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Abstract—This paper shows that there exist Reed—Solomon
(RS) codes, over large finite fields, that are combinatorially
list-decodable well beyond the Johnson radius, in fact almost
achieving list-decoding capacity. In particular, we show that for
any ¢ € (0, 1] there exist RS codes with rate Q(m) that
are list-decodable from radius of 1 —<. We generalize this result
to list-recovery, showing that there exist (1 — e, ¢, O(¢/e))-list-
recoverable RS codes with rate (2 (m) Along the
way we use our techniques to give a new proof of a result
of Blackburn on optimal linear perfect hash matrices, and
strengthen it to obtain a construction of strongly perfect hash
matrices.

To derive the results in this paper we show a surprising
connection of the above problems to graph theory, and in
particular to the tree packing theorem of Nash-Williams and
Tutte. We also state a new conjecture that generalizes the
tree-packing theorem to hypergraphs, and show that if this
conjecture holds, then there would exist RS codes that are
optimally (non-asymptotically) list-decodable.’

Keywords-Reed-Solomon codes; Nash-Williams-Tutte Theo-
rem; Johnson radius; list decoding; list recovery; perfect hash
matrix

I. INTRODUCTION

Reed—Solomon (RS) codes are a classical family of error
correcting codes, ubiquitous in both theory and practice.
To define an RS code, let F; be the finite field of size ¢,
and let 1 < k < n < ¢. Fix n distinct evaluation points
a1,Qa,...,0n € Fy. The [n, k]-Reed—Solomon code over
IF, with evaluation points (o, ..., ;) is defined as the set

{(f(a1)7...,f(an)) : feTF, ], deg(f) < k}

RS codes attain the optimal trade-off between rate and
distance. The rate of a code C C Fy is defined as R =
log, |C|/n. The rate is a number between O and 1, and
the closer to 1 the better. The (relative) distance of a code
C C Iy is defined to be §(C) = mincxcec d(c, '), where
d(e,d) = |{i € [n] : ¢ # c;}|/n is relative Hamming
distance. Again, the relative distance is a number between
0 and 1, and the closer to 1 the better. An [n, k]-RS code

has rate k/n and distance (n — k + 1)/n, which is the best-
possible trade-off, according to the Singleton bound [44].

Because RS codes attain this optimal trade-off (and also
because they admit efficient algorithms), they have been
well-studied since their introduction in the 1960’s [39].
However, perhaps surprisingly, there is still much about
them that we do not know. One notable example is their
(combinatorial)? list-decodability and more generally their
list-recoverability. We discuss list-decodability first, and
discuss list-recoverability after that.

List-decodability of RS codes: List-decodability can be
seen as a generalization of distance. For p € (0,1) and
L > 1, we say that a code C C ]FZIL is (p, L)-list-decodable
if for any y € F7,

[{ceC : d(c,y) <p} <L

In particular, (p,1)-list-decodability is the same as having
distance greater than 2p. List-decodability was introduced by
Elias and Wozencraft in the 1950’s [16], [47]. By now it is
an important primitive in both coding theory and theoretical
computer science more broadly. In general, larger list sizes
(the parameter L) allow for a larger list-decoding radius (the
parameter p). In this work, we will be interested in the case
when p =1 — ¢ is large.

The list-decodability of Reed—Solomon codes is of interest
for several reasons. First, both list-decodability and Reed—
Solomon codes are central notions in coding theory, and the
authors believe that question is interesting in its own right.
Moreover, the list-decodability of Reed—Solomon codes has
found applications in complexity theory and pseudorandom-
ness [9], [45], [34].

Until recently, the best bounds available on the list-
decodability of RS codes were bounds that hold generically
for any code. The Johnson bound states that any code
with minimum relative distance & is (1 — /1 — 6, gn26)-
list-decodable over an alphabet of size ¢ ([29], see also
[25, Theorem 7.3.3]). This implies that, for any ¢ € (0, 1],
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there are RS codes that are list-decodable up to radius
1 — & (with polynomial list sizes) that have rate Q(g?).
The celebrated Guruswami—Sudan algorithm [26] gives an
efficient algorithm to list-decode RS codes up to the Johnson
bound, but it breaks down at this point. Meanwhile, the
list-decoding capacity theorem implies that no code (and
in particular, no RS code) that is list-decodable up to radius
1 — € can have rate bounded above ¢, unless the list sizes
are exponential.

There have been several works over the past decade aimed
at closing the gap between the Johnson bound (rate ©(£?))
and the list-decoding capacity theorem (rate O(g)). On the
negative side, it is known that some RS codes (that is, some
way of choosing the evaluation points o, ..., ay), are not
list-decodable substantially beyond the Johnson bound [4].
On the positive side, Rudra and Wootters [40] showed
that a random choice of evaluation points will, with high
probability, yield a code that is list-decodable up to radius
1 — ¢ with rate O (m). Unfortunately, while
the dependence on ¢ in the rate is nearly optimal (the
“correct” dependence should be linear in ¢, according to
the list-decoding capacity theorem), the logg term in the
denominator means that the rate necessarily goes to zero as
n grows, as we must have ¢ > n for RS codes. Working in
a different parameter regime, Shangguan and Tamo showed
that over a large alphabet, there exist RS codes of rate larger
than 1/9 that can also be list-decoded beyond the Johnson
bound (and in fact, optimally) [42]. However, this result only
holds for small list sizes (L = 2,3), and in particular, for
such small list sizes one cannot hope to list-decode up to
a radius 1 — ¢ that approaches 1. Thus, there was still a
substantial gap between capacity and the best known trade-
offs for list-decoding RS codes.

List-recoverability of RS codes: The gap between capacity
and the best known trade-offs for RS codes is even more pro-
nounced for list recovery, a generalization of list decoding.
We say that a code C C Fy is (p, ¢, L)-list-recoverable if for
any Sl, SQ, . S, C Fq with |S1| =/,

[{ceC :d(c,S1 xSy x---%x8,)<p}| <L

Here, we extend the definition of Hamming distance to sets
by denoting

d(c,Sl><~~-><Sn):%|{z'€[n] e d Sib.

The parameter ¢ is called the input list size. List-decoding
is the special case of list-recovery for ¢ = 1. List-recovery
first arose in the context of list-decoding (for example, the
Guruswami—Sudan algorithm mentioned above is in fact a
list-recovery algorithm), but has since found applications
beyond that, for example in pseudorandomness [28] and
algorithm design [14].
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Both the Johnson bound and the list-decoding capacity
theorem have analogs for list-recovery. The list-recovery
Johnson bound [27] implies that there are RS codes of rate
Q(e?/¢) that are list-recoverable up to radius 1—e with input
list size ¢ and polynomial output list size. However, the list-
recovery capacity theorem implies that there are codes of
rate Q(e) (with no dependence on ¢) that achieve the same
guarantee, provided that the alphabet size ¢ is sufficiently
large.

Thus the gap for list-recovery (between rate ©(g2//)
and ©(¢g)) is even larger than that for list-decoding, and
in particular the dependence on ¢ becomes important. To
the best of our knowledge, before our work there were no
results known for RS codes that established list-recovery up
to arbitrarily large radius 1 — e with a better dependence on
¢ than 1/¢.

Motivating question: Given this state of affairs, our mo-
tivating question is whether or not RS codes can be list-
decoded or list-recovered up to radius 1 — £ with rates
Q(e) (in particular, with a linear dependence on € and no
dependence on the alphabet size ¢ or the input list size £).
As outlined below, we nearly resolve this question for list-
decoding and make substantial progress for list-recovery.

Subsequent work: After this paper first appeared, and
inspired by the techniques in this paper and in [42], Fer-
ber, Kwan, and Sauermann showed that there exist (1 —
g,0(1/¢e))-list-decodable RS codes with rate §2(g) over a
field size polynomial in the block length, improving our
result for list-decoding [17]. In a very recent work, Goldberg,
Shangguan, and Tamo further improved the rate of [17] by
showing the existence of (1 — e, O(1/¢))-list-decodable RS
codes with rate approaching 5= [20]. See Section I-B for
more details.

A. Contributions

Our main result establishes the list-recoverability (and in
particular, the list-decodability), of Reed—Solomon codes up
to radius 1 — ¢, representing a significant improvement over
previous work. Our techniques build on the approach of [42];
the main new technical contribution is a novel connection
between list-decoding RS codes and the Nash-Williams—
Tutte theorem in graph theory, which may be of independent
interest. We outline our contributions below.

Existence of RS codes that are near-optimally list-
decodable: Our main theorem for list-decoding is as fol-
lows.

Theorem 1.1 (RS codes with near-optimal list-decoding).
There is a constant ¢ > 1 so that the following statement
holds. For any ¢ € (0,1] and any sufficiently large n, there

exist RS codes of rate R > m over a large enough
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finite field (as a function of n and ¢), that are (1 —e,c¢/e)-
list-decodable.

As discussed above, Theorem 1.1 is stronger than the
result of Rudra and Wootters [40], in that the result of [40]
requires that the rate tend to zero as n grows, while ours
holds for constant-rate codes. On the other hand, our result
requires the field size ¢ to be quite large (see Table I), which
[40] did not require.

Our result also differs from the result of Shangguan and
Tamo [42] discussed above. Because that work focuses on
small list sizes, it does not apply to list-decoding radii
approaching 1. In contrast, we are able to list-decode up
to radius 1 — ¢. We note that [42] is able to show that RS
codes are exactly optimal, while we are off by logarithmic
factors. Both our work and that of [42] require large field
sizes.

Generalization to list-recovery: Theorem 1.1 follows from
a more general result about list-recovery. Our main result is
the following (see Theorem 5.1 in [21] for a more detailed
version).

Theorem L2 (RS codes with list-recovery beyond the
Johnson bound). There is a constant ¢ > 1 such that the
Jollowing statement holds. For any € € (0,1], any positive
integer ¢, and any sufficiently large n, there exist RS codes
with rate R > m over a large enough (as a
function of n, €, and () finite field, that are (1 —¢e,¢,cl/¢)-
list-recoverable.

Theorem 1.2 establishes list-recoverability for RS codes
well beyond the Johnson bound, and in particular breaks the
1/¢ barrier. To the best of our knowledge, this is the first
result to do so for radius arbitrarily close to 1, although we
note that work of Lund and Potukuchi achieved a similar
rate for small error radius [34]. We discuss related work
below in Section I-B and summarize quantitative results in
Table 1.

Applications to perfect hashing: Our techniques also have
an application to the construction of strongly perfect hash
matrices, as detailed below. Given a matrix and a set S of
its columns, a row is said to separate S if, restricted to
this row, these columns have distinct values. For a positive
integer ¢, a matrix is said to be a t-perfect hash matrix if
any set of ¢ distinct columns of the matrix is separated by
at least one row. Perfect hash matrices were introduced by
Mehlhorn [35] in 1984 for database management, and since
then they have found various applications in cryptography
[7], circuit design [37], and the design of deterministic
analogs of probabilistic algorithms [3].

Let PHF(n,m, ¢,t) denote a g-ary ¢-perfect hash matrix
with n rows and m columns. Given m, ¢, t, determining the
minimal n such that there exists a PHF(n,m,q,t) is one
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of the major open questions in this field, and has received
considerable attention (see, e.g., [8], [6], [41]). For any
integers ¢t > 2, k > 2, and sufficiently large prime power g,
using tools from linear algebra Blackburn [8] constructed
a PHF(k(t — 1),4¢"*,q,t), which remains the best-known
construction for such parameters so far.

Constructing perfect hash matrices is related to list-
recovery and list-decoding. Indeed, if the columns of our
matrix are codewords, then the matrix is a t-perfect hash
matrix if and only if the code is (0,f — 1,¢ — 1)-list-
recoverable. On the way to proving our main result on list-
recovery, we prove a theorem (see Theorem 1.9 below) that
gives very precise bounds, but only in a restricted setting.
While this setting is too restrictive to immediately yield
results on list-recovery in general, it turns out to be enough
to say something interesting about perfect ¢-hash matrices.
In particular, we are able to recover Blackburn’s result, and
extend it to a generalization of perfect hashing where every
set of ¢ columns needs to be separated not just by one row
but by many rows.

Theorem L.3. Given integers 1 < k < n and t > 3, for
a sufficiently large prime power ¢, there exists an n x ¢~
matrix, defined on the alphabet ¥y, such that any set of t
columns is separated by at least n — k(t — 1) + 1 rows.

We call a matrix with the property given by Theorem 1.3
a strongly t-perfect hash matrix; this can be viewed as an
“error-resilient” version of perfect hash matrices. Strongly
perfect hash matrices were first introduced by the third and
fourth authors of this paper for ¢ 3, with a slightly
different definition [43]. Indeed, Lemma 25 of [43] implies
the t = 3 case of Theorem 1.3, but it breaks down at that
point. We overcome this barrier, and construct strongly t-
perfect hash matrices for all integers ¢ > 3. The main
ingredient in our proof is a surprising connection from
strongly perfect hashing to graph theory (see Lemma 1.5
and the discussion after it for the details).

Generalizing a definition of [8] (with a slightly different
terminology), we say that an n x ¢* matrix M is called
linear if it is defined over the field I, and has the form
M = PQ, where P is an n X k coefficient matrix and @Q
is the k& x ¢* matrix whose columns are formed by the ¢*
distinct vectors of ¥ ’; .

With this terminology, we will prove the following propo-
sition, which generalizes a result of [8] (see Theorem 4 of

(8D.

Proposition 1.4. If a linear n x ¢* matrix separates any set
of t columns by at least v rows, then v <n—k(t—1)+ 1.

Proposition 1.4 implies that the bound in Theorem 1.3 is
tight, at least for linear constructions.

A new connection to the Nash-Williams-Tutte theorem,
and a new hypergraph Nash-Williams-Tutte conjecture:
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Table I
PRIOR WORK ON LIST-DECODING AND LIST-RECOVERY OF RS CODES. ABOVE, C REFERS TO AN ABSOLUTE CONSTANT. THE “CAPACITY” RESULTS
REFER TO THE LIST-DECODING AND LIST-RECOVERY CAPACITY THEOREMS, RESPECTIVELY, AND ARE IMPOSSIBILITY RESULTS. ABOVE, WE ASSUME
THAT ¢ > n AND THAT nn — 00 IS GROWING RELATIVE TO 1/ AND ¢, AND THAT n IS SUFFICIENTLY LARGE.

H Radius p ‘ List size L ‘ Rate R Field size g
List-Decoding:
Capacity 1—¢ - <e -
Johnson bound 1—¢ poly(n) Ce? q>n
[40] 1—¢ Cle WUCW q > Cnlog®(n/e)/e
[42] (1 -R) L=23 R g =20n
This work (Thm. L1) 1—¢ Cle s q=(H"
List-Recovery:
Capacity l1—¢ - <e -
Johnson bound 1—¢ poly(n) CZEE q>n
[34] p<1-1/V2 cr ﬂ%gq qzCn\/Z-clogn
This work (Thm. 1.2) 1—¢ ce T a=(4)""

In order to derive our results, we build on the framework
of [42]. That work developed a framework to view the
list-decodability of Reed—Solomon codes in terms of the
singularity of intersection matrices (which we define in
Section II). The main new technical contribution of our
work is to connect the singularity of these matrices to tree-
packings in particular graphs. This connection allows us to
use the Nash-Williams—Tutte theorem from graph theory to
obtain our results. The Nash-Williams—Tutte theorem gives
sufficient conditions for the existence of a large tree packing
(that is, a collection of pairwise edge-disjoint spanning trees)
in a graph.

Lemma I.5 (Nash-Williams [36], Tutte [46], see also The-
orem 2.4.1 of [13]). A multigraph contains k edge-disjoint
spanning trees if and only if for every partition P of its
vertex set it has at least (|P| — 1)k cross-edges. Here an
edge is called a cross-edge for P if its two endpoints are in
different members of P.

Lemma L.5 is of particular importance for the proofs of the
main results of this paper, e.g., Theorems 1.1, 1.2, and 1.3. We
think that this connection with graph theory is a contribution
in its own right, and it is our hope that it will lead to further
improvements to our results on Reed—Solomon codes. In
particular, we hope that it will help establish the following
conjecture of [42]:

Conjecture 1.6 (Conjecture 1.5 of [42]). For any € > 0 and
integers 1 < k < n with en € Z, there exist RS codes with
rate R = % over a large enough (as a function of n and
€) finite field, that are list-decodable from radius 1 — R — ¢
and list size at most [1=8==].

Conjecture 1.6 is stronger than our Theorem I.1 about list-
decoding. In particular, our theorem is near-optimal, but it
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is interesting mostly in the low-rate/high-noise parameter
regime. In contrast, Conjecture 1.6 conjectures that there
exist exactly optimal RS codes, in any parameter regime.

To encourage others to use our new connection and make
progress on Conjecture 1.6, we propose a method of attack
in Section 6 of [21]. This outline exploits our connection
to the Nash-Williams—Tutte theorem, and proceeds via a
conjectured generalization of the Nash-Williams—Tutte the-
orem to hypergraphs (see Conjecture III.1 below): we show
that establishing this hypergraph conjecture would in fact
establish Conjecture 1.6.

Theorem 1.7. Conjecture II1.1 implies Conjecture 1.8 and
thus Conjecture L.6.

As further evidence of the viability of this approach, this
quantitative relaxation implies a second proof of our main
list-decoding result, Theorem I.1, and we also sketch this
proof in Section 6 of [21].3

B. Related Work

We briefly review related work. See Table I for a quanti-
tative comparison to prior work.

List-decoding of RS codes: Ever since the Guruswami—
Sudan algorithm [26], which efficiently list-decodes RS
codes up to the Johnson bound, it has been open to un-
derstand the extent to which RS codes are list-decodable
beyond the Johnson bound, and in particular if there are
RS codes that are list-decodable all the way up to the list-
decoding capacity theorem, matching the performance of
completely random codes. There have been negative results
that show that some RS codes are not list-decodable to

3This second proof does not immediately establish list-recoverability,
which is why we focus on our first proof.
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capacity [4], and others that show that even if they were,
in some parameter regimes we are unlikely to find an
efficient list-decoding algorithm [11]. The work of Rudra
and Wootters, mentioned above, showed that for any code
with suitably good distance, a random puncturing of that
code was likely to be near-optimally list-decodable; this
implies that an RS code with random evaluation points
is likely to be list-decodable. Unfortunately, as discussed
above, this result requires a constant alphabet size ¢ in order
to yield a constant-rate code, while RS codes necessarily
have ¢ > n.

Recently, Shangguan and Tamo [42] studied the list-
decodability of RS codes in a different parameter regime,
namely when the list size L is very small, either 2 or 3.
They were able to get extremely precise bounds on the rate
(showing that there are RS codes that are exactly optimal),
but unfortunately for such small list sizes, it is impossible
for any code to be list-decodable up to radius 1 — ¢ for
small e, which is our parameter regime of interest. Unlike
the approach of [40], which applies to random puncturings of
any code, the work of [42] targeted RS codes specifically and
developed an approach via studying intersection matrices.
The reason that their approach stopped at L = 3 was the
difficulty of analyzing these intersection matrices. We build
on their approach and use techniques from graph theory—in
particular, the Nash-Williams—Tutte theorem—to analyze the
relevant intersection matrices beyond what [42] were able to
do. We discuss our approach more below in Section I-C.

Subsequent work on list-decoding of RS codes: After
our work first appeared, and inspired by our approach,
Ferber, Kwan, and Sauermann [17] gave a beautiful proof
establishing the existence of RS codes with rate {2(¢) that
are list-decodable from radius 1 — ¢ with list size O(1/e),
over a polynomially (in the code’s length) large finite field.*
Compared with our result on the list-decodability of RS
codes, their result removes the logarithmic factor in 1/e,
and allows for smaller alphabet sizes; additionally, their
proof is much shorter. In further follow-up work, Goldberg,
Shangguan, and Tamo [20] further improved the rate from
Q(¢) to a rate approaching 5=.

However, we believe that there are still some advantages
to our approach (beyond inspiring that of [17] and [20]).
First, the result of [17] does not apply to list-recovery, and
while [20] does apply to list-recovery, they do not surpass
the 1/¢ barrier in the rate. Second, neither [17] nor [20] fully
resolve Conjecture 1.6 about optimal list-decodability of RS
codes. We believe that the framework and tools developed
in this paper together with the hypergraph Nash-Williams—
Tutte conjecture (see [21]) provide a plausible attack method

“In fact, they show something more general: if one begins with any code
of sufficiently large distance over a sufficiently large alphabet, and randomly
punctures it to rate 2(¢), the resulting code is with high probability (1 —
€,0(1/¢)) list-decodable.
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to resolve Conjecture L.6.

List-recovery of RS codes: While the Guruswami—Sudan
algorithm is in fact a list-recovery algorithm, much less
was known about the list-recovery of RS codes beyond
the Johnson bound than was known about list-decoding.
(There is a natural extension of the Johnson bound for list-
recovery, see [27]; for RS codes, it implies that an RS code
of rate about £2/¢ is list-recoverable up to radius 1 — ¢
with input list sizes ¢ and polynomial output list size). As
with list-decoding, it is known that some RS codes are not
list-recoverable beyond the Johnson bound [22]. However,
much less was known on the positive front. In particular,
neither of the works [40], [42] discussed above work for
list-recovery. In a recent work, Lund and Potuchuki [34]
have proved an analogous statement to that of [40]: any
code of decent distance, when randomly punctured to an
appropriate length, yields with high probability a good list-
recoverable code. This implies the existence of RS codes that
are list-recoverable beyond the Johnson bound. However,
in [34] there is again a dependence on log(q) in the rate
bound, meaning that for RS codes, the rate must be sub-
constant. Further, the work of [34] only applies up to radius
p = 1—1/4/2, and in particular does not apply to radii
p = 1 — ¢, as we study in this work. Our results also
work in the constant-p setting of [34], and in that regime
we show that RS codes of rate Q(1/v/¥) are (p,¢,0(f))
list-recoverable, which improves over the result of [34] by a
factor of log ¢ in the rate. However, we do require the field
size to be much larger than that is required by [34] (see
Table I).

Subsequent work on list-recovery of RS codes: The recent
work of Goldberg, Shangguan, and Tamo [20] mentioned
above builds on [17], and shows that there are RS codes
of rate approaching 75— that are (1 — &,/, L )-list-
recoverable, for a constant L. , that depends only on ¢ and £.
Compared to our work, while [20] improves the dependence
on ¢ in the rate by a factor of log(1/¢), it has a worse
dependence on ¢, and in particular does not break the 1/¢
barrier that is present in the Johnson bound.

List-decoding and list-recovery of RS-like codes: There
are constructions—for example, of folded RS codes and
univariate multiplicity codes [24], [23], [31], [30]—of codes
that are based on RS codes and that are known to achieve
list-decoding (and list-recovery) capacity, with efficient al-
gorithms. Our goal in this work is to study Reed—Solomon
codes themselves.

Perfect hash matrices and strongly perfect hash ma-
trices: Perfect hash matrices have been studied extensively
since the 1980s. There are two parameter regimes that are
studied. The first is when the alphabet size ¢ is constant and
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the number of rows tends to infinity [38], [19], [33], [32],
[48]. The second is when the number of rows is viewed
as a constant, while ¢ may tend to infinity [8], [6], [41].
In both cases the strength ¢ of a perfect hash matrix is a
constant. Our work studies the second case; as mentioned
above, Blackburn [6] gave an optimal construction for linear
hash matrices in this parameter regime, and as a special case
we obtain a second proof of Blackburn’s result.

The study of strongly perfect hash matrices is relatively
new [43]. The thesis [15] collected some recent results on
a closely related topic. However, the parameters considered
there are quite different from those in our paper, and to the
best of our knowledge, our construction is the best known
in the parameter regime we consider. Another related notion
called balanced hashing was introduced in [1], [2], where,
with our notation, any set of ¢ columns of a matrix needs to
be separated by at least a; and at most ag rows, for some
integers a1 < as. Note that in our setting, we want every set
of ¢ columns to be separated by as many rows as possible,
while in the setting of balanced hashing it cannot exceed the
threshold aq; thus, the two settings are incomparable.

C. Technical Overview

Intersection matrices: Our approach is centered around
intersection matrices, introduced in [42]. Intersection ma-
trices and their nonsingularity are defined formally below in
Definition II.2, but we give a brief informal introduction
here. A t-wise intersection matrix, M, is defined by a
collection of sets I, Is,...,I; C [n], and has entries that
are monomials in Fy[x, za, ..., 2,]. It was shown in [42]
that if there is a counter-example to the list-decodability of a
Reed-Solomon code with evaluation points (v, ..., q,)—
that is, if there exist polynomials f1, fa,..., fr4+1 that all
agree with some other polynomial g : F, — I, at many
points «;—then there is a (L 4 1)-wise intersection matrix
that becomes singular when «; is plugged in for z; for all
i€ [n].

The set-up (both the definition of an intersection matrix
and the connection to list-decoding) is most easily explained
by an example. Suppose that we are interested in list-
decoding for L = 3, and suppose that we are interested
in a RS code with evaluation points aj,as,...,q,. Let
f1, f2, f3, f4 and g be a counter-example to list-decoding,
as above, and for 1 < j <4, let I; = {i € [n] : fj(ou) =
g(c;)}. Now consider the product shown in Figure 1 (see
the caption for notation).

An inspection of Figure 1 shows that the matrix-vector
product depicted is zero. Indeed, the top part is zero for any
choice of the f;, and the bottom part is zero since f; and f;
are assumed to agree on {c : s € I;NI;}. The matrix shown
is the 4-wise intersection matrix for the sets Iy, I, I3, 14,
evaluated at ay,...,q,. If the f;’s agree too much with
the function g (i.e., if they are a counter-example to list-
decodability for some given radius), then the sets I; N I;
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are going to be larger, and this matrix will have more rows.
In particular, the more the f;’s agree with g, the harder it
is for this matrix to be singular. Intuitively, this sets us up
for a proof by contradiction: if f1, fs, f3, f4 agree too much
with g, then this matrix is nonsingular (at least for a non-
pathological choice of «;’s); but Figure 1 displays a kernel
vector!

A t-wise intersection matrix (for sets [I,...,I;) gen-
eralizes a 4-wise intersection matrix shown in Figure 1.
The bottom part looks exactly the same—a block-diagonal
matrix with Vandermonde blocks—and the top part is an
appropriate generalization that causes the analogous & - (;)-
long vector corresponding to the f;’s to vanish.

A conjecture about {-wise intersection matrices: With
the motivation in Figure 1, the strategy of [42] was to
study t-wise intersection matrices M for ¢ = L + 1, and
to show that for every appropriate choice of Iy, ..., I, the
polynomial det(M) € Fy[x1,z2,...,2,] is not identically
zero. The list-decodability of RS codes would then follow
from the DeMillo-Lipton—Schwartz—Zippel lemma along
with a counting argument. In particular, they made the fol-
lowing conjecture, and showed that it implies Conjecture 1.6
about list-decoding. Below, the weight of a family of subsets
Ii,...,I; of [n] is defined to be

t

Ut

i=1

)

t
wt(l,.... L) =Y |L| -
=1

and for a set J of indices, we use the shorthand wt(I;) :=
wt(I; 1 j € J).

Conjecture 1.8 (Conjecture 5.7 of [42]). Let t > 3 be an
integer and I, . .., Iy C [n] be subsets satisfying

(1) wt(Iy) < (|J| — 1)k for all nonempty J C [t],

(ii) Equality holds for J = [t], i.e., wt(I}y)) = (t — 1)k.
Then the t-wise intersection matrix My, (g, .. 1,) is nonsin-
gular over any finite field.

The conditions (i) and (ii) above turn out to be the right
way of quantifying “the f;’s agree enough with g.” That is, if
the f;’s agree too much with g (in the sense of going beyond
Conjecture 1.6 about list-decoding), then it is possible to find
sets I; so that (i) and (ii) hold.

Unfortunately, the work of [42] was only able to establish
Conjecture 1.8 for ¢t = 3,4 (corresponding to L = 2, 3), and
it seemed challenging to extend their techniques directly to
much larger values of L.

Establishing the conjecture under an additional assump-
tion, and using that to establish our main results: In this
work, we use a novel connection to the Nash-Williams—Tutte
theorem, which establishes the existence of pairwise edge-
disjoint spanning trees in a graph, to extend the results of
[42] to larger L, at the cost of an additional assumption.
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Vi(I2 N I3) fom i

Vi (11 N 1g) A -1
Vk(IQ ﬂ[4)
Vk(I3 ﬁ[4)

Figure 1. Let f1, f2, f3, fa € Fq[x] have degree k — 1 and suppose that I; = {s : fj(as) = g(as)}. (In particular, f; and f; agree on I; N I;).
Then the matrix-vector product depicted above is zero, where the vector f; refers to the k coefficients of the polynomial f;, and the j-th coordinate of

. . . . I;
this vector is the coefficient of 271 in f. Here, Vi (I; N I;) € ]Flz o
s € I; N 1. The notation Z;, denotes the k X k identity matrix.

More precisely, although not able to prove Conjecture 1.8 in
its full generality, we are able to prove a special case of it,
as stated below.

Theorem 1.9. Let t > 2 be an integer and 11, . .
be subsets satisfying

W) LNnLiNnL=0foralll<i<j<l<t
() wt(ly) < (|J| — 1)k for all nonempty J C [t];
(i) wt(ljy) = (t — 1)k.
Then, the t-wise intersection matrix My, (1, ... 1,) is nonsin-
gular over any field.

I C [nl

Clearly, this theorem stops short of Conjecture 1.8, due
to the assumption that I; N I; N I, = (). However, we will
build on this statement to prove our main theorem about list-
recovery (Theorem 1.2), and moreover this is already enough
to prove our result on the existence of strongly perfect
hash matrices (Theorem 1.3). Theorem 1.9 follows from an
interesting application of Lemma I.5. We only sketch the
main ideas here, leaving the details to [21].

Briefly, we consider each term in the expression

det(M) = Y (—1)%n() ﬁMm(i).

o€Sh i=1

We show that [, M; 5@ is a nonzero monomial in
z1,...,T, if and only if o picks out a tree packing of a
graph’ that is determined by the sets I,...,I;. It turns
out that the requirements of (i) and (ii) in Conjecture 1.8
translate exactly into the requirements needed to apply the

SThroughout this paper, a tree packing of a graph G means a collection
of pairwise edge-disjoint spanning trees of G.

Ij|xk
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denotes the Vandermonde matrix whose rows are [ag, al,.., a'ﬁfl] for

Nash-Williams—Tutte theorem to this graph. Thus, if (i) and
(i1) hold, then there exists a tree packing in this graph and
hence a nonzero term in det(M).

If the sets I;NI; and I;y N 1;s that appear in the lower part
of the t-wise intersection matrix do not intersect (that is, if
there are no three-wise intersections among the sets /), then
the reasoning above is enough to establish the conclusion
of Conjecture 1.8, because all of the terms that appear in
the expansion of the determinant are distinct monomials,
and they cannot cancel. This is why Theorem 1.9 has this
assumption.

While Theorem 1.9 is not strong enough to immediately
establish results for list-decoding or list-recovery (indeed,
there is no reason that there should not be three-wise
intersections for the polynomials f; discussed above), it is
enough for our application to perfect hash matrices (see
Section 4 of [21]).

In order to apply Theorem 1.9 to list-decoding, we back
off from Conjecture 1.8 a bit. First, we allow a factor
of ©(logt) slack on the right-hand sides of (i) and (ii).
Second, rather than showing that the ¢-wise intersection
matrix My, (7, ... 1,y is nonsingular, we show that there exists
a t/-wise intersection matrix that is nonsingular for some
t’ < t. Following the connection of [42] illustrated in
Figure 1, this turns out to be enough to establish our main
theorem on list-decoding/recovery.

We choose this smaller intersection matrix by carefully
choosing a random subset J of [¢]. By greedily removing
elements from the sets {I; : j € J}, we can obtain subsets
I; C I; with empty three-wise intersections ;N 17, NI}, =
(). Furthermore, by the careful random choice of .J, and since
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we allowed a O(logt) slack in the initial weight bounds, we
can show this step does not delete too many elements. This
is the key step of our proof. Using some of the sets {I; : j €
J}, we can find a smaller intersection matrix obeying the
setup of Conjecture 1.8 with the additional guarantee that
all three-wise intersections are empty. We provide a more
detailed summary of the proof in Section 5.1 of [21].

Another avenue to list-decoding, a hypergraph Nash-
Williams-Tutte conjecture: Extending our connection of
list-decoding RS codes to the Nash-Williams—Tutte theorem,
we show that a suitable hypergraph generalization of the
Nash-Williams—Tutte theorem would imply Conjecture 1.8
about the nonsingularity of intersection matrices, without
any need for an additional assumption about three-wise
intersections of the sets ;.

We conjecture that such a generalization is true, and we
state it in Section III as Conjecture III.1. We show that if
Conjecture III.1 were true, it would imply Conjecture 1.8,
on the nonsingularity of intersection matrices. This in turn
would imply Conjecture 1.6, establishing the existence of RS
codes with optimal list-decodability. This suggests a plan of
attack towards Conjecture 1.6.

While we are unable to establish this challenging con-
jecture in full, we give some evidence for it. First, we
show that the “easy part” of the conjecture follows from
the Nash-Williams—Tutte theorem. Second, we observe that
a quantitative relaxation of the conjecture follows from
known results on Steiner tree packings [12] and disjoint
bases of polymatroids [10]. This relaxation can be combined
with the connection of hypergraph packings and intersection
matrices, and the connection between intersection matrices
and list decoding RS codes, to give a second proof of
Theorem 1.1, that there are near-optimally list-decodable RS
codes.

In addition to implying the optimal list-decodability of
RS codes, Conjecture III.1 may be of independent interest. A
hypergraph generalization of Nash-Williams—Tutte is known
for partition-connected hypergraphs [18] (see Section III for
definition), a well studied notion. However, for a different
notion called weak-partition-connectivity, less seems to be
known, and Conjecture III.1 poses a Nash-Williams—Tutte
generalization for weakly-partition-connected hypergraphs.

Organization. A graphical overview of our results can be
found in Figure 2. In Section II we will give the formal
definition of intersection matrices. In Section III we will
introduce our conjectured hypergraph version of the Nash-
Williams—Tutte theorem. The proofs of all the results men-
tioned above can be found in [21].

D. Future Directions and Open Questions

In this work, we have shown the existence of near-
optimally list-decodable RS codes in the large-radius param-
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eter regime. To do this, we have established a connection
between the intersection matrix approach of [42] and tree
packings. Along the way, we also developed applications
to the construction of strongly perfect hash matrices, and
we have introduced a new hypergraph version of the Nash-
Williams—Tutte theorem. We highlight a few questions that
remain open.

Can RS codes exactly achieve list-decoding capacity? In
spite of the results and tools developed in this paper, we were
not able to prove Conjecture 1.6. We hope that the avenue of
attack discussed in Section III will be able to finish the job.
We note that the analogous question regarding the limits of
list-recoverability of RS codes also remains open.

Efficient list-decoding of RS codes? We remark that,
using a simple idea from [42] one can convert each of the
existence results of RS codes reported in this paper into an
explicit code construction, although over a much larger field
size. Hence, given such an explicit code construction, is it
possible to decode it efficiently up to its guaranteed list-
decoding radius? A similar question can be asked for list-
recoverability. We note that [11], which shows that decoding
RS codes much beyond the Johnson bound is likely hard in
certain parameter regimes, does not apply to our parameter
regime when the field size is large.

Generalizing the Nash-Williams-Tutte theorem to hy-
pergraphs: In an attempt to resolve Conjecture 1.6, we
present Conjecture III.1, a new graph-theoretic conjecture,
which can be viewed as a generalization of the Nash-
Williams-Tutte theorem to hypergraphs. In addition to being
interesting on its own, resolving this conjecture would imply
the existence of optimally list-decodable RS codes.

II. INTERSECTION MATRICES

The main goal of this section is to present the definition
of t-wise intersection matrices over an arbitrary field F.

Let Nt ={1,2,...}and [n] = {1,2,...,n} forn € NT.
Denote by log x the base-2 logarithm of x. For a finite set X
and an integer 1 < k < [X|, let (}) ={AC X :|A| =k}
be the family of all k-subsets of X. For an integer t > 3, we
define the following lexicographic order on ([E]). For distinct
S1,8 € ([é]), S1 < S if and only if max(S7) < max(Ss)
or max(S1) = max(S3) and min(S;) < min(Ss). For a
partition P of X, let |P| denote the number of parts of P.
In the remaining part of this paper, assume that n,k are
integers satisfying 1 < k < n.

We view a polynomial f € F,[z] of degree at most k — 1
as a vector of length k defined by its k coefficients, where
for 1 < ¢ < k, the i-th coordinate of this vector is the
coefficient of z'~! in f. By abuse of notation that vector is
also denoted by f.
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Lemma 1.5
Nash-Williams—Tutte
theorem [36], [46].

Our proof of Theorem 1.1 {

Il
Conjecture III.1
Hypergraph
Nash-Williams—
Tutte Conjecture

Proposed roadmap to
optimal list-decoding,
presented in Section III.

Figure 2.

—

Thm. 1.7 {

A diagram of the results and conjectures presented in this work. Solid arrows represent logical implications. Dashed lines indicate how the

proposed roadmap to optimal list decoding parallels our proof of Theorem I.1.

A. Cycle Spaces

We need the notion of the cycle space of a graph, which is
typically defined over the boolean field Fo (see, e.g., [13]).
Here we define it over an arbitrary field F. An equivalent
definition can be found in [5], where it is called the “circuit-
subspace”.

Let K, be the undirected complete graph with the vertex
set [t]. Denote by {7, j} the edge connecting vertices 7 and
Jj. Let K7 be the oriented graph obtained by replacing {7, j}
with the directed edge (i,7) for all 1 < ¢ < j < ¢. For a
graph G with vertex set [t], an oriented cycle in G is a set
of directed edges of the form

C = {(io, 1), (i1,42), - - -, (m—1,%m)}

where m > 3, ig,...,%n_1 are distinct, i,, = ig and
{ij—1,i;} is an edge of G for all j =1,...,m.

Suppose C' is a union of edge-disjoint oriented cycles
in G. Then C is uniquely represented by a vector u®
(U{C@j} {i, 4} € ([;])) € IF(;), defined for 1 < i < j <t by

L (i,5) €C,
ug’j} =<1 (j,i)eC,
0 else.

Hence, the sign of a nonzero coordinate u(’;j indicates
whether the orientation of {i,j} in C' complies with its
orientation in K. We further assume that the coordinates of

€ are ordered by the aforementioned lexicographic order

u
on (9.
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Theorem 1.3
Existence of strongly
perfect hash matrices

(
L

]

Theorem 1.9
Nonsingularity of
intersection matrices,
provided that I; N
I j N Ig = @ for

Theorem 1.2
Main Theorem: List
Recovery of RS codes

]

all distinct 4, 7, L.
T

{

Theorem 1.1
List Decoding
of RS codes

]

Il
Conjecture 1.6
Optimal List Decoding
of RS Codes

1
Conjecture 1.8 [4
Nonsingularity of
intersection matrices

J

Denote by C(G) C F(2) the subspace spanned by the set
of vectors

{u® : C is an oriented cycle in G}

over F. We call C(G) the cycle space of G over F. We
are particularly interested in the cycle space C(K;) of K.
For distinct 4,7, ¢ € [t], denote by A;j;, the oriented cycle
{(4,7), (4, €), (¢,1)} and call it an oriented triangle. We have
the following lemma, generalizing [13, Theorem 1.9.5].

Lemma IL1. The vector space C(K;) C FG) has dimen-
sion (tgl), and the set

Bi={utt:1<i<j<t—1}

is a basis of C'(Ky).

The basis B3; is also viewed as a (tgl) X (;) matrix over

F whose columns are labeled by the edges {3, j} of K, ac-
cording to the lexicographic order defined above. Moreover,
the rows of B, represent u2iit for 1 < i < j < t — 1,
and are labeled by {i,j} € (I'3'), also according to the
lexicographic order. For example, B3 = (1,—1,1) and

1 -1

-1

1

84 1 )

1 -1 1

where the 6 columns are labeled and ordered lexicograph-
ically by {1,2} < {1,3} < {2,3} < {1,4} < {2,4} <
{3,4}. Observe for example that the +1 entries in the
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first row correspond to the oriented triangle Ajoy
{(1,2),(2,4),(4,1)}, where we have —1 on the column
labeled by the edge {1,4}, since the directed edge (4,1)
in Ajo4 has the opposite orientation from the orientation of
the edge in K7.

We remark that the above definition of B, is given with
respect to the fixed orientation of the edges of K, as with
the definition of u® for any oriented cycle C. One may
define B; with respect to other orientations of edges, which
corresponds to changing the signs in some columns. These
definitions are all equivalent and the analysis in this paper
holds for any orientation up to change of signs.

Moreover, when the characteristic of [F is two, we recover
the definition of BB; in [42] using the fact that 1 = —1. While
working in the case char(F) = 2 has the advantage that there
is no need to distinguish the signs, the theory holds more
generally over any field.

B. t-Wise Intersection Matrices
We proceed to define ¢-wise intersection matrices, but we

begin with a few preliminary definitions. Given n variables
or field elements x4, ..., x,, define the n x k Vandermonde

matrix
1 = x]f_l
Vk(l‘l, . ,xn) =
1 =z, rk=1

When the x;’s are understood from the context, for I C [n],
we use the abbreviation Vj,(I) := Vj(z; : i € I) to denote
the restriction of Vi (z1,...,z,) to the rows with indices in
1.

Let 7Z; denote the identity matrix of order k. Next, we
give the definition of ¢-wise intersection matrices.

Definition I1.2 (¢-wise intersection matrices). For a positive
integer k and t > 3 subsets I, ..., I; C [n], the t-wise inter-
section matrix My, (1, ... 1) is the ((tgl)k+zl<i<j<t |Z7; N
L)) x (%)k variable matrix with entries in Flz1,...,x,),
defined as

Bt ®Ik
diag(Vk(Ii N1;):{i,j} € ([;]))

where @ is tensor product of matrices and

e By ® Iy is a (tgl)k X (;)k matrix with entries in
{0,£1},

o diag(Vi(L; N L) = {i,j} € () is a block di-
agonal matrix with blocks Vi,(I; N I;), ordered by
the lexicographic order on {i,j} € ([;]). Note that
this matrix has order (3 <; i<y |l N I]) x (5)k. If
I; N I; = 0 for some i, 3, then Vi,(I; N I;) is of order
0 X k and the {i,j} € ([;]) block of k columns is a
Yi<icj<t 1li N 1j| X k zero matrix.
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The reader is referred to the Appendix of [21] for an example
of a 4-wise intersection matrix. We note that when ¢ = 2, 5;
is an empty matrix and My, (1, 1,y is simply a Vandermonde
matrix.

For a vector o € F", the evaluation of My, (1,,... 1,) at the
vector « is denoted by Mj, (1, .. 1,)(c), where each variable
x; is assigned the value «;. Given subsets I,...,I; C [n],
we call the variable matrix My (g, ... 1,) nonsingular if it
contains at least one (;)k X (;)k submatrix whose determi-
nant is a nonzero polynomial in Flz1,...,z,].

The paper [42] connects the nonsingularity of intersection
matrices to the list-decodability of RS codes. We will also
use this connection to prove our main result, Theorem I.2.

III. HYPERGRAPH NASH-WILLIAMS-TUTTE
CONJECTURE

Throughout, we use ¢ as the number of vertices in a
(hyper)graph. This variable corresponds to the same ¢ used
in t-wise intersection matrices. A (multi)graph G is called
k-partition-connected if every partition P of the vertex set
has at least k(]P| — 1) edges crossing the partition. By
the Nash-Williams—Tutte theorem, this is equivalent to the
graph having k edge-disjoint spanning trees. The parameter
k here is the same k used as the dimension of the Reed—
Solomon code and the same k used for the Vandermonde
matrix degrees in the intersection matrices.

We say a hypergraph H is k-weakly-partition-connected®
if, for every partition P of the vertices of H, we have

Y. (Pl -1 =k(P|-1),

e€E(H)

where P(e) is the number of parts of P that e intersects.
For example, any k-partition-connected graph is k-weakly-
partition-connected as a hypergraph. As another example, k&
copies of a hyperedge covering all ¢ vertices of H is also
k-weakly partition-connected.

An edge-labeled graph is a graph G where each edge is
assigned a label from some set E. Let H be a hypergraph. A
tree-assignment of H is an edge-labeled graph G obtained
by replacing each edge e of H with a tree F, of |e| — 1
edges on the vertices of e. Furthermore, each edge of the
graph F, is labeled with e. The graph G is thus the union
of the graphs F, for e € H.

A k-tree-decomposition of a graph on k(t — 1) edges
is a partition of its edges into k edge-disjoint spanning
trees 1g,...,Tx—1. We say tree-decomposition when k is
understood. In an edge-labeled graph 7' with edge-labels
from some set F, let v € N¥ be the vector counting the

SThere is also a notion of “k-partition-connected” for hypergraphs which
uses min{P(e) — 1,1} in the sum. In other words, a hypergraph is k-
partition-connected if any partition P has at least k(|P|—1) crossing edges.
This notion admits a Nash-Williams—Tutte type theorem: any k-partition-
connected hypergraph can be decomposed into k I-partition-connected
hypergraphs [18]
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edge-labels in T'. Specifically, vI is the number of edges of
label e in T'. For a tree-decomposition (Tp, -+ ,Ti—1) of an
edge-labeled graph, define its signature v(To-Tk=1) by

k—1
,U(Towu,Tk—l) — § Z’_vTi.
=0

An edge-labeled graph G on t vertices is called k-
distinguishable if G has k(t — 1) edges and there exists
a tree-decomposition Tp,...,Tr_1 of G with a unique
signature. That is, for any tree-decomposition Ty, ..., T},
with the same signature v TorTic) = (Tor s Ti1) | wwe
have T/ =T; for i =0,...,k — 1.

With these definitions, we can now conjecture a hyper-
graph version of the Nash-Williams—Tutte theorem.

Conjecture II1.1. Let t and k be positive integers. Every k-
weakly-partition-connected hypergraph H on t vertices has
a k-distinguishable tree-assignment.
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