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Abstract—This paper shows that there exist Reed–Solomon
(RS) codes, over large finite fields, that are combinatorially
list-decodable well beyond the Johnson radius, in fact almost
achieving list-decoding capacity. In particular, we show that for
any ε ∈ (0, 1] there exist RS codes with rate Ω( ε

log(1/ε)+1
) that

are list-decodable from radius of 1−ε. We generalize this result
to list-recovery, showing that there exist (1− ε, �, O(�/ε))-list-

recoverable RS codes with rate Ω
(

ε√
�(log(1/ε)+1)

)

. Along the

way we use our techniques to give a new proof of a result
of Blackburn on optimal linear perfect hash matrices, and
strengthen it to obtain a construction of strongly perfect hash
matrices.

To derive the results in this paper we show a surprising
connection of the above problems to graph theory, and in
particular to the tree packing theorem of Nash-Williams and
Tutte. We also state a new conjecture that generalizes the
tree-packing theorem to hypergraphs, and show that if this
conjecture holds, then there would exist RS codes that are
optimally (non-asymptotically) list-decodable.1

Keywords-Reed–Solomon codes; Nash-Williams–Tutte Theo-
rem; Johnson radius; list decoding; list recovery; perfect hash
matrix

I. INTRODUCTION

Reed–Solomon (RS) codes are a classical family of error

correcting codes, ubiquitous in both theory and practice.

To define an RS code, let Fq be the finite field of size q,

and let 1 ≤ k < n ≤ q. Fix n distinct evaluation points

α1, α2, . . . , αn ∈ Fq . The [n, k]-Reed–Solomon code over

Fq with evaluation points (α1, . . . , αn) is defined as the set

{(

f(α1), . . . , f(αn)
)

: f ∈ Fq[x], deg(f) < k
}

.

RS codes attain the optimal trade-off between rate and

distance. The rate of a code C ⊂ F
n
q is defined as R =

logq |C|/n. The rate is a number between 0 and 1, and

the closer to 1 the better. The (relative) distance of a code

C ⊂ F
n
q is defined to be δ(C) = minc�=c′∈C d(c, c′), where

d(c, c′) = |{i ∈ [n] : ci �= c′i}|/n is relative Hamming

distance. Again, the relative distance is a number between

0 and 1, and the closer to 1 the better. An [n, k]-RS code

1A full version of this paper is available online at
https://arxiv.org/abs/2011.04453.

has rate k/n and distance (n− k+1)/n, which is the best-

possible trade-off, according to the Singleton bound [44].

Because RS codes attain this optimal trade-off (and also

because they admit efficient algorithms), they have been

well-studied since their introduction in the 1960’s [39].

However, perhaps surprisingly, there is still much about

them that we do not know. One notable example is their

(combinatorial)2 list-decodability and more generally their

list-recoverability. We discuss list-decodability first, and

discuss list-recoverability after that.

List-decodability of RS codes: List-decodability can be

seen as a generalization of distance. For ρ ∈ (0, 1) and

L ≥ 1, we say that a code C ⊂ F
n
q is (ρ, L)-list-decodable

if for any y ∈ F
n
q ,

|{c ∈ C : d(c, y) ≤ ρ}| ≤ L.

In particular, (ρ, 1)-list-decodability is the same as having

distance greater than 2ρ. List-decodability was introduced by

Elias and Wozencraft in the 1950’s [16], [47]. By now it is

an important primitive in both coding theory and theoretical

computer science more broadly. In general, larger list sizes

(the parameter L) allow for a larger list-decoding radius (the

parameter ρ). In this work, we will be interested in the case

when ρ = 1− ε is large.

The list-decodability of Reed–Solomon codes is of interest

for several reasons. First, both list-decodability and Reed–

Solomon codes are central notions in coding theory, and the

authors believe that question is interesting in its own right.

Moreover, the list-decodability of Reed–Solomon codes has

found applications in complexity theory and pseudorandom-

ness [9], [45], [34].

Until recently, the best bounds available on the list-

decodability of RS codes were bounds that hold generically

for any code. The Johnson bound states that any code

with minimum relative distance δ is (1 −
√
1− δ, qn2δ)-

list-decodable over an alphabet of size q ([29], see also

[25, Theorem 7.3.3]). This implies that, for any ε ∈ (0, 1],

2Throughout this paper, we will study combinatorial (rather than algo-

rithmic) list-decodability.
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there are RS codes that are list-decodable up to radius

1 − ε (with polynomial list sizes) that have rate Ω(ε2).
The celebrated Guruswami–Sudan algorithm [26] gives an

efficient algorithm to list-decode RS codes up to the Johnson

bound, but it breaks down at this point. Meanwhile, the

list-decoding capacity theorem implies that no code (and

in particular, no RS code) that is list-decodable up to radius

1 − ε can have rate bounded above ε, unless the list sizes

are exponential.

There have been several works over the past decade aimed

at closing the gap between the Johnson bound (rate Θ(ε2))
and the list-decoding capacity theorem (rate Θ(ε)). On the

negative side, it is known that some RS codes (that is, some

way of choosing the evaluation points α1, . . . , αn), are not

list-decodable substantially beyond the Johnson bound [4].

On the positive side, Rudra and Wootters [40] showed

that a random choice of evaluation points will, with high

probability, yield a code that is list-decodable up to radius

1 − ε with rate O
(

ε
log5(1/ε) log q

)

. Unfortunately, while

the dependence on ε in the rate is nearly optimal (the

“correct” dependence should be linear in ε, according to

the list-decoding capacity theorem), the log q term in the

denominator means that the rate necessarily goes to zero as

n grows, as we must have q ≥ n for RS codes. Working in

a different parameter regime, Shangguan and Tamo showed

that over a large alphabet, there exist RS codes of rate larger

than 1/9 that can also be list-decoded beyond the Johnson

bound (and in fact, optimally) [42]. However, this result only

holds for small list sizes (L = 2, 3), and in particular, for

such small list sizes one cannot hope to list-decode up to

a radius 1 − ε that approaches 1. Thus, there was still a

substantial gap between capacity and the best known trade-

offs for list-decoding RS codes.

List-recoverability of RS codes: The gap between capacity

and the best known trade-offs for RS codes is even more pro-

nounced for list recovery, a generalization of list decoding.

We say that a code C ⊂ F
n
q is (ρ, �, L)-list-recoverable if for

any S1, S2, . . . , Sn ⊂ Fq with |Si| = �,

| {c ∈ C : d(c, S1 × S2 × · · · × Sn) ≤ ρ} | ≤ L.

Here, we extend the definition of Hamming distance to sets

by denoting

d(c, S1 × · · · × Sn) =
1

n
| {i ∈ [n] : ci �∈ Si} |.

The parameter � is called the input list size. List-decoding

is the special case of list-recovery for � = 1. List-recovery

first arose in the context of list-decoding (for example, the

Guruswami–Sudan algorithm mentioned above is in fact a

list-recovery algorithm), but has since found applications

beyond that, for example in pseudorandomness [28] and

algorithm design [14].

Both the Johnson bound and the list-decoding capacity

theorem have analogs for list-recovery. The list-recovery

Johnson bound [27] implies that there are RS codes of rate

Ω(ε2/�) that are list-recoverable up to radius 1−ε with input

list size � and polynomial output list size. However, the list-

recovery capacity theorem implies that there are codes of

rate Ω(ε) (with no dependence on �) that achieve the same

guarantee, provided that the alphabet size q is sufficiently

large.

Thus the gap for list-recovery (between rate Θ(ε2/�)
and Θ(ε)) is even larger than that for list-decoding, and

in particular the dependence on � becomes important. To

the best of our knowledge, before our work there were no

results known for RS codes that established list-recovery up

to arbitrarily large radius 1− ε with a better dependence on

� than 1/�.

Motivating question: Given this state of affairs, our mo-

tivating question is whether or not RS codes can be list-

decoded or list-recovered up to radius 1 − ε with rates

Ω(ε) (in particular, with a linear dependence on ε and no

dependence on the alphabet size q or the input list size �).
As outlined below, we nearly resolve this question for list-

decoding and make substantial progress for list-recovery.

Subsequent work: After this paper first appeared, and

inspired by the techniques in this paper and in [42], Fer-

ber, Kwan, and Sauermann showed that there exist (1 −
ε,O(1/ε))-list-decodable RS codes with rate Ω(ε) over a

field size polynomial in the block length, improving our

result for list-decoding [17]. In a very recent work, Goldberg,

Shangguan, and Tamo further improved the rate of [17] by

showing the existence of (1− ε,O(1/ε))-list-decodable RS

codes with rate approaching ε
2−ε [20]. See Section I-B for

more details.

A. Contributions

Our main result establishes the list-recoverability (and in

particular, the list-decodability), of Reed–Solomon codes up

to radius 1− ε, representing a significant improvement over

previous work. Our techniques build on the approach of [42];

the main new technical contribution is a novel connection

between list-decoding RS codes and the Nash-Williams–

Tutte theorem in graph theory, which may be of independent

interest. We outline our contributions below.

Existence of RS codes that are near-optimally list-

decodable: Our main theorem for list-decoding is as fol-

lows.

Theorem I.1 (RS codes with near-optimal list-decoding).

There is a constant c ≥ 1 so that the following statement

holds. For any ε ∈ (0, 1] and any sufficiently large n, there

exist RS codes of rate R ≥ ε
c(log(1/ε)+1) over a large enough
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finite field (as a function of n and ε), that are (1− ε, c/ε)-
list-decodable.

As discussed above, Theorem I.1 is stronger than the

result of Rudra and Wootters [40], in that the result of [40]

requires that the rate tend to zero as n grows, while ours

holds for constant-rate codes. On the other hand, our result

requires the field size q to be quite large (see Table I), which

[40] did not require.

Our result also differs from the result of Shangguan and

Tamo [42] discussed above. Because that work focuses on

small list sizes, it does not apply to list-decoding radii

approaching 1. In contrast, we are able to list-decode up

to radius 1 − ε. We note that [42] is able to show that RS

codes are exactly optimal, while we are off by logarithmic

factors. Both our work and that of [42] require large field

sizes.

Generalization to list-recovery: Theorem I.1 follows from

a more general result about list-recovery. Our main result is

the following (see Theorem 5.1 in [21] for a more detailed

version).

Theorem I.2 (RS codes with list-recovery beyond the

Johnson bound). There is a constant c ≥ 1 such that the

following statement holds. For any ε ∈ (0, 1], any positive

integer �, and any sufficiently large n, there exist RS codes

with rate R ≥ ε
c
√
�(log(1/ε)+1)

over a large enough (as a

function of n, ε, and �) finite field, that are (1− ε, �, c�/ε)-
list-recoverable.

Theorem I.2 establishes list-recoverability for RS codes

well beyond the Johnson bound, and in particular breaks the

1/� barrier. To the best of our knowledge, this is the first

result to do so for radius arbitrarily close to 1, although we

note that work of Lund and Potukuchi achieved a similar

rate for small error radius [34]. We discuss related work

below in Section I-B and summarize quantitative results in

Table I.

Applications to perfect hashing: Our techniques also have

an application to the construction of strongly perfect hash

matrices, as detailed below. Given a matrix and a set S of

its columns, a row is said to separate S if, restricted to

this row, these columns have distinct values. For a positive

integer t, a matrix is said to be a t-perfect hash matrix if

any set of t distinct columns of the matrix is separated by

at least one row. Perfect hash matrices were introduced by

Mehlhorn [35] in 1984 for database management, and since

then they have found various applications in cryptography

[7], circuit design [37], and the design of deterministic

analogs of probabilistic algorithms [3].

Let PHF(n,m, q, t) denote a q-ary t-perfect hash matrix

with n rows and m columns. Given m, q, t, determining the

minimal n such that there exists a PHF(n,m, q, t) is one

of the major open questions in this field, and has received

considerable attention (see, e.g., [8], [6], [41]). For any

integers t ≥ 2, k ≥ 2, and sufficiently large prime power q,

using tools from linear algebra Blackburn [8] constructed

a PHF(k(t − 1), qk, q, t), which remains the best-known

construction for such parameters so far.

Constructing perfect hash matrices is related to list-

recovery and list-decoding. Indeed, if the columns of our

matrix are codewords, then the matrix is a t-perfect hash

matrix if and only if the code is (0, t − 1, t − 1)-list-

recoverable. On the way to proving our main result on list-

recovery, we prove a theorem (see Theorem I.9 below) that

gives very precise bounds, but only in a restricted setting.

While this setting is too restrictive to immediately yield

results on list-recovery in general, it turns out to be enough

to say something interesting about perfect t-hash matrices.

In particular, we are able to recover Blackburn’s result, and

extend it to a generalization of perfect hashing where every

set of t columns needs to be separated not just by one row

but by many rows.

Theorem I.3. Given integers 1 ≤ k < n and t ≥ 3, for

a sufficiently large prime power q, there exists an n × qk

matrix, defined on the alphabet Fq , such that any set of t
columns is separated by at least n− k(t− 1) + 1 rows.

We call a matrix with the property given by Theorem I.3

a strongly t-perfect hash matrix; this can be viewed as an

“error-resilient” version of perfect hash matrices. Strongly

perfect hash matrices were first introduced by the third and

fourth authors of this paper for t = 3, with a slightly

different definition [43]. Indeed, Lemma 25 of [43] implies

the t = 3 case of Theorem I.3, but it breaks down at that

point. We overcome this barrier, and construct strongly t-
perfect hash matrices for all integers t ≥ 3. The main

ingredient in our proof is a surprising connection from

strongly perfect hashing to graph theory (see Lemma I.5

and the discussion after it for the details).

Generalizing a definition of [8] (with a slightly different

terminology), we say that an n × qk matrix M is called

linear if it is defined over the field Fq and has the form

M = PQ, where P is an n × k coefficient matrix and Q
is the k × qk matrix whose columns are formed by the qk

distinct vectors of Fk
q .

With this terminology, we will prove the following propo-

sition, which generalizes a result of [8] (see Theorem 4 of

[8]).

Proposition I.4. If a linear n× qk matrix separates any set

of t columns by at least r rows, then r ≤ n− k(t− 1) + 1.

Proposition I.4 implies that the bound in Theorem I.3 is

tight, at least for linear constructions.

A new connection to the Nash-Williams–Tutte theorem,

and a new hypergraph Nash-Williams–Tutte conjecture:
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Table I
PRIOR WORK ON LIST-DECODING AND LIST-RECOVERY OF RS CODES. ABOVE, C REFERS TO AN ABSOLUTE CONSTANT. THE “CAPACITY” RESULTS

REFER TO THE LIST-DECODING AND LIST-RECOVERY CAPACITY THEOREMS, RESPECTIVELY, AND ARE IMPOSSIBILITY RESULTS. ABOVE, WE ASSUME

THAT q ≥ n AND THAT n → ∞ IS GROWING RELATIVE TO 1/ε AND �, AND THAT n IS SUFFICIENTLY LARGE.

Radius ρ List size L Rate R Field size q

List-Decoding:

Capacity 1− ε - ≤ ε -

Johnson bound 1− ε poly(n) Cε2 q ≥ n

[40] 1− ε C/ε Cε
log5(1/ε) log(q)

q ≥ Cn logC(n/ε)/ε

[42] L
L+1

(1−R) L = 2, 3 R q = 2Cn

This work (Thm. I.1) 1− ε C/ε Cε
log(1/ε)

q =
(

1
ε

)Cn

List-Recovery:

Capacity 1− ε - ≤ ε -

Johnson bound 1− ε poly(n) Cε2

�
q ≥ n

[34] ρ ≤ 1− 1/
√
2 C� C√

�·log q
q ≥ Cn

√
� · logn

This work (Thm. I.2) 1− ε C�
ε

Cε√
�·log(1/ε) q =

(

�
ε

)Cn

In order to derive our results, we build on the framework

of [42]. That work developed a framework to view the

list-decodability of Reed–Solomon codes in terms of the

singularity of intersection matrices (which we define in

Section II). The main new technical contribution of our

work is to connect the singularity of these matrices to tree-

packings in particular graphs. This connection allows us to

use the Nash-Williams–Tutte theorem from graph theory to

obtain our results. The Nash-Williams–Tutte theorem gives

sufficient conditions for the existence of a large tree packing

(that is, a collection of pairwise edge-disjoint spanning trees)

in a graph.

Lemma I.5 (Nash-Williams [36], Tutte [46], see also The-

orem 2.4.1 of [13]). A multigraph contains k edge-disjoint

spanning trees if and only if for every partition P of its

vertex set it has at least (|P| − 1)k cross-edges. Here an

edge is called a cross-edge for P if its two endpoints are in

different members of P .

Lemma I.5 is of particular importance for the proofs of the

main results of this paper, e.g., Theorems I.1, I.2, and I.3. We

think that this connection with graph theory is a contribution

in its own right, and it is our hope that it will lead to further

improvements to our results on Reed–Solomon codes. In

particular, we hope that it will help establish the following

conjecture of [42]:

Conjecture I.6 (Conjecture 1.5 of [42]). For any ε > 0 and

integers 1 ≤ k < n with εn ∈ Z, there exist RS codes with

rate R = k
n over a large enough (as a function of n and

ε) finite field, that are list-decodable from radius 1−R− ε
and list size at most �1−R−ε

ε 	.
Conjecture I.6 is stronger than our Theorem I.1 about list-

decoding. In particular, our theorem is near-optimal, but it

is interesting mostly in the low-rate/high-noise parameter

regime. In contrast, Conjecture I.6 conjectures that there

exist exactly optimal RS codes, in any parameter regime.

To encourage others to use our new connection and make

progress on Conjecture I.6, we propose a method of attack

in Section 6 of [21]. This outline exploits our connection

to the Nash-Williams–Tutte theorem, and proceeds via a

conjectured generalization of the Nash-Williams–Tutte the-

orem to hypergraphs (see Conjecture III.1 below): we show

that establishing this hypergraph conjecture would in fact

establish Conjecture I.6.

Theorem I.7. Conjecture III.1 implies Conjecture I.8 and

thus Conjecture I.6.

As further evidence of the viability of this approach, this

quantitative relaxation implies a second proof of our main

list-decoding result, Theorem I.1, and we also sketch this

proof in Section 6 of [21].3

B. Related Work

We briefly review related work. See Table I for a quanti-

tative comparison to prior work.

List-decoding of RS codes: Ever since the Guruswami–

Sudan algorithm [26], which efficiently list-decodes RS

codes up to the Johnson bound, it has been open to un-

derstand the extent to which RS codes are list-decodable

beyond the Johnson bound, and in particular if there are

RS codes that are list-decodable all the way up to the list-

decoding capacity theorem, matching the performance of

completely random codes. There have been negative results

that show that some RS codes are not list-decodable to

3This second proof does not immediately establish list-recoverability,
which is why we focus on our first proof.
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capacity [4], and others that show that even if they were,

in some parameter regimes we are unlikely to find an

efficient list-decoding algorithm [11]. The work of Rudra

and Wootters, mentioned above, showed that for any code

with suitably good distance, a random puncturing of that

code was likely to be near-optimally list-decodable; this

implies that an RS code with random evaluation points

is likely to be list-decodable. Unfortunately, as discussed

above, this result requires a constant alphabet size q in order

to yield a constant-rate code, while RS codes necessarily

have q ≥ n.

Recently, Shangguan and Tamo [42] studied the list-

decodability of RS codes in a different parameter regime,

namely when the list size L is very small, either 2 or 3.

They were able to get extremely precise bounds on the rate

(showing that there are RS codes that are exactly optimal),

but unfortunately for such small list sizes, it is impossible

for any code to be list-decodable up to radius 1 − ε for

small ε, which is our parameter regime of interest. Unlike

the approach of [40], which applies to random puncturings of

any code, the work of [42] targeted RS codes specifically and

developed an approach via studying intersection matrices.

The reason that their approach stopped at L = 3 was the

difficulty of analyzing these intersection matrices. We build

on their approach and use techniques from graph theory—in

particular, the Nash-Williams–Tutte theorem—to analyze the

relevant intersection matrices beyond what [42] were able to

do. We discuss our approach more below in Section I-C.

Subsequent work on list-decoding of RS codes: After

our work first appeared, and inspired by our approach,

Ferber, Kwan, and Sauermann [17] gave a beautiful proof

establishing the existence of RS codes with rate Ω(ε) that

are list-decodable from radius 1 − ε with list size O(1/ε),
over a polynomially (in the code’s length) large finite field.4

Compared with our result on the list-decodability of RS

codes, their result removes the logarithmic factor in 1/ε,

and allows for smaller alphabet sizes; additionally, their

proof is much shorter. In further follow-up work, Goldberg,

Shangguan, and Tamo [20] further improved the rate from

Ω(ε) to a rate approaching ε
2−ε .

However, we believe that there are still some advantages

to our approach (beyond inspiring that of [17] and [20]).

First, the result of [17] does not apply to list-recovery, and

while [20] does apply to list-recovery, they do not surpass

the 1/� barrier in the rate. Second, neither [17] nor [20] fully

resolve Conjecture I.6 about optimal list-decodability of RS

codes. We believe that the framework and tools developed

in this paper together with the hypergraph Nash-Williams–

Tutte conjecture (see [21]) provide a plausible attack method

4In fact, they show something more general: if one begins with any code
of sufficiently large distance over a sufficiently large alphabet, and randomly
punctures it to rate Ω(ε), the resulting code is with high probability (1−
ε,O(1/ε)) list-decodable.

to resolve Conjecture I.6.

List-recovery of RS codes: While the Guruswami–Sudan

algorithm is in fact a list-recovery algorithm, much less

was known about the list-recovery of RS codes beyond

the Johnson bound than was known about list-decoding.

(There is a natural extension of the Johnson bound for list-

recovery, see [27]; for RS codes, it implies that an RS code

of rate about ε2/� is list-recoverable up to radius 1 − ε
with input list sizes � and polynomial output list size). As

with list-decoding, it is known that some RS codes are not

list-recoverable beyond the Johnson bound [22]. However,

much less was known on the positive front. In particular,

neither of the works [40], [42] discussed above work for

list-recovery. In a recent work, Lund and Potuchuki [34]

have proved an analogous statement to that of [40]: any

code of decent distance, when randomly punctured to an

appropriate length, yields with high probability a good list-

recoverable code. This implies the existence of RS codes that

are list-recoverable beyond the Johnson bound. However,

in [34] there is again a dependence on log(q) in the rate

bound, meaning that for RS codes, the rate must be sub-

constant. Further, the work of [34] only applies up to radius

ρ = 1 − 1/
√
2, and in particular does not apply to radii

ρ = 1 − ε, as we study in this work. Our results also

work in the constant-ρ setting of [34], and in that regime

we show that RS codes of rate Ω(1/
√
�) are (ρ, �, O(�))

list-recoverable, which improves over the result of [34] by a

factor of log q in the rate. However, we do require the field

size to be much larger than that is required by [34] (see

Table I).

Subsequent work on list-recovery of RS codes: The recent

work of Goldberg, Shangguan, and Tamo [20] mentioned

above builds on [17], and shows that there are RS codes

of rate approaching ε
1+�−ε that are (1 − ε, �, Lε,�)-list-

recoverable, for a constant Lε,� that depends only on ε and �.
Compared to our work, while [20] improves the dependence

on ε in the rate by a factor of log(1/ε), it has a worse

dependence on �, and in particular does not break the 1/�
barrier that is present in the Johnson bound.

List-decoding and list-recovery of RS-like codes: There

are constructions—for example, of folded RS codes and

univariate multiplicity codes [24], [23], [31], [30]—of codes

that are based on RS codes and that are known to achieve

list-decoding (and list-recovery) capacity, with efficient al-

gorithms. Our goal in this work is to study Reed–Solomon

codes themselves.

Perfect hash matrices and strongly perfect hash ma-

trices: Perfect hash matrices have been studied extensively

since the 1980s. There are two parameter regimes that are

studied. The first is when the alphabet size q is constant and
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the number of rows tends to infinity [38], [19], [33], [32],

[48]. The second is when the number of rows is viewed

as a constant, while q may tend to infinity [8], [6], [41].

In both cases the strength t of a perfect hash matrix is a

constant. Our work studies the second case; as mentioned

above, Blackburn [6] gave an optimal construction for linear

hash matrices in this parameter regime, and as a special case

we obtain a second proof of Blackburn’s result.

The study of strongly perfect hash matrices is relatively

new [43]. The thesis [15] collected some recent results on

a closely related topic. However, the parameters considered

there are quite different from those in our paper, and to the

best of our knowledge, our construction is the best known

in the parameter regime we consider. Another related notion

called balanced hashing was introduced in [1], [2], where,

with our notation, any set of t columns of a matrix needs to

be separated by at least a1 and at most a2 rows, for some

integers a1 ≤ a2. Note that in our setting, we want every set

of t columns to be separated by as many rows as possible,

while in the setting of balanced hashing it cannot exceed the

threshold a2; thus, the two settings are incomparable.

C. Technical Overview

Intersection matrices: Our approach is centered around

intersection matrices, introduced in [42]. Intersection ma-

trices and their nonsingularity are defined formally below in

Definition II.2, but we give a brief informal introduction

here. A t-wise intersection matrix, M , is defined by a

collection of sets I1, I2, . . . , It ⊆ [n], and has entries that

are monomials in Fq[x1, x2, . . . , xn]. It was shown in [42]

that if there is a counter-example to the list-decodability of a

Reed–Solomon code with evaluation points (α1, . . . , αn)—
that is, if there exist polynomials f1, f2, . . . , fL+1 that all

agree with some other polynomial g : Fq → Fq at many

points αi—then there is a (L+ 1)-wise intersection matrix

that becomes singular when αi is plugged in for xi for all

i ∈ [n].
The set-up (both the definition of an intersection matrix

and the connection to list-decoding) is most easily explained

by an example. Suppose that we are interested in list-

decoding for L = 3, and suppose that we are interested

in a RS code with evaluation points α1, α2, . . . , αn. Let

f1, f2, f3, f4 and g be a counter-example to list-decoding,

as above, and for 1 ≤ j ≤ 4, let Ij = {i ∈ [n] : fj(αi) =
g(αi)}. Now consider the product shown in Figure 1 (see

the caption for notation).

An inspection of Figure 1 shows that the matrix-vector

product depicted is zero. Indeed, the top part is zero for any

choice of the fi, and the bottom part is zero since fi and fj
are assumed to agree on {αs : s ∈ Ii∩Ij}. The matrix shown

is the 4-wise intersection matrix for the sets I1, I2, I3, I4,

evaluated at α1, . . . , αn. If the fi’s agree too much with

the function g (i.e., if they are a counter-example to list-

decodability for some given radius), then the sets Ii ∩ Ij

are going to be larger, and this matrix will have more rows.

In particular, the more the fi’s agree with g, the harder it

is for this matrix to be singular. Intuitively, this sets us up

for a proof by contradiction: if f1, f2, f3, f4 agree too much

with g, then this matrix is nonsingular (at least for a non-

pathological choice of αi’s); but Figure 1 displays a kernel

vector!

A t-wise intersection matrix (for sets I1, . . . , It) gen-

eralizes a 4-wise intersection matrix shown in Figure 1.

The bottom part looks exactly the same—a block-diagonal

matrix with Vandermonde blocks—and the top part is an

appropriate generalization that causes the analogous k ·
(

t
2

)

-

long vector corresponding to the fi’s to vanish.

A conjecture about t-wise intersection matrices: With

the motivation in Figure 1, the strategy of [42] was to

study t-wise intersection matrices M for t = L + 1, and

to show that for every appropriate choice of I1, . . . , It, the

polynomial det(M) ∈ Fq[x1, x2, . . . , xn] is not identically

zero. The list-decodability of RS codes would then follow

from the DeMillo–Lipton–Schwartz—Zippel lemma along

with a counting argument. In particular, they made the fol-

lowing conjecture, and showed that it implies Conjecture I.6

about list-decoding. Below, the weight of a family of subsets

I1, . . . , It of [n] is defined to be

wt(I1, . . . , It) =
t

∑

i=1

|Ii| −
∣

∣

∣

∣

∣

t
⋃

i=1

Ii

∣

∣

∣

∣

∣

,

and for a set J of indices, we use the shorthand wt(IJ) :=
wt(Ij : j ∈ J).

Conjecture I.8 (Conjecture 5.7 of [42]). Let t ≥ 3 be an

integer and I1, . . . , It ⊆ [n] be subsets satisfying

(i) wt(IJ) ≤ (|J | − 1)k for all nonempty J ⊆ [t],
(ii) Equality holds for J = [t], i.e., wt(I[t]) = (t− 1)k.

Then the t-wise intersection matrix Mk,(I1,...,It) is nonsin-

gular over any finite field.

The conditions (i) and (ii) above turn out to be the right

way of quantifying “the fi’s agree enough with g.” That is, if

the fi’s agree too much with g (in the sense of going beyond

Conjecture I.6 about list-decoding), then it is possible to find

sets Ij so that (i) and (ii) hold.

Unfortunately, the work of [42] was only able to establish

Conjecture I.8 for t = 3, 4 (corresponding to L = 2, 3), and

it seemed challenging to extend their techniques directly to

much larger values of L.

Establishing the conjecture under an additional assump-

tion, and using that to establish our main results: In this

work, we use a novel connection to the Nash-Williams–Tutte

theorem, which establishes the existence of pairwise edge-

disjoint spanning trees in a graph, to extend the results of

[42] to larger L, at the cost of an additional assumption.

713

Authorized licensed use limited to: Stanford University. Downloaded on February 15,2023 at 23:48:39 UTC from IEEE Xplore.  Restrictions apply. 



Vk(I1 ∩ I2)

Vk(I1 ∩ I3)

Vk(I2 ∩ I3)

Vk(I1 ∩ I4)

Vk(I2 ∩ I4)

Vk(I3 ∩ I4)

Ik

Ik

Ik

Ik

Ik

Ik

−Ik

−Ik

−Ik

�f1 − �f2

�f1 − �f3

�f2 − �f3

�f1 − �f4

�f2 − �f4

�f3 − �f4

= 0

Figure 1. Let f1, f2, f3, f4 ∈ Fq [x] have degree k − 1 and suppose that Ij = {s : fj(αs) = g(αs)}. (In particular, fi and fj agree on Ii ∩ Ij ).

Then the matrix-vector product depicted above is zero, where the vector �fi refers to the k coefficients of the polynomial fi, and the j-th coordinate of

this vector is the coefficient of xj−1 in f . Here, Vk(Ii ∩ Ij) ∈ F
|Ii∩Ij |×k
q denotes the Vandermonde matrix whose rows are [α0

s, α
1
s, . . . , α

k−1
s ] for

s ∈ Ii ∩ Ij . The notation Ik denotes the k × k identity matrix.

More precisely, although not able to prove Conjecture I.8 in

its full generality, we are able to prove a special case of it,

as stated below.

Theorem I.9. Let t ≥ 2 be an integer and I1, . . . , It ⊆ [n]
be subsets satisfying

(i) Ii ∩ Ij ∩ Il = ∅ for all 1 ≤ i < j < l ≤ t;
(ii) wt(IJ) ≤ (|J | − 1)k for all nonempty J ⊆ [t];

(iii) wt(I[t]) = (t− 1)k.

Then, the t-wise intersection matrix Mk,(I1,...,It) is nonsin-

gular over any field.

Clearly, this theorem stops short of Conjecture I.8, due

to the assumption that Ii ∩ Ij ∩ I� = ∅. However, we will

build on this statement to prove our main theorem about list-

recovery (Theorem I.2), and moreover this is already enough

to prove our result on the existence of strongly perfect

hash matrices (Theorem I.3). Theorem I.9 follows from an

interesting application of Lemma I.5. We only sketch the

main ideas here, leaving the details to [21].

Briefly, we consider each term in the expression

det(M) =
∑

σ∈Sn

(−1)sgn(σ)
n
∏

i=1

Mi,σ(i).

We show that
∏n

i=1 Mi,σ(i) is a nonzero monomial in

x1, . . . , xn if and only if σ picks out a tree packing of a

graph5 that is determined by the sets I1, . . . , It. It turns

out that the requirements of (i) and (ii) in Conjecture I.8

translate exactly into the requirements needed to apply the

5Throughout this paper, a tree packing of a graph G means a collection
of pairwise edge-disjoint spanning trees of G.

Nash-Williams–Tutte theorem to this graph. Thus, if (i) and

(ii) hold, then there exists a tree packing in this graph and

hence a nonzero term in det(M).

If the sets Ii∩Ij and Ii′ ∩Ij′ that appear in the lower part

of the t-wise intersection matrix do not intersect (that is, if

there are no three-wise intersections among the sets Ij), then

the reasoning above is enough to establish the conclusion

of Conjecture I.8, because all of the terms that appear in

the expansion of the determinant are distinct monomials,

and they cannot cancel. This is why Theorem I.9 has this

assumption.

While Theorem I.9 is not strong enough to immediately

establish results for list-decoding or list-recovery (indeed,

there is no reason that there should not be three-wise

intersections for the polynomials fi discussed above), it is

enough for our application to perfect hash matrices (see

Section 4 of [21]).

In order to apply Theorem I.9 to list-decoding, we back

off from Conjecture I.8 a bit. First, we allow a factor

of Θ(log t) slack on the right-hand sides of (i) and (ii).

Second, rather than showing that the t-wise intersection

matrix Mk,(I1,...,It) is nonsingular, we show that there exists

a t′-wise intersection matrix that is nonsingular for some

t′ < t. Following the connection of [42] illustrated in

Figure 1, this turns out to be enough to establish our main

theorem on list-decoding/recovery.

We choose this smaller intersection matrix by carefully

choosing a random subset J of [t]. By greedily removing

elements from the sets {Ij : j ∈ J}, we can obtain subsets

I ′j ⊂ Ij with empty three-wise intersections I ′j ∩ I ′j′ ∩ I ′j′′ =
∅. Furthermore, by the careful random choice of J , and since
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we allowed a Θ(log t) slack in the initial weight bounds, we

can show this step does not delete too many elements. This

is the key step of our proof. Using some of the sets {Ij : j ∈
J}, we can find a smaller intersection matrix obeying the

setup of Conjecture I.8 with the additional guarantee that

all three-wise intersections are empty. We provide a more

detailed summary of the proof in Section 5.1 of [21].

Another avenue to list-decoding, a hypergraph Nash-

Williams–Tutte conjecture: Extending our connection of

list-decoding RS codes to the Nash-Williams–Tutte theorem,

we show that a suitable hypergraph generalization of the

Nash-Williams–Tutte theorem would imply Conjecture I.8

about the nonsingularity of intersection matrices, without

any need for an additional assumption about three-wise

intersections of the sets Ij .

We conjecture that such a generalization is true, and we

state it in Section III as Conjecture III.1. We show that if

Conjecture III.1 were true, it would imply Conjecture I.8,

on the nonsingularity of intersection matrices. This in turn

would imply Conjecture I.6, establishing the existence of RS

codes with optimal list-decodability. This suggests a plan of

attack towards Conjecture I.6.

While we are unable to establish this challenging con-

jecture in full, we give some evidence for it. First, we

show that the “easy part” of the conjecture follows from

the Nash-Williams–Tutte theorem. Second, we observe that

a quantitative relaxation of the conjecture follows from

known results on Steiner tree packings [12] and disjoint

bases of polymatroids [10]. This relaxation can be combined

with the connection of hypergraph packings and intersection

matrices, and the connection between intersection matrices

and list decoding RS codes, to give a second proof of

Theorem I.1, that there are near-optimally list-decodable RS

codes.

In addition to implying the optimal list-decodability of

RS codes, Conjecture III.1 may be of independent interest. A

hypergraph generalization of Nash-Williams–Tutte is known

for partition-connected hypergraphs [18] (see Section III for

definition), a well studied notion. However, for a different

notion called weak-partition-connectivity, less seems to be

known, and Conjecture III.1 poses a Nash-Williams–Tutte

generalization for weakly-partition-connected hypergraphs.

Organization. A graphical overview of our results can be

found in Figure 2. In Section II we will give the formal

definition of intersection matrices. In Section III we will

introduce our conjectured hypergraph version of the Nash-

Williams–Tutte theorem. The proofs of all the results men-

tioned above can be found in [21].

D. Future Directions and Open Questions

In this work, we have shown the existence of near-

optimally list-decodable RS codes in the large-radius param-

eter regime. To do this, we have established a connection

between the intersection matrix approach of [42] and tree

packings. Along the way, we also developed applications

to the construction of strongly perfect hash matrices, and

we have introduced a new hypergraph version of the Nash-

Williams–Tutte theorem. We highlight a few questions that

remain open.

Can RS codes exactly achieve list-decoding capacity? In

spite of the results and tools developed in this paper, we were

not able to prove Conjecture I.6. We hope that the avenue of

attack discussed in Section III will be able to finish the job.

We note that the analogous question regarding the limits of

list-recoverability of RS codes also remains open.

Efficient list-decoding of RS codes? We remark that,

using a simple idea from [42] one can convert each of the

existence results of RS codes reported in this paper into an

explicit code construction, although over a much larger field

size. Hence, given such an explicit code construction, is it

possible to decode it efficiently up to its guaranteed list-

decoding radius? A similar question can be asked for list-

recoverability. We note that [11], which shows that decoding

RS codes much beyond the Johnson bound is likely hard in

certain parameter regimes, does not apply to our parameter

regime when the field size is large.

Generalizing the Nash-Williams–Tutte theorem to hy-

pergraphs: In an attempt to resolve Conjecture I.6, we

present Conjecture III.1, a new graph-theoretic conjecture,

which can be viewed as a generalization of the Nash-

Williams–Tutte theorem to hypergraphs. In addition to being

interesting on its own, resolving this conjecture would imply

the existence of optimally list-decodable RS codes.

II. INTERSECTION MATRICES

The main goal of this section is to present the definition

of t-wise intersection matrices over an arbitrary field F.

Let N+ = {1, 2, . . . } and [n] = {1, 2, . . . , n} for n ∈ N
+.

Denote by log x the base-2 logarithm of x. For a finite set X
and an integer 1 ≤ k ≤ |X|, let

(

X
k

)

= {A ⊆ X : |A| = k}
be the family of all k-subsets of X . For an integer t ≥ 3, we

define the following lexicographic order on
(

[t]
2

)

. For distinct

S1, S2 ∈
(

[t]
2

)

, S1 < S2 if and only if max(S1) < max(S2)
or max(S1) = max(S2) and min(S1) < min(S2). For a

partition P of X , let |P| denote the number of parts of P .

In the remaining part of this paper, assume that n, k are

integers satisfying 1 ≤ k < n.

We view a polynomial f ∈ Fq[x] of degree at most k− 1
as a vector of length k defined by its k coefficients, where

for 1 ≤ i ≤ k, the i-th coordinate of this vector is the

coefficient of xi−1 in f . By abuse of notation that vector is

also denoted by f .
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Conjecture III.1
Hypergraph

Nash-Williams–
Tutte Conjecture

Conjecture I.8
Nonsingularity of

intersection matrices

Conjecture I.6
Optimal List Decoding

of RS Codes

Thm. I.7 [42]

Lemma I.5
Nash-Williams–Tutte
theorem [36], [46].

Theorem I.9
Nonsingularity of

intersection matrices,
provided that Ii ∩
Ij ∩ I� = ∅ for
all distinct i, j, l.

Theorem I.2
Main Theorem: List

Recovery of RS codes

Theorem I.3
Existence of strongly
perfect hash matrices

Theorem I.1
List Decoding
of RS codes

Proposed roadmap to
optimal list-decoding,

presented in Section III.

Our proof of Theorem I.1

Figure 2. A diagram of the results and conjectures presented in this work. Solid arrows represent logical implications. Dashed lines indicate how the
proposed roadmap to optimal list decoding parallels our proof of Theorem I.1.

A. Cycle Spaces

We need the notion of the cycle space of a graph, which is

typically defined over the boolean field F2 (see, e.g., [13]).

Here we define it over an arbitrary field F. An equivalent

definition can be found in [5], where it is called the “circuit-

subspace”.

Let Kt be the undirected complete graph with the vertex

set [t]. Denote by {i, j} the edge connecting vertices i and

j. Let Ko
t be the oriented graph obtained by replacing {i, j}

with the directed edge (i, j) for all 1 ≤ i < j ≤ t. For a

graph G with vertex set [t], an oriented cycle in G is a set

of directed edges of the form

C = {(i0, i1), (i1, i2), . . . , (im−1, im)}
where m ≥ 3, i0, . . . , im−1 are distinct, im = i0 and

{ij−1, ij} is an edge of G for all j = 1, . . . ,m.

Suppose C is a union of edge-disjoint oriented cycles

in G. Then C is uniquely represented by a vector uC =

(uC
{i,j} : {i, j} ∈

(

[t]
2

)

) ∈ F
(t2), defined for 1 ≤ i < j ≤ t by

uC
{i,j} =

⎧

⎪

⎨

⎪

⎩

1 (i, j) ∈ C,

−1 (j, i) ∈ C,

0 else.

Hence, the sign of a nonzero coordinate uC
{i,j} indicates

whether the orientation of {i, j} in C complies with its

orientation in Ko
t . We further assume that the coordinates of

uC are ordered by the aforementioned lexicographic order

on
(

[t]
2

)

.

Denote by C(G) ⊆ F
(t2) the subspace spanned by the set

of vectors

{uC : C is an oriented cycle in G}
over F. We call C(G) the cycle space of G over F. We

are particularly interested in the cycle space C(Kt) of Kt.

For distinct i, j, � ∈ [t], denote by ∆ij� the oriented cycle

{(i, j), (j, �), (�, i)} and call it an oriented triangle. We have

the following lemma, generalizing [13, Theorem 1.9.5].

Lemma II.1. The vector space C(Kt) ⊆ F
(t2) has dimen-

sion
(

t−1
2

)

, and the set

Bt = {u∆ijt : 1 ≤ i < j ≤ t− 1}
is a basis of C(Kt).

The basis Bt is also viewed as a
(

t−1
2

)

×
(

t
2

)

matrix over

F whose columns are labeled by the edges {i, j} of Kt, ac-

cording to the lexicographic order defined above. Moreover,

the rows of Bt represent u∆ijt for 1 ≤ i < j ≤ t − 1,

and are labeled by {i, j} ∈
(

[t−1]
2

)

, also according to the

lexicographic order. For example, B3 = (1,−1, 1) and

B4 =

⎛

⎜

⎜

⎝

1 −1 1

1 −1 1

1 −1 1

⎞

⎟

⎟

⎠

,

where the 6 columns are labeled and ordered lexicograph-

ically by {1, 2} < {1, 3} < {2, 3} < {1, 4} < {2, 4} <
{3, 4}. Observe for example that the ±1 entries in the
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first row correspond to the oriented triangle ∆124 =
{(1, 2), (2, 4), (4, 1)}, where we have −1 on the column

labeled by the edge {1, 4}, since the directed edge (4, 1)
in ∆124 has the opposite orientation from the orientation of

the edge in Ko
t .

We remark that the above definition of Bt, is given with

respect to the fixed orientation of the edges of Ko
t , as with

the definition of uC for any oriented cycle C. One may

define Bt with respect to other orientations of edges, which

corresponds to changing the signs in some columns. These

definitions are all equivalent and the analysis in this paper

holds for any orientation up to change of signs.

Moreover, when the characteristic of F is two, we recover

the definition of Bt in [42] using the fact that 1 = −1. While

working in the case char(F) = 2 has the advantage that there

is no need to distinguish the signs, the theory holds more

generally over any field.

B. t-Wise Intersection Matrices

We proceed to define t-wise intersection matrices, but we

begin with a few preliminary definitions. Given n variables

or field elements x1, . . . , xn, define the n×k Vandermonde

matrix

Vk(x1, . . . , xn) =

⎛

⎜

⎜

⎜

⎝

1 x1 · · · xk−1
1

. . .

1 xn · · · xk−1
n

⎞

⎟

⎟

⎟

⎠

.

When the xi’s are understood from the context, for I ⊆ [n],
we use the abbreviation Vk(I) := Vk(xi : i ∈ I) to denote

the restriction of Vk(x1, . . . , xn) to the rows with indices in

I .

Let Ik denote the identity matrix of order k. Next, we

give the definition of t-wise intersection matrices.

Definition II.2 (t-wise intersection matrices). For a positive

integer k and t ≥ 3 subsets I1, . . . , It ⊆ [n], the t-wise inter-

section matrix Mk,(I1,...,It) is the (
(

t−1
2

)

k+
∑

1≤i<j≤t |Ii∩
Ij |) ×

(

t
2

)

k variable matrix with entries in F[x1, . . . , xn],
defined as

⎛

⎝

Bt ⊗ Ik
diag

(

Vk(Ii ∩ Ij) : {i, j} ∈
(

[t]
2

)

)

⎞

⎠ ,

where ⊗ is tensor product of matrices and

• Bt ⊗ Ik is a
(

t−1
2

)

k ×
(

t
2

)

k matrix with entries in

{0,±1},

• diag
(

Vk(Ii ∩ Ij) : {i, j} ∈
(

[t]
2

))

is a block di-

agonal matrix with blocks Vk(Ii ∩ Ij), ordered by

the lexicographic order on {i, j} ∈
(

[t]
2

)

. Note that

this matrix has order (
∑

1≤i<j≤t |Ii ∩ Ij |) ×
(

t
2

)

k. If

Ii ∩ Ij = ∅ for some i, j, then Vk(Ii ∩ Ij) is of order

0 × k and the {i, j} ∈
(

[t]
2

)

block of k columns is a
∑

1≤i<j≤t |Ii ∩ Ij | × k zero matrix.

The reader is referred to the Appendix of [21] for an example

of a 4-wise intersection matrix. We note that when t = 2, Bt

is an empty matrix and Mk,(I1,I2) is simply a Vandermonde

matrix.

For a vector α ∈ F
n, the evaluation of Mk,(I1,...,It) at the

vector α is denoted by Mk,(I1,...,It)(α), where each variable

xi is assigned the value αi. Given subsets I1, . . . , It ⊆ [n],
we call the variable matrix Mk,(I1,...,It) nonsingular if it

contains at least one
(

t
2

)

k×
(

t
2

)

k submatrix whose determi-

nant is a nonzero polynomial in F[x1, . . . , xn].
The paper [42] connects the nonsingularity of intersection

matrices to the list-decodability of RS codes. We will also

use this connection to prove our main result, Theorem I.2.

III. HYPERGRAPH NASH-WILLIAMS–TUTTE

CONJECTURE

Throughout, we use t as the number of vertices in a

(hyper)graph. This variable corresponds to the same t used

in t-wise intersection matrices. A (multi)graph G is called

k-partition-connected if every partition P of the vertex set

has at least k(|P| − 1) edges crossing the partition. By

the Nash-Williams–Tutte theorem, this is equivalent to the

graph having k edge-disjoint spanning trees. The parameter

k here is the same k used as the dimension of the Reed–

Solomon code and the same k used for the Vandermonde

matrix degrees in the intersection matrices.

We say a hypergraph H is k-weakly-partition-connected6

if, for every partition P of the vertices of H , we have

∑

e∈E(H)

(P(e)− 1) ≥ k(|P| − 1),

where P(e) is the number of parts of P that e intersects.

For example, any k-partition-connected graph is k-weakly-

partition-connected as a hypergraph. As another example, k
copies of a hyperedge covering all t vertices of H is also

k-weakly partition-connected.

An edge-labeled graph is a graph G where each edge is

assigned a label from some set E. Let H be a hypergraph. A

tree-assignment of H is an edge-labeled graph G obtained

by replacing each edge e of H with a tree Fe of |e| − 1
edges on the vertices of e. Furthermore, each edge of the

graph Fe is labeled with e. The graph G is thus the union

of the graphs Fe for e ∈ H .

A k-tree-decomposition of a graph on k(t − 1) edges

is a partition of its edges into k edge-disjoint spanning

trees T0, . . . , Tk−1. We say tree-decomposition when k is

understood. In an edge-labeled graph T with edge-labels

from some set E, let vT ∈ N
E be the vector counting the

6There is also a notion of “k-partition-connected” for hypergraphs which
uses min{P(e) − 1, 1} in the sum. In other words, a hypergraph is k-
partition-connected if any partition P has at least k(|P|−1) crossing edges.
This notion admits a Nash-Williams–Tutte type theorem: any k-partition-
connected hypergraph can be decomposed into k 1-partition-connected
hypergraphs [18]
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edge-labels in T . Specifically, vTe is the number of edges of

label e in T . For a tree-decomposition (T0, · · · , Tk−1) of an

edge-labeled graph, define its signature v(T0,...,Tk−1) by

v(T0,...,Tk−1) :=

k−1
∑

i=0

i · vTi .

An edge-labeled graph G on t vertices is called k-

distinguishable if G has k(t − 1) edges and there exists

a tree-decomposition T0, . . . , Tk−1 of G with a unique

signature. That is, for any tree-decomposition T ′
0, . . . , T

′
k−1

with the same signature v(T
′

0
,...,T ′

k−1
) = v(T0,...,Tk−1), we

have T ′
i = Ti for i = 0, . . . , k − 1.

With these definitions, we can now conjecture a hyper-

graph version of the Nash-Williams–Tutte theorem.

Conjecture III.1. Let t and k be positive integers. Every k-

weakly-partition-connected hypergraph H on t vertices has

a k-distinguishable tree-assignment.
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