

1 **AN OXYGEN ISOTOPIC STUDY OF GARNET AND ZIRCON OF THE FLAGSTAFF**
2 **LAKE IGNEOUS COMPLEX: IDENTIFICATION OF PERITECTIC AND**
3 **PHENOCRYSTIC GARNET WITH IMPLICATIONS FOR THE PETROGENESIS OF**
4 **STRONGLY PERALUMINOUS GRANITES**

5
6 Michael J Dorais, Stephen Campbell, Department of Geological Sciences,
7 Brigham Young University, Provo, UT
8
9

10 **ABSTRACT**

11 The Flagstaff Lake Igneous Complex of western Maine contains three phases of garnet-
12 bearing, strongly peraluminous rocks, the Loon Lake, Quarry Phase A, and Quarry Phase B. The
13 Loon Lake phase contains garnet with $\delta^{18}\text{O}$ values that average 10 permil, matching a minor
14 subset of $\delta^{18}\text{O}$ values of accompanying zircon. Most zircons in this phase have higher $\delta^{18}\text{O}$
15 values, ranging between 11.3 to 12.1 permil, suggesting contamination after the garnet and the
16 minor set of zircons crystallized. The subhedral grain morphologies, the abundant apatite
17 inclusions of the grains, and the similar isotopic compositions of this zircon subset, indicate that
18 the garnet is peritectic. Garnets ceased crystallization before the contamination event, attaining
19 the subhedral morphologies. In contrast, the euhedral shapes and inclusion-free nature of garnet
20 in Quarry Phase A, combined with the identical $\delta^{18}\text{O}$ values of both garnet and zircon, indicate
21 that these garnets are phenocrysts. Similar inclusion-free, euhedral garnet is present in Quarry
22 Phase B, but the garnets have lower $\delta^{18}\text{O}$ values (9.3 to 10.5 permil) compared to zircon (>11
23 permil). These garnets are also phenocrysts, having the same textural characteristics of those in
24 Quarry Phase A, but they crystallized after assimilation of a lower $\delta^{18}\text{O}$ component, producing
25 the mismatch of oxygen isotopic compositions. Both Quarry Phases owe their strongly
26 peraluminous, whole-rock compositions to phenocryst accumulation whereas the Loon Lake
27 phase is peraluminous because of peritectic garnet entrainment.

29 **1. Introduction**

30

31 One of the problems that has prohibited a consensus on the origin of peraluminous
32 granites is that not all peraluminous granites are compositionally similar. Barbarin (1996), for
33 example, showed that most peraluminous granites display gradual increases in peraluminosity
34 with increasing degrees of differentiation. Less common, some plutons have higher degrees of
35 peraluminosity with increasing maficity with the most silicic rocks being considerably less
36 peraluminous than the more mafic portions of the plutons. These plutons also have lower SiO_2
37 contents than the previous group, as low as 44 weight percent (Barbarin, 1996; Dorais et al.,
38 2009, Dorais and Tubrett, 2012, Dorais and Spencer, 2014; Dorais and Campbell, 2022). Such
39 distinct compositional trends for these two groups require different petrogenetic processes.

40 Clarke (2019) classified peraluminous granites, subdividing them as weakly
41 peraluminous (molar $\text{Al}_2\text{O}_3/\text{CaO}+\text{Na}_2\text{O}+\text{K}_2\text{O}$ (A/CNK) values between 1.00 – 1.10), moderately
42 peraluminous (A/CNK between 1.10 – 1.20), strongly peraluminous (A/CNK between 1.20 –
43 1.30) and hyperaluminous (A/CNK > 1.30). He, as did we (Dorais et al., 2009, Dorais and
44 Tubrett, 2012, Dorais and Spencer, 2014; Dorais and Campbell, 2022), concluded that strongly
45 peraluminous granites do not represent liquid compositions. Indeed, in the case of the Cardigan
46 Pluton of New Hampshire and the Flagstaff Lake Igneous Complex of Maine, liquids with 44 wt.
47 % SiO_2 and 16 percent normative corundum (Dorais et al., 2009, Dorais and Tubrett, 2012,
48 Dorais and Spencer, 2014) and 42% SiO_2 and 14 percent normative corundum (Dorais and
49 Campbell, 2022) respectively, do not exist in nature (Basaltic Volcanism Study Project, 1981).
50 The fundamental question is then, by what process do strongly peraluminous granites attain non-
51 liquid compositions?

52 Clarke (2019) lists several processes to produce strongly peraluminous granites that may
53 be applicable to the Flagstaff Lake Igneous Complex: 1) Mobilization of diatexite with variable
54 restite and/or peritectic phase unmixing and melt extraction; 2) Contamination of a mildly
55 peraluminous magma by peraluminous metasediments; 3) Accumulation of AFM minerals (A –
56 Al₂O₃, F – FeO, M – MgO) in a weakly or moderately peraluminous magma. In each of these
57 models, AFM minerals are either added or entrained in magmas of weak or moderate
58 peraluminosity. Resolution of the problem requires identification of these AFM minerals and
59 determination if they are restitic, peritectic, xenocrystic, or phenocrystic and then determining
60 the proportions of these phases in any given peraluminous rock. Only then can the process of
61 how magmas attain excess peraluminosity be determined.

62 In our previous publication on the rocks of the Flagstaff Lake Igneous Complex, we
63 presented textural, mineralogical and whole-rock compositions to define the compositional
64 variation of the Flagstaff Lake Igneous Complex and placed these compositions in context of the
65 models proposed by Clarke (2019). We determined that the complex obtained its strongly
66 peraluminous compositions by retention of up to 40% peritectic garnet in the Loon Lake phase
67 and up to 80% accumulation of phenocrystic garnet in the Quarry phases. In this contribution, we
68 follow up on that earlier work by adding oxygen isotopic analyses of both garnet and zircon from
69 the three phases of the garnet tonalites of the complex. Since the equilibrium fractionation in
70 $\delta^{18}\text{O}$ between zircon and almandine-rich garnet ($\Delta^{18}\text{O}(\text{Zrc–Grt})$) is $\sim 0.1\text{ ‰}$ (Valley et al., 2003),
71 phenocrystic garnet should be in isotopic equilibrium with zircon that crystallized at the same
72 time and have similar $\delta^{18}\text{O}$ values (e.g., Lackey et al., 2006; 2011; Kelly et al., 2009).
73 Alternatively, peritectic garnet could be in equilibrium with zircon if the zircon crystallized at
74 the same time as the peritectic garnet or could have different isotopic values if contamination

75 occurred after peritectic garnet formation and before zircon crystallization. Additionally, if the
76 peritectic garnet formed by digestion of country rock xenoliths, then it would be expected that
77 the garnet and magmatic zircon would not have similar isotopic compositions.

78 Garnet is an ideal mineral for $\delta^{18}\text{O}$ studies because it has a high closure temperature to
79 oxygen diffusion (e.g. Farquar et al., 1996), and will not change its $\delta^{18}\text{O}$ value once
80 crystallized. Because self-diffusion values of oxygen in garnet and zircon are among the slowest
81 in common minerals (Coughlan 1990; Wright et al. 1995; Watson and Cherniak 1997; Vielzeuf
82 et al. 2005; Page et al. 2007a, 2010; Bowman et al. 2011), the simultaneous crystallization of
83 both minerals in strongly peraluminous granites permits their growth zoning to provide a record
84 of magmatic evolution (King and Valley 2001; Valley 2003; Lackey et al. 2006).

85

86 **2. Geologic Setting**

87

88 The Devonian Flagstaff Lake Igneous Complex, located in northwestern Maine, was
89 emplaced into Cambro-Ordovician metasediments of the Lobster Mountain anticlinorium (Figure
90 1). Nielsen et al. (1989) defined the complex as consisting of four main rock types: gabbro,
91 granite, trondhjemite, and garnet tonalite. We generally concur with these observations, but our
92 whole-rock analyses reveal that the gabbroic body as shown in the geologic map in Nielsen et al.
93 (1989) consists of a range of compositions from diorite to granite. We hereafter refer to this
94 portion of the complex as the dioritic main phase. Also, we did not sample the trondhjemite that
95 Nielsen et al. (1989) describe as occurring along contacts between mafic rocks of the main phase
96 and the metapelitic wall rocks, nor did we study the two-mica granite northeast of Stratton
97 (Figure 1). We therefore restrict our presentation of rocks of the complex to the garnet tonalite

98 (three phases of the tonalite are defined below and were studied by Dorais and Campbell, 2022)
99 and the main phase (that exhibits a wide range of compositions from felsic to mafic), the latter
100 was studied by Schoonmaker et al (2011) and Dorais and Campbell (2022).

101 To date, the only ages determined for the complex consists of Rb-Sr whole-rock and
102 mineral isochrons (Gaudette et al., 1990) and new U-Pb zircon ages (Gibson et al., 2021). The
103 two-mica granite located to the north and east of Stratton, Maine has a Rb-Sr age of 408 +/- 11
104 Ma and an initial Sr ratio of 0.70957. Gibson et al. (2021) reported an age of 409.3 +/- 1.6 Ma
105 for the two-mica granite of the complex located just west of Stratton. Likewise, the two-mica
106 granite from the far eastern side of this two-mica granite has an age of 403.2 +/- 4.6 Ma. Gibson
107 et al. (2021) also report an age of 383.8 +/- 2.2 Ma for the garnet tonalite at the quarry just east
108 of the Rangeley airport. No age is available for the metaluminous phase of the complex, but the
109 mingling between the main phase and the garnet tonalites as reported by Nielson et al. (1989)
110 suggests that the main phase, or at least a portion of it, also has an age of 383.8 Ma.

111 Large portions of the Flagstaff Lake Igneous Complex are poorly exposed, prohibiting
112 detailed mapping of much of the complex. Where the exposure permits thorough examination,
113 the main mafic phase is generally zoned from mafic to felsic from northeast to southwest on a
114 traverse from near Stratton to Rangeley, Maine. The garnet tonalite is poorly exposed, but
115 scattered field appearances show two main phases: a coarser-grained garnet-bearing phase
116 (Figure 2A) occurs in the vicinity of Loon Lake and Cow Pond, 4-5 km northeast of the
117 Rangeley airport, that was sampled just to the east of those lakes (N 45.01.082; W 70.38.438; N
118 45 0.792, W 70.38.733). We refer to this as the Loon Lake phase. Two finer-grained, garnet-
119 bearing phases (Figure 2B, 2C) are exposed in a quarry located 0.85 km northeast of the airport
120 (N 45 0.029, W 70 39.671). No contact was observed between these two Quarry phases and the

121 Loon Lake phase. The finer grained Quarry phases are abundant in drill core obtained in the
122 early 1980s in the general vicinity of the quarry, samples of which are included in this study.
123 Geochemical analyses indicates that the quarry rocks have two distinct compositions. We refer
124 to these garnet tonalites as Quarry Phase A and Quarry Phase B. No contacts were exposed
125 between the finer-grained, Quarry phases, indeed, both phases occur in the walls of the sampled
126 quarry and appear identical in the field; only whole-rock analyses distinguish the two. Mafic
127 enclaves are present in the finer-grained Quarry phases but are not abundant.

128 Nielsen et al. (1989) emphasized that the contact between the garnet tonalites and the
129 mafic rocks of the main phase is gradational with an intermediate garnet gabbro between the two.
130 The transition zone occurs over several to hundreds of meters. Additionally, mafic enclaves in
131 the garnet tonalites have irregular, ameboid shapes, have finer grained margins with acicular
132 apatite, display coarsening textures toward the interior of the enclaves, and have cuspatate
133 interfaces with the host rocks. These features indicate an interaction of mafic magmas with the
134 host magmas (Dorais et al., 1990; Didier and Barbarin, 1991), and along with the transitional
135 contact between the garnet tonalites and the main phase rocks, show that the two magmas were
136 coeval. Our sampled garnet tonalites occur as bodies located interior to the main phase rocks
137 (Figure 1), which, coupled with their mingled relationship, permits the possibility that the mafic
138 magmas may have been the heat source for anataxis that produced the garnet-bearing,
139 peraluminous rocks of the complex.

140

141

142

143

144 **3. Petrography**

145

146 The coarser-grained Loon Lake phase and the two finer-grained Quarry phases of the
147 complex contain the same minerals; oscillatory zoned plagioclase, biotite, garnet and quartz with
148 accessory zircon, monazite, apatite, xenotime, pyrrhotite, and ilmenite. A difference between the
149 Loon Lake and the two Quarry phases, beyond grain size, is the abundance of garnet. The
150 largest garnets in the Loon Lake phase range between 1 and 2 centimeters in diameter (Figure
151 2A). They constitute 10 to 40% of the rock. Both finer-grained Quarry phases have more
152 abundant garnet that is between 1 and 4 mm in size, and range between 45 - 80% of the rock
153 (Figures 2B, 2C).

154 The nature of inclusions in the garnet in the Loon Lake and Quarry phases also varies.

155 Other than a few random quartz grains, the inclusions in garnet of all three phases are
156 exclusively apatite. The Loon Lake phase garnets are inclusion rich. Some grains have their
157 apatite inclusions randomly distributed; others have circular and spiral inclusion patterns (Figure
158 3A). The majority of garnets in the Quarry phases are euhedral and inclusion-poor throughout
159 (Figures 3E-K). Some grains contain random apatite inclusions in the garnet interiors that are
160 also mantled by inclusion-free garnet. A few grains have distinct, inclusion-poor, resorbed cores
161 that were overgrown by inclusion-poor mantles (Figure 3L). The Quarry phases lack garnets
162 with spiral and circular inclusion patterns as seen in the Loon Lake phase.

163 Another difference between the Loon Lake and the Quarry phases is the presence of ~5
164 modal percent cordierite in the Loon Lake phase. Cordierite is not in contact with garnet;
165 instead, it occurs as interstitial crystals commonly associated with biotite.

166

167 **4. Instrumental Methods**

168

169 *4.1 Electron Microprobe*

170 Garnet analyses were conducted at Brigham Young University using a Cameca SX50
171 electron microprobe using an acceleration voltage of 15 KV, a beam current of 20 nA, and 1 μm
172 beam diameter. X-ray dot maps for Fe K α , Ca K α , Mg K α , and Mn K α were obtained for the
173 garnets of interest.

174

175 *4.2 Cathodoluminescence*

176 Zircons from each phase were isolated by crushing, magnetic separation and by heavy
177 liquid separation. The zircons were then imaged by cathodoluminescence using an Apreo CL at
178 Brigham Young University to determine zircon zoning. The beam intensity was set to 15.0 kV
179 and with a current of 6.4 nA.

180

181 *4.3 Ion Microprobe*

182 Oxygen isotopes for the garnets and zircons were analyzed by WiscSIMS CAMECA ims-
183 1280 multi-collector ion microprobe at the University of Wisconsin Stable Isotope Laboratory.
184 UWZ-1 and Kim 5 were used as standards and Gore Mountain UWG-2 was used as an internal
185 standard. Beam settings of 1.9-2.1 nA Cs $^+$ primary ion beam was used with a diameter 10-15 μm .
186 Further detailed protocols can be found in Page et al. (2010) and Kitajima et al. (2016). Three
187 garnets from Loon Lake and four garnets from each of the quarry phases were chosen for
188 analysis. Nine analyses of each garnet were conducted from core to rim to create oxygen isotope
189 traverses. Twenty zircons from each phase were selected and for most grains, analyses were
190 obtained in the exterior portions of the grains to avoid potential inherited portions of the grains.

191 The $\delta^{18}\text{O}$ values were corrected using end-member compositions to VSMOW. All the zircon
192 values have been corrected to ‰ VSMOW.

193

194 **5. Results**

195

196 *5.1 Garnet X-ray Maps*

197 Representative Ca K α X-ray maps of garnets of the Flagstaff Lake Complex are
198 presented in Figure 3. Loon Lake phase garnets are inclusion-rich, most containing abundant
199 apatite inclusions that are typically randomly distributed throughout the grains (Figure 3A-D).
200 Some grains have inclusion that form spiral patterns (Figure 3A of Dorais and Campbell, 2022)
201 or circular patterns (Figure 3C of Dorais and Campbell, 2022). These grains tend to be anhedral
202 to subhedral in shape. In contrast, the garnets from both Quarry phases are typically euhedral
203 (Figure 3E-L) and are inclusion-poor. Some Quarry Phase B grains show an increase in Ca
204 concentrations at the outermost portions of the grains, e.g., garnet FL-39D of Figure 3L (and
205 Figure 3M of Dorais and Campbell, 2022).

206

207 *5.2 Garnet Major Elements*

208 Detailed electron microprobe traverses of garnet were presented in (Dorais and Campbell,
209 2022, their Supplemental Figure 1). Here, we present electron microprobe analyses for twelve
210 grains, four from each phase, that were taken adjacent to the locations of the oxygen isotopic
211 analyses. The major element analyses adjacent to craters for the oxygen isotopic analyses were
212 used to calculate the $\delta^{18}\text{O}$ values (Table 1).

213 Garnets of the Loon Lake phase are similar in major element compositions (Table 1 and
214 Supplementary Table 1 of Dorais and Campbell, 2022). The end members for these samples are
215 up to 83% almandine, 3% spessartine that can increase to 9% at the rim, grossular between 2.5
216 and 3%, and finally pyrope at ~ 10% and decreasing to 4%. The profiles are relatively flat except
217 when near inclusions. There is a decrease in MgO with an accompanying increase in MnO along
218 the grain boundaries for the samples FL19A and FL19B (Table 1). This is also reflected in
219 Fe/(Fe+Mg) for both samples. Grains FL19C and FL20A that are adjacent to quartz do not show
220 this behavior, rather, they exhibit flat compositional profiles.

221 Garnet in Quarry phases A and B is nearly identical in all major elements. Garnet in both
222 phases also have generally similar major elements concentrations as the Loon Lake garnets and
223 match the former's major element profiles (Table 1). However, the Quarry phases are ~1%
224 higher in MgO, 0.4% higher in CaO, 0.4% higher in Al₂O₃, 1 to 2% lower in FeO than the Loon
225 Lake garnets.

226 Garnet in Quarry phase B does have some slight major element differences compared to
227 Quarry phase A garnet. Grain FL39A has a general increase from core to rim in MgO, MnO, and
228 CaO (Table 1) and a corresponding reduction of FeO. Grain FL39B has a reduction MgO
229 corresponded to an increase of FeO. Grains FL39B and FL39C have flat major element profiles
230 except near inclusions. The major element profiles match with Quarry phase A and Loon Lake
231 nearly identical.

232 The Ca K α X-ray dot maps show no Ca zoning for nearly all the grains in both the Loon
233 Lake and Quarry Phases except for grains FL24A (Quarry Phase A; Figure 3I), and FL39A and
234 FL39D (Quarry Phase B; Figure 3L). These grains have a lower range of CaO from 0.99 to 1.19
235 wt. % in their cores and are then mantled garnet that increases to 1.37 wt %. The other grains

236 from the Quarry phases have a consistent CaO range of 1.29 to 1.48 wt. % from cores to rims.
237 This CaO range is slightly higher than that of the Loon Lake phase garnets that range from 0.87
238 to 1.1 wt. %.

239

240 *5.3 Garnet $\delta^{18}\text{O}$ Analyses*

241 Oxygen isotopic analyses of Flagstaff Lake Complex garnets are presented in Table 2 and
242 core to rim profiles of the grains are illustrated in Figure 4. For these profiles, we avoided rims
243 with higher spessartine contents to avoid garnet domains that may have experienced subsolidis-
244 net transfer reactions. We also avoided areas adjacent to inclusions to avoid the possibility that
245 the inclusions may be protogenetic with respect to the host garnet and have inherited $\delta^{18}\text{O}$ from
246 another preexisting metamorphic rock or fluid and could have influenced the composition of the
247 adjacent garnet. The Loon Lake garnets have $\delta^{18}\text{O}$ values ranging between 10.4 and 9.4 permil,
248 with most analyses ranging between 9.7 and 10.2. The profiles are generally flat with little to no
249 zoning except for one grain that has an anomalously low value at the rim of 9.4 permil.

250 On average, Quarry phase A garnets have the highest $\delta^{18}\text{O}$ values that approach 11
251 permil. Most analyses are ≥ 10.5 . While one grain displays a sawtooth pattern, the others are
252 relatively constant from cores to the outermost rims where all grains show a decrease in $\delta^{18}\text{O}$ to
253 values as low as 9.4.

254 Quarry Phase B garnets differ from those of Quarry Phase A in that they are generally
255 lower in $\delta^{18}\text{O}$ values, averaging about 9.8 permil. Also, in contrast to the outermost decrease in
256 $\delta^{18}\text{O}$ values of Quarry Phase A garnets, they display opposite zoning patterns where the interiors
257 of the grains are relatively constant, but the outermost 3 or 4 analyses gradually increase in $\delta^{18}\text{O}$
258 values, reaching up to 10.7 permil.

259

260 *5.4 Zircon Cathodoluminescence Imaging*

261 Cathodoluminescence images of zircon in the Loon Lake Phase display a variety of
262 textures (Figure 5A-H). Some grains have distinct cores that have different brightness than the
263 rims and mantles, usually having a resorption boundary between the cores and the mantles
264 (Figure 5A, 5C, 5E) and appear to be inherited zircon cores. Other grains lack such cores, but
265 common to both types are oscillatory zoning indicating magmatic growth of the zircon grains.
266 Similar features are present in the zircons of both Quarry Phases (Figure 5I to 5AB). What
267 appears to be inherited cores are present in some grains (Figure 5O, 5Q, 5S) but oscillatory
268 zoning is present in other cores and in mantles and rims of all grains.

269

270 *5.5 Zircon $\delta^{18}\text{O}$ Analyses*

271 Zircon $\delta^{18}\text{O}$ values are given in Table 3. As previously noted, the Loon Lake zircons are
272 characterized by oscillatory zoning, some containing what appear to be inherited cores. Our
273 analyses were conducted on both interior and rim portions of the grains, but rounded, resorbed
274 cores were avoided. Hence, it appears that our analyses span zones of continuous magmatic
275 growth of the zircons. The interior portions of these oscillatory zoned zircons have $\delta^{18}\text{O}$ values
276 between 9.2 and 10.3 permil. The rims and exterior portions of the same grains have higher $\delta^{18}\text{O}$
277 values, ranging up to 11.8 permil.

278 As with the Loon Lake Phase zircons, we avoided analyzing resorbed, inherited cores in
279 the Quarry Phase zircons, only focusing on the oscillatory zoned mantles and rims and on the
280 unzoned grains. The Quarry Phase zircons show a more limited range in $\delta^{18}\text{O}$ values, with

281 Quarry Phase A having lower values with most between 10.0 and 11.0 whereas Quarry Phase B
282 has higher values between 10.9 and 12.4 permil.

283

284 **6. Discussion**

285

286 A fundamental characteristic of some strongly peraluminous granites is that they define
287 trends of increasing peraluminosity with increasing maficity (Barbarin, 1996; Stevens et al.,
288 2007; Dorais and Tubrett, 2009; Dorais and Spencer, 2012; Dorais and Campbell, 2022).

289 Garnet-bearing rocks of the Flagstaff Lake Igneous Complex have up to 13 % normative
290 corundum for whole-rock SiO₂ values of 43 wt. % (Figure 6, after Figure 14 from Dorais and
291 Campbell, 2022). No melts of this composition exist in nature (BHSP, 1981), instead these rocks
292 represent accumulations of garnet to generate the strongly peraluminous compositions. The
293 problem is that such accumulation can occur through several processes: peritectic garnet
294 retention (Stevens et al., 2007; Dorais and Tubrett, 2009; Dorais and Spencer, 2009; Dorais and
295 Campbell, 2022; Jung et al., 2022), entrainment of high amounts of restitic garnet (or cordierite,
296 Barbarin, 1996), dispersion of peritectic garnet from digestion of wall rock xenoliths (Clarke,
297 2007; Erdmann et al., 2007), or accumulation of garnet phenocrysts (Dorais and Campbell, 2022;
298 Zhang et al., 2022). Distinction between these processes requires identification of the origin of
299 garnet in these strongly peraluminous rocks.

300 Dorais and Campbell (2022) detailed the characteristics of garnet phenocrysts versus
301 peritectic garnet (their Table 1). In summary, garnet phenocrysts in the Flagstaff Lake Igneous
302 Complex tend to be euhedral and inclusion-poor to inclusion-free. Trace element profiles from
303 core to rim record differentiation processes with incompatible elements increasing towards the

304 rims whereas compatible elements show depletion towards the rims. In contrast, peritectic garnet
305 tends to be subhedral and contains abundant apatite inclusions, some in spiral or circular
306 patterns. Trace element profiles are relatively constant from cores to rims, indicating a consistent
307 source of these elements having been liberated from the reactant minerals during peritectic
308 melting. Identical textural and inclusion relationships were observed by Dorais and Tubrett
309 (2012), Dorais and Spencer (2014), and Lui et al. (2022).

310 An additional method of determining phenocrystic garnet is that the garnet should be in
311 oxygen isotopic equilibrium with the host magma (Lackey et al., 2006; 2011; Kelly et al., 2009;
312 Quintero et al., 2021). For example, Lackey and coworkers (2011) used the oxygen isotopic
313 composition of zircon to determine the composition of the magma. Since both phenocrystic
314 garnet and zircon should have the same oxygen isotopic compositions at magmatic temperatures,
315 the correspondence of isotopic values of the two minerals, in conjunction with the textural and
316 trace element characteristics mentioned above, supports a phenocrystic origin for garnet.

317 We also must distinguish between restitic and peritectic garnet. Comparison of garnet
318 textures in the Flagstaff Lake Igneous Complex with those in the Cardigan Pluton of New
319 Hampshire is informative. Restitic biotite in the Cardigan Pluton shows the process of biotite
320 dehydration melting where the biotite is rimmed by peritectic garnet (Figure 3 of Dorais and
321 Tubrett, 2012). This breakdown led to garnets containing random distributions of abundant
322 apatite grains. While some inclusions of quartz are present, these are relatively minor. Inclusions
323 of minerals present in the groundmass of the rocks are not present in the garnets. While the
324 presence of biotite undergoing breakdown reactions is not present in the Flagstaff Lake
325 Complex, the same inclusion patterns of abundant apatite in garnet are. Likewise, the trace
326 element zoning in garnet of both plutons is the same. i.e., relatively constant profiles form cores

327 to rims suggesting liberation of these elements from the reactants of dehydration melting
328 reactions. This constant trace element zoning may not be exclusive to peritectic garnets and
329 could be present in resitic garnets as well. But the entrainment of abundant restitic garnet should
330 have resulted in the entrainment of other restitic phases as well, such as biotite and plagioclase in
331 the Cardigan Pluton. These are not seen in the Flagstaff Lake Igneous Complex. Thus, we think
332 that the majority of garnet grains in the Loon Lake Phase of the complex are peritectic, though
333 the presence of some restitic grains cannot be excluded. Similar interpretations of peritectic
334 garnet are found in Erdmann et al. (2009), Taylor and Stevens (2010), Lackey et al., (2011,
335 2012).

336

337 *6.1 Loon Lake Phase*

338 Histograms of the oxygen isotopic values of garnet and zircon from the Loon Lake Phase
339 are plotted in Figure 7A. The garnets have $\delta^{18}\text{O}$ values that range between 9.4 and 10.4 permil.
340 A minor subset of the zircon analyses overlaps the same range as the garnets. These zircon
341 analyses are from the interior portions of the zircon grains. In contrast, the external portions of
342 these same zircon grains have higher $\delta^{18}\text{O}$ values, ranging between 11.3 and 11.8 permil.

343 We interpret the minor subset of analyses of the zircon interiors that have the same
344 isotopic values as the garnets to represent zircon that crystallized from the same melt in which
345 the peritectic garnets formed, hence, the isotopic equilibrium between the minerals. Subsequent
346 contamination of the magma with a component with a heavier isotopic composition occurred.
347 This heavier composition is not recorded in the garnets, suggesting that garnet was no longer
348 growing when the contamination took place. We also infer that as the melt evolved and was
349 contaminated, garnet was not a phenocrystic phase and did not crystallize with the more

350 contaminated isotopic composition. This cessation of garnet crystallization would also explain
351 the subhedral morphologies of these peritectic grains.

352 Peritectic garnet can be produced both at the site of partial melting and from digestion of
353 wall-rock xenoliths. We suggested that the spiral inclusion patterns present in Loon Lake phase
354 garnets could not have formed by partial melting of free-floating xenoliths in the magma, rather
355 they represent dynamic melting, i.e., melting under differential stress (Sawyer, 2008), a regime
356 more likely to have occurred in the source rocks. Peritectic garnet growth could occur in source
357 rocks undergoing differential stress during the partial melting event (Sawyer, 2008), especially if
358 the garnet formed during the initial low degrees of partial melting when the migmatite still
359 maintained cohesive strength. Subsequent partial melting could have transitioned the melting
360 package from a metatexite to diatexite, allowing mobilization of melt along with its peritectic
361 garnet. We therefore suggest that these garnets with spiral inclusion trails are peritectic garnets
362 produced in the source during the partial melting event. Other garnets with random inclusion
363 distributions could also be from the source or from deep seated assimilation of xenoliths, but not
364 from digestion of emplacement level because partially digested xenoliths were not observed in
365 the complex (See discussion in Dorais and Campbell, 2022). Modal abundances of ~ 30-40%
366 peritectic garnet in the Loon Lake phase indicate that this type of garnet constitutes a significant
367 percentage of these rocks.

368

369 *6.2 Quarry Phase A*

370 Histograms of the oxygen isotopic values of garnet and zircon from Quarry Phase A are
371 plotted in Figure 7B. Both minerals have a range of isotopic compositions, from 9.4 to 10.9
372 permil for garnet and 9.8 to 11.6 permil for zircon. Notably, the majority of analyses overlap,

373 showing that both minerals crystallized from the same oxygen isotopic reservoir. This similarity
374 of oxygen isotopic compositions, combined with the textural characteristics (Figure 3E-H) and
375 trace element profiles of increasing incompatible element and decreasing compatible element
376 concentrations (Dorais and Campbell, 2022), support a phenocrystic interpretation of these
377 garnet grains in Quarry Phase A and that phenocrystic accumulation accounts for the strongly
378 peraluminous composition of the Quarry Phase A rocks.

379

380 *6.3 Quarry Phase B*

381 Histograms of oxygen isotopic values of garnet and zircon from Quarry Phase B are
382 plotted in Figure 7C. Unlike the phenocrystic garnets of Quarry Phase A that are in isotopic
383 equilibrium with zircon, the garnets and zircons of Quarry Phase B have distinct isotopic
384 compositions with the zircons having higher values by a permil or more. This is despite the
385 textural and trace element profile characteristics of Quarry Phase B garnets that suggest they are
386 phenocrysts.

387 This discrepancy of isotopic compositions of the two minerals is unresolved. We
388 speculate that selection bias might have influenced our choice of zircon grains, having separated
389 the most euhedral, larger grains. It is plausible that a minor subset of unselected zircon grains
390 could be in isotopic equilibrium with the garnets. Alternatively, a similar case of disequilibrium
391 between zircon and garnet was noted by Lackey et al. (2011) and Quintero et al. (2021) for the
392 Dinkey Dome Pluton of the Sierra Nevada Batholith. They postulated that the cause of this
393 disequilibrium could have resulted from different times of zircon and garnet crystallization,
394 which provides information about the timing of magma contamination. Zircon across the Dinkey
395 Dome Pluton has similar $\delta^{18}\text{O}$ values(zrc) but the garnet $\delta^{18}\text{O}$ values differ in the eastern portions

396 of the pluton that contain garnet with lower $\delta^{18}\text{O}$ values than those of the western side,
397 leading to disequilibrium conditions between the two minerals. Either there was a decrease in
398 magmatic $\delta^{18}\text{O}$ before garnet crystallized, thereby recording an assimilation event, or the garnet
399 may have crystallized at lower temperatures than zircon. Either case could also explain the
400 disequilibrium values of garnet and zircon in the Quarry Phase B rocks. However, it is unlikely
401 that zircon stopped crystallizing once on the liquidus, and, if garnet recorded the magmas
402 isotopic composition after an assimilation event, some of the zircon grains should have as well.
403 Hence, we return to the possibility that selection bias influenced the zircons we analyzed and
404 speculate that an unselected population should have the same isotopic characteristics as the
405 garnets.

406

407 *6.4 Mingling between Quarry Phases A and B*

408 The oxygen isotopic profiles of garnets in Quarry Phases A and B show opposite trends.
409 Quarry Phase A garnets have relative constant oxygen isotopic compositions throughout most of
410 the grains, but the outermost portions of the grains all show a distinct decrease in $\delta^{18}\text{O}$ values,
411 obtaining values of ~ 10 permil and less (Figure 4B). In contrast, the garnets of Quarry Phase B
412 have relatively constant isotopic values of less than 10 permil throughout two thirds of the grains
413 before exhibiting a gradual increase in $\delta^{18}\text{O}$ values that exceed 10 permil and even greater than
414 10.5 (Figure 4C).

415 There is no field evidence of any differences between Quarry Phases A and B. Indeed, it
416 was not until whole-rock analyses became available that we noted that there were two quarry
417 phases because they are identical in the field. Even after the geochemical distinctions were

418 recognized, we still could not distinguish the two phases along the same quarry wall. Thus, it
419 appears that the two Quarry Phase magmas were initially identical in appearance.

420 The distinct isotopic compositions of garnet in the two phases, with most of the Quarry
421 Phase A garnets (analyses 2-9, Figure 4B) having $\delta^{18}\text{O}$ values that average about 10.5 permil
422 whereas the Quarry Phase B garnets (analyses 3-9, Figure 4C) have lower $\delta^{18}\text{O}$ values of less
423 than 10 permil, indicates that the two magmas initially crystallized independently of each other.
424 It was only at the latest stages that the two magmas mingled, producing the increase in $\delta^{18}\text{O}$
425 values of the Quarry Phase B garnets as the melt mixed with Quarry Phase A magma. Likewise,
426 the outermost portions of Quarry Phase A garnets display a decrease in $\delta^{18}\text{O}$ values as the melt
427 mixed with Quarry Phase B magma. Thus, we conclude that these two identical appearing
428 magmas mingled, each carrying garnet with distinct isotopic compositions. Upon mingling, the
429 outer portions of the garnet phenocrysts recording the isotopic composition of the hybrid melts
430 with the outermost analyses representing essentially 100% of the other endmember.

431 In our previous publication (Dorais and Campbell, 2022), we argued that the Quarry
432 Phases were, in the terminology of Clarke (2019), “made not born”. That is, the whole-rock
433 compositions of the rocks resulted from phenocrystic garnet accumulation, a process that did not
434 occur at the site of partial melting but at higher, near emplacement levels. High modal amounts
435 of phenocrystic garnet accumulated, producing rocks with increasing peraluminosity with
436 decreasing maficity, generating the non-liquid compositions of these extraordinary garnet-rich
437 rocks. Thus, these garnet-rich rocks of the Flagstaff Lake Igneous Complex were indeed “made,
438 not born” (Clarke, 2019).

439

440 **7. Conclusions**

441

442 The Flagstaff Lake Igneous Complex contains strongly peraluminous granitic rocks that
443 show increasing peraluminosity with maficity. These rocks cannot represent liquid compositions
444 because no such liquids exist in nature. Their high normative corundum compositions result from
445 garnet accumulation where the process of accumulation differs for the Loon Lake Phase than the
446 Quarry Phases. The Loon Lake Phase is strongly peraluminous resulting from peritectic garnet
447 entrainment. These garnets have the same $\delta^{18}\text{O}$ values as some of the zircons in the rocks
448 whereas most zircons have higher $\delta^{18}\text{O}$ values than the garnets. We suggest that the zircons that
449 match the isotopic composition of the garnets crystallized from the same anatetic melt whereas
450 the zircons with higher $\delta^{18}\text{O}$ values crystallized after an assimilation event. No additional garnet
451 crystallized after assimilation, hence, the lack of garnet with heavier $\delta^{18}\text{O}$ compositions and
452 accounting for their subhedral to anhedral morphologies.

453 In contrast, both Quarry Phases A and B contain abundant phenocrystic garnet. The
454 isotopic compositions of garnet in Quarry Phase A match those of the associated zircons,
455 agreeing with both textural and trace element profiles of the garnets that the grains are
456 phenocrysts. However, in spite of the textural and trace element profiles of Quarry Phase B
457 garnets, the isotopic compositions of garnets and zircons in these rocks do not match. Either we
458 missed a population of zircon from sampling bias, assimilation occurred between the
459 crystallization of the two minerals, or the garnet crystallized at lower temperatures than zircon.
460 Regardless, both Quarry Phases owe their strongly peraluminous compositions to the
461 accumulation of phenocrystic garnet. Hence, some granites have compositions that are
462 determined at or near the site of anatexis, i.e., they are “born” whereas others are “made, not
463 born”, having compositions determined by high level processes of phenocrystic accumulation.

464 **Acknowledgements**

465

466 We gratefully acknowledge the assistance of Kouki Kitajima and the support to the WiscSIMS
467 lab through NSF grant #EAR-2004618 in obtaining the oxygen isotopic analyses used in this
468 study. We also appreciate the reviews from two anonymous reviewers for their helpful
469 suggestions. We thank the College of Physical and Mathematical Sciences at Brigham Young
470 University and to the Geological Society of America for funding this project.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487 **References**

488

489 Barbarin, B., 1996. Genesis of the two main types of peraluminous granitoids. *Geology*, 24, 295-
490 298.

491 Basaltic Volcanism Study Project, 1981. *Basaltic Volcanism on the Terrestrial Planets*.
492 Pergamon Press, Inc., New York, 1286.

493 Bowman, J.R., Moser, D.E., Valley, J.W., Wooden, J.L., Kita, N.T., and Mazdab, F.K., 2011.
494 Zircon U-Pb isotope, $\delta^{18}\text{O}$ and trace element response to 80 m.y. of high temperature
495 formation. *American Journal of Science*, 311, 719-772.

496 Chappell, B.W., White, A.J.R., and Wyborn, D., 1987. The Importance of Residual Source
497 Material (Restite) in Granite Petrogenesis. *Journal of Petrology*, v. 28, pp. 1111-1138.

498 Clark, D.B., 2019. The origins of strongly peraluminous granitoid rocks. *The Canadian
499 Mineralogist*, v. 57, pp. 529-550.

500 Clarke, D.B., 2007. Assimilation of xenocrysts in granitic magmas: principles, processes,
501 proxies, and problems. *The Canadian Mineralogist*, v. 45, pp. 5-30

502 Coughlan, R.A.N., 1990. *Studies in Diffusional Transport: Grain Boundary Transport of Oxygen
503 in Feldspars, Diffusion of Oxygen, Strontium, and the REE's in Garnet, and Thermal
504 Histories of Granitic Intrusions in South-Central Maine Using Oxygen Isotopes*. Ph.D.
505 thesis, Brown University, Providence, Rhode Island.

506 Dorais, M.J., and Paige, M.L., 2000. Regional geochemical and isotopic variations of northern
507 New England plutons: Implications for magma sources and for Greenville and Avalon
508 basement-terrane boundaries. *Geological Society of America Bulletin*, v. 112, pp. 900-
509 914.

510 Dorais, M.J., and Tubrett, M., 2012. Detecting peritectic garnet in the peraluminous Cardigan
511 pluton, New Hampshire. *Journal of Petrology*, v. 53, pp. 229-324.

512 Dorais, M.J., and Spencer, C.S., 2014. Revisiting the importance of residual source material
513 (restite) in granite petrogenesis: The Cardigan Pluton, New Hampshire. *Lithos*, 202-203,
514 237-249.

515 Dorais, M.J., and Campbell, S., 2022. Peritectic and phenocrystic garnet accumulation and the
516 origin of strongly peraluminous granitic rocks: the Flagstaff Lake Igneous Complex,
517 Maine. *Lithos*, 418-419, <https://doi.org/10.1016/j.lithos.2022.106680>

518 Dorais, M.J., Pett, T.K., and Tubrett, M., 2009. Garnetites of the Cardigan pluton, New
519 Hampshire: Evidence for peritictic garnet and implications for source rock compositions.
520 *Journal of Petrology*, 50, 1993-2016.

521 du Bray, E.A., 1988. Garnet compositions and their use as indicators of peraluminous granitoid
522 petrogenesis – southeastern Arabian Shield. *Contributions to Mineralogy and Petrology*,
523 v. 100(2), pp. 205-212.

524 Erdmann, S., London, D., Morgan, G.B. VI, and Clarke, B., 2007. The contamination of granitic
525 magma by metasedimentary country-rock material: An experimental study. *Canadian
526 Mineralogist*, 45, 43-61.

527 Erdmann, S., Jamieson, R.A., and MacDonald, M.A., 2009. Evaluating the origin of garnet,
528 cordierite, and biotite in granitic rocks: a case study from the South Mountain Batholith,
529 Nova Scotia. *Journal of Petrology*, 50, 1477-1503.

530 Erdmann, S., Scaillet, B., and Kellett, D.A., 2012. Textures of peritictic crystals as guides to
531 reactive minerals in magmatic systems: New insights from melting experiments. *Journal
532 of Petrology*, 53, 2231-2258.

533 Farquhar, J., Chacko, T., and Ellis, D.J., 1996. Preservation of oxygen isotope compositions in
534 granulites from Northwestern Canada and Enderby Land, Antarctica: implications for
535 high-temperature isotopic thermometry. *Contributions to Mineralogy and Petrology*, 125,
536 213–224.

537 Gardien, V., Thompson, A.B., Grujic, D., and Ulmer, P., 1995. Experimental melting of biotite +
538 plagioclase + quartz ± muscovite assemblages and implications for crustal melting.
539 *Journal of Geophysical Research*, v. 100(B8), pp. 15581-15591.

540 Gaudette, H.E., and Boone, G.M., 1985. Isotopic age of the Lexington batholith: constraints on
541 timing of intrusion and Acadian metamorphism in western Maine. *GSA Abstract*, v. 17,
542 p. 19.

543 Gaudette, H.E., Knight, D.R., Moura, C.A.V., and Olszewski, W.J., 1990. Evolution of the
544 gabbro-granite belt, NW Maine; Timing of igneous activity. *Geological Society of
545 America Abstracts with Programs*, v. 22, p. 20.

546 Gaudio, P.D., and Ventura, G., 2008. Mechanical erosion of xenoliths by magmatic shear flow.
547 *Geophysical research letters*, v. 35, L09302

548 Gibson, D., Barr, S.M., van Rooyen, D., White, C.E., and Polote, J-L., 2021. Protracted intra-
549 geochemistry inter-pluton magmatism during the Acadian orogeny: Evidence from new
550 LA-ICP-MS U-Pb ages from northwestern Maine, USA. *Atlantic Geology*, v. 57, pp.
551 147-191.

552 Harris, C., and Vogeli, J., 2010. Oxygen Isotope Composition of Garnet in the Peninsula Granite,
553 Cape Granite Suite, South Africa: Constraints on Melting and Emplacement Mechanisms.
554 *South African Journal of Geology*, v. 113(4), pp. 401-412.

555

556 Jung S., Pfäander, J.A., Mezger, K., Hellebrand, E., Brandt, S., 2022. Polyphase growth history
557 of peritectic garnet from a granite: Trace-element zonation, Lu-Hf ages and their
558 significance for the duration of granite-forming processes. *Lithos*, 418-419, 106675,
559 <https://doi.org/10.1016/j.lithos.2022.106675>.

560 Kitajima, K., Strickland, R.S., Picuzza, M.J., Tenner, T.J., and Valley, J.W., 2016. Improved
561 matrix correction of $\delta^{18}\text{O}$ analysis by SIMS for pyralspite and Cr-pyrope garnets.
562 Goldschmidt Conference, 1542, Yokohama, Japan.

563 Kelly, N.M., Harley, S.M., Appleby, S.K., 2009. The utility of oxygen isotopes for our
564 understanding of deep crustal processes; preliminary results from zircon and garnet in
565 migmatites. *Geological Society of America Abstracts with Programs*, 41, pp. 238.

566 King, E.M., and Valley, J.W., 2001. The source, magmatic contamination, and alteration of the
567 Idaho Batholith. *Contributions to Mineralogy and Petrology*, v. 142, pp. 72-88.

568 Lackey, J.S., Erdmann, S., Clarke, D.B., Fellah, K.L., Nowak, RM., Spicuzza, M., and Valley,
569 J.W., 2006. Oxygen isotope evidence for the origin of parent in the peraluminous South
570 Mountain Batholith, Nova Scotia. *GSA Abstract*, v. 38, p. 113.

571 Lackey, J.S., Valley, J.W., and Hinke, H.J., 2006. Deciphering the source and contamination
572 history of peraluminous magmas using $\delta^{18}\text{O}$ of accessory minerals: examples from
573 garnet-bearing plutons of the Sierra Nevada Batholith. *Contributions to Mineralogy and*
574 *Petrology*, 151, 20–44.

575 Lackey, J.S., Valley, J.W., Chen, J.H., and Stockli, D.F., 2008. Dynamic magma systems, crustal
576 recycling, and alteration in the central Sierra Nevada Batholith: The oxygen isotope
577 record. *The Journal of Petrology*, v. 49, pp. 1397-1426.

578 Lackey, J.S., Erdmann, S., Hark, J.S., Nowak, R.M., Murray, K.E., Clarke, D.B., and Valley
579 J.W., 2011. Tracing Garnet Origins in Granitoid Rocks by Oxygen Isotope Analysis:
580 Examples from the South Mountain Batholith, Nova Scotia. *The Canadian Mineralogist*,
581 v. 49, pp. 417-439.

582 Lackey, J.S., Romero, G.A., Bouvier, A., Valley, J.W., 2012. Dynamic growth of garnet in
583 granitic magmas. *Geology*, v. 40, pp. 171-174.

584 Lui, X., Xia, Q-X., Zheng, Y-F., and Li, W-C., 2022. An experimental study of partial melting of
585 metafelsic rocks: Constraints on the feature of anatetic melts and the origin of garnets in
586 collisional orogens. *Journal of Earth Science*, 33, 753-769.

587 Maniar, P.D., and Piccoli, P.M., 1989. Tectonic discrimination of granitoids. *GSA Bulletin*, v.
588 101(5), pp. 635-643.

589 Nielsen, R.L., Landis, E.S., Ceci, V.M., and Poston, C.J., 1989. The Commingling of Diverse
590 Magma Types in the Flagstaff Lake Igneous Complex. *Maine Geological Survey, Studies*
591 in Maine Geology, v. 3, pp. 67-78.

592 Osberg, P.H., Hussey, A.M., II, and Boone, G.M., 1985. Bedrock geologic map of Maine. *Maine*
593 *Geological Survey*, scale 1:500,000.

594 Page, F.Z., Fu, B., Kita, N.T., Fournelle, J., Spicuzza, M.J., Schulze, D.J., Viljoen, F., Basei,
595 M.A.S., and Valley, J.W., 2007. Zircons from kimberlite: New insights from oxygen
596 isotopes, trace element, and Ti in zircon thermometry. *Geochimica et Cosmochimica*
597 *Acta*, 71, 3887–3903.

598 Page, F.Z., Kita, N.T., and Valley, J.W., 2010. Ion microprobe analysis of oxygen isotopes in
599 garnets of complex chemistry. *Chemical Geology*, 270, 9–19.

600 Quintero, R.R., Kitajima, K., Lackey, J.S., Kozdon, R., Strickland, A., and Valley, J.W., 2021.
601 Oxygen isotope ratios in zircon and garnet: A record of assimilation and fractional
602 crystallization in the Dinkey Dome peraluminous granite, Sierra Nevada, California.
603 American Mineralogist, 106, 715-729.

604 Sawyer, E.W., 2008. Atlas of Migmatites. Canadian Mineralogist Special Publication 9, 386 pp.

605 Shand, 1947 Shand, S.J., 1947. Eruptive Rocks: Their Genesis, Composition, and Classification,
606 with a Chapter on Meteorites. Revised Second Edition. John Wiley New York 1947, New
607 York, p. 443.

608 Stevens, G., Villaros, A., Moyen, J.-F., 2007. Selective peritectic garnet entrainment as the origin
609 of geochemical diversity in S-type granites. Geology 35, 9–12.

610 Taylor, J., and Stevens, G., 2010. Selective entrainment of peritectic garnet into S-type granitic
611 magmas: Evidence from Archaean mid-crustal anatectites. Lithos, v. 120, pp. 277-292.

612 Valley, J.W., 2003. Oxygen isotopes in zircon. In Zircon (J.M. Hanchar & P.W.O. Hoskin, eds.).
613 Reviews in Mineralogy and Geochemistry, v. 53, pp. 343-385.

614 Valley, J. W., Bindeman, I. N. & Peck, W. H., 2003. Empirical calibration of oxygen isotope
615 fractionation in zircon. Geochimica et Cosmochimica Acta, 67, 3257–3266.

616 Vehrs, T., 1975. Tectonic, petrologic ad stratigraphic analysis of the Bigelow Range, Stratton
617 and Little Bigelow Mountain quadrangles, northwestern Maine. Ph.D. dissertation,
618 Syracuse University, Syracuse, N.Y., p. 266.

619 Vielzeuf, D., Veschambre, M., and Brunet, F., 2005. Oxygen isotope heterogeneities and
620 diffusional profiles in composite metamorphic/magmatic garnets from the Pyrenees.
621 American Mineralogist, 90, 462–472.

622 Villaros, A., Stevens, G., and Buick, I.S., 2009. Tracking S-type granite from source to
623 emplacement: Clues from garnet in the Cape Granite Suite. *Lithos*, v. 112, p. 217-235.

624 Watson, E.B., and Cherniak, D.J., 1997. Oxygen diffusion in zircon. *Earth and Planetary Science
625 Letters*, 148, 527–544.

626 Wright, K., Freer, R., and Catlow, C.R.A., 1995. Oxygen diffusion in grossular and some
627 geological implications. *American Mineralogist*, 80, 1020–1025.

628 Zhang, X-S., Xu, X-S., and Zhao, K., 2022. The strongly peraluminous, garnet-bearing norite–
629 quartz jotunite–charnockite suite: products of crystal accumulation in the felsic magma
630 reservoir. *Contributions to Mineralogy and Petrology*, 177:91,
631 <https://doi.org/10.1007/s00410-022-01946-1>.

632

633

634

635

636

637

638

639

640

641

642

643

644

645 **Figure Captions**

646

647 Figure 1. Generalized geologic map of the Flagstaff Lake Igneous Complex (after Nielson et al.,
648 1989) showing the location of the garnet tonalites.

649

650 Figure 2. Photos of representative samples of the Loon Lake Phase (A), Quarry Phase A (B) and
651 Quarry Phase B (C). Note the extraordinary abundance of garnet in the Quarry Phase A sample.

652

653 Figure 3. A-D: Ca K α X-ray maps of garnet grains in the Loon Lake Phase. Note the subhedral
654 to anhedral grain shapes and the abundance of apatite inclusions (bright white grains). E-H: Ca
655 K α X-ray maps of garnet grains in the Quarry Phase A. Note the general euhedral grain shapes
656 and the paucity of inclusions in the garnet grains. I-L: Ca K α X-ray maps of garnet grains in the
657 Quarry Phase B. Note the general euhedral grain shapes and the paucity of inclusions in the
658 garnet grains. Some grains display an increase in Ca at the rims as shown in Figure 3L.

659

660 Figure 4A. Core to rim $\delta^{18}\text{O}$ profiles for garnet grains in the Loon Lake Phase. The bulk of the
661 grains display relatively constant $\delta^{18}\text{O}$ values of ~ 10 permil from cores (analyses 9) to near the
662 rim (analyses 2). The outermost points (analyses 1) show a slight decline in $\delta^{18}\text{O}$.

663

664 Figure 4B. Core to rim C $\delta^{18}\text{O}$ profiles for garnet grains in Quarry Phase A. The bulk of the
665 grains display relatively constant $\delta^{18}\text{O}$ values of ~ 10.5 permil from cores (analyses 9) to near the
666 rim (analyses 2). The outermost points (analyses 1) show a slight decline in $\delta^{18}\text{O}$ to as low as 9.4
667 permil, similar to those of garnet interiors of Quarry Phase B.

668

669 Figure 4C. Core to rim $\delta^{18}\text{O}$ profiles for garnet grains in Quarry Phase B. The bulk of the grains
670 display relatively constant $\delta^{18}\text{O}$ values of ~ 10 permil from cores (analyses 9) to near the rim
671 (analyses 3). The outermost points (analyses 1 and 2) show a slight increase in $\delta^{18}\text{O}$, similar to
672 garnet interiors of Quarry Phase A.

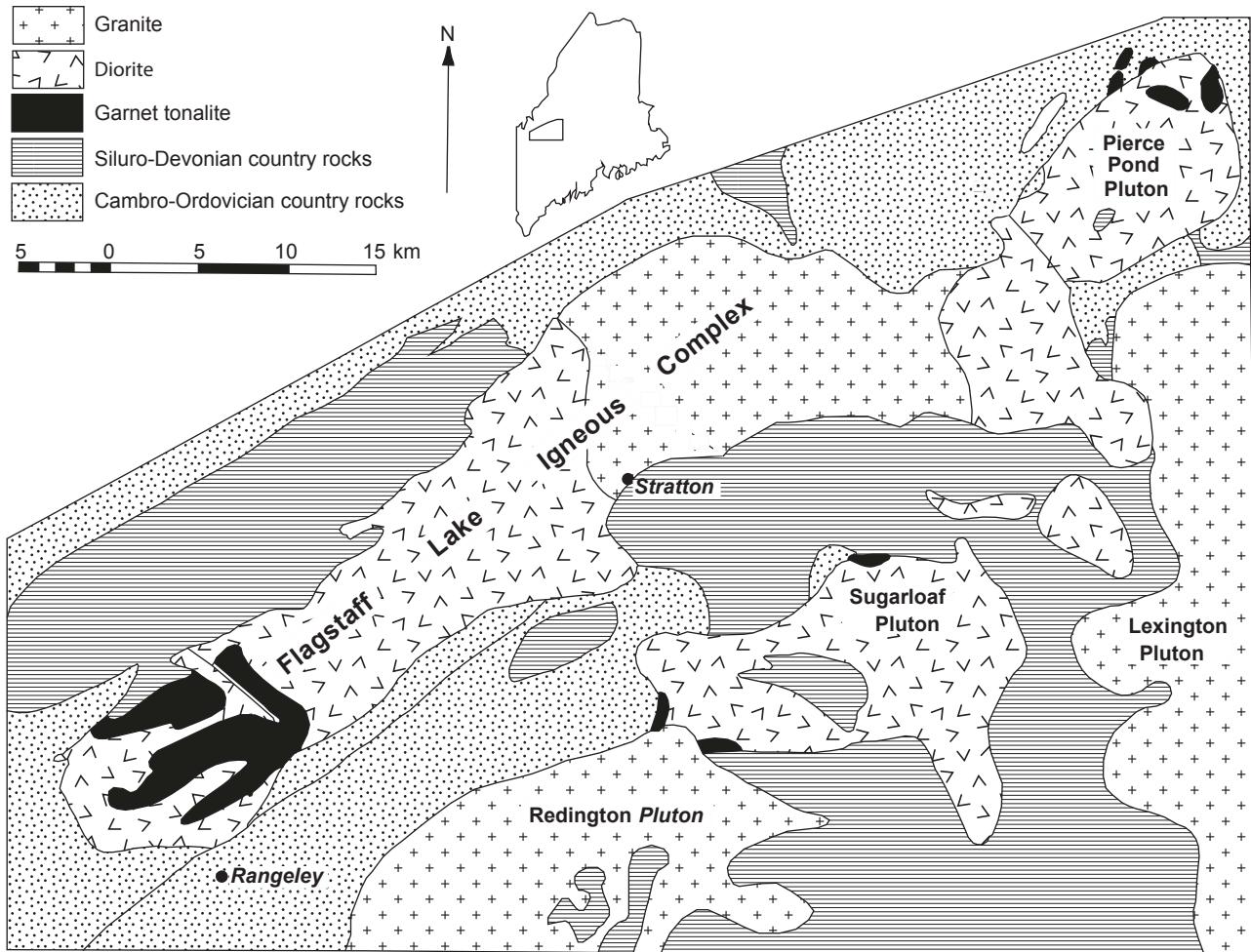
673

674 Figure 5. A-H: CL images of Loon Lake Phase zircons; I-P: Quarry Phase A zircons; and Q-AB:
675 Quarry Phase B zircons

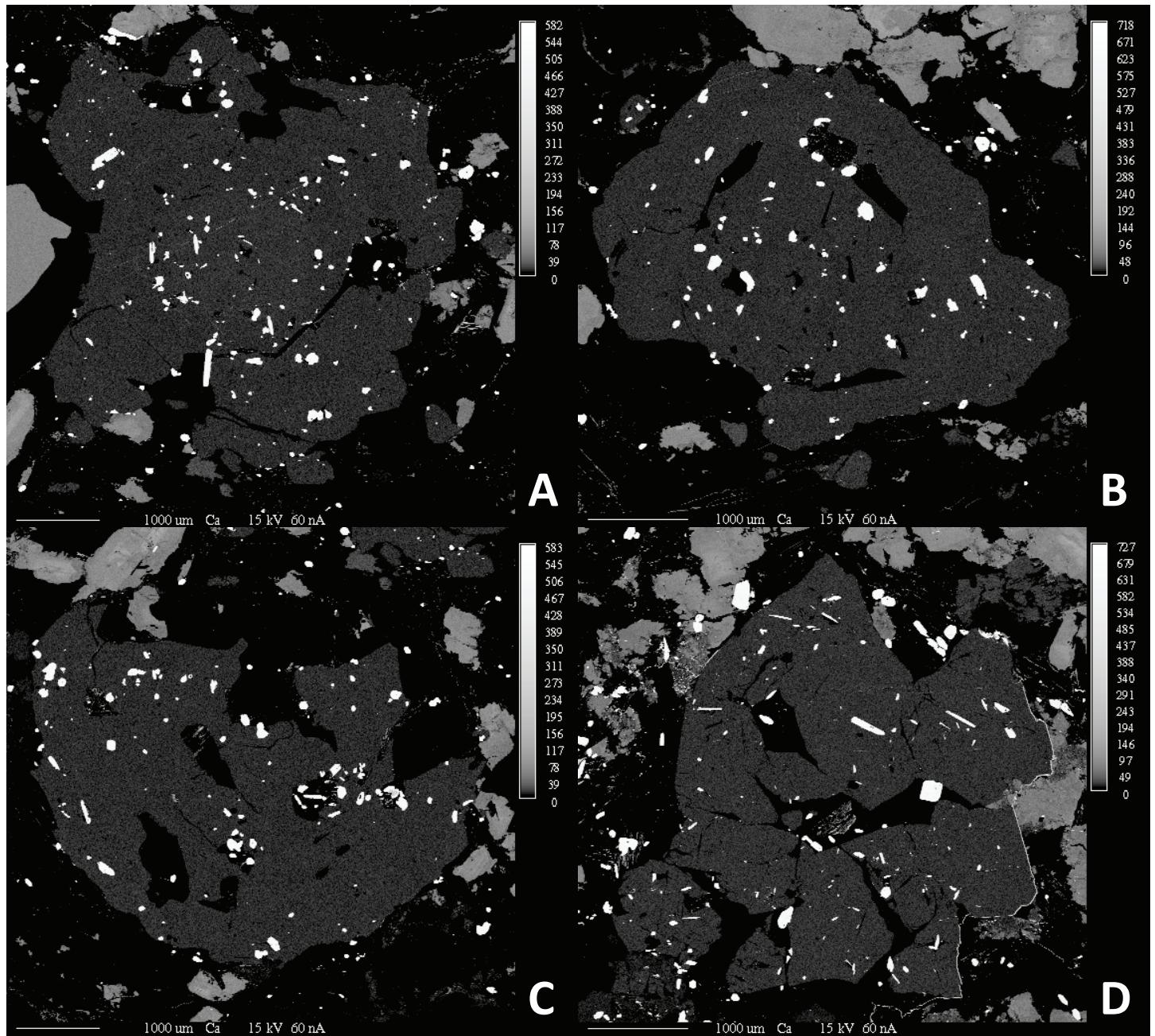
676

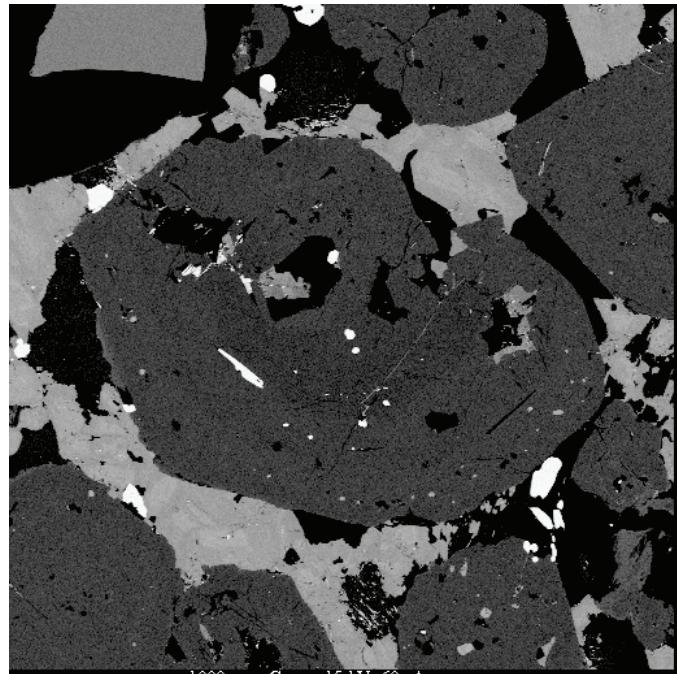
677 Figure 6. Whole-rock silica versus normative corundum contents of the garnet tonalites of the
678 Flagstaff Lake Igneous Complex (after Dorais and Campbell, 2022). The gray oval in the lower
679 right portion of the figure represents our inferred liquid composition, based on whole-rock
680 analyses of granitic rocks in the main phase of the complex.

681

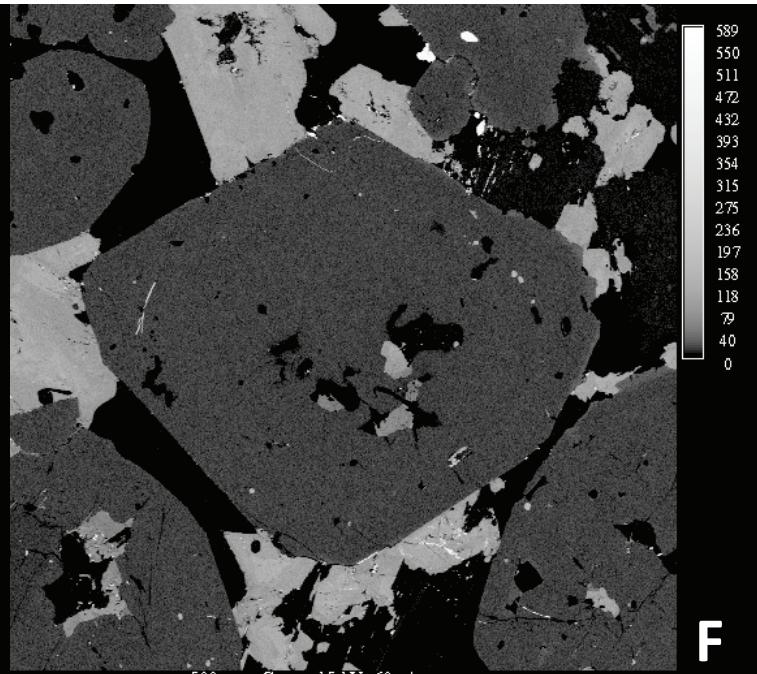

682 Figure 7A. Histogram of $\delta^{18}\text{O}$ values for garnet (blue) and zircon (orange) of the Loon Lake
683 Phase.

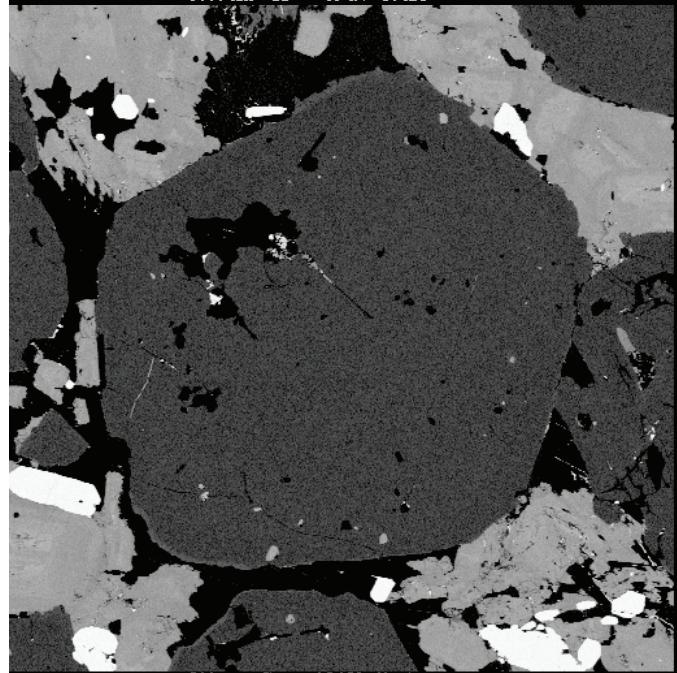
684

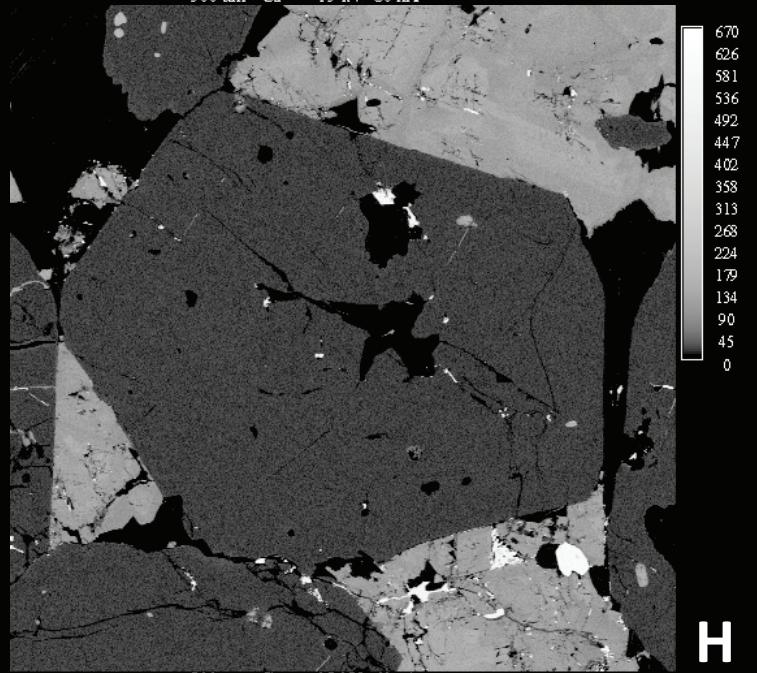

685 Figure 7B. Histogram of $\delta^{18}\text{O}$ values for garnet (red) and zircon (orange) of Quarry Phase A.

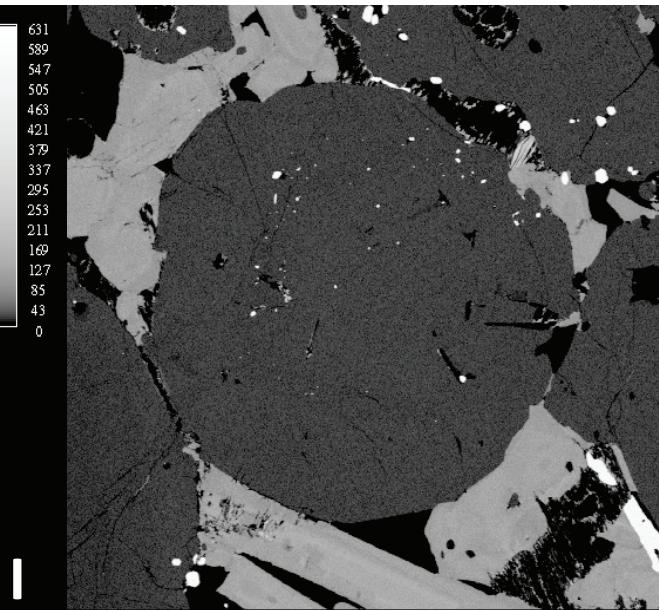
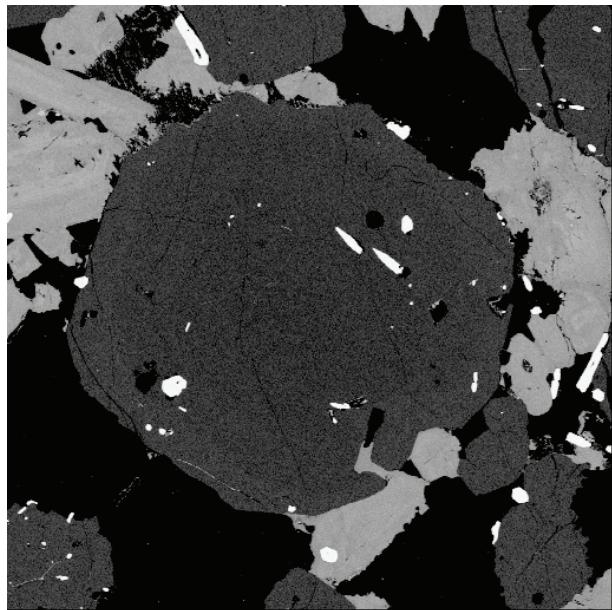

686

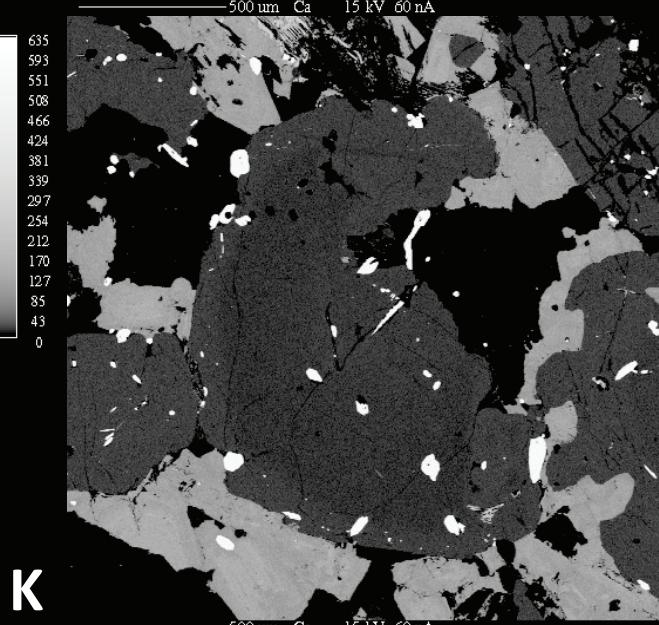
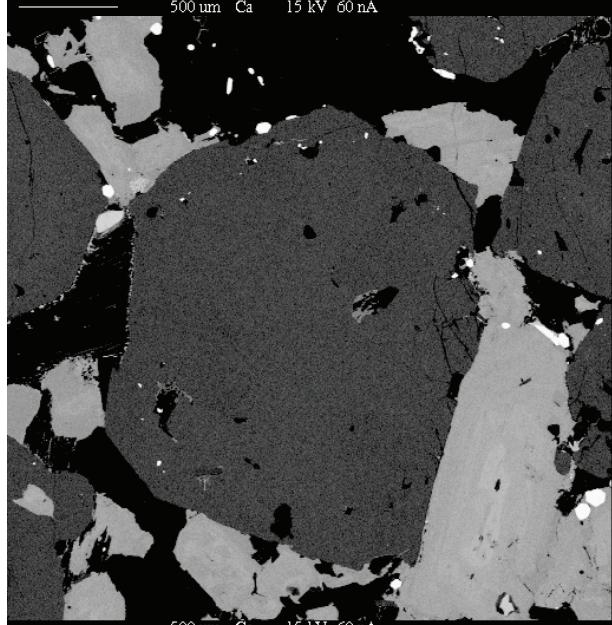
687 Figure 7C. Histogram of $\delta^{18}\text{O}$ values for garnet (green) and zircon (orange) of Quarry Phase B.



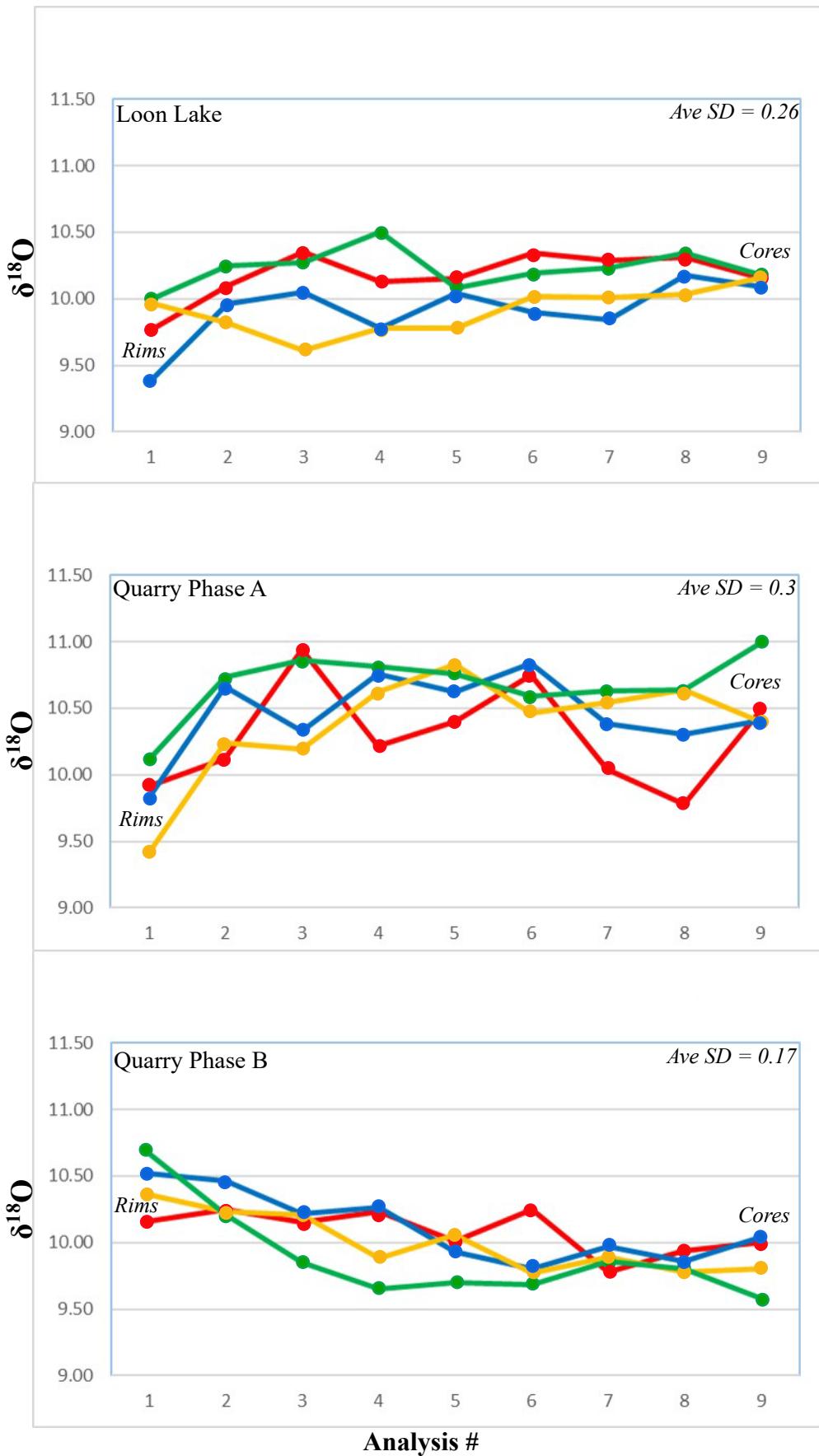


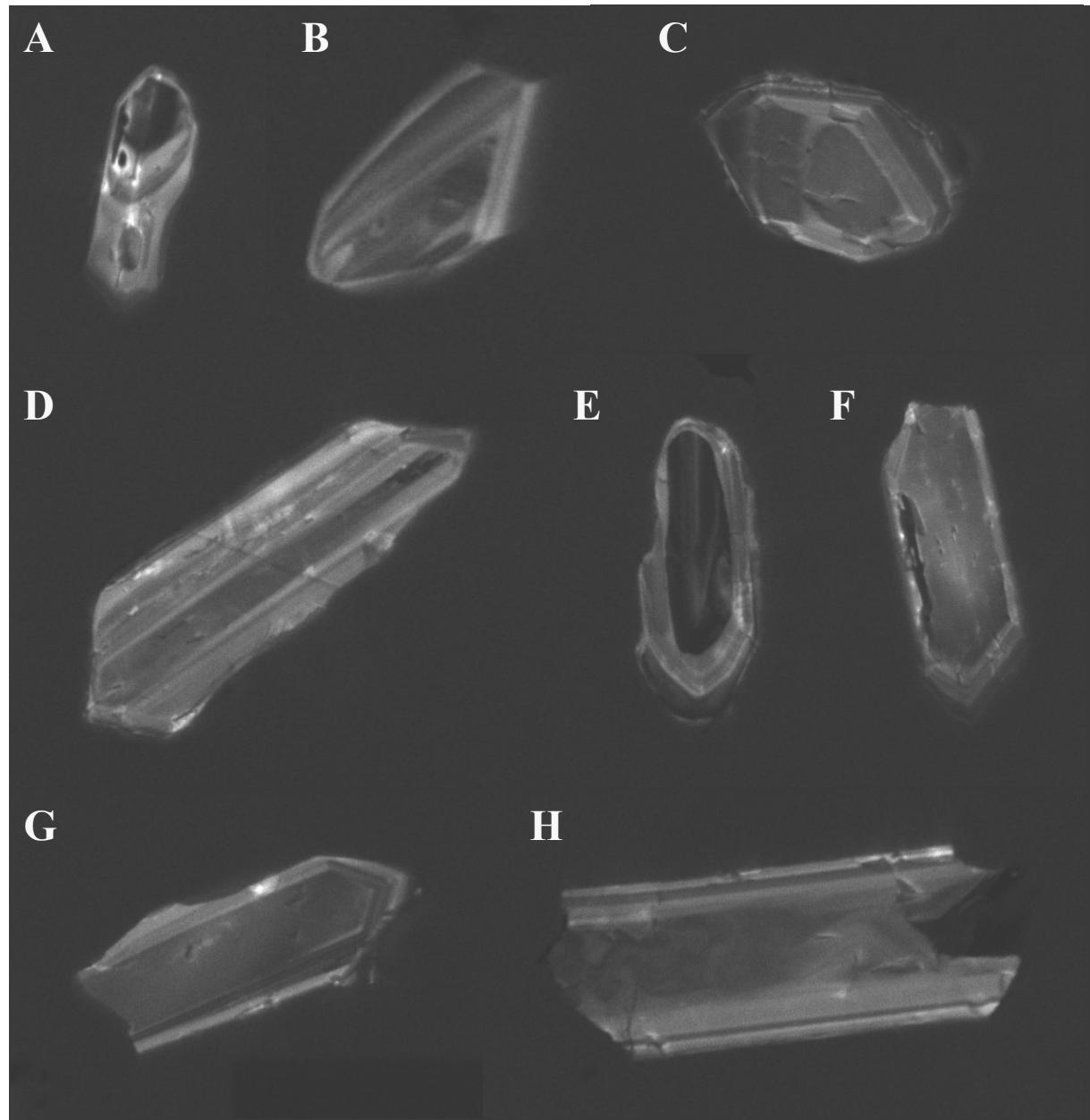

E

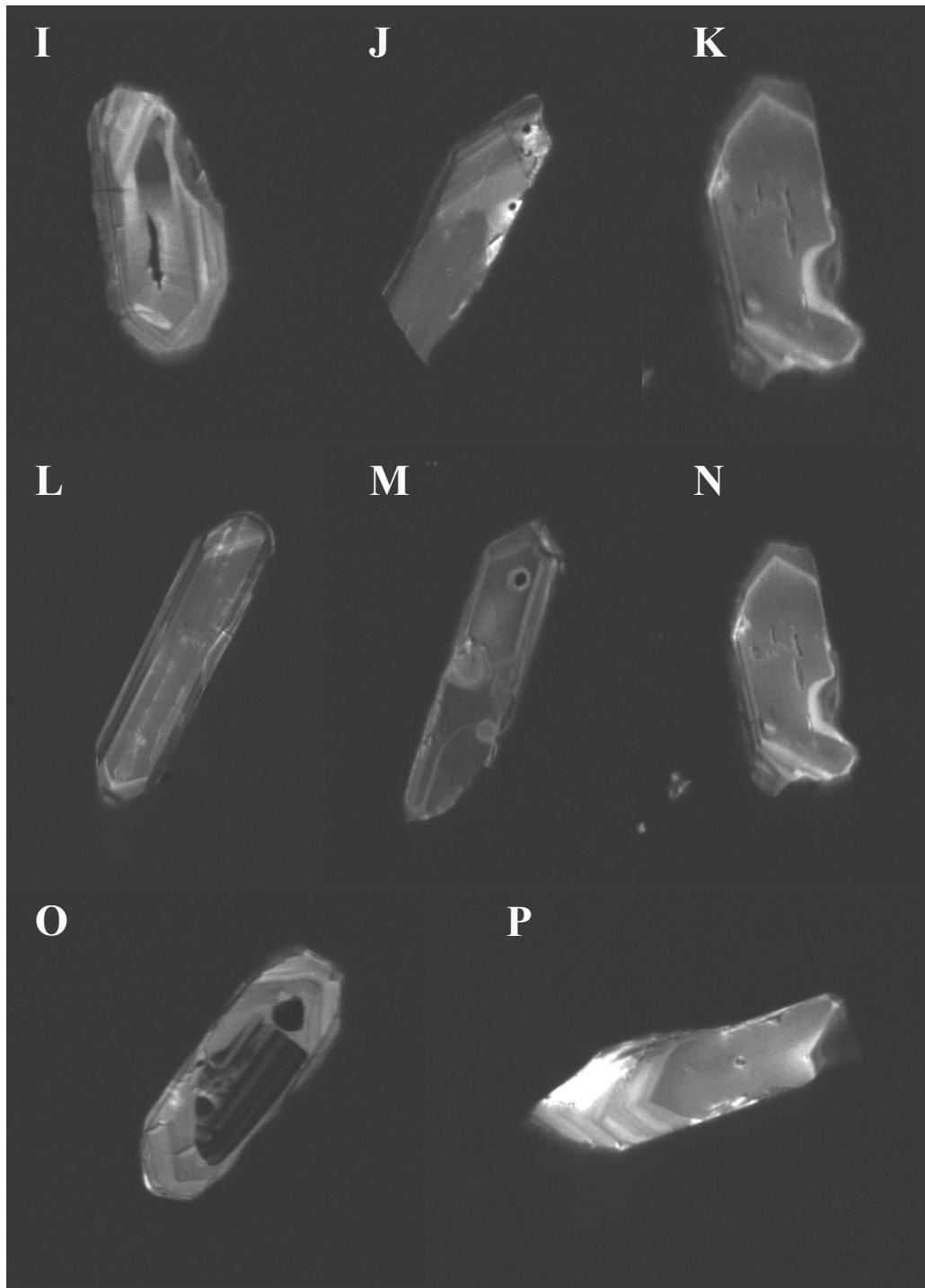


F

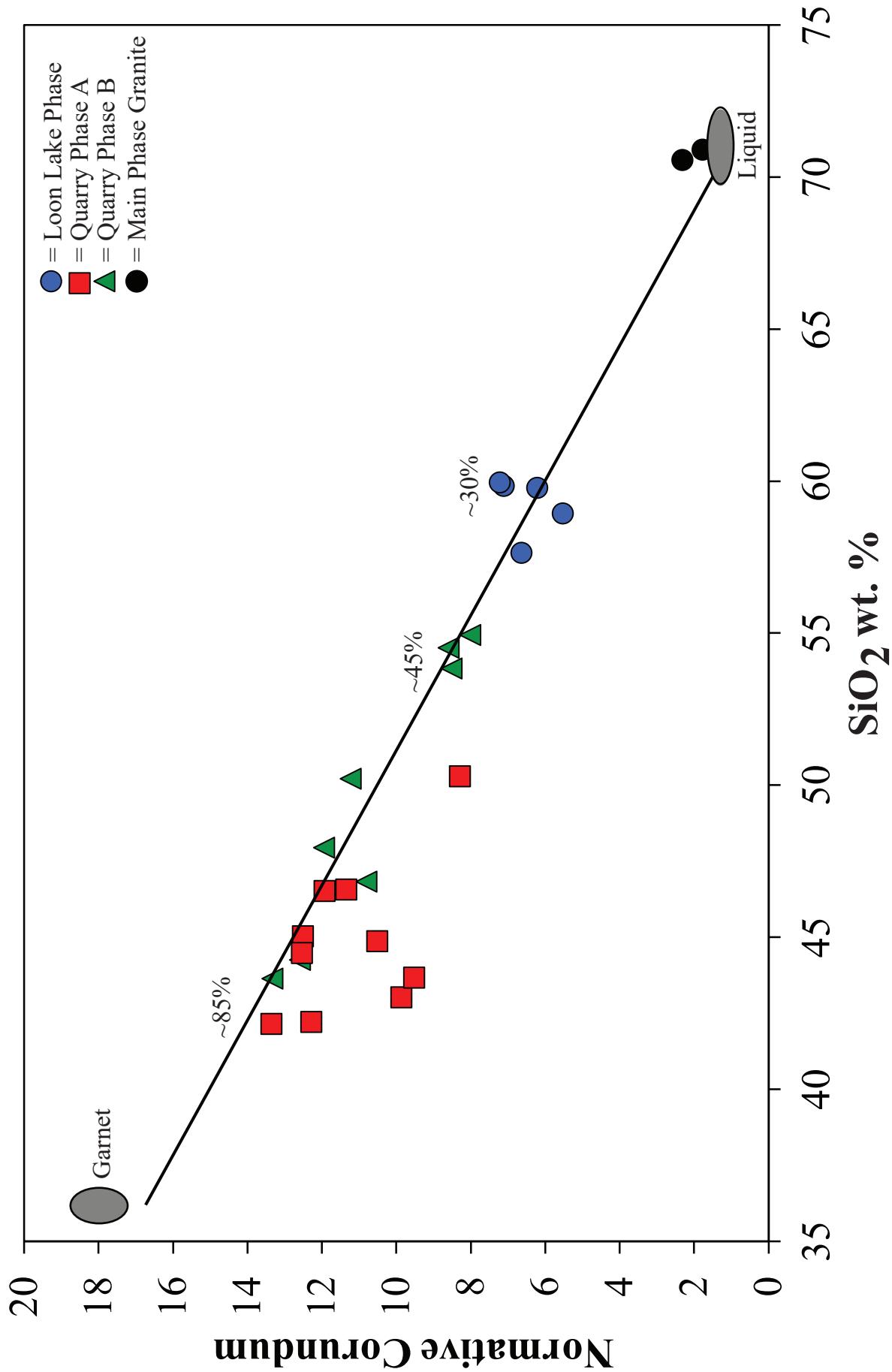


G

H

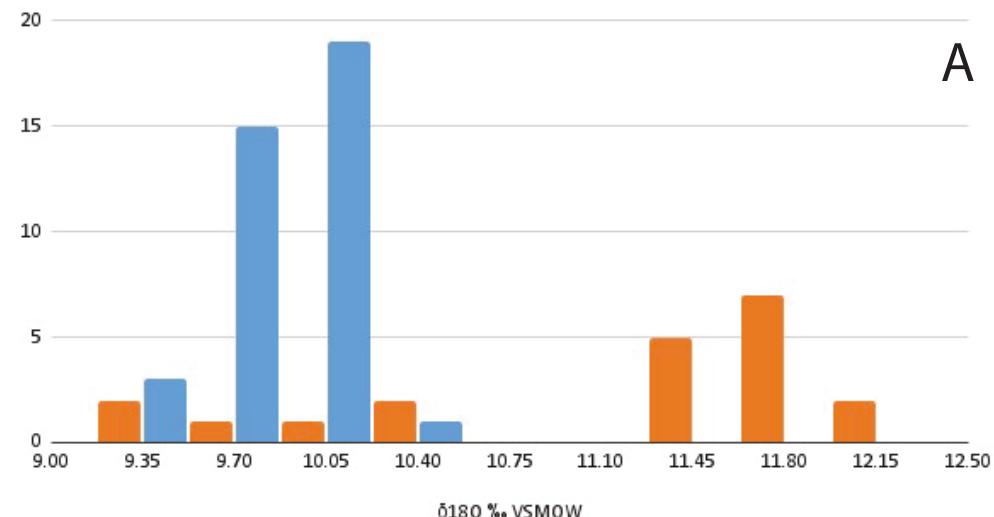


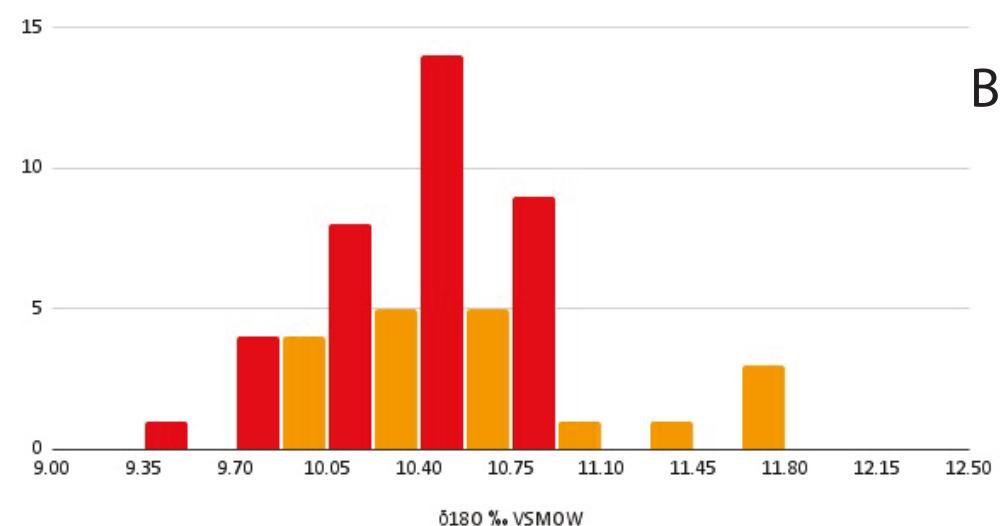

J




K

L





Loon Lake Garnet & Zircon Oxygen Isotopes

Quarry Phase A Garnet & Zircon Oxygen Isotopes

Quarry Phase B Garnet & Zircon Oxygen Isotopes

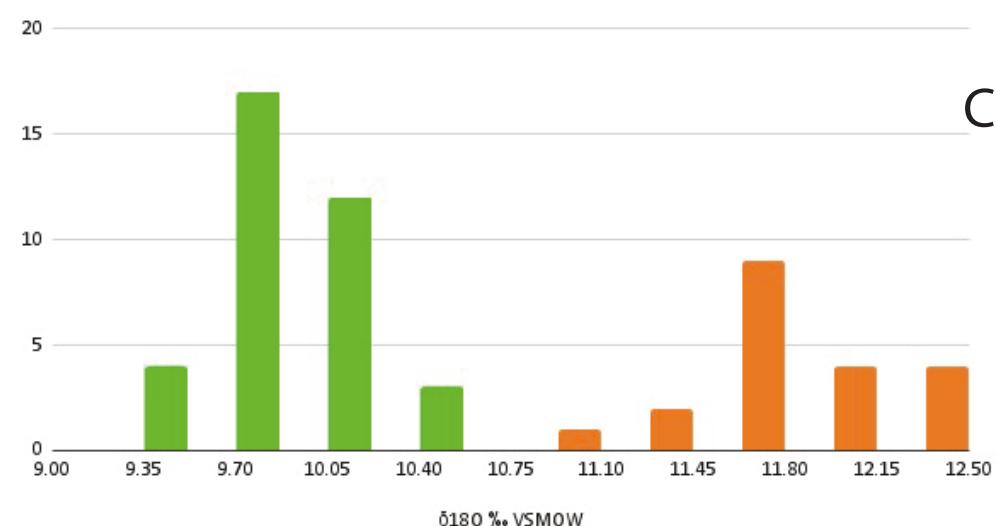


Table 1. Electron microprobe analyses of Flagstaff Lake Complex Garnets

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	Total
Loon Lake								
FL19A-1	1.877	21.014	36.381	0.913	0.062	2.854	37.576	100.676
FL19A-2	2.725	21.026	36.769	0.958	0.036	1.536	37.576	100.624
FL19A-3	2.643	21.001	36.354	0.908	0.021	1.431	37.762	100.118
FL19A-4	2.684	21.161	36.142	0.941	0.029	1.360	37.711	100.026
FL19A-5	2.735	21.119	36.162	0.956	0.028	1.290	37.742	100.029
FL19A-6	2.714	21.006	35.835	1.061	0.051	1.397	37.092	99.155
FL19A-7	2.704	20.962	35.972	1.074	0.096	1.429	37.175	99.410
FL19A-8	2.669	20.919	36.341	1.099	0.063	1.472	37.043	99.605
FL19A-9	2.681	21.039	36.300	1.049	0.051	1.408	37.628	100.154
FL19B-1	1.775	20.781	36.482	0.957	0.085	2.767	37.630	100.476
FL19B-2	2.738	21.007	36.493	0.922	0.028	1.488	37.519	100.193
FL19B-3	2.392	21.055	36.500	1.009	0.039	1.746	37.521	100.261
FL19B-4	2.357	21.028	36.414	0.919	0.027	1.665	37.899	100.307
FL19B-5	2.621	21.118	36.562	0.898	0.027	1.272	38.217	100.714
FL19B-6	2.647	21.004	36.480	0.961	0.059	1.413	37.966	100.529
FL19B-7	2.546	20.955	36.495	0.961	0.072	1.471	37.747	100.246
FL19B-8	2.657	21.027	36.216	1.021	0.058	1.313	37.723	100.013
FL19B-9	2.713	21.034	36.501	1.012	0.053	1.235	37.542	100.089
FL19C2-1	2.257	20.951	36.109	0.934	0.011	2.075	37.518	99.854
FL19C2-2	2.581	20.976	36.400	1.002	0.027	1.532	37.135	99.652
FL19C2-3	2.292	21.054	36.048	0.936	0.033	2.106	37.504	99.971
FL19C-4	2.390	21.088	36.338	0.946	0.021	1.742	37.943	100.466
FL19C-5	2.306	20.895	35.709	0.874	0.016	1.789	37.737	99.325
FL19C-6	2.270	20.979	35.769	0.920	0.011	1.745	37.902	99.595
FL19C-7	2.336	21.028	35.644	0.912	0.065	1.693	37.567	99.244
FL19C-8	2.665	20.985	36.398	0.965	0.040	1.181	38.079	100.311
FL19C-9	1.976	20.982	36.347	0.916	0.047	2.416	37.882	100.565
FL20A-1	2.243	21.149	36.483	1.000	0.035	1.747	38.235	100.891
FL20A-2	2.503	20.999	36.246	1.059	0.025	1.937	37.376	100.143
FL20A-3	2.529	21.102	36.173	0.556	0.040	1.953	37.197	99.548
FL20A-4	2.979	21.178	35.808	1.091	0.019	1.500	37.039	99.612
FL20A-5	3.034	20.910	36.333	1.070	0.030	1.456	36.902	99.734
FL20A-6	2.896	21.119	36.237	1.081	0.039	1.539	37.527	100.436
FL20A-7	2.722	21.010	36.203	1.097	0.026	1.666	37.137	99.860
FL20A-8	2.422	20.959	35.948	1.091	0.014	2.138	37.230	99.801
FL20A-9	2.685	21.046	36.229	1.023	0.022	1.632	37.523	100.159

Table 1. Continued

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	Total
Quarry Phase A								
FL24A-1	3.187	21.199	36.409	1.373	0.045	1.338	36.728	100.279
FL24A-2	3.378	21.204	35.659	1.366	0.109	1.190	36.070	98.974
FL24A-3	3.197	21.062	36.042	1.399	0.091	1.100	36.605	99.496
FL24A-4	3.090	21.227	36.149	1.286	0.062	0.902	37.507	100.221
FL24A-5	2.973	21.025	36.104	1.333	0.077	0.841	37.783	100.134
FL24A-6	2.808	21.049	35.861	1.330	0.048	0.731	37.794	99.620
FL24A-7	2.900	20.838	36.247	1.102	0.062	0.677	38.102	99.926
FL24A-8	3.105	21.049	36.303	1.111	0.063	0.719	37.600	99.949
FL24A-9	3.199	21.063	36.293	1.496	0.017	1.134	36.352	99.553
FL24B-1	3.179	21.127	35.942	1.394	0.044	1.372	36.752	99.808
FL24B-2	3.464	21.153	35.707	1.406	0.062	1.395	36.152	99.337
FL24B-3	3.438	21.301	35.600	1.419	0.093	1.537	35.525	98.912
FL24B-4	3.343	21.160	35.670	1.409	0.108	1.461	35.712	98.862
FL24B-5	3.238	21.163	35.810	1.409	0.092	1.536	35.954	99.202
FL24B-6	3.214	21.237	35.930	1.344	0.095	1.503	35.736	99.059
FL24B-7	3.172	21.206	35.720	1.297	0.129	1.541	36.062	99.126
FL24B-8	3.159	21.367	36.660	1.233	0.046	1.595	35.980	100.039
FL24B-9	3.221	21.261	35.333	1.353	0.113	1.535	36.318	99.133
FL24C-1	3.142	21.146	35.950	1.372	0.021	1.404	36.672	99.706
FL24C-2	3.409	21.178	35.790	1.427	0.075	1.468	35.689	99.034
FL24C-3	3.381	21.276	35.840	1.394	0.170	1.543	35.554	99.157
FL24C-4	3.359	21.350	35.760	1.373	0.141	1.590	35.610	99.182
FL24C-5	3.395	21.212	35.950	1.414	0.139	1.715	35.571	99.394
FL24C-6	3.286	21.274	35.460	1.423	0.097	1.695	35.641	98.875
FL24C-7	3.299	21.225	35.820	1.395	0.118	1.609	35.680	99.145
FL24C-8	3.223	21.395	35.816	1.445	0.106	1.728	35.614	99.324
FL24C-9	3.251	21.196	36.010	1.409	0.101	1.651	35.587	99.204
FL24D-1	3.343	21.324	35.805	1.384	0.029	1.374	36.396	99.654
FL24D-2	3.434	21.370	35.460	1.367	0.089	1.351	36.034	99.103
FL24D-3	3.481	21.637	35.690	1.390	0.088	1.375	35.419	99.080
FL24D-4	3.530	21.464	35.421	1.384	0.118	1.435	35.950	99.301
FL24D-5	3.355	21.282	35.946	1.378	0.097	1.352	35.642	99.051
FL24D-6	3.015	21.350	35.609	1.351	0.078	1.449	36.117	98.968
FL24D-7	3.428	21.479	35.619	1.328	0.029	1.380	36.098	99.359
FL24D-8	3.397	21.565	35.819	1.420	0.070	1.303	36.147	99.719
FL24D-9	3.061	21.512	35.579	1.371	0.015	1.327	36.737	99.600

Table 1. Continued

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	Total
Quarry Phase B								
FL39A-1	3.542	21.328	35.824	1.377	0.026	1.011	36.031	99.138
FL39A-2	3.490	21.293	35.757	1.378	0.069	0.935	36.610	99.531
FL39A-3	3.305	21.186	35.651	1.164	0.066	0.806	37.332	99.509
FL39A-4	3.080	21.297	35.156	1.202	0.058	0.638	37.691	99.120
FL39A-5	2.899	21.166	35.655	1.094	0.059	0.568	38.329	99.768
FL39A-6	2.705	21.162	35.581	1.068	0.079	0.549	38.606	99.749
FL39A-7	2.651	21.110	35.561	1.047	0.048	0.494	38.953	99.862
FL39A-8	2.593	21.153	35.410	1.033	0.076	0.514	38.899	99.675
FL39A-9	2.593	21.027	35.378	0.992	0.083	0.434	39.233	99.737
FL39B-1	2.652	20.959	35.520	1.357	0.028	1.213	37.595	99.323
FL39B-2	3.461	21.192	35.659	1.336	0.030	1.103	36.513	99.293
FL39B-3	3.643	21.209	35.776	1.366	0.043	1.197	35.858	99.091
FL39B-4	3.679	21.293	35.606	1.350	0.055	1.179	35.986	99.147
FL39B-5	3.693	21.456	35.620	1.370	0.078	1.222	35.656	99.093
FL39B-6	3.583	21.129	35.972	1.445	0.092	1.226	35.693	99.140
FL39B-7	3.565	21.179	35.467	1.494	0.120	1.244	35.958	99.026
FL39B-8	3.620	21.250	35.736	1.501	0.136	1.253	35.545	99.041
FL39B-9	3.543	21.196	35.819	1.456	0.119	1.340	35.641	99.112
FL39C-1	3.645	21.307	35.827	1.461	0.111	1.067	35.638	99.056
FL39C-2	3.671	21.536	35.486	1.449	0.097	1.190	35.727	99.155
FL39C-3	3.694	21.431	35.615	1.476	0.089	1.272	35.679	99.256
FL39C-4	3.572	21.392	35.752	1.470	0.110	1.314	35.671	99.281
FL39C-5	3.635	21.357	35.819	1.469	0.100	1.316	35.347	99.041
FL39C-6	3.564	21.485	35.627	1.462	0.113	1.372	35.526	99.149
FL39C-7	3.532	21.458	35.694	1.504	0.116	1.339	35.395	99.037
FL39C-8	3.497	21.339	35.637	1.489	0.085	1.378	35.614	99.039
FL39C-9	3.580	21.426	35.826	1.483	0.114	1.272	35.496	99.195
FL39D-1	3.526	21.512	35.348	1.371	0.014	1.065	36.594	99.430
FL39D-2	3.482	21.235	35.232	1.041	0.036	0.812	37.471	99.306
FL39D-3	3.091	21.213	35.493	0.990	0.102	0.654	37.429	98.972
FL39D-4	2.800	21.313	35.548	1.032	0.076	0.490	38.218	99.477
FL39D-5	2.777	21.117	35.421	1.064	0.069	0.557	38.562	99.567
FL39D-5	2.924	21.194	35.437	1.170	0.060	0.698	37.987	99.468
FL39D-7	3.158	21.249	35.367	1.151	0.104	0.776	37.387	99.192
FL39D-8	3.407	21.253	35.426	1.206	0.126	0.957	36.636	99.010
FL39D-9	3.528	21.258	35.789	1.195	0.112	0.994	36.627	99.502

Table 2. Garnet delta ^{18}O analyses

Sample	$\delta^{18}\text{O}$ ‰ VSMOW	2SD \pm ‰	Sample	$\delta^{18}\text{O}$ ‰ VSMOW	2SD \pm ‰	Sample	$\delta^{18}\text{O}$ ‰ VSMOW	2SD \pm ‰	Sample	$\delta^{18}\text{O}$ ‰ VSMOW	2SD \pm ‰
Loon Lake											
FL19A-1	9.76	0.23	FL19B-1	9.38	0.31	FL19C2-1	9.97	0.26	FL20A-1	9.99	0.26
FL19A-2	10.10	0.23	FL19B-2	9.96	0.31	FL19C2-2	9.82	0.26	FL20A-2	10.25	0.26
FL19A-3	10.35	0.23	FL19B-3	10.05	0.31	FL19C2-3	9.61	0.26	FL20A-3	10.27	0.26
FL19A-4	10.13	0.23	FL19B-4	9.78	0.31	FL19C4	9.78	0.26	FL20A-4	10.5	0.26
FL19A-5	10.15	0.23	FL19B-5	10.04	0.31	FL19C-5	9.78	0.26	FL20A-5	10.08	0.26
FL19A-6	10.34	0.23	FL19B-6	9.9	0.31	FL19C-6	10.02	0.26	FL20A-6	10.19	0.26
FL19A-7	10.29	0.23	FL19B-7	9.84	0.31	FL19C-7	10.01	0.26	FL20A-7	10.23	0.26
FL19A-8	10.31	0.23	FL19B-8	10.18	0.31	FL19C-8	10.03	0.26	FL20A-8	10.34	0.26
FL19A-9	10.15	0.23	FL19B-9	10.09	0.31	FL19C-9	10.16	0.26	FL20A-9	10.18	0.26
Quarry Phase A											
FL24A-1	9.91	0.21	FL24B-1	9.83	0.17	FL24C-1	9.41	0.22	FL24D-1	10.11	0.30
FL24A-2	10.12	0.21	FL24B-2	10.66	0.17	FL24C-2	10.24	0.22	FL24D-2	10.73	0.30
FL24A-3	10.94	0.21	FL24B-3	10.33	0.17	FL24C-3	10.19	0.22	FL24D-3	10.86	0.30
FL24A-4	10.22	0.21	FL24B-4	10.76	0.17	FL24C-4	10.62	0.22	FL24D-4	10.81	0.30
FL24A-5	10.40	0.21	FL24B-5	10.62	0.17	FL24C-5	10.83	0.22	FL24D-5	10.76	0.30
FL24A-6	10.75	0.21	FL24B-6	10.84	0.17	FL24C-6	10.46	0.22	FL24D-6	10.59	0.30
FL24A-7	10.04	0.21	FL24B-7	10.38	0.17	FL24C-7	10.54	0.22	FL24D-7	10.63	0.30
FL24A-8	9.78	0.21	FL24B-8	10.3	0.17	FL24C-8	10.64	0.22	FL24D-8	10.64	0.30
FL24A-9	10.48	0.21	FL24B-9	10.41	0.17	FL24C-9	10.4	0.22	FL24D-9	10.99	0.30
Quarry Phase B											
FL39A-1	10.16	0.06	FL39B-1	10.52	0.17	FL39C-1	10.36	0.23	FL39D-1	10.67	0.23
FL39A-2	10.25	0.06	FL39B-2	10.46	0.17	FL39C-2	10.23	0.23	FL39D-2	10.21	0.23
FL39A-3	10.15	0.06	FL39B-3	10.22	0.17	FL39C-3	10.21	0.23	FL39D-3	9.85	0.23
FL39A-4	10.23	0.06	FL39B-4	10.26	0.17	FL39C-4	9.88	0.23	FL39D-4	9.65	0.23
FL39A-5	10.01	0.06	FL39B-5	9.93	0.17	FL39C-5	10.06	0.23	FL39D-5	9.7	0.23
FL39A-6	10.25	0.06	FL39B-6	9.8	0.17	FL39C-6	9.77	0.23	FL39D-5	9.68	0.23
FL39A-7	9.78	0.06	FL39B-7	9.97	0.17	FL39C-7	9.89	0.23	FL39D-7	9.86	0.23
FL39A-8	9.94	0.06	FL39B-8	9.86	0.17	FL39C-8	9.78	0.23	FL39D-8	9.8	0.23
FL39A-9	10.00	0.06	FL39B-9	10.04	0.17	FL39C-9	9.8	0.23	FL39D-9	9.58	0.23

Table 3. Zircon $\delta^{18}\text{O}$ ‰ analyses

	$\delta^{18}\text{O}$ ‰	2SD \pm ‰		$\delta^{18}\text{O}$ ‰	2SD \pm ‰		$\delta^{18}\text{O}$ ‰	2SD \pm ‰
Loon Lake			Quarry Phase A			Quarry Phase B		
FLZircon B01	11.61	0.19	FLZircon R02	11.62	0.24	FLZircon G01	11.23	0.22
FLZircon B02	11.2	0.19	FLZircon R03	9.95	0.24	FLZircon G02	11.56	0.22
FLZircon B03	11.63	0.19	FLZircon R04	10.58	0.24	FLZircon G03	11.85	0.22
FLZircon B04	9.41	0.19	FLZircon R05	11.49	0.24	FLZircon G04	11.62	0.22
FLZircon B05	11.83	0.19	FLZircon R06	10.35	0.26	FLZircon G05	11.94	0.22
FLZircon B06	10.12	0.19	FLZircon R07	10.63	0.26	FLZircon G06	12.39	0.22
FLZircon B07	11.9	0.19	FLZircon R08	9.77	0.26	FLZircon G07	11.48	0.22
FLZircon B08	9.22	0.19	FLZircon R09	11.69	0.26	FLZircon G08	11.36	0.22
FLZircon B09	11.76	0.19	FLZircon R10	10.72	0.26	FLZircon G09	12.16	0.22
FLZircon B10	11.59	0.19	FLZircon R11	10.34	0.26	FLZircon G10	12.27	0.22
FLZircon B11	11.53	0.24	FLZircon R12	9.78	0.26	FLZircon G11	11.62	0.22
FLZircon B12	11.14	0.24	FLZircon R13	10.57	0.26	FLZircon G12	12.13	0.22
FLZircon B13	11.27	0.24	FLZircon R14	10.63	0.26	FLZircon G13	12.15	0.22
FLZircon B14	10.27	0.24	FLZircon R15	9.97	0.26	FLZircon G14	10.94	0.22
FLZircon B15	9.71	0.24	FLZircon R16	10.34	0.26	FLZircon G14	11.77	0.22
FLZircon B16	9.11	0.24	FLZircon R17	10.16	0.26	FLZircon G16	11.79	0.22
FLZircon B17	11.27	0.24	FLZircon R18	11.15	0.26	FLZircon G17	12.39	0.22
FLZircon B18	11.66	0.24	FLZircon R19	10.32	0.26	FLZircon G18	11.79	0.22
FLZircon B19	11.55	0.24	FLZircon R20	10.78	0.26	FLZircon G19	11.53	0.22
FLZircon B20	11.38	0.24				FLZircon G20	11.7	0.22