ph] 28 Jan 2022

.chem

1CS

2201.11979v1 [phys

arxiv

Using hyper-optimized tensor networks and first-principles electronic structure to
simulate experimental properties of the giant {Mng,} torus

Dian-Teng Chen,!** Phillip Helms,?> * Ashlyn R. Hale,®> Minseong Lee,* Chenghan Li,? Johnnie
Gray,? George Christou,® Vivien S. Zapf,® Garnet Kin-Lic Chan,> T and Hai-Ping Cheng!-*

! Department of Physics, Center for Molecular Magnetic Quantum Materials and Quantum Theory Project,

University of Florida, Gainesville, Florida 32611, USA
2 Division of Chemistry and Chemical Engineering,
California Institute of Technology, Pasadena, California 91125, USA
3 Department of Chemistry, Center for Molecular Magnetic Quantum Materials,
University of Florida, Gainesville, Florida 32611, USA

4 National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

The single-molecule magnet {Mng,} is a challenge to theory due to its high nuclearity. Building
on our prior work which characterized the structure of the spectrum of this magnet, we directly
compute two experimentally accessible observables, the field-dependent magnetization up to 75 T
and the temperature-dependent heat capacity, using parameter free theory. In particular, we use first
principles calculations to derive short- and long-range exchange interactions, while we compute the
exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins
to obtain the observables. The latter computation is possible because of a simulation methodology
that uses hyper-optimized tensor network contraction, borrowing from recent techniques developed
to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat
capacity and field-dependent magnetization. We observe good qualitative agreement between theory
and experiment, identifying an unusual peak in the heat capacity in both, as well as a plateau in the
magnetization. Our work also identifies some limitations of current theoretical modeling in large

magnets, such as the sensitivity to small, long-range, exchange couplings.

I. INTRODUCTION

Single-molecule magnets (SMMs) have invoked
fascination both because of the possibility to study
finite analogues of bulk classical and quantum magnetic
phenomena [1], as well as for their potential in
information science applications [2-5]. The first SMM
[Mn50,5(05CR)4(H50)4] was synthesized in the early
1990s and since then, SMM'’s of increasing nuclearity
have been made [6-13|. In the case of Mn-based SMM’s,
{Mnys} [10], {Mngo} [11], {Mn7o} [12] and {Mngs} [13]
have been reported, closing the gap between the largest
bottom-up synthesized SMM and the smallest top-down
synthesized magnetic nanoparticles [14-16]. In fact,
the giant {Mng,} torus, first reported in 2004 [13], has
an external diameter of 4.3 nm, making it larger than
many top-down magnetic nanoparticles.

The large size of these SMMs, with numerous
interacting spins, poses interesting challenges to
our theoretical understanding. For example, the
ground-state spin of {Mng,} is quite small, S ~
6, yet there is not an obvious mechanism for how
the small non-zero spin arises from the interaction of
84 spins.  Further, the spin configuration space in
the {Mng,} torus is 5% =~ 5 x 10°, exceeding the
memory of the largest supercomputers by many orders
of magnitude. In previous work, we showed that using
first-principles density functional theory (DFT) derived
exchange couplings, together with a coarse-grained
theoretical treatment of the spins, it was possible to

Fig 1. (a) The structure of the {Mng,} torus. The black
box and (b) shows the alternating {Mns} (linear, left) and
{Mn,} (cubane, right) subunits, separated by the dashed line.
(c) Jahn-Teller elongation axes for each Mn*" in the {Mn;}
subunit. Colour code: Mn purple; O red.

uncover the origin of the small but non-zero ground-state
spin. In particular, the small long-range exchange
couplings renormalize into coarse-grained quadratic
spin-spin effective couplings between clusters of spins,
generating the small non-zero ground-state spin [17].

In the current work, we extend our previous
investigation to report on the theoretical modeling of two
directly measurable experimental quantities, namely, the
(temperature-dependent) field-dependent magnetization
and the heat capacity of the {Mng,} torus. We also
experimentally measure these quantities, allowing for a



Fig 2. The schematic diagram of the exchange interactions
between the Mn®" in {Mng,}, including (a) nearest-neighbor
interactions Ji, J2 and J3 and (b) the long-range interactions
J4, J5, Je and J7.

direct comparison between theory and experiment in
this system. The trajectory of the magnetization with
increasing field as it transitions through successive states
from S = 6 to the saturation magnetization of 344 up
provides information that constrains the energy scales
of the interactions. Here we access part of that phase
diagram in high magnetic fields up to 75 T. Similarly,
features in the heat capacity vs temperature give insight
into the scale of energy gaps between spin states.

Theoretically, our work also demonstrates an ezact
computation of the partition function of 84 S = 2
classical spins (in the 5% dimensional state space). This
is made possible by the adaptation of recent exact
tensor network contraction methods used to simulate
quantum supremacy circuits [18], and demonstrates
the power of such techniques beyond quantum circuit
settings. We also carry out more extensive first-principles
DFT calculations to estimate the long-range exchange
couplings. Our work illustrates the state-of-the-art
of modeling for the physical properties of the most
complicated molecular magnets.

II. THEORETICAL AND EXPERIMENTAL
METHODS

A. First-principles determination of exchange
interactions

We calculated electronic energies of the {Mng,} torus
using Kohn-Sham density functional theory (DFT) [19]
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Fig 3. The tensor network representation of the partition
function for the classical spin model Hamiltonian.

E (DFT)|E (7J)|E (3J)|Total Spin
GS1| 0 0 0 24
GS2| 606 | 606 | O 0
GS3| 905 | 915 | 0 24
GS4| 1537 [153.7| 0O 0
GS5| 1571 [155.1| O 12
GS6| 2176 [2186| 0 0
RS1| 608.4 |573.5|496.9 4
RS2| 768.2 |560.0 | 519.9 8
RS3| 784.8 |768.0 | 654.0 12
RS4| 800.3 |712.3|601.8 4
RS5| 919.9 |777.2692.9 8
RS6| 964.1 |787.8|800.8 20
FM| 4343.7 [4610.0(4230.0] 168

Table I. Spin configurations of {Mng,}.
random spin configurations that are used to extract the

nearest-neighbor interactions Ji, J2 and Js.

RS1 to RS6 are

GS1 to GS6

are selected degenerate ground state configurations of the 3J
Heisenberg model. The FM configuration has all spins aligned
in the same direction (all up or all down). Energies in meV.

Ji | o | I3 | Ja|Is| Je | I
-13.1{-3.3|-1.2
-13.0(-3.2|-1.1

-0.4]1.7|-0.5|-0.8

Table II. Exchange coupling constants of {Mng,} obtained
by fitting to DFT energies, for a 3J model (top
line) and seven-J model (bottom line). Positive values
are ferromagnetic couplings and negative values are
antiferromagnetic couplings. Units of meV.
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Fig 4. An example contraction tree for the exact contraction
of the TN representation of the canonical partition function.
The partition function TN is shown on the bottom with
yellow transfer matrices and gray indices. Each of the other
nodes represents a contraction between tensors, with the color
indicating the number of FLOPS required for the contraction.
The colored lines indicate which tensors are being contracted,
with the color representative of the tensor sizes.
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Fig 5. Spin configurations of GS1 to GS6 in I). Yellow for
positive (spin up) and cyan for negative (spin down). Each
Mn®" has a spin of S = 2 or S = —2. The numbers in the
center of each spin configuration are the total energy E in
meV (the lowest one among the six is set to zero) and the
total S-.

with  the spin-polarized  Perdew-Burke-Ernzerhof
(PBE) exchange correlation functional [20] and
projector-augmented-wave  (PAW)  pseudopotentials
[21, 22| in conjunction with a plane-wave basis (500 eV
cutoff energy, energy convergence threshold of 107 eV)
as implemented in the Vienna Ab-initio Simulation
Package (VASP) [23, 24]. We first performed ionic
relaxation to obtain the optimized structure of {Mng,}
until the atomic forces were less than 0.05 ¢V/A. Then
we used a fixed optimized structure to calculate the total

energies of different collinear Mn spin configurations.
The DFT energies were fit to a Heisenberg Hamiltonian
of the form

HHcis - - ZJZJ‘S_{L : 5_'; (1)

1<J

where S; and ,S:; are S = 2 spins (Mn®") and J;; is
their exchange coupling constant. We considered two
different Heisenberg exchange models; a short-range 3J
model with 3 nearest-neighbour interactions (Fig. 2a)
and a long-range 7J model with 7 exchange coupling
interactions (Fig. 2b).

B. Tensor network partition function calculations

To obtain the finite-temperature field dependent
magnetization and heat capacity, we computed the
canonical partition function using tensor network
methods. We first made the simplification that the spins
are classical spins (which is expected to be qualitatively
reasonable from the 1/S expansion given the relatively
large Mn S = 2 spin). We next represented the thermal
properties using the 5-state Potts model, where each spin
is one of 5 integer values with S, € [-2,—1,0,1,2]. The
energy of the spin configuration in the Potts model is
obtained by replacing the vector spins of the Heisenberg
model with the integer spins of the Potts model, i.e.

Epotts = — Z Ji;5iS;. (2)

i<j

Additionally, to understand the effects of the multiple
myg levels, we performed analogous calculations using an
Ising model with S, € [—2,2] and a 3-state Potts model
with S, € [-2,0,2].

Even with the above simplifications, the naive
computation of the partition function requires a sum over

534 spin configurations
7 — Z e~ BE(S1,52,...,984) (3)
(Sie(—2..2))

where 3 is inverse temperature and F(Si,Ss,...Ss4) is
the energy of the classical spin configuration. To evaluate
Z, we first re-express the summation exactly as a nested
sum of products (a tensor network). This is obtained by
using the Boltzmann weights of each pair of spins

Z= Y e (4)

{Si€(=2,..,2)} <]

We can visualize the above summation structure as a
graph (Fig. 3) where the nodes represent the Boltzmann
weights for a pair of spins from Eq. 4; each node has two
edges, representing the spin indices S;.



The cost of performing the exact summation
(contraction) of such a tensor network is highly
dependent on the exact order (contraction path) in which
the summation is performed, with most contraction paths
being prohibitive in terms of memory or computation
time. A similar problem arises in the classical simulation
of quantum circuits, which corresponds to a type of large
tensor network contraction. Many strategies have been
proposed to minimize the cost of such a tensor network
contraction by finding the optimal contraction path.
To do the contraction efficiently, we use the software
package quimb [25] to construct the tensor network and
cotengra [18] to optimize over contraction paths while
limiting memory usage and computation cost. The
resulting “hyper-optimized” tensor network contraction
path is visualized in Fig. 4. To avoid overflow errors
encountered during the contraction, the logarithm of
the partition function is calculated, with intermediates
being stripped of exponentially large or small constants
and accounted for after the full contraction. Using this
strategy, the exact partition function can be computed
in a few minutes on a single CPU cluster node.

Given the partition function Z (and thus free energy
F = —%log Z) we evaluate the magnetization M and
heat capacity C, as the derivatives

oF
M=—-— 5
95 (5)

1 0?BF

Cy=——%—7, 6
kT? 052 (6)
computed  numerically  with  finite  difference
approximations, where k& is Boltzmann’s constant,

T is temperature, and the magnetic field dependence
enters the energy as

E(B,{Si}) = Epotts — ZQ,UBBSZ' (7)

where g = 2.0023 (atomic units) and pp is the Bohr
magneton, and B is the magnetic field (along the z
direction). To isolate the spin contribution to the
heat capacity, we also compute the harmonic vibrational
contribution to the heat capacity using the GFN-FF force
field [26] to carry out a phonon calculation starting from
the optimized molecular structures previously obtained
by DFT.

C. Experimental preparation and measurements

Crystalline samples of {Mng,Pr}y.on Were prepared
following the published procedure [13], with the
modification that [Mn;50;4(05CEt);5(H50),] and
EtCO,H were used as the starting materials, and
crystals were isolated after a couple weeks from layering
with nitromethane.

Magnetization in millisecond-scale pulsed magnetic
fields up to 60 T was measured on powder samples
using the National High Magnetic Field Lab’s standard
approach to pulsed-field magnetization measurements.
The measurement coil is a radially-compensated coil
wound from 50 gauge copper wire. The powder
samples were inserted into a non-magnetic ampule and
secured with grease. The coil signal in pulsed fields
is proportional to the change of magnetization in time
and the signal is numerically integrated to obtain the
magnetization. For each magnetization vs field curve,
the ampule in and out of the coil signals under identical
conditions were collected and the ampule out signal
was subtracted from the ampule in signal to remove
background signals. Pulsed-Field magnetization data
were calibrated with the magnetization data obtained in
a Vibrating Sample Magnetometer in a 14 T Physical
Properties Measurement Systems (Quantum Design).
The pulsed field were provided by a capacitor-driven
75 T duplex magnet at the National High Magnetic Field
Laboratory in Los Alamos.

III. RESULTS AND DISCUSSIONS
A. Exchange Interaction Constants

Using the first principles procedure described above,
we compute the energies of 13 different Ising-like (i.e.
each Mn spin is maximally aligned along the z axis,
pointing out of the plane of the wheel) spin configurations
of {Mng,} (Table I and Fig. 5).

As discussed in [17], using only the 3J model (J1, Ja,
Js in Fig. 2) results in a large ground-state degeneracy
in a classical Ising or Potts model, with ground-state
spins ranging from S = 0 to S = 24. GS1 to GS6 in
Table I are six of the ground state spin configurations
that would be degenerate within a 3J model. However,
as the DFT results show, there is at least a 217.6 meV
energy spread between the lowest and highest energies
of these "degenerate" states. Thus, the energies are not
actually degenerate, presumably due to the longer range
interactions, which are also the interactions that select a
specific ground-state spin.

To determine the 3J parameters, as well as to
estimate the possible long-range exchange couplings,
we consider the additional configurations RS1-RS6
(randomly chosen) as well as the ferromagnetic
configuration FM. We construct a best fit of the 3J
model to all these configurational energies. In addition,
we introduce long-range interactions, in particular, the
J4 — J7 couplings shown in Fig. 2, to model the splitting
of the ground-state degeneracy. The results of the fit to
the 3J, 7J models are shown in Table I; the values of
the 3J and 7J parameters are shown in Table II. From
Table IT we see that the long-range couplings are all
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Fig 6. The magnetization of {Mng,} as a function of the applied field. The left panel shows the theoretical prediction using the
Ising and 3- and 5-state Potts models and the 7J and 3J interactions at 30K, computed using hyper-optimized tensor network
contractions. The right panel shows the experimental magnetization curves at 0.5K and 30K. H is the free applied field and

Lo is magnetic permittivity of free space with B = uoH.
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Fig 7. Calculated spin contribution to the heat capacity of
{Mng,} with the Ising and 3- and 5-state Potts models, using
the 7J and 3J interactions. Results are calculated with no
applied magnetic field using hyper-optimized tensor network
contractions.

small and alternate in sign, while Table I shows that
there are still substantial errors in this fit (see e.g. the
reversal of the order of RS3 and RS4) reflecting the
difficulty in both fitting and perhaps the limitations of
the spin Hamiltonian itself. Nonetheless, the main trends
are reproduced. We assess the quality of the exchange
couplings against experiment in the next section.

B. Magnetic susceptibility and heat capacity

As described in Sec. IIB, starting from an Ising
or Potts Hamiltonian using the 3J and 7J models
obtained above, we used hyper-optimized tensor network
contraction to calculate the magnetic susceptibility and
heat capacity. We now compare the results of this
parameter-free theoretical treatment to the experimental
measurements.

The theoretical magnetization at 30K is shown in the
left panel of Fig. 6. The Ising model curves show a
clear inflection point occurring respectively for the 3J
and 7J models around 1505 and 7545 at magnetization
strengths between 30-70T. The large difference in the
vertical magnitude of these curves, however, illustrates
the sensitivity to the accuracy of weak long-range
exchange couplings. The inflection is reduced as the
number of local states increases from the two states of
the Ising model to the 5-state Potts model.

Experimental magnetization measurements are shown
in the right panel of Fig. 6 at 0.5K and 30K. While
the lower temperature curve shows an inflection similar
to the Ising model result, the higher temperature
experimental data mirrors the behavior of the Potts
models. The experimental magnetization is somewhat
smaller in magnitude than results calculated with
the 7J models and significantly smaller than the 3J
predictions.  Beyond inaccuracies in the long-range
exchange couplings highlighted above, another source of
discrepancies is the form of the magnetic Hamiltonian:
the reduction from the Heisenberg to Potts models,
neglect of magnetic anisotropy, as well as the alignment of
molecules relative to the field in the experimental sample.

The theoretical heat capacity from the spin-degrees



of freedom is shown in Fig. 7, while the total heat
capacity (i.e. including the contribution of the phonons)
is shown together with the experimental heat capacity
in Fig. 8, both in the absence of a magnetic field. For
all models, there are two peaks: a sharp one at low
temperatures (~ 15 — 60K) and a broad one at higher
temperatures (~ 200K and above, not shown in figure).
The precise temperature at which the peak occurs is
strongly model-dependent. The large spin contribution
to the heat capacity manifests as a bump in the total
heat capacity when superposed on top of the background
phonon contribution. As seen in the first inset, the
experimental measured heat capacity shows a bump at
around a temperature of nearly 100K. The bump in
the theoretical total heat capacity comes from the first
peak in the spin heat capacity, anywhere between 10-50K
depending on the model.

IV. SUMMARY

In the present work we carried out theoretical
simulations of the giant {Mng,} wheel directly targeting
two of the common experimental observables used
to characterize single molecule magnets, the heat
capacity and field-dependent magnetic susceptibility.
Our theoretical simulations contained no adjustable
parameters and featured both large-scale first principles
calculations of the exchange interactions as well as
new hyper-optimized tensor contraction methods for the
partition function.

The most interesting features in the observables
for {Mng,} were the peaks in the heat capacity and
the inflection in the field-dependent magnetization,
seen in both theory and experiment. Both must
arise from the degeneracy structures we identified
previously in the {Mng,} energy spectrum.  The
computed and experimental curves for the heat capacity
and magnetization resemble each other, although the
energy scales in the computation are shifted from
experiment, and appear very sensitive to fine details
in the Hamiltonian.  Nonetheless, the qualitatively
good agreement illustrates the increasing theoretical
capabilities to model low-energy physics even in the most
complicated single molecule magnets.
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Fig 8. The calculated heat capacity as a function of temperature with no magnetic field. In the left panel, the theoretical
prediction is sown, with the phonon contribution to the heat capacity shown as the black dashed line, while the solid and
dotted lines include the magnetic contribution, computed via the tensor network calculations for the discussed models. The
right panel shows the corresponding experimental curve in arbitrary units.
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