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ABSTRACT

Combined Hf-O isotopic analyses of zircons from tuffs and lavas within
the Sierra Madre Occidental (SMO) silicic large igneous province are probes of
petrogenetic processes in the lower and upper crust. Existing petrogenetic and
tectonomagmatic models diverge, having either emphasized significant crustal
reworking of hydrated continental lithosphere in an arc above the retreating Far-
allon slab or significant input of juvenile mantle melts through a slab window
into an actively stretching continental lithosphere. New isotopic data are remark-
ably uniform within and between erupted units across the spatial and temporal
extent of the SMO, consistent with homogeneous melt production and evolu-
tion. Isotopic values are consistent with enriched mantle magmas (80%) that
assimilated Proterozoic paragneisses (~20%) from the lower crust. §'*0,, ., values
are consistent with fractionation of mafic magma and not with assimilation of
hydrothermally altered upper crust, suggesting that the silicic magmas evolved
at depth. Isotopic data agree with previous interpretations where voluminous
juvenile melts entered the lithosphere during the transition from a continental
arc experiencing slab rollback (Late Eocene) to the arrival of a subducting slab
window (Oligocene and Early Miocene) and failure of the upper plate leading to
the opening of the Gulf of California (Late Miocene). An anomalously large heat
flux and extension of the upper plate allow for the sustained fractionation of the
voluminous SMO magmas and assimilation of the lower crust.
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H INTRODUCTION

This is a study of the petrogenesis of voluminous rhyolites in the Sierra
Madre Occidental (SMO) silicic large igneous province (SLIP) of northwest-
ern Mexico (Fig. 1) through the lens of Lu-Hf and O isotopes in zircons dated
by U-Pb geochronology. The SMO is the largest Cenozoic SLIP (Bryan and
Ferrari, 2013) and is therefore an important natural laboratory to examine the
petrogenesis of voluminous silicic magmas. Moreover, the SMO is an atypi-
cal SLIP not associated with continental breakup (e.g., Chon Aike) nor with a
mantle hotspot (e.g., Yellowstone). Specifically, this is a regional-scale study
of the northern and central SMO that tests competing hypotheses for the
formation of the eponymous Eocene to Miocene ignimbrite flare-up events
and offers insights into the formation of voluminous silicic magmas in an
extending continental arc setting (e.g., Taupo, etc.). Through analysis of 49
rhyolitic to dacitic ignimbrites and lavas, we reveal ~25 m.y. of monotonous
silicic magma production associated with fractionation of mantle-derived
juvenile melts mixing with lower-crustal anatectic melts throughout the SMO.
We demonstrate that Hf and O isotopic values are compatible with a largely
primitive source for melts and heat in the mantle and only ~20% recycling of
paragneissic continental crust. This analysis supports one set of models and
strongly refutes others that argue for a dominantly crustal recycling petrogen-
esis and, therefore, emphasizes the importance of material and heat transfer
from the mantle to the continental crust during arc rifting.

Sierra Madre Occidental Silicic Large Igneous Province

The middle Eocene to early Miocene SMO (Fig. 1) is the most voluminous
(~3.9 x 10° km?; Bryan et al., 2008) Cenozoic SLIP on Earth (Bryan and Ferrari,

Andrews et al. | Petrogenesis of voluminous silicic magmas in the Sierra Madre Occidental



https://pubs.geoscienceworld.org/geosphere/pages/geosthemes
http://geosphere.gsapubs.org
https://orcid.org/0000-0002-7911-702X
https://orcid.org/0000-0002-8762-3301
https://orcid.org/0000-0002-0620-5459
https://orcid.org/0000-0002-1138-4527
https://doi.org/10.1130/GES02430.1
mailto:graham.andrews@mail.wvu.edu
https://doi.org/10.1130/GES02430.1
https://doi.org/10.1130/GES02430.1
https://www.geosociety.org/pubs/openAccess.htm
https://www.geosociety.org/pubs/openAccess.htm
https://www.geosociety.org
https://orcid.org/0000-0002-7911-702X
https://orcid.org/0000-0002-8762-3301
https://orcid.org/0000-0002-0620-5459
https://orcid.org/0000-0002-1138-4527
mailto:graham.andrews@mail.wvu.edu
mailto:cjbusby@ucdavis.edu
mailto:srbrown19@gmail.com
mailto:chris.fisher@uwa.edu.au
mailto:chris.fisher@uwa.edu.au
mailto:pablo.davila@ipicyt.edu.mx
mailto:ariel23tx@gmail.com
mailto:vervoort@wsu.edu
mailto:hdpettus@mix.wvu.edu
mailto:fwmcdowell@yahoo.com
mailto:bpmurray@cpp.edu
http://geosphere.gsapubs.org

GEOSPHERE | Volume 18 | Number 3

MAZATZAL (1.7 - 1.6 Ga)
(1.35- 1.1 Ga)

Trans-Pecos

°
Los Mochis

GUERRERO
SUPERTERRANE "\ aas
(Mesozoic)

Pacific Ocean

Mazatlan.
Occidental

|:| Eocene - Miocene silicic volcanic rocks

northern - central - southern transects
CC - Chihuahua City, H - Hermosillo

LLANO / GRENVILLE

Guadalajara

1
110°W

2013) and is host to the world’s largest epithermal Ag province (Camprubi et
al., 2003). The ash dispersed during the SMO ignimbrite eruptions has been
suggested as a driver of global cooling at the Eocene-Oligocene transition and
the onset of Antarctic glaciation (Cather et al., 2009; Jicha et al., 2009). The
SMO buries ~400,000 km? beneath a 1-1.5 km thickness of silicic ignimbrites
and lavas (Fig. 1; McDowell, 2007; Bryan et al., 2008), forming a central pla-
teau with mean elevation 2000 m above sea level (Fig. 2). The margins of the
SMO are extended, tilted, and truncated by normal fault-bounded graben and
half-graben of the southern Basin and Range province in the east (Henry and
Aranda-Gomez, 1992, 2000) and the Gulf of California extensional province
in the west (e.g., Ferrari et al., 2013). The elevated core is less extended and

T730°N
Figure 1. Simplified geological map of north-
western Mexico depicting the Sierra Madre
Occidental (SMO) silicic large igneous province,
inferred basement blocks, and the locations
of the three transects discussed in this paper.
0. . SMO outline adapted from Ferrari et al. (2002).
)};‘ ‘. Basement block and terrane boundary outlines
.. Qk%\/. AR adapted from Campa and Coney (1983), Kep-
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is characterized by subhorizontal ignimbrite sheets (>10 km?® each) exposed
for tens of kilometers in canyon walls and on peaks and ridges, with iso-
lated clusters of contemporaneous lava domes and several large calderas
(e.g., Swanson et al., 2006).

The SMO forms the southern and largest part of an ignimbrite flare-up that
extended from British Columbia to Mexico from the Eocene to the earliest
Miocene, widely interpreted to result from rollback of the Farallon slab that
had been subducting under North America since the Jurassic (e.g., Sedlock
et al., 1993). The silicic SMO arc developed on the remnants of the Paleocene-
Eocene continental arc that had formed during slab flattening, which in turn,
was constructed on the Mesozoic continental margin (Fig. 1). However, the
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Murray et al., 2013), or both (e.g., Mahar et al., 2019), limiting understand-
ing of regional variations and patterns. The available age data are relatively
sparse compared to the total area and the total age range and are probably
biased by accidental over-sampling of some widespread units (e.g., Vista Tuff;
McDowell and Mclntosh, 2012) and under-sampling in less accessible areas
and in poorly exposed, non-welded units. The few regional-scale compilations
available are focused on K/Ar and Ar/Ar geochronology and the first-order

SMO is understudied compared to other parts of the Cordilleran arc, and
much of it remains unexplored: even basic knowledge of its internal architec-
ture, stratigraphy, and geochronology is lacking. What understanding there is
comes from studies along the few roads that exist, and a few regional-scale
geophysical studies (e.g., Bonner and Herrin, 1999; Purucker et al., 2007). Many
published studies of the northern and central SMO are constrained by either
a small number of samples (e.g., Bryan et al., 2008), a small study area (e.g.,
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Figure 2. Locations of samples along the northern (A), central (B), and southern (C) transects.
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geological history of the SMO (Ferrari et al., 2007; McDowell and Mclntosh,
2012; Ferrari et al., 2018).

Silicic volcanism generally migrated southwestward after slab rollback
began at ca. 40 Ma (Damon et al., 1981). The northern and central SMO expe-
rienced several localized, ~2-m.y.-long, ignimbrite flare-ups throughout the
period with ca. 46-42 Ma and 38 Ma (mainly north of Chihuahua City; Fig. 2A),
36-28 Ma (widespread), and ca. 24-18 Ma (southwestern margins) being sig-
nificant timespans although not necessarily discrete events (McDowell, 2007;
McDowell and Mclntosh, 2012). The largest flare-up pulse was at 36-28 Ma,
with a total volume flux of ~3.0 x 10° km?® (Bryan and Ferrari, 2013). The late
Oligocene pulse (25-23 Ma) encroached on the western margins of the north-
ern and central SMO where it is unconformable upon and recycles zircon from
the much more voluminous middle Eocene-middle Oligocene (36-28 Ma)
volcanic succession (e.g., Murray et al., 2013; Mahar et al., 2019). This pulse
is contemporaneous with the oldest parts of the predominantly early Miocene
(24.5-18 Ma) ignimbrite flare-up in the southernmost SMO (Ferrari et al., 2007;
Aguirre-Diaz et al., 2008; Bryan and Ferrari, 2013; Ferrari et al., 2013), which
we will not discuss further.

Volcanism appears to have developed as ~100-150-km-wide clusters of
similar-aged calderas, lava dome complexes, and fissure vents at different
times along each transect (McDowell and Keizer, 1977; Swanson and McDow-
ell, 1984, 1985; Swanson et al., 2006; McDowell and MclIntosh, 2012; Ferrari et
al., 2013; Murray et al., 2013). The relative paucity of calderas identified in the
SMO compared to the number of thick and extensive ignimbrites suggests that
either many calderas remain to be discovered (e.g., Swanson and McDowell,
1984; Henry et al., 2012; McDowell and MciIntosh, 2012) or that many erup-
tions were fed by fissure vents bounding or within graben (Aguirre-Diaz and
Labarthe-Hernandez, 2003; Torres-Hernandez et al., 2006; Aguirre-Diaz et al.,
2008; Tristan-Gonzalez et al., 2008; Murray et al., 2013).

Competing Models of SMO Petrogenesis

The majority of SLIPs are associated with either intracontinental hotspot
volcanism (e.g., Yellowstone-Snake River Plain), continental rifting (e.g., Whit-
sunday), or both (e.g., Etendeka-Parand), and may or may not be associated
with voluminous mafic volcanism (Bryan and Ferrari, 2013). The SMO is unusual
among SLIPs for being an arc; although large calderas and large-volume rhyo-
litic eruptions occur in arc settings (e.g., Altiplano-Puna, Bolivia; Taupo volcanic
zone, New Zealand; Kyushu arc, Japan), none match the scale and duration
of the SMO. Attempts to explain the tectonic influences on the petrogenesis
of SMO magmas fall into two categories: (1) waning of the Cordilleran arc
accompanied by rollback of the Farallon slab (e.g., Wark, 1991; McDowell and
Mauger, 1994; McDowell and Mclintosh, 2012); and (2) breakup of the Farallon
slab and opening of a slab window beneath western Mexico (Mahar et al., 2019),
accompanied by waxing lithospheric extension leading to seafloor spreading
in the Gulf of California (Ferrari et al., 2018, and references therein).

Geochemical studies of the SMO rhyolites, coeval mafic lavas, and Ceno-
zoic xenolith localities in the 1980s and 1990s were dominated by whole-rock
elemental and isotopic (Sr and Nd) analyses and modeling to test between petro-
genesis through assimilation of continental crust, fractionation of mantle-derived
mafic magmas, or a combination of the two (assimilation-fractional crystalli-
zation [AFC]). Such studies produced contradictory interpretations for rhyolite
petrogenesis. For example, Ruiz et al. (1988b) inferred up to 100% melting and
recycling of Paleozoic and older lower continental crust, and Bryan et al. (2008)
interpreted zircon solubility and age data as evidence in favor of crustal melting.
Alternatively, relatively closed-system fractionation of arc-derived mafic and
intermediate magmas with <20% lower-crustal contamination satisfies AFC mix-
ing models in several studies (e.g., Lanphere et al., 1980; Cameron and Cameron,
1985; Cameron et al., 1986; Wark, 1991; Smith et al., 1996). Analysis by Mahar et
al. (2019) of Hf isotopes in zircons from southwestern Chihuahua suggests that
90-50 Ma plutons and early Miocene SMO rhyolites share a common source in
the subcontinental lithospheric mantle and were produced by AFC processes.
Analysis by Ferrari et al. (2018) of Oligocene to Pliocene mafic and silicic rocks
throughout northwestern Mexico reveals a transition from calc-alkaline mag-
mas that incorporated continental crust (low-negative eNd) before 20 Ma and
increasingly tholeiitic, uncontaminated, mantle-derived magma after that. They
interpret this to reflect the cessation of arc magmatism and the increasing dom-
inance of crustal extension and eventual tapping of the asthenospheric mantle.

This Study

This paper focuses on the isotopic geochemistry of zircon to elucidate the
petrogenesis of SMO magmas and to assess competing tectonomagmatic
models. Combined zircon U-Pb, Hf, and O studies are excellent tools for study-
ing the origin of igneous and metaigneous rocks and have been applied to
high-grade metamorphic assemblages (e.g., Zheng et al., 2006; Hiess et al.,
2009, 2011) and batholith complexes (e.g., Kemp et al., 2007; Appleby et al.,
2010; Bolhar et al., 2012; Zhao et al., 2013) to evaluate crustal growth mecha-
nisms and rates (e.g., Hawkesworth and Kemp, 2006; Kemp et al., 2006). This
0O-Hf-U/Pb in zircon method has been applied to only a few silicic volcanic sys-
tems including Yellowstone-Snake River Plain SLIP (e.g., Stelten et al., 2013;
Coldn et al., 2018) and Iceland (e.g., Banik et al., 2018; Carley et al., 2020); this
is the first application to the SMO.

Our samples come from the northern and central SMO collected from three
transects: northern, central, and southern (Figs. 1 and 2), all in the ancestral
homelands of the displaced Raramuri people. From north to south: (A) the
~250-km-long northern transect, which extends from Chihuahua City to the
Hermosillo area (Cochemé and Demant, 1991; Swanson et al., 2006; McDowell,
2007; Murray et al., 2013, 2015; Murray and Busby, 2015); (B) the ~150-km-long
central transect in the Chihuahua-Durango border region west of Parral; and
(C) the ~100-km-long southern transect from Durango to just east of Mazatlan
(Aguirre-Diaz and McDowell, 1991, 1993; Ferrari et al., 2007; Aranda-Gomez
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et al., 2015). This is the first study of the central transect. All three transects
include samples from the high-elevation SMO plateau and the adjacent rifted
eastern margins of the southern Basin and Range (Fig. 2), thus allowing us to
look for variations across the complete extent and timespan of the SMO and
across the structural boundaries of the non-extended core.

B METHODS

Zircon (ZrSiQ,) is uniquely able to record isotopic changes during rhyolite
petrogenesis because it is abundant, refractory, and preserves useful textural
information. It is often one of the only phases present in magmas erupted
close to their liquidus. Zircon readily incorporates Hf over Lu (Lu/Hf ~0.002)
in substitution for Zr (0.5-2.0 wt%; Kinny and Maas, 2003) and has a strong
affinity for U but not for Pb, making it ideal for both U-Pb geochronology and
Hf isotope analyses. Importantly, zircon allows for only very slow diffusion
of O and cations; therefore, O and Lu-Hf isotope ratios in zircon are typically
not reset by metamorphism or metasomatism (Valley et al., 1994; Kinny and
Maas, 2003; Page et al., 2007; Bowman et al., 2011).

Oxygen and Hf isotopes inform on the sources of magmas (Hawkesworth
and Kemp, 2006). Hafnium isotopes are radiogenic and are sensitive to the ages
of rocks being melted (Kinny and Maas, 2003); conversely, O isotopes are stable
and reflect the specific oxygen isotope compositions of the melts from which
they crystalized (Valley, 2003). Mantle-derived magmas are expected to have
strongly positive eHf values and §'®0,,, values ~5.3%. + 0.3 (1c; Valley, 2003).

7.0 = 0.2%0

15.0kV x550 OTHER2

100um  15.0kV x800 OTHER2

41.5+1.7 Ma
39.4 +£0.9 Ma

7.0 £ 0.2%0

«O
6.9 £ 0.3%o it 6.8 + 0.2%0

15.0kV x500 OTHER2 100um 15.0kV x420 OTHER2

Anatectic magmas are expected to have widely variable §'®0,;,, values and eHf
values correlated to the nature of the protolith: low-positive to low-negative for
melting of metaigneous rocks and strongly negative for metasedimentary rocks.

Sample Preparation

Zircon separates were prepared by standard methods at the University of
California Santa Barbara (UCSB) and California State University Bakersfield
(CSUB). Samples were crushed by hand with a mortar and pestle and then by
jaw crusher and BICO disk mill. Sand-sized crush was sieved to remove grains
greater than 200 ym and then was density separated on a water table. The
densest fractions underwent magnetic separation, followed by separation of
apatite from zircon by flotation in methylene iodide (MEI). Zircon concentrates
were mounted in Epofix epoxy and imaged by scanning electron microscopy
and cathodoluminescence (CL) at CSUB, the University of Wisconsin Madison,
and the University of Idaho.

Zircon recovery varied from minimal (<5 grains per sample) to abundant
(1000 s), with no systematic correlations between abundance and age or loca-
tion. Zircon are uniformly prismatic and oscillatory zoned under CL (Fig. 3).
Grains typically range from ~40-150 mm in length and are usually euhedral
or subhedral. Many grains contain melt inclusions. High CL contrast cores are
common and subhedral, but only very rarely display internal zoning discordant
to the outer rims. Zircon grains were analyzed for U-Pb, Hf, and O isotopes in
the same core and rim locations determined by CL imaging.

Figure 3. Example of coincidence of
spot-analyses by secondary ion mass
spectrometry (SIMS) (University of
Wisconsin Madison) and laser abla-
tion split-stream (LASS) (Washington
State University) in cathodolumines-
cence (CL) images of oscillatory zoned
euhedral and subhedral zircon grains
from sample RED. SIMS spot diameter
is ~15 pm and LASS spot diameter is
~40 pm. 2°%Ph/28U crystallization ages
are shown in yellow, eHf; values in red,

40.9£1.7 Ma and §'°0,,,, values in white.

100um  15.0kV x600 OTHER2
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Oxygen Isotope Analysis

Oxygen isotopes in zircons were measured at the University of Wiscon-
sin-Madison (Kita et al., 2009; Valley and Kita, 2009) and the University of
California Los Angeles secondary ion mass spectrometry (SIMS) laboratories.

Samples from the northern and southern transects were analyzed on the
CAMECA IMS-1280 ion microprobe at the WiscSIMS Laboratory, University of
Wisconsin-Madison against the KIM-5 zircon standard (80 = 5.09 + 0.06%o (10)
Vienna standard mean ocean water [V-SMOWI]; Valley, 2003). Samples were
cast within 7 mm of the center of 25.4-mm-diameter epoxy mounts, ground
to approximate midsection, and polished. Sample relief was evaluated by
profilometer. Data were acquired in four 12-15 h sessions following the pro-
cedures described previously (Kita et al., 2009; Valley and Kita, 2009). Three
Faraday cup detectors were used to simultaneously analyze '*0-, O'H-, and
80-. Ratios of OH/O were background corrected against values on bracketing
anhydrous KIM-5 and provide a monitor of “water,” which might result from
inclusions or metamict zones within a zircon (Wang et al., 2014). Analyses
were conducted using a 1.9-2.2 nA primary Cs* beam with a spot diameter
of 10 um. The KIM-5 standard was analyzed four times between every batch
of 10-15 sample spots to calibrate analyses and evaluate possible drift. The
mean precision (1c0) of analyses is 0.15%.. Usually eight to ten analyses were
made on up to 12 different grains.

Oxygen isotopes from samples from the central transect were analyzed
on the CAMECA IMS-1290 ion microprobe at UCLA against the R33 (§'°0 =
5.55 + 0.04%o (10) V-SMOW; Valley, 2003) and Mud Tank (8'®0 = 5.03 + 0.10%o
(106) V-SMOW,; Valley, 2003) standards. Data were acquired in two 8-12 h ses-
sions following the procedures described by Trail et al. (2007). Analyses were
conducted using a focused 2-3 nA primary Cs* beam with a spot diameter
of 10-15 pm. Usually 10-12 analyses were made on up to 12 different grains.

Oxygen isotopes were measured in quartz phenocrysts from eight samples
(five from the northern transect and three from the southern transect) by laser
fluorination at the University of Wisconsin-Madison (Spicuzza et al., 1998; Val-
ley, 2003). Anhedral, 100-200-um-diameter quartz crystals were concentrated
by HF digestion of a coarse, sand-sized aggregate, and then were handpicked.
Samples were run against the UWG-2 standard (=5.8 + 0.15%. (15) V-SMOW;
Valley et al., 1995). Six quartz samples (four from the northern transect and
two from the southern transect) correspond with analyses of coexisting zircon
(samples CH03, CH97-7, N-99, SJ-54, K-LP-T, and SL-41).

Uranium-Lead and Lutetium-Hafnium Isotope Analysis

Zircons were subsequently analyzed by laser ablation-inductively coupled
mass spectrometry (LA-ICPMS) and SIMS to measure U-Pb and Lu-Hf analyzes.
Archived samples from the northern and southern transects were analyzed
for U-Pb and Hf simultaneously in ~8-11 grains by laser ablation split-stream
(LASS) ICPMS at Washington State University (40 um); ~10-12 additional U-Pb

ages were determined by LA-ICPMS (30 um) for each sample. The LASS setup
at Washington State University measures U/Pb and Lu-Hf isotopes simulta-
neously from a single ablation; the method is described in detail in Fisher et
al. (2014). Samples are ablated using a NewWave 213 nm Nd:YAG laser using
laser spot diameters of either 30 or 40 um. The laser was operated at 10 Hz
with a fluence of ~9-10 J/cm?. The ablated material is transported out of the
laser cell using helium carrier gas and is mixed with a small amount (5 mL/min)
of N, gas, which is added using a plastic “Y” split ~30 cm after exiting the
laser ablation system. The ablated sample+He+N, mixture is then split into
two separate paths, again using a “Y” split, an additional 30 cm downstream
from the point of N, gas addition. One path carries the ablated aerosol to a
ThermoScientific Element2 high-resolution ICPMS for U-Pb isotopic measure-
ment, and a second path carries the ablated aerosol to a ThermoScientific
Neptune MC-ICPMS for Lu-Hf isotopic measurement. Ar sample gas is added
to each path ~20 cm from the torch.

Samples from the central transect were analyzed at UCLA and at the Univer
sity of Arizona. U-Pb zircon geochronology was carried out in several analytical
sessions on the CAMECA ims 1270 ion microprobe at UCLA, using established
protocols for the analysis of Cenozoic zircon (Schmitt et al., 2003). Primary
beam intensities for mass-filtered '*O- were ~20 and ~40 nA with a spot size
of ~20-30 um with depths after analysis being approximately one-tenth of
the crater diameter. Oxygen flooding was used at the saturation pressure to
enhance sensitivity for Pb. A 2°*Pb-based common Pb correction was used
for reference zircon, whereas ?’Pb was used as a proxy for common Pb for
unknowns. Reproducibility of 26Pb*/238U ages for AS3 (1099 Ma; Paces and
Miller, 1993) used as a primary reference for the UO*/U* versus U-Pb relative
sensitivity calibration was ~2%-3% (relative), and accuracy of the weighted-
average 2°°Pb*/28U ages based on comparison with replicate analyses (n=10
each) on 91500 reference zircon was -1.5% (relative deviation from reported
age of 1065 Ma; Wiedenbeck et al., 1995). Th/U in unknown zircon was deter-
mined from measured #?Th*/238U* using a relative sensitivity factor calibrated
on measured 2%Pb*/26Pb* of AS3 reference zircon. Uranium abundances were
estimated from U*/**Zr,0* in relation to zircon 91500 with 81 ppm U (Wieden-
beck et al., 2004).

U-Pb analyses were corrected in IsoplotR (Vermeesch, 2018) for common
Pb based on measured 2°’Pb, assuming 2°’Pb/?*°Pb = 0.8283 (Sanudo-Wilhelmy
and Flegal, 1994) and disequilibrium based on ATh/U = 0.17 (Blundy and Wood,
2003). IsoplotR was used to calculate mean ages and to plot Tera-Wasserberg
concordia.

Hf isotopic analyses were conducted on grains already dated at UCLA using
a Nu Instruments HR multi-collector ICPMS connected to a Photon Machines
Analyte G2 excimer laser at the Arizona LaserChron Center at the University
of Arizona, following established analytical protocols described in Gehrels and
Pecha (2014). Instrument settings were optimized for laser ablation analysis,
and in-run analyses of seven different natural zircon standards (Mud Tank,
Temora, FC52, R33, Plesovice, and Sri Lanka) were analyzed and monitored
every 15-20 unknowns.
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Ablation with a laser beam diameter of 40 ym targeted zircon domains
directly over the earlier U-Pb analysis craters. All measurements were made
in static mode using Faraday collectors equipped with 3 x 10" Q resistors.
Each acquisition consisted of one 40-second integration for backgrounds (on
peak with laser idle) followed by 60 1-second integrations with the laser firing.
A 30-second delay between laser analyses provided adequate time to ensure
the previous sample was completely purged from the collector block. The
laser was run in constant energy mode with an output of 7.5 mJ (fluence ~8
J/cm?) and a pulse rate of 7 Hz. Isotope fractionation () was accounted for
by incorporating the method of Woodhead et al. (2004) with BHf determined
from the measured "°Hf/'"”’Hf and BYb from the measured 7*Yb/"7'Yb (except
for very low Yb signals); BLu is assumed to be the same as BYb; and an expo-
nential formula is used for fractionation correction. Yb and Lu interferences
are corrected by measurement of 76Yb/"7'Yb and "6Lu/'°Lu (respectively), as
advocated by Woodhead et al. (2004). Isotope ratios of "7°Hf/'"”’Hf = 0.73250
(Patchett and Tatsumoto, 1981); "3Yb/"7'Yb = 1.132338 (Vervoort et al., 2004);
76Yb/'7'Yb = 0.901691 (Vervoort et al., 2004; Amelin and Davis, 2005); '75Lu/"75Lu
= 0.02653 (Patchett, 1983) were used and all corrections are done line-by-line.
Data reduction protocols account for all standards and unknowns analyzed
during an entire session, and the BHf and BYb cut-offs were determined by mon-
itoring the average offset of the standards from their known values resulting
in a final standard offset of 0.0000001. "76Hf/"””Hf uncertainty on the standard
analyses for the entire session was determined to be 0.000037 (20).

B RESULTS

A total of 49 samples (Table 1) were described (Supplemental Material,
Section A') and analyzed including 21 from the northern transect, 22 from the
central transect, and six from the southern transect (Fig. 2). The samples include
silicic lavas and ignimbrites and encompass the full spatial and temporal range
of volcanism in the northern and central SMO. The only unit knowingly dupli-
cated was the Quemada Tuff (N-12 and N-88; Swanson et al., 2006).

Archived samples and mineral separates were analyzed from collections
at the University of Texas Austin and the University of Texas San Antonio.
Twenty-nine samples have a complete suite of §'°0, eHf;, and U/Pb age mea-
surements on individual zircon grains.

Lithostratigraphy

New samples along the central transect were collected during field work
along Federal Highways 23 and 24 in 2013 and 2015. Figure 4 is a graphic

'Supplemental Material. Sample details, U-Pb geochronology data, EarthChem Database references,
Lu-Hf data, oxygen isotope data, zircon saturation temperature data, and assimilation-fractional
crystallization modeling. Please visit https://doi.org/10.1130/GE0OS.S.19090274 to access the
supplemental material, and contact editing @geosociety.org with any questions.

log of a previously undocumented ~1.2-km-tall SMO section in a side can-
yon of the 1.5-km-deep Barranca de Rio Guerachi, west of Guachochi (Figs. 1
and 2); this section is exemplary of geology in the previously under-explored
Parral-Guachochi-Guadalupe y Calvo region and the northern and central SMO
generally (e.g., Swanson et al., 2006; Murray et al., 2013).

The base of the SMO is unconformable on Eocene (?) andesites and late
Cretaceous (?) granite. In this section, the lower third of the SMO is composed
of >500 m of silicic lavas and volcanic breccias, with minor debris flow deposits
and sandstones. The middle ~650 m is composed of horizontal, ~40-120-m-thick
ignimbrites separated by rare, thin, and altered fall deposits and paleosols. The
lower units are weakly to moderately welded, lithic-rich lapilli tuffs. The two
uppermost ignimbrites are very strongly welded with small fiamme and few lithic
clasts; the informally named “San Miguel Arcangel” ignimbrite (Fig. 4) is weakly
rheomorphic at its base and has a prominent basal vitrophyre. The uppermost
~350 m contains several welded dacitic ignimbrites, interbedded felsic volcani-
clastic layers with paleosols, and ~150 m of felsic and andesitic breccias. The top
~50 m is a sequence of mafic lavas. To the best of our knowledge, this is the first
detailed description and sampling of such a thick stratigraphic section in the SMO.

Petrology

All central transect samples and a small number of archived samples from
the northern and southern transects were available for whole-rock and petro-
graphic analysis. Additionally, several archived samples have published data
and descriptions available. All but five units are rhyolites, one of which is per-
alkaline (Acantilado tuff; CH97-7); the others are rhyodacites (3-71-2, SMO15_11,
and _52), dacite (SMO15_10), and latite (SMO15_41). The rhyolites are typically
10%-50% phyric with <30% lithic fragments, and a typical crystal assemblage of
plagioclase-quartz-biotite, + alkali feldspar, + hornblende. The groundmass is
usually thoroughly devitrified to a cryptocrystalline mass of interlocking quartz
and albite. Plagioclase, biotite, and hornblende are usually subhedral, broken
crystals; many plagioclases are sieve-textured. Quartz content is highly variable
within each sample, and all quartz crystals are anhedral and often embayed.
Hydrothermal alteration is pervasive in many samples with sericitized feld-
spars, chlorite replacement of amphibole, and vesicles filled with chalcedony.

U/Pb Geochronology

Zircon crystals are characteristically euhedral and oscillatory zoned and
typically vary from 50-150 pym in length (e.g., Fig. 3). Anhedral, metamict
cores are very rare. Melt inclusions are often abundant (>5 per crystal) and are
typically subparallel to the crystal margins. No anhedral or rounded, strongly
embayed, or metamict crystals were recovered.

U-Pb age data are presented in Figure 5. 25Pb/2®8U zircon crystallization
ages (n=578) were determined to constrain eHf; values and mean square of
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TABLE 1. SUMMARY OF MEAN AGE AND ISOTOPIC VALUES FOR SAMPLES FROM THE NORTHERN, CENTRAL, AND SOUTHERN TRANSECTS

Sample Rock type and name Latitude  Longitude U/Pb mean weighted age Hf 80 %o vsmow Published Ar age References
N W) n 206Pp +95% MSWD n eHf, +1o n  8"%0,, 1o 80, Ar age +26
2% age confidence (e) (%o) (%0)  (%0) (Ma) (Ma)
(Ma) (Ma)
Northern Transect*
3-20-4 Unnamed rhyolite tuff 28.3303 108.7094 18 2144 0.20 3.1 1 +0.5 - 9 5.80 0.40 - 23.3% 2.2 9
BM100305-2 Unnamed rhyolite lava 27.3080 108.2373 3 2124 1.19 23 - - - 8 6.40 0.20 - - - 12
BM100307-1 Cerro Salitrera rhyolite plug 27.3682 108.2579 5 21.70 0.39 5.3 4 4138 0.7 9 6.60 0.20 - - - 12
CHO1 Gallego rhyolite Lava and/or lava-like tuff  29.5366 106.3141 13 37.44 0.24 3.5 9 -26 0.9 9 6.70 0.40 - 37.7711 0.1 10, 11
CHO3 Bellavista rhyolite tuff 29.0813 106.3866 12 4557 0.29 7.8 8 +2.1 1.1 11 5.50 020 8.89 Ca. 48-46%° - 7,10
CHO06 Vista Tuff 28.2611  108.0665 29 32.22 0.13 4.5 13 +0.2 0.9 - - - 8.97 33.371"" 0.4 3,4,6,11
CH88-13 Chivato rhyolite tuff 28.4684 106.3008 27 41.26 0.25 4.9 15 +0.7 1.2 10 6.10 0.20 - ~42-40% 2.4-1.0 7,9
CH88-17 Sierra del Nido rhyolite lava 29.5232 106.5813 19 37.23 0.21 5.3 8 —-41 1.4 10 6.80 0.20 - ~38-36% 0.8-0.6 7
CH97-7 Acantilado peralkaline rhyolite tuff 29.0867 106.4816 15 30.39 0.17 5.3 15  +05 1.2 10 6.80 020 9.71 29.991"" 0.11 11
CUSI Unnamed rhyolite tuff 28.2137 106.7915 18 36.78 0.21 3.4 12 +0.6 1.3 12 6.60 0.30 - ~37-35% 1.1-0.6 7,9
J406 Bufa rhyolite tuff 28.2274 106.8355 16 39.83 0.17 5.0 10 +3.0 0.7 9 6.80 0.10 - - - 9,10, 11
MAJ Majalca Canyon rhyolite tuff 28.8210 106.4374 14 42.21 0.25 2.0 8 +0.2 1.0 7 6.00 0.20 - 451111 0.15 7,11
N-12 Quemada rhyolite tuff 27.5330 107.7954 8 31.13 0.33 5.4 3  +26 0.9 15  6.30 0.30 - - - 8
N-63 Unnamed felsic lava 28.0075 107.7942 3  29.95 0.59 4.9 2 434 0.9 5 5.80 0.30 - 29.4% 0.5 8
N-88 Quemada rhyolite tuff 28.1574 107.4484 4 29.29 0.39 6.8 2 436 1.7 8 6.30 0.20 - - - 8
N-99 Copper Canyon rhyolite tuff 27.5316  107.7933 18  29.93 0.22 6.9 8 +4.6 1.0 8 6.40 020 9.29 29.6218 0.32 8
RED Canada de Gato rhyolite lava 28.4248 106.2910 16 39.53 0.17 8.5 9 +18 0.6 8 5.80 0.30 - 40.851"" 0.13 9,11
SJ-3 San Felipe rhyolite tuff 28.0090 107.7030 10  32.90 0.26 3.1 1 +1.5 - 10 6.10 0.20 - 36.51° 3.2 6,8,9
SJ-42 Divisadero tuff 27.7303 107.7030 23 28.98 0.13 5.7 5 +45 1.2 - - - - 29.9%® 0.7 8
SJ-50 Cerro de la Luna rhyolite lava 28.0253 107.6926 10 29.22 0.15 3.1 4 439 0.6 10 6.00 0.10 - - - 8
SJ-54 Unnamed rhyolite lava 28.1420 107.5033 12 33.62 0.17 5.0 3 437 0.4 8 6.20 0.40 9.32 - - 8
Southern Transect*
1-70-1 Las Adjuntas rhyolite dome 23.7506 105.5118 2  26.95 0.33 1.0 - - - 9 6.60 0.20 - ~28-27+ - 1
2-71-1 Santaurio tuff 24.0409 104.6683 20 30.33 0.15 4.4 1 +2.3 - - - - 9.55 31.671" 0.09 1,2
3-71-2 El Salto rhyodacite tuff 23.7900 105.3700 11 2484 0.14 4.5 3 437 1.9 9 6.10 0.10 - 24.0t 0.05 1,2, 11
3-71-7 “plateau units” 23.6584 105.7403 13 23.79 0.21 3.6 - - - 7 6.30 0.20 - ~24-23% - 1
K-LP-T Aguilla rhyolite tuff 24.0088 104.3970 19 3256 0.15 9.3 5 -341 0.9 10 6.80 0.30 10.23 31.461"" 0.07 2,11
SL-41 Agua Nueva dome 25.3496 104.1521 4 4515 0.74 3.2 - - - 10 6.70 0.70 10.81 ~45.6% - 5
(continued)

GEOSPHERE | Volume 18 | Number 3

Andrews et al. | Petrogenesis of voluminous silicic magmas in the Sierra Madre Occidental



http://geosphere.gsapubs.org

TABLE 1. SUMMARY OF MEAN AGE AND ISOTOPIC VALUES FOR SAMPLES FROM THE NORTHERN, CENTRAL, AND SOUTHERN TRANSECTS (continued )

Sample Rock type and name Latitude  Longitude U/Pb mean weighted age Hf 880 %o ysmow Published Ar age References
N) W) n 2%5Pb +95% MSWD n eHf, +1c n  8"%0,, 1o 80, Ar age +206
28J age confidence (e) (%o) (%0) (%) (Ma) (Ma)
(Ma) (Ma)

Central Transect’

SMO13_03 Cerro El Caracol rhyolite lava 26.0830 106.9397 15 41.07 1.25 0.1 10 +15 0.6 12 6.59 0.14 - 40.601"% 0.13 14
SMO13_10 La Joya rhyolite lava 26.1018 106.7313 14 31.65 0.72 1.7 10 +1.7 14 - - - - 30.31113 0.17 14
SMO13_17 Unnamed rhyolite lava 26.2339 106.5353 12 35.70 0.68 3.5 4 +0.8 1.9 - - - - 31.47118 0.13 14
SMO13_27 Unnamed rhyolite lava 26.5352 106.3478 14 30.84 0.53 0.6 13 +3.4 2.1 - - - - 31.7911 0.38 14
SMO15_01 Unnamed rhyolite tuff 26.9755 106.3422 15 33.77 1.08 0.2 11 +4.4 1.5 13 6.42 0.27 - 31.53t18 0.12 14
SMO15_06 Unnamed rhyolite plug 26.8726  106.9798 16  33.07 0.70 0.2 8 +26 1.0 9 6.78 0.44 - 30.13t™8 - 14
SMO15_09 Unnamed rhyolite tuff 26.6934 107.3167 13  33.63 0.77 0.6 8 435 241 10 7.01 0.45 - 31.4611 0.07 14
SMO15_10 Unnamed quartz-latite tuff 26.6934 107.3167 16 32.34 0.58 1.5 6 +4.0 1.2 - - - - 31.721 0.12 14
SMO15_11 Unnamed rhyodacite tuff 26.7285 107.3071 14 31.21 0.60 0.6 9 +26 1.2 1 725 - - - - 14
SMO15_14 San Miguel Arcangel rhyolite tuff 26.7145 107.3138 13 29.50 0.61 0.4 8 +2.6 1.3 - - - - - - 14
SMO15_17 Unnamed rhyolite tuff 26.7285 107.3071 12 32.19 1.33 0.2 10 +1.9 1.4 10 6.84 0.32 - 29.26113 0.06 14
SMO15_23 Unnamed rhyolite lava 26.8465 106.8198 15  30.10 0.54 1.2 11 +1.1 1.3 - - - - 30.44113 0.16 14
SMO15_32 Unnamed rhyolite tuff 26.9460 106.4792 14 3272 0.80 0.6 8 +15 1.5 10 7.44 0.66 - - - 14
SMO15_35 Unnamed rhyolite tuff 26.9603 106.4186 14 34.61 0.52 0.6 8 +03 0.6 - - - - - - 14
SMO15_37 Unnamed rhyolite tuff 26.8653 106.2717 14 3217 0.77 0.1 10 +14 1.2 16 6.45 0.27 - - - 14
SMO15_41 Unnamed latite lava 26.8807 106.2625 15 38.57 1.06 0.1 10 +3.2 1.0 14 6.21 0.46 - 39.33118 0.50 14
SMO15_42 Unnamed rhyolite tuff 26.8951 106.2460 15 33.26 0.52 0.6 10 -0.1 1.0 - - - - 32,1111 0.11 14
SMO15_44 Unnamed rhyolite lava 26.8893 106.2428 15 35.02 0.71 0.8 7 -0.1 14 - - - - 30.861" 0.12 14
SMO15_46 Unnamed rhyolite tuff 26.8747 106.2244 13 27.27 0.57 0.9 11 -1.2 1.9 13 6.54 0.90 - 31.43t13 0.16 14
SMO15_49 Unnamed rhyolite tuff 26.8582 106.1178 14 33.11 0.56 0.8 10 +0.1 0.6 - - - - - - 14
SMO15_52 Los Bafios rhyodacite tuff 26.7205 106.2375 15 25.85 0.92 3.2 11 -0.8 2.6 12 6.96 0.79 - - - 14
SMO15_55 Unnamed rhyolite tuff 27.0684 106.2536 15 34.62 0.52 0.6 8 +0.6 0.7 - - - - - - 14

Note: Dash indicates not measured.

*Analyzed at the University of Wisconsin (secondary ion mass spectrometry [SIMS]-6'°0,,, and laser fluorination—5'®Q,,,) and Washington State University (laser ablation—inductively coupled plasma mass spectrometry
[LA-ICPMS] split stream - U/Pb and Hf).

SAnalyzed at the University of California Los Angeles (SIMS - U/Pb and 8'®Ozrc) and the University of Arizona (LA-ICPMS - Hf). VSMOW—YVienna standard mean ocean water.

TK-Ar age.

*Ar-Ar age.

1—McDowell and Keizer (1977).

2—Swanson et al. (1978).

3—Swanson and McDowell (1985).

4—Wark et al. (1990).

5—Aguirre-Diaz and McDowell (1991).

6—Wark et al. (1991).

7—McDowell and Mauger (1994).

8—Swanson et al. (2006).

9—McDowell (2007).

10—Bryan et al. (2008).

11—McDowell and Mclntosh (2012).

12—Murray et al. (2013).

13—Pack (2017).

14—This study.
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Figure 4. Lithological log of the Barranca de Rio Guerachi section, Chihuahua. Inset: (A) view of the upper-half of the section with the “San Miguel Arcangel”
ignimbrite at the base and the basalts of the Guachochi plateau at the top; and (B) view south across the Barranca de Rio Guerachi with the Sierra Madre
Occidental (SMO) plateau at Guadalupe y Calvo on the horizon. SCORBA —Southern Cordilleran basaltic andesite.
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Figure 5. U-Pb data for each sample presented as Tera-Wasserburg concordia plots (left) and weighted mean average ages (right).
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weighted deviates (MSWD) for WMAs are high, ranging from 2-9 and 0.1-4
for LA-ICPMS and SIMS, respectively. Mean weighted ages (WMA) of zircon
calculated in IsoplotR (Vermeesch, 2018) are presented in Table 1.

206Pp/238 zircon crystallization ages are unimodal within each sample and
are overwhelmingly concordant (Fig. 5). Age-distinct antecrysts ~3-8 m.y.
older than the mean age are common, usually two or three per sample.
Xenocrysts are very uncommon, and only 20 grains (~3%) older than 56 Ma
were analyzed in ten samples. Eighteen Cretaceous to Paleocene grains were
identified in samples 3-20-4 (n = 3), CHO1 (1), CHO3 (3), J406 (2), MAJ (2),
N-12(2), RED (1), SJ-3(1), SMO15_09(1), _10(1), and _14 (1). One Devonian
xenocryst (ca. 392 Ma; SMO15_09) and one Triassic xenocryst (ca. 237 Ma;
CHO03) were measured; no Lower Paleozoic or Precambrian xenocrysts were
measured.

Mean crystallization ages are within error of, or are up to 2 m.y. older than,
the corresponding published K/Ar or “°Ar/**Ar cooling ages (Table 1) except for
samples SMO15_17 and _44, which are 3 and 4 m.y. older, respectively, and
3-20-4, MAJ, SJ-3, SMO15_46 and _52, which are all significantly (2-4 m.y.)
too young. These anomalous ages are nevertheless used to calculate the cor-
responding eHf; value because of the insensitivity of the long half-life Lu-Hf
system to 1-10 m.y. age variations.

Lu-Hf Isotopes

Sierra Madre Occidental rhyolites have published mean whole-rock Hf con-
tents of ~9 + 4 ppm (n = 157), ranging from 2-20 ppm (http://portal.earthchem

.org; Supplemental Material, Section C [footnote 1]). Lu-Hf isotopes are pre-

sented as eHf; values based on the corresponding 2°Pb/?*®U crystallization
age of the same analytical spot (e.g., Fig. 3), grouped by sample (Fig. 6; Sup-
plemental Material, Section D). The highest single crystal analysis measured
is +7.7 epsilon units from a 393 Ma xenocryst in SMO15_09, and the lowest
is =16 epsilon units from a 39 Ma grain in SMO15_55. Most samples show
less than 2.5 epsilon units of variation between phenocrysts, and 16 uncer-
tainties are often <1.0 epsilon units (Table 1). Including eHf; and age outliers,
16 uncertainties are usually less than 1.5 epsilon units, and the largest is 2.6
epsilon units in SMO15_52. The highest mean eHf; value is +4.6 epsilon units
+ 1.0 (N-99; 29.93 Ma), and the lowest is —4.1 epsilon units = 1.4 (CH88-17; 37.
23 Ma), both in the Chihuahua transect (Table 1). The average of all eHf; val-
ues is +1.5 epsilon units.

Oxygen Isotopes

Zircon

8'%0,;,con Values range from 4.4%o to 10.4%. (Fig. 7; Supplemental Mate-
rial, Section E [footnote 1]), and the range within individual samples varies

by <4.5%. and commonly <2.5%.. There is no systematic variation in 8'®0,;,,
between cores and rims in the same grain (e.g., Fig. 3). The lowest §'°0,;,,
single-grain values measured are 4.4%0-4.7 %0 in SMO15_01, _41 (two grains),
_46, and _52; these and an additional seven grains are all less than the 5.3%o
+ 0.3%o (16) mantle zircon of Valley et al. (2005). The highest mean §'®0,;,,
value (Table 1) is 8.0%0 + 2.2%0 (SMO15_52), and the lowest is 5.5%0 + 0.2%o
(CH03). Two anomalously high single-grain §'®0,,,, values measured 23.9%o
and 15.8%o, respectively, both from SMO15_44.

Quartz

Eight 8'®0,,,+, measurements are available, six for samples with coexisting
zircon (CH03, CH97-7, N-99, SJ-54, K-LP-T, and SL-41; Table 1), and two without
(CHO6 and 2-71-1). 8"®0,, values range from 8.89%.—10.23%o0 and are ~3.0%o—
4.0%0 higher than for coexisting zircon. Oxygen isotope data from coexisting
quartz-zircon pairs suggest subsolidus oxygen isotope fractionation in quartz
between ~530-685 °C (Fig. 8).

Geothermometry
Zircon Saturation Temperatures

Zircon saturation temperatures (T, Watson and Harrison, 1983; Hanchar
and Watson, 2003), following the approach of Boehnke et al. (2013), were cal-
culated from whole-rock analyses of 22 samples collected along the central
transect and from three published analyses from the northern transect (Sup-
plemental Material, Section F [footnote 1]). Zirconium abundances for these
and an additional 67 central transect samples (Moreno, 2016; Pack, 2017) are
between ~75 and ~630 ppm and M-values ([Na + K + 2Ca]/Si x Al) are between
0.9 and 1.83 (Fig. 9A). Zircon saturation temperatures (T, range between
680 and 840 °C (Fig. 9B), with a median value of ~750 °C (Fig. 9C). Utilizing the
model of Watson and Harrison (1983) results in temperatures >100 °C higher
than that of Boehnke et al. (2013); taking this into account, our data are com-
parable (Fig. 9D) with those calculated for six SMO rhyolites by Bryan et al.
(2008) and 12 from Siégel et al. (2018).

Liquidus Temperatures (Rhyolite-MELTS)

The estimated liquidus temperatures for SMO rhyolites were calculated
using the rhyolite-MELTS and MELTS_Excel packages (Gualda et al., 2012;
Gualda and Ghiorso, 2014). Liquidus temperatures were calculated for 25
rhyolites at 125 MPa (~5 km depth) and 0-6 wt% H,0. A typical SMO rhyolite
has a liquidus temperature of 944 °C with 1 wt% H,0 and 861 °C with 3 wt%
H,O (Fig. 9C).
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Figure 6. Age versus gHf; plots for samples from the northern (A-C; green), central (D-H; blue), and southern (I; red) transects. Note that the axes differ between charts. Data from
Mabhar et al. (2019) and Garcia et al. (2021) are shown for reference. eHf; for the depleted mantle in this time range is ~+15 epsilon units. Chondritic uniform reservoir (CHUR) from
Bouvier et al. (2008).

GEOSPHERE | Volume 18 | Number 3

Andrews et al. | Petrogenesis of voluminous silicic magmas in the Sierra Madre Occidental



http://geosphere.gsapubs.org

Research Paper

GEOSPHERE | Volume 18 | Number 3

BM100305-2 BM100307-1 CHO1 CHO3 CH88-13
10 n=38 10 n=9 10 n=9 10 n=11 10 n=10
5 1 5 1 51 5 1 5 1
0-+— T T 0+ T T 0+ . T T 0- 0-—
CH88-17 CH97-7 Cusl ]406 MAJ N-12
10 n =10 10 n=10 10 n=12 10 n=9 10 n=7 10 n=15
* 51 51 5 1 5 1 51 51
0 T T T 0 T T T 0+ T T 0+ T T T 0 --v—.—v—v— 0-+—
N-63 N-88 N-99 RED SJ)-3 SJ-50
10 n=>5 10 n=38 10 n=38 10 n=38 10 n =10 10 n=10
* 54 5 1 5 4 5 1 54 I 5 4
0 -1—* T T 0 T T 0+ T T 0 'V_L_V_V7 0-+— 0 --v—l—v—v*
S)-54 SMO13_03 SMO15_01 SMO15_06 SMO15_09 SMO15_11
10 n=38 10 n=10 10 n=11 10 n=38 10 n=38 10 n=1
* 5 1 5 1 5 1 51 5 1 5 1
0-1—.. T 04 — 0'1—“- T 0+ ‘ T 04 ‘—F— oL— B
SMO015_17 SMO15_32 SMO015_37 SM015_41 SMO15_46 SMO15_52
10 - n=9 10 - n=38 10 - n=10 10 n =10 10 n=11 10 n=12
* 51 51 5 1 5 5 5
0+ ‘ — ol |l 0+ — 0 0 0
1-70-1 3-71-2 3-71-7 K-LP-T SL-41 all samples
10 n=9 10 n=7 10 A n=7 10 4 n=10 104 n=10 100 n=315
* 5 5 5 5 5 50
0 ' T T 0 T T 0+ T T 0+ j T T 0 h T 0

4 6 8 10
680y _ smow %o

4 6 8 10
680y _ smow %o

4 6 8 10
680y _ smow %o

4 6 8 10
680y _ smow %o

4 6 8 10
680y _ smow %o

4 6 8 10
680y _ smow %o

Figure 7. Distributions of §®0,,.,, values for each sample from the northern (green), central (blue), and southern (red) transects. The gray line is the 5.3 + 0.3%o
(10) mantle zircon value of Valley et al. (2005).

Andrews et al. | Petrogenesis of voluminous silicic magmas in the Sierra Madre Occidental



http://geosphere.gsapubs.org

GEOSPHERE | Volume 18 | Number 3

12

114

=
©o o

quartz 680y _ smow %o
0]

T T T T T T

4 5 6 7 8 9 10 11 12
zircon & 180\/_ SMOW %o

D

Figure 8. Zircon and quartz "0 values for six Sierra Madre Occidental (SMO)
rhyolites and their calculated equilibrium temperatures. The highest equilibrium
temperature is 685 °C. Mineral pair fractionation factors for quartz-zircon (Valley,
2003) were used to calculate 500 °C, 600 °C, 700 °C, and 1000 °C isotherms. The
mean zircon saturation (762 °C) and estimated liquidus (944 °C) temperatures are
shown for comparison.

H DISCUSSION
Petrogenesis of Monotonous SMO Flood Rhyolites
Oxygen and Hafnium Isotopic Characteristics

Sierra Madre Occidental tuffs and lavas exhibit limited ranges of eHf; and
8'%0,;,.on Within individual samples and throughout the suite (Fig. 10). Based
on these data, the SMO rhyolites have §'®0,,.,, values ranging from crystalli-
zation under mantle conditions (~5.3 £ 0.3%o. (15); Valley et al., 2005) to 7%0—8%o,
and eHf; values from +6 to -6 epsilon units with a mean of ~+2 epsilon units.
SMO rhyolites are isotopically homogeneous and form a distinct cluster in
eHf-8'%0 space. There is no systematic temporal (Fig. 10) or spatial variation
in mean 8'0,;,, and eHf; values, or T, (Fig. 9D). This implies a uniform
petrogenesis throughout the duration (~20 m.y.) and extent (4 x 105 km?) of
SMO silicic volcanism. Combining their homogeneous zircon isotopic character

with published whole-rock elemental and isotopic data leads us to conclude
that the SMO silicic magmas were remarkably monotonous.

Petrogenetic Model

The SMO likely buries a thick (25-30 km), Phanerozoic succession domi-
nated by marine sedimentary and volcaniclastic lithologies (Fig. 11; Bryan et
al., 2008). Magmatic assimilation of significant volumes of Phanerozoic sed-
iment derived from Precambrian basement should have generated strongly
negative eHf; values. Assimilation of upper-crustal rocks, including pelites
and carbonates (e.g., Bindeman, 2008), can raise the 8'Ozircon value signifi-
cantly. In contrast, assimilation of high-temperature hydrothermal systems
(e.g., intracaldera successions; Bindeman et al., 2007) and epithermal alteration
zones (e.g., Boroughs et al., 2005) can significantly lower the §'®Ozircon value.
Therefore, the absence of low- (<4%.; Valley et al., 2003) and high-8"°0,;,,, (>8%o),
and strongly negative eHf; zircons is inferred to indicate that SMO magmas
did not assimilate large volumes of upper- and middle-crustal rocks, includ-
ing carbonaceous marine sedimentary rocks exposed around Parral (Fig. 1).

The narrow ranges of 8'®0,;..., and eHf; values (Figs. 6, 7, and 10) are typical
of magmas that have evolved, at least in part, by fractional crystallization of
mafic melts (cf. Balsley and Gregory, 1998) in “hot” arc regimes with significant
input from the mantle (e.g., Attia et al., 2020). Assimilation of some crustal
material is required to explain the few xenocrysts identified and the rhyolites
with weakly negative eHf; values (Fig. 10). The paucity of xenocrystic zircon
corroborates the results of Bryan et al. (2008) and suggests that magmatic
temperatures (~700-850 °C) and xenocryst residence times were great enough
to dissolve most older zircon. It is unlikely that the elevated magmatic tem-
peratures needed to allow fractional crystallization processes and xenocryst
destruction could be sustained for very long (108 years) in the upper crust
(e.g., Annen et al., 2006; de Silva and Gosnold, 2007) without cooling and
crystallization (e.g., Miller et al., 2003).

Instead, eruptible SMO magmas evolved from melts in excess of their zir-
con saturation temperatures (>850-900 °C). The moderately crystal-poor and
xenocryst-free rhyolites of the SMO were likely “hot” magmas (e.g., Miller et
al., 2003; Halder et al., 2021) that required significant advective thermal input
into the lower crust to sustain the necessary high magmatic temperatures.
This anomalously high thermal flux was sustained throughout the duration
and extent of SMO volcanism to account for the monotony of the rhyolites.
Bryan et al. (2008) attributed the sustained high thermal flux to the repetitive
emplacement of mafic bodies into the lower crust, thereby transferring both
mantle melt and advected heat. The lower crust evolved into a region of
melting-assimilation-storage-homogenization (Fig. 11; “MASH zone”; Hildreth
and Moorbath, 1988), where melts of the country rock protolith and older
mafic intrusions are mixed and assimilated into juvenile magmas undergoing
fractional crystallization (e.g., Lee et al., 2007). Thus, AFC processes are inex-
tricably linked. Thermal models demonstrate the efficiency of repetitive mafic
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intrusions to elevate the temperature of the surrounding lower crust (Huppert
and Sparks, 1988; Annen and Sparks, 2002; Dufek and Bergantz, 2005; Annen
et al., 2006). The same models indicate that temperature can reach >300 °C
above the solidus (950-1000 °C) in 1-1. 5 m.y. (Annen et al., 2006) provided
that the intrusion rate is 50 m (sill thickness) per >0.01-0.1 m.y. Super-lig-
uidus silicic magmas formed in the lower or middle crust will have some
concentration of dissolved water in them and will likely have viscosities in
the 10°-10° Pa.s range (e.g., Scarfe et al., 1987; Giordano et al., 2008), many
orders of magnitude less than at the surface. Such low viscosities allow for
efficient transport through the remaining crust from where the magmas are
either erupted directly or assembled over short timescales (e.g., Annen, 2009)
in shallow sills associated with calderas.

Insights from Xenoliths
Xenolith localities and a very few outcrops around the northern SMO

allow sampling of basement lithologies likely representative of the lower
crust where SMO magmas are inferred to have been generated. Lower-crustal

xenoliths from La Olivina (Fig. 1; Ruiz et al., 1988b; Rudnick and Cameron,
1991; Cameron et al., 1992; Nimz et al., 1995) include mafic granulites, inter-
mediate to felsic orthogneisses, and paragneisses. Xenolith U/Pb zircon age
populations are diverse and complex (Rudnick and Cameron, 1991), and all
gneissic samples show evidence for granulite-facies metamorphism in the
Neogene, Late Triassic, and at ca. 1.1 Ga (Grenville orogeny). La Olivina is
placed south of the Laurentian craton margin in the Late Paleozoic Ouachita
suture zone (Fig. 1) by Ortega-Gutiérrez et al. (2018). The presence of xeno-
liths with >1.0 Ga metamorphic ages requires that either (1) the basement
beneath La Olivina is the very northernmost tip of Oaxaquia (ca. 1.2-0.9 Ga;
Ortega-Gutiérrez et al., 2018), or (2) the Laurentian margin has to be extended
at least 20 km farther southeast (Ruiz et al., 1988a; Rudnick and Cameron,
1991; Cameron et al., 1992).

The only mafic granulite xenolith dated has a mean age of 1.3 + 0.3 Ma,
within error of the K/Ar age of the surrounding alkali basalt lavas (Rudnick and
Cameron, 1991). The mafic granulites are isotopically primitive compared to
the gneisses (¥7Sr/%Sr,, ~0.705; eNd;, ~0) and indistinguishable from the SMO
and Neogene mafic volcanic rocks (Cameron et al., 1992). They are typical
of mafic lower-crustal rocks throughout northern Mexico (Ruiz et al., 1988b).
A single granulite-facies, sillimanite-paragneiss has a maximum depositional
age of 1.0 Ga and was metamorphosed at 40-20 Ma, broadly contemporaneous
with SMO magmatism. The paragneisses have very strongly negative eNd,,
(-8 to —16 epsilon) and high #Sr/Sr,, (>0.720). Differently aged but composi-
tionally similar intermediate orthogneisses are present below La Olivina, where
xenoliths with inferred magmatic ages of ca. 1.4 Ga, ca. 300 Ma, and 37-25 Ma
have been recovered (Rudnick and Cameron, 1991). Rudnick and Cameron
(1991) interpreted 37 —25 Ma sample MN-40 (64.5 wt% SiO,) to be deep-seated
relation of SMO rhyolites, and they have identical strontium, neodymium,
and lead isotopes values (Cameron et al., 1992). The older orthogneisses are
less primitive with strongly negative eNd;, values and form a seamless trend
with the paragneisses.

Xenoliths from Potrillo in northern Chihuahua and basement outcrops at
Los Filtros north of Chihuahua City (Fig. 1) provide additional constraints on
plausible lower crust beneath the northern SMO. Non-dated paragneiss xeno-
liths from Potrillo are less isotopically evolved (eNd,, ~—7 epsilon; &Sr/%Sr,,
~0.706) than those at La Olivina (Ruiz et al., 1988b). High-grade orthogneisses
and granitoids spanning 1.3-1.0 Ga at Los Filtros have initial ¥Sr/%Sr values
of ~0.708 and are inferred to be part of a belt of Grenville-age Laurentian
basement extending to and beyond the Llano Uplift in central Texas (Ruiz et
al., 1988b; Ortega-Gutiérrez et al., 2018).

Cameron et al. (1992) interpreted Cenozoic xenoliths at La Olivina as evi-
dence for wholesale or significant modification of the lower crust by mafic
underplating and associated granulite-facies metamorphism (Fig. 11). However,
because there are no basement outcrops or xenoliths from within or adjacent
to the central SMO between La Olivina and the Mesa Central (Fig. 1), this
interpretation cannot be rigorously tested. The same area is underlain by the
Mesozoic accreted Alisitos-Guerrero composite terrane (Fig. 1; Centeno-Garcia
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is accompanied by melting and assimilation of mafic orthogneisses (Paleoproterozoic—-Cenozoic) and paragneisses (Paleoproterozoic to Mesoproterozoic). SMO magmas accumu-
late rapidly in upper crustal bodies prior to eruption without time to assimilate country rock lithologies. “MASH zone” —region of melting-assimilation-storage-homogenization.
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et al., 1993); the composition and age of the lower crust of the Guerrero terrane
and its subcontinental lithospheric mantle are unknown (Fig. 11). The lack of
sub-SMO information contributes to a “chicken and egg” paradox where geo-
chemical data yield insights into the buried basement age and composition,
but the same data are modeled to understand potential sources of the SMO
magmas and their relative contributions (e.g., Cameron and Cameron, 1985;
Ruiz, et al., 1988b; Cameron et al., 1989; Wark, 1991).

Mixing Models

The observed difference in eHf; (~+14 epsilon) and §'®0 (~+1.2%) values in
SMO zircons from mantle values, where 35 Ma depleted mantle is +15.5 epsi-
lon units and 5.3%o, is best explained by AFC processes (e.g., DePaolo, 1981).

14

Lower-crustal xenoliths from La Olivina and Potrillo provide potential end-mem-
bers with which to model assimilation of different crustal contributions with
both enriched and primitive mantle-derived melts. We applied Equation 15a of
DePaolo (1981) to model AFC paths in eHf-8'0 space (Fig. 12) with the same
fixed rate of fractional crystallization twice that of assimilation (r = 0.5) used
by Cameron and Cameron (1985) and Cameron et al. (1989). We modeled a
range of scenarios using three possible crustal end-members and four differ-
ent mantle end-members (Supplemental Material, Section G [footnote 1]). The
crustal end-members are a mafic orthogneiss and a paragneiss from La Olivina
(Cameron et al., 1992) and a paragneiss from Potrillo, northern Chihuahua (Ruiz
et al., 1988b). Epsilon hafnium values for 35 Ma zircon (gHf;;) were calculated
from published whole-rock eNd,, values using the terrestrial array equation
of Vervoort et al. (2011). Whole-rock §'®0 values were calculated from §'®0,;,,,
using an equilibrium temperature of 800 °C (Bindeman et al., 2007).
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Figure 12. Density plot of Sierra Madre
Occidental (SMO) samples in §"*0,,;0/c.roc—
eHf;; space showing calculated
assimilation-fractional crystallization
(AFC) mixing lines between different
mantle and lower crustal end-members;
see text for details. (A) Mixing lines be-
tween enriched mantle end-members
(EMI;s and EMIl;) and three lower-
crustal lithologies recorded in xenoliths:
La Olivina (LO) intermediate orthogneiss,
La Olivina sillimanite-paragneiss, and
L6 Potrillo kyanite-paragneiss. (Continued
on following page.)
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Figure 12 (continued). (B) Mixing
lines between the same crustal end-
members and two additional mantle
end-members: depleted mantle (DM,;)
and a putative high §'*0 arc mantle
(Liu et al., 2014) adapted from EMII;.
Each binary mixing line is divided into
5% increments. Southern Cordilleran
basaltic andesite (SCORBA) lavas and
mafic granulite xenoliths coeval with
the SMO silicic magmas are shown for
reference. CHUR—chondritic uniform
reservoir; V-SMOW —Vienna standard
mean ocean water.
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Figure 12A depicts AFC mixing lines between enriched mantle sources and
the three crustal end-members. Twenty percent assimilation of either paragneiss
end-member with moderately enriched mantle (EMII;;) reproduces the 80,
and eHf,; values most characteristic of the SMO rhyolites. Furthermore, assim-
ilation of ~10% paragneiss reproduces the isotopic characteristics of the coeval
mafic granulite xenoliths inferred by Cameron et al. (1992) to be cumulates
formed during fractional crystallization of the SMO silicic magmas. Negative
epsilon hafnium and §®0,z =8 %0 SMO rhyolites (Fig. 12A) are best modeled
by significant (i.e., 250%) assimilation of intermediate composition orthogneiss.
Although there are relatively few of these rhyolites (~4; Table 1), they all occur at
the eastern ends of transects, on inferred, Proterozoic continental basement (i.e.,
not on the accreted Guerrero terrane). Furthermore, samples CHO1 and CH88-17
of the northern transect are both less than 50 km west of exposed Proterozoic
basement (1.3-1.1 Ga) at Los Filtros, Chihuahua (Fig. 1; Ruiz et al., 1988a, 1988b).

10 15

High epsilon hafnium (>+4) samples are modeled poorly by EMIl, (Fig. 12A);
so Figure 12B presents some alternative mantle end-members: depleted man-
tle (DMy;) and a putative §'®0-enriched (~9 %) form of EMII,; based on Liu et
al. (2014) representing hydrated arc mantle. The high epsilon hafnium sam-
ples are modeled successfully when using a mix of 10%— 20% paragneiss or
orthogneiss and a combination of EMIl 5 and the §'®0-enriched arc mantle, or
alternatively, a form of EMII;; not as highly 8'®0 enriched as that described
by Liu et al. (2014) from Tibet. Another explanation is satisfied if the EMIl;;
mantle beneath the SMO was enriched in hafnium from subducted sediments;
however, such sediments cannot have been derived from Precambrian crust
without lowering the eHf;; values, and must, therefore, have been relatively
young (i.e., Phanerozoic protoliths). Finally, depleted mantle is not a viable
end-member for SMO silicic magmas (Fig. 12B) due largely to its very low
hafnium concentration; however, it is potentially a source of melt for the coeval
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southern Cordilleran basaltic andesite (SCORBA) mafic lavas with ~2%-3%
paragneiss assimilated.

Estimated Magmatic Flux

Our data suggest a juvenile-recycled crust ratio of ~4:1 for the SMO. Assum-
ing an erupted volume of ~3.9 x 10° km?® (Bryan et al., 2008) implies ~3.1 x
10° km? of silicic magma fractionated from a mafic melt in the lower crust.
Assuming this was 100% of the available residual silicic melt fraction after
90% crystallization (e.g., Dunbar et al., 1993; Bower and Woods, 1998) implies
fractionation from a mafic source with a volume of ~2.8 x 10 km?. These values
are underestimates by ~3-10 times (e.g., White et al., 2006) if inferred upper-
crustal SMO reservoirs (Fig. 10) are included.

Estimating the magmatic and eruptive fluxes over the ~20 m.y. duration
of apparently uninterrupted SMO volcanism (McDowell, 2007; McDowell and
Mclintosh, 2012) yields values of ~0.14 km? yr-' and ~0.02 km? yr-', respectively.
White et al. (2006) calculated a volcanic flux of 0.03 km? yr-' for the SMO over
a 15 m.y. time interval. Time-averaging underestimates the peak volcanic
fluxes of discrete pulses. Seventy percent of SMO eruptive ages reported in
McDowell and Mclntosh (2012) are in a 7 m.y. range between 36-29 Ma. If
70% of the volume of the SMO erupted at this time, the peak magmatic and
volcanic fluxes are 0.28 km? yr-' and 0.03 km?® yr~', respectively.

Mean global magma production since the Jurassic is ~26-34 km? yr-' (Crisp,
1984); magmatism associated with the SMO was ~1%-1.5% of this long-term
average. Mean global volcanic output is ~0.01-0.1 km?3 yr-" (Crisp, 1984; White
et al., 2006). Silicic and intermediate volcanism both average 0.004 km?® yr-',
basaltic volcanism (excluding flood basalts) averages 0.026 km? yr-', and flood
basalts average 1 km?® yr-' (White et al., 2006). Therefore, the volcanic part of
the SMO had a similar output to the long-term global mafic output and was
ten times that of intermediate or silicic output. When Quaternary silicic and
intermediate volcanic outputs are combined, similar ~10-2 km? yr-' rates are
estimated at the Ethiopian and Kenyan portions of the East African Rift, the
Kamchatkan, Kyushu, and Taupo intra-arc rifts (White et al., 2006).

Reconciliation with Previous Models of SMO Petrogenesis and Tectonics

Petrogenesis. \We estimate the juvenile component of SMO magmas to be
~80% (Fig. 12). This is in excellent agreement with several AFC models based
on trace-element and Sr and Nd isotopic analyses (e.g., Lanphere et al., 1980;
Cameron and Cameron, 1985; Cameron et al., 1986; Wark, 1991; Smith et al.,
1996). Fractional crystallization of a primitive melt to produce a silicic magma,
enhanced further by partial melting of the surrounding lower crust, also pro-
vides a mechanism to advect-in the necessary thermal input to sustain and
drive the AFC process (e.g., Annen and Sparks, 2002). This would be enhanced
further by latent heat of crystallization from the fractionating mafic cumulate.

Our data are incompatible with the SMO magmas forming by assimilation
of >50% continental crust (e.g., Ruiz et al., 1988b; Bryan et al., 2008) except
along the eastern margins of the SMO where there is thick Proterozoic crust
and an absence of accreted Mesozoic terranes (Fig. 12A). This implies that
voluminous mafic melt and heat were transferred from the mantle into the base
of the crust (cf. Ducea and Barton, 2007) causing melting, assimilation, and
fractional crystallization under the thinner, younger crust below the western
and central SMO. Thermal models indicate that conduction of thermal energy
from the mantle is insufficient to drive and sustain melting and assimilation of
continental crust. However, it is difficult for hafnium and oxygen compositions
to discern fractionation of juvenile mafic magma and re-melting and subse-
quent fractionation of a slightly older mafic body (e.g., Bryan et al., 2008), and
while neither are mutually exclusive, we cannot rule the latter out entirely. In
contrast, in the thicker, older crust below the eastern SMO, heat transfer was
dominant and drove anatectic melting of fertile Proterozoic orthogneisses and
paragneisses with less mixing-in of mafic melts.

Crustal Thickness. Any AFC model needs to accommodate the addition
of enormous volumes of mafic melt in the lower crust, most likely as a mafic
underplate. Ruiz et al. (1990)'s most compelling argument against contempo-
rary AFC models was the strong negative gravity anomaly co-spatial with the
SMO. They inferred the presence of a low density, granitoid batholith in the
upper and middle crust beneath the SMO. They discounted the alternative of
a 4-km-thick mafic underplate (Cameron et al., 1980) in the lower crust as this
would be expected to produce a positive gravity anomaly. However, there
is no supporting evidence for an upper-crustal batholith; for example, there
are no Cenozoic granitoid xenoliths reported. Furthermore, our hafnium and
oxygen isotope data are inconsistent with assimilation of large volumes of
middle- and upper-crustal rocks (e.g., "0 > 10%o).

This inconsistency can be reconciled if some or all of the mafic under-
plate has been removed and recycled into the mantle (e.g., Lee et al., 2011).
Assuming that the underplate had the same area as the modern extent of the
SMO, the underplate would be >7 km thick; in contrast, reconstruction of the
~40-km-thick Sierra Nevada batholith crustal section requires a now missing
~80 km of mafic and ultramafic arc root (Saleeby et al., 2003). The thickness
of the crust beneath the SMO is not well constrained; estimates range from
~55 km in the north (Bonner and Herrin, 1999) and ~40 km in the central SMO
(Gomberg et al., 1989), to a uniform 30-35 km (Laske et al., 2013; Zhu et al.,
2016). The minimum thickness of the necessary mafic underplate, therefore,
is ~7%-23% of the current crust.

The absence of pyroxenite, ultramafic cumulate, or mantle xenoliths at La
Olivina is consistent with removal of a mafic underplate and/or arc root before
ca. 1.5 Ma. Application of a simple Airy isostasy model to the ~2000 m asl SMO
plateau is compensated by a missing 10-km-thick mafic underplate (2.86 g/
m?) or a 5-km-thick underplate of equal parts mafic and pyroxenite (3.13 g/m?).
Removal of either of these masses would produce a negative gravity anomaly
and anomalously high topography. Thicker SMO crust compensates for high
topography but not for the negative gravity anomaly.
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Tectonic Scenarios

Extension and thinning of the upper crust was broadly contemporaneous and
co-spatial with Cordilleran volcanism during retreat and rollback of the Farallon
slab (e.g., Damon et al., 1981; Ferrari et al., 2007). Although diffuse across the
Basin and Range province, extension became localized to either margin of the
SMO in Mexico, where the Paleocene-Eocene arc had not advanced so far to the
east, and therefore, had less far to retreat. There was probably insufficient slab
rollback to expose a large enough region of already hydrated subcontinental
lithospheric mantle to allow enough up-welling of isotopically primitive asthe-
nosphere (i.e., depleted mantle). The strongest argument in support of this is
that rollback was much greater under the Basin and Range, and yet the volumes
and rates of volcanism are an order of magnitude smaller than in the SMO (e.g.,
White et al., 2006), regardless of whether or not AFC processes were dominant.

Bryan and Ferrari (2013) and Ferrari et al. (2018) recognized the bimodal
nature of calc-alkaline volcanism (basaltic andesite [SCORBA] and rhyolite) in
the SMO region through the Oligocene and early Miocene. They attribute this
to the gradual waning of the arc as a slab tear that widened to form a slab win-
dow was subducted beneath northwestern Mexico (Ferrari et al., 2018; Mahar
et al., 2019). As a result, the local mantle potential temperature increased as
up-welling asthenosphere was exposed through the slab window. Reorien-
tation of far-field plate motions (Ferrari et al., 2018) and the local addition of
heat to weaken the lithosphere gradually focused crustal extension along the
western, younger margin of the SMO where the ca. 24 Ma flare-up was local-
ized. Ultimately crustal extension over the slab window led to the opening of
the active spreading center in the Gulf of California (6-0 Ma).

The onset of these gradual changes to crustal extension and increased heat
from the deeper mantle began likely before the ca. 24 Ma flare-up within the
SMO and are thought to have been on-going throughout much, if not all, of the
Oligocene. We propose that the onset of extension in the lower crust allowed
mafic melts to more readily intrude than they had in the Eocene and before.
However, compared to modern continental arcs, the Oligocene SMO had a
volcanic flux about double; therefore, it is likely that extra factors were at play.
We suggest that the otherwise unexceptional increase in mantle melt supply
was amplified by (1) the remnants of the lower crust and mantle wedge being
hydrated and isotopically enriched through the late Cretaceous to Eocene, and
(2) the arrival of the still hot and thin oceanic lithosphere preceding the opening
slab tear and/or window. Asthenospheric melts from the slab window are a
potential source of the coeval SCORBA mafic lavas (Fig. 12B). The presence of
readily melted, extensively hydrated lithosphere is central to interpretations
of enhanced magmatism through slab rollback (e.g., DeCelles et al., 2009),
and cannot be ruled out in this scenario. Slab break-off and slab windows are
widely recognized as major perturbations to arc systems that enhance mag-
matism. These processes are not mutually exclusive, and their coincidence
can explain the anomalously high volume of the SMO. If correct, the origins
of the SMO are distinctly different from the Mesozoic batholiths of the Cor-
dillera (e.g., Ducea and Barton, 2007), even though they are of similar scales.

B SUMMARY

Most SMO magmas were generated by juvenile melts that assimilated
~20% lower crust. The mantle-derived melts fractionated in the lower crust
and advected heat into surrounding orthogneisses and paragneisses. The SMO
magmas are transitional in Hf-O isotope space between continental arc granites
and those formed in extensional arcs and continental rifts, in agreement with
interpretations where the SMO represents the first stage of magmatism over
subducting slab window during the Eocene to Miocene evolution of the Cor-
dilleran margin from convergent to extensional. The immense volume of the
SMO requires an anomalously strong heat source such as a slab window cou-
pled with extension of the upper plate to allow for transfer of magma and heat.
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