-approzimate minimum isolating cut for some terminal t and let B be a (1+)-fair
(X,Y)-cut where XUY =T,t € X, and X C B. Then, ANB is a (14 «)(1+7)-approzimate minimum isolating
cut fort.
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Proof. First, note that since A is an isolating cut for ¢t and ¢ € X, X C B, it follows that A\ B does not contain
any terminal and AN B contains a single terminal ¢. Now, consider the two cuts A and AN B. Using the notation
W for disjoint union, we can write

E(A,VNA) =EANB,V\(AUB))WE(ANB,B\ A)WE(A\ B,V \ A)
E(ANB,V\(ANB))=FEANB,V\(AUB))WE(ANB,B\ A)WE(ANB,A\ B).

Since the first two sets are identical, we only need to compare the third sets E(A\ B,V \ A) and E(ANB, A\ B).
Since B is a (1 4 v)-fair (X,Y)-cut, there is a feasible flow from X to Y that, for each edge in E(B,V \ B),
sends at least ﬁ times capacity in the direction from B to V' \ B. Now, consider the flow on the subset of edges
E(ANB,A\ B) C E(B,V \ B). Since the flow must end at ¥ and since Y N (A \ B) = 0, it follows that this flow
must exit the set A\ B on the edges in E(A\ B,V \ (AU B)). Thus,

J(ANB,A\B) < (14+7)-0(A\B,V\(AUB)) < (1+7)-6(A\ B,V \ A).
It follows that (AN B) < (1 ++) - 6(A), which proves the lemma. O

LEMMA 6.2. For v = m and B = §, the cut C; returned by Algorithm 1 is a (1 + €)-approzimate minimum

isolating cut for everyt € T.

Proof. Lemma 6.1 implies that in Algorithm 1, the minimum isolating cut of ¢ in graph G, i.e., the minimum
t — 5, cut, is a (14 )8 TM_approximate minimum isolating cut of ¢ in the input graph G. Since C; is a (1 + J)-
approximate minimum t — 5; cut, it follows that C; is a (1 + ~)/8ITI1 . (1 + B)-approximate minimum isolating
cut of ¢ in the input graph G. Using the values of v and /3, we have

¢ Mg |T1] € P /2

1+> .(1+,)§e€ e/t = <1+ esincee< 1.
( Al |TY] 4

0

For the (1 + f)-approximate mincut in Step 12, we can use Theorem 1.1 to compute a (1 + 7)-fair cut, which
is also a (1 + B)-approximate mincut since v < . This also guarantees that the cut C; is a t-sided (1 + v)-fair
cut. Finally, it is clear from the algorithm that all cuts C; are disjoint.

The runtime analysis is identical to that in [30], so we omit it for brevity.

6.2 (14 ¢)-approximate Minimum Steiner Cut As an immediate application of our isolating cut result,
we can solve the Steiner cut problem below efficiently.

DEFINITION 6.2. Given an undirected graph G = (V, E) with non-negative edge weights and a set of terminals
T CV, a minimum Steiner cut is a cut of minimum value among all cuts 9 C S C V that satisfy ) Cc SNT C T.

Using Theorem 6.1, we give the following algorithm for finding a (1 + ¢)-approximate minimum Steiner cut.

Algorithm 2 (1 + €)-approximate minimum Steiner cut Algorithm on terminal set T
for i =1 to [1g|T|] do
for j =1 to [logg/;n] do

T;; is drawn i.i.d. from T where every vertex ¢ € T’ appears in T;; with probability 1/2°
Use Theorem 6.1 to find isolating cuts S;; = {S; : t € T};} for the terminal set T,
end for
end for
Return arg min{d(S) : S € S;;,7 € [[Ig|T]],7 € [[logg,7 1]}

THEOREM 6.2. Given an undirected graph G = (V,E) on m edges and n vertices and with non-negative edge
weights and a set of terminals T C V., Algorithm 2 computes a (1+ €)-minimum Steiner cut for T' wuth probability
at least 1 — 1/n in O(m) time.
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Proof. Fix a minimum Steiner cut for the terminal set 7" and let S denote the side of this cut such that
ITNS| <|T\S|. Let i € [[lg|T]] such that 2:=! < [SNT| < 2°. Then, T;; contains exactly one vertex
in T'N S with probability

|TNS|-1 2!
1 1 ; 1 1 11 1
2t A 2 2t 2 4 8

This implies that the probability that there is no index j € [[logg /7 n] such that T}; contains exactly one terminal
in T'NS is at most 1/n, thereby establishing the correctness of the algorithm.
The running time bound follows from Theorem 6.1. 0

7 Approximate Gomory-Hu Tree Algorithm

The main result in this section is the near-linear time algorithm for computing an approximate Gomory-Hu tree.
In fact, our algorithm can solve a more general problem called approximate Gomory-Hu Steiner tree defined
below. (The definition is copied verbatim from [31].)

DEFINITION 7.1. (APPROXIMATE GOMORY-HU STEINER TREE) Given a graph G = (V, E) and a set of terminals
U CV, the (1 + e€)-approzimate Gomory-Hu Steiner tree is a weighted tree T on the vertices U, together with a
function f:V — U, such that

e Forall s,t € U, consider the minimum-weight edge (u,v) on the unique s—t path in T. Let U’ be the vertices
of the connected component of T — (u,v) containing s. Then, the set f=2(U') CV is a (1 + €)-approzimate
(s,t)-mincut, and its value is wr(u,v).

Our main result is stated below. Recall that we assume that the ratio between the largest and lowest edge
weights are poly(n).

THEOREM 7.1. Let G be a weighted, undirected graph, and let U be a subset of vertices. There is a randomized
algorithm that w.h.p., outputs a (1 + €)-approzimate Gomory-Hu Steiner tree in O(m - poly(1/e€)) time.

The algorithm and analysis are similar to those in [31], except we replace (exact) minimum isolating cuts
with an approximate version, which requires overcoming a few more technical issues. For completeness, we redo
all the proofs. We also restate Theorem 6.1 below in the form we precisely need.

THEOREM 7.2. Fiz anye < 1. Given an undirected graph G = (V, E) on m edges and n vertices with non-negative
edge weights and a set of terminals T C V, there is an algorithm that outputs a (1 + €)-approzimate minimum
isolating cut Sy C V for every terminal t € T in O(m/eo(l)) time. Moreover, the sets Sy are disjoint, and for
each t € T, the set Si is a t-sided (1 + ~)-fair ({t}, T\ {t})-cut.

7.1 Cut Threshold Step Algorithm We begin with the following “Cut Threshold Step” subroutine from
[31], described in Algorithm 3 below. Loosely speaking, the algorithm inputs a source vertex s and a threshold
W, and aims to find a large fraction of vertices whose mincut from s is approximately at most W.

LEMMA 7.1. For any i, each set S¢ added to D* satisfies A(s,v) < (1 +~)W.

Proof. For each v € D', the corresponding set S! on line 5 contains v and not s, so A(s,v) < 65! < (14 v)W.
O

LEMMA 7.2. Let D* be all verticesv € U\ s for which there exists an (s,v)-cut in G of weight at most W whose
side containing v has at most |U|/2 vertices in U. Then, E[|D|] = Q(|D*|/log |U|).

Proof. We will show that
U U]

(7.6) E| > ID'|=(D),
1=0

Copyright (© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Algorithm 3 (1 + ~y)-approximate “Cut Threshold Step” on inputs (G, U, W, s)
1: Initialize D < 0
2: for independent iteration ¢ € {0,1,2,...,|lg|U]]} do
3:  R' < sample of U where each vertex in U \ {s} is sampled independently with probability 1/2¢, and s is
sampled with probability 1
4:  Compute (1 + m)—approximate minimum isolating cuts {S! : v € R'} on inputs G and R’ with the

additional guarantees of Theorem 7.2 (for large enough constant ¢ > 0)
5. Let F' be the family of sets S! satisfying §S? < (14 )W, and let D* < Usier: SinU
6: Let R' C R be the set of all v € R’ satisfying 85 < (1+~)W
7. end for
8: Let imayx be the index 4 maximizing | D?|
9: Return D ¢ Dimex | R ¢ Rimex and F ¢ Fime

which is sufficient, since the largest D? will have at least 1/(|lg|U|| + 1) fraction of the total size. Fix a vertex
v € D*. For each 0 < j < [lg|U[], define C} C V as the (s,v)-cut of weight at most (1 + m)jw that
minimizes |CJ N U|, which must exist since v € D*. By construction, |CJ N U| is decreasing in j.

We focus on a value j* (0 < j* < [lg|U|]) satisfying |CJ ' NU| > |CJ" NU|/2, which is guaranteed to exist.
Consider sampling iteration i = |lg|CJ" N U|], where each vertex in U \ {s} is sampled with probability 1/2°.
With probability Q(1/|CJ" N U|), we have CJ N R* = {v}, i.e., we sampled v and nothing else in CJ" N U. If
this occurs, then C7" is a valid isolating cut separating v from R’ \ {v}. Since S? is a (1 + m)—approximate
minimum isolating cut, we have

JT+1 g |U]]

i Y i* Y v 2

5SU§<1+>505 §<1+) W§<1+) W <e?W < (1+~)W,
2Mg [U]] 2Mg [U]] 2Mg|U]] 1+

so S! N U is added to D on line 5. By definition of CJ ', we have |S! N U| > |CJ +!' N U, which is at least
|CJ" NU|/2 by our choice of j*. In other words, if CJ" N R’ = {v}, which occurs with probability Q(1/|CJ" nU]),
then v is “responsible” for adding at least |C7" N U|/2 vertices to D°.

Thus, each vertex v € D* is responsible for adding (1) vertices in expectation to some D?, which increases

E [ZlU:gO\UH |D1|] by (1) in expectation. Finally, (7.6) follows by linearity of expectation over all v € D*. a

For our approximate Gomory-Hu tree algorithm, we actually need a bound on E[|D N D*|], not E[|D|], since
we want to remove D from U and claim that the size of the new D* drops by a large enough factor. Unfortunately,
it is possible that D is largely disjoint from D*, so a bound on E[|D|] does not directly translate to a bound on
E[|DND*|]. Therefore, we wrap Algorithm 3 into another routine that achieves a good bound on E[|D N D*|]. We
actually prove the stronger guarantee that D* can be any subset of all vertices v € U \ s for which A(s,v) < W,
which is needed in our Gomory-Hu tree algorithm.

Algorithm 4 (1 + ~)-approximate Gomory-Hu Steiner tree “step” on inputs (G, Uy, Wy, )
Initialize U + Uy
for O(log® n) sequential iterations do
for independent iteration j € {0,1,2,...,[lg|U|] — 1} do
Call Algorithm 3 on parameter m and inputs (G, U, (1 + m)j Wy, s) and let (D, R;, F;) be the
output
end for
Update U «+ U \ Uj Dj for the values D; computed on this sequential iteration
end for
Return an output (D, R, F) selected uniformly at random out of the O(log® nlog|U]) calls to Algorithm 3.

LEMMA 7.3. Each set S € F in the output (D, R, F) of Algorithm / satisfies 6S < (1 + ~)Wp.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



Proof. By Lemma 7.1 applied to any j € {0,1,2,...,[lg|U|] — 1}, each set S € F; satisfies

v v\ - M| B
6S§<1+)'<1+)W3(1+> Wo < &/2Wy < (1+7)Wo.
2[1g|U]] 2[1g |U]] 0 21g |U]] 0 0 < (L+7)Wo

So the same holds for the randomly chosen output (D, R, F). |

LEMMA 7.4. Let D* be an arbitrary set of vertices v € U \ s satisfying A(s,v) < Wy. The output (D, R, F)
satisfies E[D N D*] > Q(|D*|/log*n).

Proof. We claim that after O(log3 n) iterations of the main for loop, the set D* N U becomes empty. This would
mean that D* is contained in the union of all O(log4 n) sets D; computed over all iterations, so a random set D;
must contain a Q(1/ log® n) fraction of D* in expectation. For the rest of the proof, we prove this claim.

For each 0 < j < [lg|U[], let D} be all vertices v € U \ s for which A(s,v) < (1 + m)jWO. By
construction, D* C D§ € D} C --- C DFlg\Uﬂ' We track the sets D;-‘ N U throughout the algorithm.

Consider the set U at the beginning of one of the O(log® |U|) sequential iterations. We focus on a value j*
(0 < j* < [Ig|U[]) satisfying |D. N U| > |D}.4|/2. Consider iteration j* of the inner for loop. By Lemma 7.1,
we have A(s,v) < (1 + zrfpy) - (1 + m)j*Wo =(1+ m)j*“Wo, so in particular, Dj- € D}, ;. By
Lemma 7.2, we have E[|D;-|] > Q(|Dj.|/log |U|) > Q(|Dj.,|/log |U[). Therefore, once we delete |J; D; at the
end of this sequential iteration, the size of D7. ; drops by factor (1 —(1/log|U])) in expectation.

In other words, on each sequential iteration, there exists j* (1 < j* < [Ig|U[]) for which the size of D7 N U
drops by factor (1 — €2(1/log|U])) in expectation. Since the other sets D}, N U can never increase in size, the

product Hj[l_gl‘UH |D¥ N U| decreases by factor (1 —Q(1/log|U][)) in expectation. Since the product is at most

|U| eIV < 20(log” n) initially, it follows that after O(log®n) sequential iterations, the product becomes zero
w.h.p. Therefore, at the end of the algorithm, there exists j (1 < j* < [lg|U[]) with Dy NU = (). Since D* C D7,
we also get D* N U = (), which proves the claim. 0

7.2 The Algorithm for Approximating Gomory-Hu Steiner Tree We present our approximate Gomory-
Hu tree algorithm in Algorithm 5. It uses Algorithm 4 as a subroutine. See Figure 7.2 for a visual guide to the
algorithm. Once again, the algorithm and analysis closely follow those in [31].

We require the lemma below for both running time and approximation guarantee analysis.

LEMMA 7.5. Each set S € F satisfies §gS < (1 +7)(1+ 10e)\ and |SNU| < 2|U|/3.

Proof. By Lemma 7.3 on the call to Algorithm 4 (line 6), each set S € F satisfies d¢vS < (1 + ) - (1 4 10€) A, so
0cS < 0¢:S < (14 7)(14 10e)A. We now prove the second statement. By construction, the cut d¢/S has |SNU|
edges of weight 18e\/|U| that were added to G’. Since 0 S is a valid Steiner cut in G and the Steiner mincut is
at least (1 —e)A, the cut g S has at least (1 —e)\ weight of edges from G. So §¢'S > (1 —e)A+|SNU|-18eA/|U].
Suppose for contradiction that |S N U| > 2|U|/3; then, this becomes dg/S > (1 — €)X\ + 12eA = (1 + 11€) A, which
contradicts the earlier statement dg/S < (1 + 7)(1 + 10¢) . d

7.3 Running Time Bound Let P(G,U, W) be the set of unordered pairs of distinct vertices whose mincut is
at most W:

U
P(G,U W)= {{u,v} € (2> s Ag(u,v) < W}
In particular, we will consider its size |P(G,U, W)|, and show the following expected reduction:
LEMMA 7.6. For any W that is at most (1 + €) times the Steiner mincut of G, we have

1
EHP(GlargmUlargm W )” < (1 -Q < 4 >> |P(G, U> W )|v
log™n

where the expectation is taken over the random selection of s and the randomness in Algorithm 4.
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Algorithm 5 (1 + €)-approximate Gomory-Hu Steiner tree on inputs (Gg, U). Assume e < 1/100.

1:

If |U|] = 1, then return the trivial Gomory-Hu Steiner tree (7', f) where T is the empty tree on the single
vertex u € U, and f(v) = u for all vertices v. Otherwise, if |[U| > 1, then do the steps below.
v €2/log® n

: A« (1 + €)-approximate global Steiner mincut of G with terminals U, so that the Steiner mincut is in the

range [(1 — €)A, )]

4: s < uniformly random vertex in U
5. Construct graph G’ by starting with G and adding an edge (s,u) of weight 18eA/|U]| for each u € U

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

Call Algorithm 4 on parameter v and inputs (G, U, (1 + 10€)A, s), and let (D, R, F) be the output. Write
F={S,:v € R} wherev € S, for all v € R.
Phase 1: Construct recursive graphs and apply recursion
for each v € R do
Let G, be the graph G with vertices V' \ S, contracted to a single vertex x,
Let U, < S, NU
Recursively call (G,,U,) to obtain output (75, fu)
end for
Let Glarge be the graph G with (disjoint) vertex sets .S, contracted to single vertices y, for all v € R
Let Uarge < U\ Uycp(So NU)
Recursively call (Glargca Ulargc) to obtain (,-Tlargc; flargc)
Phase 2: Merge the recursive Gomory-Hu Steiner trees
Construct T" by starting with the disjoint union Tiarge U Uv€ r T and, for each v € R, adding an edge between
fv(xv) € U, and flarge(yv) € Ularge of weight w(aGSv)
Construct f:V — U by f(v') = fiarge(v) if v/ € Ularge and f(v') = f,,(v') if o' € U, for some v € R
Return (T, f)

/ Yo, Glargc

COMBINE

« T

Figure 2: Recursive construction of Glarge and G, for v € R. Here, R = {v1,v2,v3}, denoted by red vertices
on the top left. The dotted blue curves on the right mark the boundaries of the regions f, !(u) : u € U,, and

—1
Vlarge

(u) : ¥ € Ularge- The light green edges on the bottom left are the edges (fu,(x,), flgrge(yvl)) added on

line 17.
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Before we prove Lemma 7.6, we show how it implies progress on the recursive call for Giarge-

COROLLARY 7.1. Let Ay be the global Steiner mincut of G. W.h.p., after Q(10g5 n) recursive calls along Giarge
(replacing G < Gharge each time), the global Steiner mincut of G is at least (14 €)\o (where g is still the global
Steiner mincut of the initial graph).

Proof. Let W = (1 + €)\g. Initially, we trivially have |P(G,U, W)| < (lg‘). The global Steiner mincut can only
increase in the recursive calls, since Giarge is always a contraction of G, so W is always at most (1 + €) times the
current Steiner mincut of G. By Lemma 7.6, the value |P(G,U, W)| drops by factor 1 — ( log%n) in expectation

on each recursive call, so after Q(log” n) calls, we have

ancaanns(3) (o)™ <k

In other words, w.h.p., we have |P(G,U, W)| = 0 at the end, or equivalently, the Steiner mincut of G is at least
(14 €)Xo. 0

Combining both recursive measures of progress together, we obtain the following bound on the recursion
depth:

LEMMA 7.7. W.h.p., each path down the recursion tree of Algorithm 5 has O(logn) calls on a graph G,, and
between two consecutive such calls, there are O(e™! log® n) calls on the graph Giarge.

Proof. For any ©(log® n) successive recursive calls down the recursion tree, either one call was on a graph G,
or all ©(log®n) of them were on the graph Glarge- In the former case, |U| drops by a constant factor by
Lemma 7.5, so it can happen O(logn) times total. In the latter case, by Corollary 7.1, the global Steiner
mincut increases by factor (1 + €). Let wpin and wpayx be the minimum and maximum weights in G, so
that A = Wmax/Wmin, Which we assume to be poly(n). Note that for any recursive instance (G’,U’) and any
s,t € U', we have wmin < Ag(8,t) < w(9({s})) < nwmax, so the global Steiner mincut of (G',U’) is always
in the range [Wmin, MWmax|. It follows that the global Steiner mincut can increase by factor (1 + €) at most
O(e ! log(nWmax/Wmin)) = O(e~'logn) times. Therefore, there are at most O(e~'log® n) consecutive calls on
Garge before a call on some G, must occur. 0

LEMMA 7.8. For an unweighted/weighted graph G = (V,E), and terminals U C V, Algorithm &5 takes time
O(n}e‘l) plus calls to Theorem 7.2 with parameter v = €2/ log® n on unweighted /weighted instances with a total
of O(ne~1) wertices and O(me1) edges.

Proof. For a given recursion level, consider the instances {(G;, U;, W;)} across that level. By construction, the
terminals U; partition U. Moreover, the total number of vertices over all G; is at most n + 2(|JU| — 1) = O(n)
since each branch creates 2 new vertices and there are at most |U| — 1 branches.

To bound the total number of edges, we consider the unweighted and weighted cases separately, starting with
the unweighted case. The total number of new edges created is at most the sum of weights of the edges in the final
(14 ¢€)-approximate Gomory-Hu Steiner tree. For an unweighted graph, this is O(m) by the following well-known
argument. Root the Gomory-Hu Steiner tree T at any vertex r € U; for any v € U \ r with parent u, the cut
O{v} in G is a (u,v)-cut of value deg(v), so wr(u,v) < (1+ €)Ag(u,v) < (14 €)deg(v). Overall, the sum of the
edge weights in T" is at most (14¢) Y, deg(v) < (14¢€) - 2m.

For the weighted case, define a parent vertex in an instance as a vertex resulting from either (1) contracting
V'\ S, in some previous recursive G, call, or (2) contracting a component containing a parent vertex in some
previous recursive call. There are at most O(logn) parent vertices: at most O(logn) can be created by (1) since
each G, call decreases |U| by a constant factor (Lemma 7.5), and (2) cannot increase the number of parent
vertices. Therefore, the total number of edges adjacent to parent vertices is at most O(logn) times the number
of vertices. Since there are O(n) vertices in a given recursion level, the total number of edges adjacent to parent
vertices is O(nlogn) in this level. Next, we bound the number of edges not adjacent to a parent vertex by m.
To do so, we first show that on each instance, the total number of these edges over all recursive calls produced
by this instance is at most the total number of such edges in this instance. Let P C V be the parent vertices;
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then, each G, call has exactly |E(G[S, \ P])| edges not adjacent to parent vertices (in the recursive instance),
and the Giarge call has at most |E(G[V \ P]) \ U,cr E(G[S, \ P])|, and these sum to |[E(G[V '\ P])|, as promised.
This implies that the total number of edges not adjacent to a parent vertex at the next level is at most the total
number at the previous level. Since the total number at the first level is m, the bound follows.

Therefore, there are O(n) vertices and O(m) edges in each recursion level. By Lemma 7.7, there are
O(e 1og® n) levels, for a total of O(ne~!) vertices and O(me™') edges. In particular, the instances to the
max-flow calls have O(ne™!) vertices and O(me~!) edges in total. 0

Finally, we prove Lemma 7.6, restated below.
LEMMA 7.6. For any W that is at most (1 + €) times the Steiner mincut of G, we have

E[| P(Grargos Utnrgos W)|] < (1 —Q (ﬂ)) \P(G, U, W),

log™n
where the expectation is taken over the random selection of s and the randomness in Algorithm 4.

Proof. Define D* as the set of vertices v € U \ s for which there exists an (s,v)-cut in G of weight at most
W whose side containing v has at most |U|/2 vertices in U. Let Pyrdered(G, U, W) be the set of ordered pairs
(u,v) : u,v € V for which there exists a (u,v)-mincut of weight at most W with at most |U|/2 vertices in U on
the side S(u,v) CV containing u. We now state and prove the following four properties:

(a) For all u,v € U, {u,v} € P(G,U,W) if and only if either (u,v) € Prorderea(G,U, W) or (v,u) €
Pordered(G7 U, W) (Or both)

(b) For each pair (u,v) € Pordered (G, U, W), we have u € D* with probability at least 1/2,
(c) For each u € D*, there are at least |U|/2 vertices v € U for which (u,v) € Pordered (G, U, W).
(d) Over the randomness in Algorithm 3 on (G, U, (1 + €))), E[|D N D*|] > Q(|D*|/log* |U]).

Property (a) follows by definition. Property (b) follows from the fact that w € D* whenever s ¢ S(u,v),
which happens with probability at least 1/2. Property (c) follows because any vertex v € U \ S(u,v) satisfies
(u,v) € Pordered(G,U, W), of which there are at least |U|/2. For property (d), observe by construction of G’
that for each vertex v € D*, the (s,v)-mincut has weight at most W + |U|/2 - 18eA/|U|. This is at most
(I + €A+ 9eA = (1 + 10€)A since W is at most (1 + €) times the Steiner mincut of G (which is at most A). It
follows that each v € D* satisfies Mg (s,v) < (1 + 10€)A. Property (d) follows from Lemma 7.4 applied to input
(G,U, (1 +10€)A, s) and set D*.

With properties (a) to (d) in hand, we now finish the proof of Lemma 7.6. For any vertex u € D, all pairs
(u,v) € Pordered(G, U, W) (over all v € U) disappear from Pygered (G, U, W), which is at least |U]/2 many by (c).
In other words,

-|D
|Pordcrcd (G’ U’ W) \ Pordcrcd(Glargc, Ulargca W)| Z %

Taking expectations and applying (d),

B Portr(G. U W) ot Grege Unesr W) = L2 > 0 (LI,
Moreover,
U1-1D°] > E[[{(w,0) s € DY) > 3| PG, U, W),
where the second inequality follows by (b). Putting everything together, we obtain

|Pordered (G, U7 W)| )
log" |U]

E[IPordered(Ga U7 W) \ Pordered(Glargea Ulargea W)H 2 Q (
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Finally, applying (a) gives

EHP(G7 Ua W) \P(Glargc; Ulargc, W)H Z Q <W> .

log* |U]

Finally, we have P(Glarge; Utarge; W) C P(G,U, W) since the (u,v)-mincut for u,v € Ulage can only increase in
Glarge due to Glarge being a contraction of G. Therefore,

|P(G7 U7 W)| - |P(Glarge7 Ularge7 W)| = ‘P(G, U7 W) \ P(Glarg97 Ulargea W)la

and combining with the bound on E[|P(G,U, W) \ P(Giarge, Utarge, W)|] concludes the proof. 0

7.4 Approximation We first prove the two lemmas below before concluding the approximation guarantee.
LEMMA 7.9. For any distinct vertices p,q € Ularge, we have Ag(p,q) < Ay (0, 9) < (14+7)Ac(p, q)-

Proof. Since Glarge is a contraction of G, we have Aa(p,q) < Aay,,,. (P, q). To show the other inequality, fix any
(p, ¢)-mincut (A, B) in G. We iteratively “uncross” the cut (A, B) with each set S, € F (v € R) as follows: if
v € A, then replace (4, B) with (AU S,, B\ S,), and if v € B, then replace (4, B) with (A\ S,,BUS,). By
construction, the final cut is a (p, ¢)-cut that contains each S,, on one side of the cut, so it survives upon contraction
into Glarge and is a valid (p, ¢)-cut in Glarge- We claim that the final cut has weight at most (1++)Ag(p, ¢), which
would prove Ag,,,.. (P, q) < (1+7)Aa(p, q).

Let (A, B) be the current cut in the iterative process, and let S, be the next cut we wish to uncross. Since
Sy is a v-sided (1 + v)-fair cut on G’, there is a feasible flow with no source/sink in S, \ {v} and which saturates

1

Oq' S, up to factor S (in the direction from S, to V'\ S,). By ignoring the flow outside G’[S,] U d¢S,, we can
1

view it as a flow from v to the boundary d¢-S, that saturates the boundary up to S factor. Decompose the
flow into paths and ignore the paths ending at edges in G’ — G (which are all in 95/ S,,), obtaining a feasible flow
from v to 6¢S, that saturates 955, to factor f

Suppose first that v € B. Further restrict the flow paths to only those ending at the edges in the
subset Eg(A\ S,,ANS,) of 95S,. Each of these paths must cross Eg(ANS,,BNS,). There is at least
ﬁw(Eg(A \ Sy, AN S,)) flow along these paths, and they must cross a total capacity of w(Eg(ANS,, BNS,)).
Since the flow is feasible, we conclude that ﬁw(Eg(A \ Sy, ANS,)) < w(Eg(ANS,,BNS,). In the operation
that uncrosses S, the newly cut edges are precisely Eg(A\ S,,ANS,), and all edges in Eg(ANS,,BNS,)
disappear. We charge the newly cut edges Eg(A\ Sy, ANS,) to the deleted edges E¢(ANS,,BNS,) atal+~y
to 1 ratio. Finally, if v € A, then the argument is symmetric by replacing A and B, and the charging is identical.

Since the sets S, : v € R are disjoint, each edge is either charged to or charged from, but not both. If the
total weight of charged-to edges is W, then the total weight of newly cut edges is at most (1 + )W, so the final
cut has weight at most Ag(p,q) — W + (1 + )W < (1 +v)Aa(p, q), as promised. ad

LEMMA 7.10. For anyv € R and any distinct vertices p, q € U, we have Ag(p, q) < Mg, (p,q) < (1+13€)Aa(p, q).

Proof. The lower bound A¢(p,q) < Ag, (p, q) holds because G, is a contraction of G, so we focus on the upper
bound. Fix any (p,¢)-mincut in G, and let S be the side of the mincut not containing s (recall that s € U
and s ¢ S,). Since S, US is a (p,s)-cut (and also a (g, s)-cut), it is in particular a Steiner cut for terminals
U, 80 0g(Sy US) > (1 —e)X. Also, 6¢S, < (1 +v)(1+ 10e)X < (1 + 11e)A by Lemma 7.5. Together with the
submodularity of cuts, we obtain

(I4+11e)A+06S > 6aSy + 06S > 6q(Sy US) +0c(Sy N S) > (1 —e)A+a(Sy N S),
The set S, NS stays intact under the contraction from G to G, so dg, (S, N S) = dc(S, N.S). Therefore,
A, (p,q) <86, (SsNS) =686(S, NS) < 6aS + 126X = Ag(p, q) + 12€.
Finally, Ag(p,q) is at least the Steiner mincut of G, which is at least (1 — €)X, so the above is at most

Ac(p,q) +12¢- Aa(p,q)/(1 — €) < (1 + 13€)Ac(p q), as promised. O
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Combining the lemmas above, we can conclude the following.

LEMMA 7.11. Algorithm 5 outputs a ((1 + 13€)(1 + ~)O(e™ ! log® ”))bg“’ lUl—appmximate Gomory-Hu Steiner tree.
With v = €2/ log® n, the approzimation factor is (1 + €)CUoslUD,

Proof. To avoid clutter, define o = Ce=1og®n for large enough constant C' > 0. Consider the path down the
recursion tree leading up to the current recursive instance, and let k be the number of consecutive recursive
calls of type Glarge directly preceding the current instance. We apply induction on |U| and k to prove an
(1 4 13e)(1 + v)*)l81s IUI(1 + 4)~F-approximation factor. By Lemma 7.5, we have |U,| < 2|U|/3 for all
v € R, so by induction, the recursive outputs (73, f,) are Gomory-Hu Steiner trees with approximation
(14 13€)(1 +7y)*)o8rs Vel < ((14+13€)(1 +7)%)°8151UI=1 By definition, this means that for all s,¢ € U, and the
minimum-weight edge (u,u’) on the s—t path in T,,, letting U; C U, be the vertices of the connected component of
T, — (u,u’) containing s, we have that f; *(U’) is a (14 13¢)(1 +)®)"°81s V= L_approximate (s, t)-mincut in G,
with value wr(u,u'). Define U’ C U as the vertices of the connected component of T — (u,u’) containing s. By
construction of (T, f) (lines 17 and 18), the set f~1(U’) is simply f, *(U!) with the vertex z,, replaced by V' \ S,
in the case that x, € f~1(U’). Since G, is simply G with all vertices V \ S, contracted to z,, we conclude that
Sa, (fHUN) = da(f~H(U")). By Lemma 7.10, the values \g(s,t) and \g, (s,t) are within factor (1 + 13¢) of
each other, so dg(f~'(U’)) approximates the (s,t)-mincut in G to a factor (1+13€)- ((14 13€)(14~)®)0815 IUI=1
which we want to show is at most ((1+13€)(1+~)®)'815Ul(14++)~F. This follows by Lemma 7.7 since w.h.p., we
always have k < Ce 'log®n = « for large enough constant C' > 0. Thus, the Gomory-Hu Steiner tree condition
for (T, f) is satisfied for all s,t € U, for some v € R.

We now focus on the case s,t € Ularge. By induction, the recursive output (Tlarge, fiarge) is a Gomory-Hu
Steiner tree with approximation ((1 4 13€)(1 + 7)®)&151UI(1 4+ 4)=(+1D Again, consider s,¢ € Ujarge and the
minimum-weight edge (u,u’) on the s~ path in Tiarge, and let U, .. C Ularge be the vertices of the connected
component of Tiarge — (¢, u’) containing s. Define U’ C U as the vertices of the connected component of T — (u, u')
containing s. By a similar argument, we have 5G16rge(fl;lge(Ul’arge)) = dc(f~1(U")). By Lemma 7.9, we also have
NGy (5:2) = (14925, 1), 50 S (f~ (7)) 35 (((1 -+ 136)(1+ 7)) 521V (1 4 )00 - (14 ))-approximate
(s,t)-mincut in G, fulfilling the Gomory-Hu Steiner tree condition for (T, f) in the case s,t € Ularge.

There are two remaining cases: s € U, and t € U, for distinct v,v’ € R, and s € U, and t € Dharge; We treat
both cases simultaneously. Since G has Steiner mincut at least A, each of the contracted graphs Giarge and G,
also has Steiner mincut at least A. Since all edges on the approximate Gomory-Hu Steiner tree correspond to
actual cuts in the graph, every edge in T, and Tj.ec has weight at least A. By construction, the s—t path in 7" has
at least one edge of the form (f,(zv), flarge(¥wv)), added on line 17; this edge has weight 6gS, < (1 +¢€)(1+ 7)A
by Lemma 7.5. Therefore, the minimum-weight edge on the s—t path in 7" has weight at least A\ and at most
(14 €)(1 4 ~)X\; in particular, it is a (1 + €)(1 + v)-approximation of Ag(s,t), which fits the bound since |U| > 2.
If the edge is of the form (f,(zy), flarge(¥v)), then by construction, the relevant set f~(U’) is exactly S,, which
is a (1 + €)-approximate (s,t)-mincut in G. If the edge is in Tjarge or T, or Ty, then we can apply the same
arguments used previously. 0

Finally, we can reset € + ©(¢/ log n) so that the (1+¢)?U°2 IVl _approximation becomes (1+¢). This concludes
Theorem 7.1.

8 Expander Decomposition

In this section, we show how the fair cut algorithm implies a near-optimal expander decomposition algorithm,
following the framework of Saranurak and Wang [42]. We first begin with some notation exclusive to this section.
Define the volume of a set of vertices S as vol(S) = ) g deg(v), and let G{S} denote the subgraph G[S] with
(weighted) self-loops added to vertices so that all vertex degrees are preserved, i.e., degq(v) = degggy(v) for all
v € S. For a graph G, define its conductance as

min c(E(S,V\9))
0CSCv min{vol(S),vol(V \ S)}"

dq =

We call G a ¢-expander if &g > ¢.
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THEOREM 8.1. (NEAR-LINEAR EXPANDER DECOMPOSITION) Given a graph G = (V, E) and a parameter ¢, there
is a randomized O(m)-time algorithm that with high probability finds a partitioning of V' into Vi,. ..,V such that
Qarv,y = ¢ for alli € [k] and ), 6(V;) = O(ém).

Note that if G{V;} is a ¢-expander, then so is the induced subgraph G[V;] (which is sometimes more directly
applicable). We also remark that [42] prove almost the exact same theorem, except their running time is O(m /o),
and is therefore slower for small values of ¢.

At a high level, we use the same high-level recursive approach, except we replace the flow subroutines in
their trimming and cut-matching steps of [42] with a fair cut computation. We note that there are known black-
box reductions from expander decomposition to computing (approximately) most-balanced sparse cuts. But these
reductions have some drawbacks and do not lead to near-optimal algorithms as in Theorem 8.1. The first reduction
is implicit by Spielman and Teng [45]. However, they can only obtain a weak expander decomposition from most-
balanced sparse cut algorithms. It is weak in the sense that each part is only guaranteed to be contained in
some expanders, but may not induce an expander itself. Another reduction by Nanongkai and Saranurak [38]
suffers from an inherent n°(") factor loss in both quality and running time. By refining the non-blackbox approach
of [42] via fair cuts, we successfully obtain the first expander decomposition algorithm that are optimal up to
polylogarithmic factors.

8.1 Algorithm overview We begin by describing the recursive algorithm of [42] at a high level. There are two
main subroutines, cut-matching and trimming, to be described later. On input graph G = (V, E) and parameter
¢, the algorithm Decomp(G, ¢) outputs a partition of V' as follows.

1. Call Cut-Matching(G, ¢), which either certifies that ®¢ > ¢ or finds a cut (A, R)

2. If we certify ®¢ > ¢, then return {V'} (the trivial partition)

3. Else if we find a relatively balanced cut (A, R), where vol(A) and vol(R) are both Q(vol(V)/log® m):
(a) Return Decomp(G{A}, ) U Decomp(G{R}, ¢)

4. Else, suppose that vol(R) < O(vol(V)/log?m):

(a) A’ = Trimming(G, A, ¢)
(b) Return {A’} UDecomp(G{A’'}, ¢)

If Cut-Matching and Trimming run in 7 time, then the entire recursive algorithm takes O(T) time. In [42],
the two subroutines are solved in O(m/¢) time. In this section, we improve both running times to O(m) by
substituting their flow subroutines with fair cuts/flows.

8.2 Trimming step To describe the trimming step formally, we need the concept of a nearly expander.

DEFINITION 8.1. (NEARLY ¢-EXPANDER) Given G = (V,E) and a set of vertices A C V, we say that A is a
nearly ¢-expander in G if for all subsets S C A with vol(S) < vol(A4)/2, we have ¢(E(S,V '\ S)) > ¢vol(S).

In the trimming step, we are given a set A C V such that A is a nearly ¢-expander in G, and the goal is
to “trim” A to a subset A’ C A such that G{A'} is a ¢/6-expander. The formal subroutine is described in the
theorem below, copied almost identically to Theorem 2.1 of [42] except for the improved O(m) running time.

THEOREM 8.2. (TRIMMING, THEOREM 2.1 OF [42]) Given graph G = (V,E) and A CV such that
1. A is a nearly ¢-expander in G, and
2. ¢(E(A, A)) < ¢vol(A)/10,

the trimming step finds A’ C A in time O(m) such that Pgray = ¢/6. Moreover, vol(A’) > vol(4) —
4c(E(A, A)) /¢ and c(E(A', A7) < 2¢(E(A, A)).
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Proof. Consider the following (s,t)-flow problem on a new graph H = (Vy, Ep). Start from G{A}, and contract
V'\ A into a single vertex and label it the source s. Next, multiply the capacity of each edge by 3/¢. Finally, add
a new sink vertex ¢ and connect it to each vertex v € A with an edge of capacity deg, (A} (v). Let @« = 0.1, and
compute a (1 + «)-fair cut (S,T). Let A’ =T \ {t}, which we now show satisfies the properties of the lemma.
First, suppose for contradiction that G{A’} is not a ¢/6-expander. Then, there is a violating set U C A’
satisfying
¢

c(B(U,A"\U)) < EVOI(U).

Since A is a nearly ¢-expander,

(E(U,V\U)) > évol(U).

Taking the difference of the two inequalities above,

S(BU,V\ AY) = «(BU,V\U)) — c(E(U, A\ U)) > %VOI(U).

Since (S,T) is a (1 + «)-fair cut, there is a feasible flow f that saturates each edge of Ey(S,T) to factor 1_%&
Each edge (u,v) in E(U, V' \ A’) corresponds to an edge in Ex (S, T) of capacity %CGf{A}(U, v), and the flow f must
send at least = - %Cg{A}(u, v) > %Cg{A}(u, v) flow along that edge (in the direction from S to T'). In total, the
amount of flow entering U in H is at least

2 2
Zea BV 4Y) 2 = vol(U) = vol(v).
On the other hand, at most vol(U) flow can leave U along the edges incident to ¢, and at most
1
Zeatay (B A\ ) < 2 - Evol(U) = Svol(0)

flow can cross from U to A’ \ U. This totals at most 3vol(U) flow that can exit U, which is strictly less than the
> 2vol(U) flow that enters U, a contradiction. Thus, G{A’} is a ¢/6-expander.

Finally, we show the properties vol(A’) > vol(A) — 4¢(E(A, A))/¢ and ¢(E(A’, A7) < 2¢(E(A, A)) promised
by the lemma. Since (S,T) is a (1 + a)-fair cut, it is in particular a (1 + «)-approximate (s,t)-mincut. Since
({s}, Vi \ {s}) is an (s,t)-cut of capacity %C(E(A,Z)), it follows that the cut (S,T") has capacity at most
1+a)- %C(E(A,Z)). To prove the first property above, note that each vertex v € A\ A’ is on the S-side of
the cut (5,7, and therefore contributes deggyay(v) to the cut (S,T) from the edge (v,t). Summing over all
v e A\ A, we obtain

3 _ _
vol(A\ A") < cy(E(S,T)) <(1+a)- EC(E(A’A» < —c¢(E(4, A)),

which proves the first property. For the second property above, note that each edge (u,v) in E(A’, A’) corresponds
to an edge in E(S,T) with 3/¢ times the capacity, so summing over all such edges,

%c(E(A’,I)) < en(B(S,T)) < (1+a)- %C(E(A, ),

which proves the second property. 0

8.3 Cut-matching step In the cut-matching step, the goal is to either certify that the input graph is an
expander, or find a low-conductance cut with a special property: either it is balanced, or if not, we guarantee that
the larger side is a nearly expander. The name “cut-matching” comes from the cut-matching game framework [27]
that this step uses, though its description is not required in this section.

The formal subroutine is described in the theorem below, copied almost identically to Theorem 2.2 of [42]
except for the improved O(m) running time.

Copyright (© 2023 by SIAM
Unauthorized reproduction of this article is prohibited



THEOREM 8.3. (CUT-MATCHING, THEOREM 2.2 OF [42]) Given a graph G = (V,E) and a parameter ¢, the
cut-matching step takes O(m) time and must end with one of the three cases:

1. We certify G has conductance ®g > ¢.

2. We find a cut (A,A) in G of conductance ®c(A) = O(¢*m), and vol(A),vol(A) are both Q(m/log*m),
i.e., we find a relatively balanced low conductance cut.

3. We find a cut (A, A) with ®c(A) < coplog® m for some constant cy, and vol(A) < m/(10colog® m), and A
18 a nearly ¢-expander.

We will not present the entire proof of this theorem, since most of the steps remain unchanged from [42]. The
only step that takes O(m/$) time in [42] is their subroutine Lemma B.6, so it suffices to describe it and improve
its running time to O(m).

First, we introduce some notation from [42]. Given a graph G = (V, E) and a subset of vertices A C V,
denote by G{S} the induced subgraph G[S] but with self-loops added to vertices so that any vertex in S has
the same degree as its degree in G. Given a multi-graph G = (V, E), its subdivision graph Gg = (V',E’) is the
graph where we put a split node x. on each edge e € F (including the self-loops). Formally, V' =V U Xg where
Xg ={z. | e € E}, and F' = {(u,z.), (v,z.) | e = (u,v) € E}. While [42] only defines the subdivision graph
for unweighted graphs, we can extend the definition to weighted graphs by assigning the edges (u,x.), (v, x.) ro
have capacity c(e) for each edge e = (u,v) € E. For a split node T(u,0), We abuse notation and define its capacity
c(Z(u,v)) to be the capacity c(u,v) of the edge (u,v) in G. For a set of split nodes S, its total capacity c(S) is the
sum of the capacities of the split nodes in S.

The input to the subroutine of Lemma B.6 is

1. A set of vertices A C V',
2. A set of source split nodes A' C AN X of total capacity at most caay(AN Xg)/8, and
3. A set of target split nodes A” C AN Xg of total capacity at least cga} (AN Xg)/2.

For any graph H and positive number U, let HY be the graph where each edge has its capacity multiplied by U.
Let U =1/(¢ log? m), and consider a flow problem on (Gg{A})Y where each split node T(yw) € Al is a source
of ¢(u,v) units of mass (where c(u,v) is the original capacity in Gg, not multiplied by U) and each split node
T(yw) € AT is a sink with capacity c¢(u,v). The task is to either find

1. A feasible flow f for the above problem, or

2. A cut S where ®gga1(S) = O(¢ log? m) and a feasible flow for the above flow problem when only split nodes
T(uw) in A"\ S are sources of ¢(u,v) units.

Lemma B.6 of [42] uses a push-relabel or blocking-flow algorithm that runs in O(m/(¢logm)) time. Using fair
cuts, we improve the running time to O(m), independent of ¢, in the lemma below.

LEMMA 8.1. We can solve the task above in O(m) time.

Proof. Let o = 0.1, and consider the flow problem on the graph H = (Gg{A})Y/(+) instead. First, convert it
to an (s, t)-flow problem by adding a source vertex s, connected to each x(, .) € Al with capacity cayay(u,v), and
a sink vertex ¢, connected to each x(, ) € A" with capacity cg{ay(u,v)/(1+ ). Next, we compute a (1 4 o)-fair

cut (S,T) and corresponding feasible flow f’ in O(m) time. There are two cases below:

1. S = {s}. In this case, by definition of fair cuts, the flow f’ sends at least cgyay(u,v)/(1 + a) flow out of
each edge from s. By computing a path decomposition and removing paths accordingly, we can modify f’
to a new feasible flow f” that sends exactly cgqay(u,v)/(1 + a) flow along each edge out of s, and at most
caqay(u,v)/(1+ ) flow along each edge into ¢. Finally, we let flow f be f” multiplied by (1+ «), and then
restricted to graph (Gg{A})V. Since f” is feasible on the edges in (Gg{A})Y/(1*%) we conclude that f is
feasible on (Gg{A})Y.
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2. S # {s}. In this case, let Es C Ey(S,T) be the edges of the cut incident to s, let E; C Ey(S,T) be those
incident to t, and let E,, = Eg(S,T) \ (Fs U E;) be the remaining cut edges. Recall that edges in Es and
E, retain their original capacity from Gg{A}, while edges in E,, have their capacity scaled by U/(1 + «).
Also, note that E,, is, up to this scaling factor, exactly the cut E(S \ {s},T \ {t}) in the original graph
G{A}.'? In other words,

1+«
U

(8.7) caray(E(S\{s}, T\ {t})) = e (Ep).

Let E, be the edges incident to s that are not in E,. Since (S,T) is a (1 + «)-fair cut, there is a flow f
from s to ¢ that saturates each edge in Fy(S,T) to fraction at least 14—% In particular, this means that the

sub-flow from s starting from edges E, must saturate edges in Er(S,T) \ E; to fraction at least 1%1 This

implies that ey (Ex(S,T)\ Es) < (1+ a)cu(Es). Moreover, for each edge (s, z.) € Es, the split node . is
on the S\ {s} side of the cut E(S\ {s}, T\ {¢t}) in G{A}, so

2 2
1 T aCH<EH(S, T) \Es) Z

(88) volgay(S\{s}) > > deggay(we) =2cu(E,) >
(8,2.)EES

Putting (8.7) and (8.8) together, we obtain

U e (B(S\ {s}. T\ {1}),

(8.9) VOlg{A}(S \{s}) > m

so we would be done as long as we show that volgay (S \ {s}) < O(volgyay(T'\ {t})).

Consider now the edges E;. Their capacities are scaled down by 1/(1+ «), so their total original capacity is
at most (1+ a)?cgqay(A'), which is at most (1+ a)?cg(a3(ANXg)/8 by property (2). On the other hand,
the total capacity of edges incident to ¢ is cqay(A”)/(1 4 «), which is at least copay (AN Xg)/(2(1 4+ @))
by property (3). It follows that at least

caray (AN Xp)/2(1+a)) — (14 a)’caray (AN Xg) /8 > Qcgray (AN Xp))

total capacity of edges incident to ¢t are not in E;. In other words, their corresponding split nodes are on the
T\ {t} side of the cut E(S \ {s},T \ {t}), which means that volg;a}(T \ {t}) > Qca(ay(A N Xg)).
Now observe that cgqa}(A N Xg) is a constant fraction of the total volume of the graph G{A}, so
volgay(T'\ {t}) > Q(volgay(A)). Together with (8.9), we obtain the desired

caray(S\{s}h, T\ {t})
min{volgay(S\ {s}), volgray(T'\ {t})}

Dara(S\{s}) = < O(1/U) = O(plog”m).

|
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A Parallel Algorithms

The goal of this section to prove Theorem 1.3. Along the way, we will show that all algorithmic components we
use and develop can be parallelized.

A.1 Congestion Approximators The first thing we need is a parallel construction of congestion approxima-
tors (see Theorem 3.1).

THEOREM A.l. (PARALLEL CONGESTION APPROXIMATOR) There is a randomized algorithm that, given an
unweighted graph G = (V, E) with n vertices and m edges, constructs in m!toM) work and m°™Y) depth with
high probability same laminar as in Theorem 3.1 except that v = n°M).

We only state the result for unweighted graphs as it follows quite easily from [11, 23]. We believe that known
techniques also imply the same for weighted graphs. Below, we sketch the proof of Theorem A.1.

First, we need a definition of boundary-linked expander decomposition introduced in [23]. For any graph
G = (V,E) and any set S C V, let G[S] denote the subgraph of G induced by S. For any w > 0, let G[S]*¥ be
obtained from G[S] by adding w self-loops to each vertex v € S for every boundary edge (v,x), = ¢ S.

DEFINITION A.1. For any graph G = (V, E) with m edges, a (e, ¢, a)-boundary-linked expander decomposition
is partition U = (Uy, ..., Uy) of vertex set V such that 3., |E(U;, V\ U;)| < em and G[U;]*/? is a ¢-expander for
all 7.

Note that (e, ¢, 0)-boundary-linked expander decomposition is the standard (e, ¢)-expander decomposition.
A parallel algorithm for computing an expander decomposition of an unweighted graph was explicitly shown in
[11]. In fact, the algorithm works even in the distributed model called CONGEST.

THEOREM A.2. ([11]) For any positive integer k, ¢ € (0,1), and ¢ > (¢/log n)2o(k), there is an algorithm for
computing an (e, ¢)-expander decomposition of an unweighted graph in CONGEST in O(n?/*poly(1/6,logn))
rounds w.h.p. In fact, this algorithm has n'/O0ogloglogn)_denth and m+o() work.

We will choose k = logloglogn from now on. This algorithm can be easily extended to compute a (e, ¢, €)-
boundary-linked expander decomposition. The idea is as follows: whenever we find a ¢-sparse cut, for each cut
edge (u,v), we add (a/¢) self-loops on both u and v before recursing on both sides. The largest boundary-linked
parameter o we can get can be derived by setting e = 1/O(logn) and see the largest value of ¢ we can get. In
this case, it is 1/20008108)%) when ¢ = 1/0(logn) and k = logloglogn. From this, it implies the following:

THEOREM A.3. When e = 1/29(V1087) "¢ > (¢/ logn)Qo(loglogb@ > 1/20Wlogniloglogn) g o > 1/20(loglogn)*)
there is an algorithm that w.h.p. computes a (€, ¢, «)-boundary-linked expander decomposition in pt/Oogloglogn) _
depth and m*+°M) work. (In fact, the algorithm is implementable in CONGEST in n'/CUcgloglogn) roynds. )

In [23], it is shown that constructing congestion approximators can be reduced to computing boundary-linked
expander decomposition a few times, which is summarized as follows:

LEMMA A.1. By calling an algorithm for computing a (e, ¢, a)-boundary-linked expander decomposition for
O(log(y ¢y m) times, one can construct a congestion approzimator S with quality vs = O((1/¢) - (1/a)losasam),
Plugging Theorem A.3 into the above lemma, this implies an algorithm for Theorem A.1 where n!/©(ogloglogn)
2
depth and m!*t°(1) work that computes a congestion approximator S with quality vg = 29(vVIogn-(leglogn)®) — po(1),

A.2 Fair Cuts Given the above parallel construction for congestion approximator, we can obtain the following
parallel fair cut algorithm:

THEOREM A.4. (PARALLEL FAIR CUT) Given an unweighted graph G = (V,E), two vertices s,t € V, and
€ € (0,1], we can compute with high probability a (14 €)-fair (s,t)-cut in n°® /poly(e) depth and m'*+°M) /poly(e)
work.
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Before proving the above theorem, we first argue how to obtain a parallel version of the ALMOSTFAIR algorithm.

See the running time analysis of ALMOSTFAIR in Section 4.3. We can parallelize it as follows. We initialize
by computing a congestion approximator S with quality vs = n°(!) via Theorem A.1. The other initialization
steps consist of elementary operations which can be parallelized in O(l) depth and O(m) work.

For each round of the multiplicative weight update algorithm, the only non-trivial step is to a compute the
“deletion set” D via a sweep cut (Lemma 4.5).

We will prove the below claim at the end.

CLAIM A.1. Lemma 4.5 admits a parallel implementation with O(1) depth and O(m) work.

Since our multiplicative weight update algorithm consists of T = O(log(n)/a?) = m°™M) /poly(e) rounds (recall
that & = €/vs), we can implement the ALMOSTFAIR algorithm from Theorem 4.1 in m°™®) /poly(e) depth and
m e /poly(e) work.

Given the parallel implementation of the ALMOSTFAIR algorithm, we are almost done. The algorithm for
computing fair cuts in Section 5.1 simply calls the ALMOSTFAIR subroutine for O(log(C/B)/8) times where we set
B = O(a/logn). Therefore, the algorithm require m°™") /poly(e) depth and m'T°() /poly(e) work. This concludes
Theorem A.4.

Proof. [Proof of Claim A.1] Recall that the problem is to compute z* which is the largest x such that

Alyi-1(Vaz) — g (Vay) > 0 where Vo, = {v € V(H) : ¢! > z}.
We start by parallel sorting vertices v according to their potential ¢! in decreasing order. Let vy,...,v, be
the vertices after sorting. Let S, = {v1,...,v;}. We can compute the list of values of Alyi-1(S) for all k € [n]

in O(logn) depth and O(n) work using a classic parallel prefix sum algorithm [28].

Observe that our goal is equivalent to finding the largest k where dp (Sk) — Alyi-1(Sk) < 0. By binary search,
we can reduce the problem to checking if there is k where 05 (Sk) — Alyi-1(Sk) < 0.

Now, this problem can be solved using a parallel 1-respecting mincut algorithm by Karger [25] (see also Lemma
11 of [20]) with O(logn) depth and O(m) work. The reduction is as follows. Let H' be the graph obtained from
H by inserting the tree P = (v1,...,v,), which is a path. Let M be a big number such that M — Alyi-1(Sg) > 0.
Each tree edge (vg,vkt1) € P, we set its weight to be M — Alyi-1(Sk). By computing a mincut in H’ that
1-respect the tree P, we will obtain k such that dp (Sy) is minimized. Since dg+(Sk) = 01 (Sk) + M — Alyi-1(Sk),
we can just check if g/ (S;) — M < 0. O

A.3 Isolating Cuts and Gomory-Hu Tree Here, we finally prove Theorem 1.3. We first briefly explain
how the approximate isolating cuts algorithm (Algorithm 1) and Gomory-Hu tree algorithm (Algorithm 5) can
be parallelized to run in O(m) work and polylog(n) parallel time.

For approximate isolating cuts, Phase 1 of Algorithm 1 requires O(logn) many calls to (1 +)-fair cut, which
has a parallel algorithm by Theorem A.4. For Phase 2, the sets S; and graphs G can be constructed independently
for different ¢ in parallel, and for the (1 4+ S)-approximate minimum cut computation, we can use the parallel
(1 + B)-fair cut algorithm of Theorem A.4, which is also a (1 + )-approximate minimum cut.

For Gomory-Hu tree, there are a few additional algorithms that need to be investigated. For the “Cut
Threshold Step” algorithm (Algorithm 3), the O(logn) independent iterations can be executed in parallel, so
the entire algorithm can as well. The (1 4 v)-approximate Gomory-Hu Steiner tree “step” (Algorithm 4) makes
O(log® n) (sequential) calls to Algorithm 3, so it can also be parallelized. The Gomory-Hu tree algorithm itself
(Algorithm 5) makes one call to Algorithm 4 and, aside from the recursive call on line 11, consists of elementary
operations that can directly be parallelized. For the recursive calls, we use Lemma 7.7 to argue that the recursion
tree has depth polylog(n) w.h.p., so the recursive calls can be parallelized as well. (We stop the recursion after a
large enough polylog(n) many recursive calls, which is all we need w.h.p.)

B Proof of Uncrossing Property

Here, we prove the uncrossing property (Lemma 1.1), restated below. We remark that the proof follows the same
outline as the proof of Lemma 6.1 for approximate isolating cuts.

LEMMA 1.1. (APPROXIMATE UNCROSSING PROPERTY) For any vertices s and t, let (S,T) be an a-fair (s,t)-
mincut. Then, for any u,v € S, there exists R C S such that (R,V \ R) is an a-approzimate (u,v)-mincut.
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Proof. Let (U, V\U) be a (u,v)-mincut. Without loss of generality, assume that ¢ ¢ U. (Otherwise, we can swap

wand v and use V' \ U in place of U.) Our goal is to show that UN S is an a-approximate (u,v)-mincut contained

in S, so that setting R = U NS proves the lemma. Equivalently, we want to show that §(UNS) < - 6(U).
Using the notation W for disjoint union, we can write

EUVA\U)=EUNS,V\NUUS)WEUNS,S\U)YEU\S,V\U)
EUNSVANUNS)=EUNS,V\NUUS)WEUNS,S\U)YEUNS,U\AS).
Since the first two sets are identical, we only need to compare the third sets E(U\ S,V \U) and E(UNS,U \ S).
Since (S, T) is an a-fair (s, t)-cut, there is a feasible flow from s to ¢ that, for each edge in E(S, T'), sends at least 1/«

times capacity in the direction from S to T. Now, consider the flow on the subset of edges E(UNS,U\S) C E(S,T).
This flow must reach ¢t eventually, and it must exit U \ S along the edges in E(U \ S,V \ (U U S)). Thus,

SUNS,U\S)<a-6(U\S,V\({UUS))<a-6U\S,V\U).

It follows that 6(U NS) < a-6(U), which proves the lemma. O
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