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Abstract—Batch codes are a useful notion of locality for
error correcting codes, originally introduced in the context of
distributed storage and cryptography. Many constructions of
batch codes have been given, but few lower bound (limitation)
results are known, leaving gaps between the best known con-
structions and best known lower bounds. Towards determining
the optimal redundancy of batch codes, we prove a new lower
bound on the redundancy of batch codes. Specifically, we study
(primitive, multiset) linear batch codes that systematically encode
n information symbols, with the requirement that any multiset
of k symbol requests can be obtained in disjoint ways. We show
that such batch codes need Ω(

√
nk) symbols of redundancy,

improving on the previous best lower bounds of Ω(
√
n + k) at

all k = nε with ε ∈ (0, 1). Our proof follows from analyzing
the dimension of the order-O(k) tensor of the batch code’s dual
code.

Index Terms—Batch Codes, Lower bound, Locality, Tensor
product, Distributed Storage

I. INTRODUCTION

In this work, we study batch codes, a notion of locality for
error correcting codes, and show stronger limitations on batch
codes for almost all parameter regimes.

Batch codes were introduced in the context of load-
balancing in distributed storage and private information re-
trieval in cryptography [1]. Informally, a (primitive, multiset)
k-batch code is a error correcting code C : Σn → ΣN ,
mapping n information symbols to N codeword symbols, such
that every multiset of k information symbols can be recovered
from k pairwise disjoint recovering sets. In constructing batch
codes, we would like the locality parameter k to be as large
as possible. On the other hand, we would like to minimize the
redundancy N − n of our code, representing the number of
redundant bits in our encoding. In this work, we prove new
limitations on the quantitative tradeoff between the locality
and the redundancy of batch codes. Formally, a batch code is
defined as follows.

Definition I.1. Let C : Σn → ΣN be a code that maps
x1, . . . , xn to c1, . . . , cN . The code C is a k-batch code if, for
every multiset of indices {i1, . . . , ik} ⊂ [n], there exist k mu-
tually disjoint sets R1, . . . , Rk ⊂ [N ] and functions g1, . . . , gk
such that for all information symbols x1, . . . , xn ∈ Σ and
codewords (c1, . . . , cN ) = C(x1, . . . , xn) ∈ ΣN and for all
j ∈ [k], we have gj(c|Rj ) = xij , where c|Rj is c restricted
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to coordinates in Rj . We say C is a linear batch code if Σ
is a finite field, the functions gi are all linear, and C is a
linear map. We say C has a systematic encoding if ci = xi
for i = 1, . . . , n.

Remark I.2 (Primitive Multiset Batch Codes). We note that
our definition of a batch code here is a refinement of the
standard, more general notion of batch codes, introduced by
[1]. In that definition of a batch code, n symbols are encoded
into “buckets” of symbols such that the total size of all buckets
is N , and each batch of k symbols can be decoded by reading
at most one symbol from each bucket. A batch code is a
multiset batch code if (a) the k symbols can form a multiset
and (b) the k symbols can be decoded by querying k pairwise
disjoint sets of buckets. When each bucket can store a single
symbol, the multiset batch code is said to be primitive. Because
we only focus on primitive multiset batch codes in this work,
we drop the adjectives “primitive” and “multiset” throughout
and simply use “batch code,” as per Definition I.1.

The main goal in constructing batch codes is to determine
the minimum redundancy r(n, k) of a k-batch code encoding
n symbols. Many works [1]–[9], have constructed batch codes,
giving good upper bounds on r(n, k). Figure I and Section I-A
give a summary of the known constructions.

On the other hand, few limitations are known on the optimal
locality versus redundancy tradeoff r(n, k). An easy lower
bound shows that a k-batch code has minimum Hamming
distance k, and thus must have redundancy at least k. The
only nontrivial lower bound on the redundancy of (linear)
batch codes is given by [10], who showed that a k-batch
code has redundancy at least Ω(

√
n) when k ≥ 3, and this

is tight up to a logarithmic factor for constant k [4]. A priori,
given these two lower bounds, and the fact that there exist
nε batch codes with redundancy nδ for every ε ∈ (0, 1) and
for δ = δ(ε) < 1 [8], it seemed possible that the optimal δ
could match the best known lower bounds at max(1/2, ε). In
our work, we refute this possibility for all ε ∈ (0, 1), showing
that the redundancy must be Ω(

√
nk) (under two reasonable

assumptions—a systematic encoding and linearity—that also
appear in prior lower bounds [10]). We note that Theorem I.3
holds for any values 3 ≤ k ≤ n, not just values in the regime
k = nε for ε ∈ (0, 1).

Theorem I.3. There exists an absolute constant c > 0 such
that, for all positive integers 3 ≤ k ≤ n, a linear k-batch code
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Fig. 1. r(n, k), the minimum possible redundancy of a k-batch code encoding
n information symbols. Blue dashed segments indicate code constructions.
Red solid segments indicate lower bounds for linear batch codes. Our lower
bound additionally assumes systematic encoding.

systematically encoding n symbols must have redundancy at
least c

√
nk.

Though our lower bound assumes linearity and a systematic
encoding, we point out that the only other nontrivial lower
bounds for batch codes [10] also assume linearity. Further-
more, [10] proves the Ω(

√
n) lower bound in two ways,

with one proof additionally assuming systematic encoding,
and with the other proof handling non-systematic encoding
but additionally assuming that the code is binary (our lower
bound works for linear batch codes over any field). We also
point out that many existing constructions of batch codes are
linear and have systematic encoding.

A. Related work

a) Prior constructions of batch codes: We would like
to understand r(n, k), the minimum possible redundancy of a
k-batch code encoding n information symbols. The following
upper bounds on r(n, k) are known, with the best known ones
illustrated in Figure I, along with the known lower bounds.
• r(n, k) ≤ O(k4), for k = nε with 1/5 < ε ≤ 7/32 [2]
• r(n, n1/4) ≤ n7/8 [2]
• r(n, k) ≤ Õ(

√
n) for any fixed k [4].

• r(n, nε) ≤ O(n2/3+5ε/3) for ε < 1/2 [5].
• r(n, nε) ≤ O(n5/6+ε/3) for ε < 1/2 [5].
• r(n, nε) ≤ Õ(n(3ε+1)/2) for 0 < ε < 1/3 [6].
• r(n, nε) ≤ Õ(nlog4(3)+(2−log2(3))ε) for 0 < ε < 1/2 [7].
• r(n, nε) ≤ O(nδ) for 0 ≤ ε < 1, where δ = δ(ε) < 1

[8]
b) Other notions of locality: Batch codes are related to

several other notions of locality. Two closely related notions
are private information retrieval (PIR) codes [5], [11] and
codes with the disjoint repair group property (DRGP) [12]–
[15], which are relaxations of batch codes that only require
k disjoint repair groups for a single information symbol

(codeword symbol in the case of DRGP). In the case that
the locality parameter k is linear in the block length, PIR
codes and DRGP codes are in fact equivalent to constant query
locally decodable codes (LDCs) and locally correctable codes
(LCCs), respectively. Other related notions include Locally
Repairable Codes [16], LRCs with availability [17], batch
codes with availability [18] where the repair group sizes are
also bounded, switch codes [19]–[21], which are a special case
of batch codes, and combinatorial batch codes [22], which are
a special case of (non-primitive) multiset batch codes. In these
settings, determining the optimal locality versus redundancy
tradeoff is an interesting question. We hope our techniques
could be useful for proving lower bounds for some of these
other notions of locality. For more details about some of these
other notions, we refer the reader to the survey [23].

B. Preliminaries

a) Basic notation: We use [N ] to denote the set
{1, . . . , N}. For a vector c ∈ FN , let supp(c)

def
= {i ∈ [N ] :

ci 6= 0}. For two vector spaces V,W over F, we use V ≤W
to denote V is a subspace of W .

By abuse of notation, we identify a code C : Fn → FN
with a systematic encoding by its image C ≤ FN , which is
a subspace of FN . In the rest of this paper, all codes have
systematic encoding and are represented this way.

b) Dual codes: The dual code C⊥ ≤ FN of a linear
code C ≤ FN is the subspace of all codewords orthogonal to
every codeword of C. One can easily check that dimC⊥ =
N − dimC, so in particular the dimension of C⊥ is equal to
the redundancy of C. We call elements of C⊥ dual codewords
(of C). We use the following standard fact of dual codes, and
include a proof for completeness.

Lemma I.4. Suppose C ≤ FN is a linear code with a
systematic encoding, and there exists an index i ∈ [N ], a set
R ⊂ [N ] \ {i}, and a linear function g, such that g(c|R) = ci
for all codewords c ∈ C. Then there exists a nonzero dual
codeword c⊥ such that supp(c⊥) ⊂ R∪{i} and i ∈ supp(c⊥).

Proof. Suppose g is the function g(c|R) =
∑
j∈R αjcj . Then

−ci +
∑
j∈R αjcj = 0 for all codewords c. Thus, the vector

c⊥ with c⊥j = −1 if j = i, c⊥j = αj if j ∈ R, and
c⊥j = 0 otherwise, is a dual codeword. Vector c⊥ also satisfies
supp(c⊥) ⊂ R ∪ {i} and i ∈ supp(c⊥) by construction, as
desired.

c) Tensor products: We let ei denote the standard basis
vector in FN , so that (ei)i = 1 and (ei)j = 0 for all j 6= i. For
v(1), . . . , v(s) ∈ FN , we define the tensor product v(1)⊗· · ·⊗
v(s) ∈ FNs to be the vector indexed by tuples (i1, . . . , is) ∈
[N ]s with

(v(1) ⊗ · · · ⊗ v(s))(i1,...,is) =

s∏
j=1

v
(j)
ij
.
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A tensor of this form is called a simple tensor; more generally
a tensor is any linear combination of simple tensors. We note
that the set of simple tensors

s⊗
j=1

eij : (i1, . . . , is) ∈ [N ]s


forms a basis for FNs . We refer to this as the standard tensor
basis for FNs . Accordingly, every vector in FNs can be written
as a linear combination of the standard tensor basis, which we
call the standard basis representation. Because these tensors
form a basis, we have the following useful fact.

Lemma I.5. Let (e(1), w(1)), . . . , (e(D), w(D)) be pairs of
tensors in FNs such that, for all i = 1, . . . , D, tensor e(i) is in
the standard tensor basis and the standard basis representation
of w(i) contains e(i) and none of e(i+1), . . . , e(D). Then
w(1), . . . , w(D) are linearly independent.

Proof. Suppose for contradiction
∑D
i=1 αiw

(i) = 0 is a
nonzero linear combination of w(1), . . . , w(D). Let j be the
largest index such that αj 6= 0. By definition of w(j), we may
write w(j) = βe(j) +w′ for some β 6= 0 and some w′ ∈ FNs

not containing e(j) in its standard basis representation. Then
the coefficient of e(j) in the standard basis representation of∑D
i=1 αiw

(i) = (
∑
i<j αiw

(i) + αjw
′) + αjβe

(j) is exactly
αjβ, since w(1), . . . , w(j−1) and w′ do not contain e(j) in their
standard basis representation, so αjβ = 0. This contradicts
that αj , β 6= 0.

For a subspace V ≤ FN and integer s, we let V ⊗s denote
the subspace of FNs spanned by simple tensors v(1)⊗· · ·⊗v(s)
for v(1), . . . , v(s) ∈ V . A standard fact says that dimV ⊗s =
(dimV )s, for all subspaces V and positive integers s.

II. PROOF OF THE MAIN THEOREM

A. Sketch of the proof

Though our proof is short, we provide a brief summary
to highlight the main ideas. For intuition in this sketch, we
strengthen the definition of batch codes to require that the
repair groups R1, . . . , Rk are not only pairwise disjoint but
also that they are each disjoint from {i1, . . . , ik}. In the main
proof, we remove this assumption.

Let C be a k-batch code. Let t = bk/2c. Since 2t ≤ k,
C is also a 2t-batch code by definition. Let V = C⊥.
Call a simple tensor ei′1 ⊗ · · · ⊗ ei′2t ∈ FN2t

good if the
multiset {i′1, . . . , i′2t} ⊂ [n] contains exactly t distinct ele-
ments, each appearing exactly twice. Given such a multiset
{i′1, i′2, . . . , i′2t} for a good tensor, the definition of a 2t-
batch code together with Lemma I.4 guarantee the existence
of 2t dual codewords, one for each i′j , so that the support
of the corresponding codeword is Rj ∪ {i′j}, and where (by
assumption for this sketch) the Rj are all disjoint from each
other and {i′1, . . . , i′2t}. By tensoring these dual codewords,
we obtain a tensor wi′1,...,i′2t ∈ V ⊗2t whose standard basis
representation contains the good simple tensor

⊗2t
j=1 ei′j and,

crucially, no other good simple tensors.

Because these tensors wi′1,...,i′2t have only one good simple
tensor each, unique to them, they must be linearly independent
by Lemma I.5. Thus, the dimension of V ⊗2t is lower bounded
by the number of tensors wi′1,...,i′2t , which is at least the
number of good simple tensors, which we can count to be(
n
t

)(
2t

2,2,...,2

)
≥ Ω(nt)t. As dim(V ⊗2t) = (dimV )2t, we

conclude that dimV ≥ (Ω(nt)t)1/2t = Ω(
√
nt) = Ω(

√
nk),

as desired.

B. Full proof

Proof of Theorem I.3. Let t = bk/3c. Since C is a k-batch
code, C is also a 3t-batch code. Define vector spaces V def

= C⊥

and W def
= V ⊗2t. In the standard tensor basis of FN2t

, call a
simple tensor ei′1⊗· · ·⊗ei′2t good if the multiset {i′1, . . . , i′2t}
contains exactly t distinct elements, each appearing exactly
twice.

For every t-tuple (i1, . . . , it) ∈ [n]t with i1 > · · · > it,
consider the t-multiset of symbols ∪tj=1{xij , xij , xij}. Since
C is a 3t-batch code, these have recovery sets Rj,1, Rj,2, Rj,3
for j = 1, . . . , t that are pairwise disjoint. For any j, at least
two of the Rj,1, Rj,2, Rj,3 do not contain ij because they are
pairwise disjoint. Without loss of generality, Rj,1 and Rj,2 do
not contain ij . Thus, for each j, applying Lemma I.4 to Rj,1
and Rj,2, there exist two dual codewords c(j,1), c(j,2) such
that supp(c(j,1)) ∩ supp(c(j,2)) = {ij}. Define Di1,...,it

def
=

(c(j,`))1≤j≤t,`=1,2.
Call a bijection π : [2t]→ [t]× [2] a good map. For a good

map π, let π1 : [2t] → [t] denote the first coordinate of π
and let π2 : [2t]→ [2] denote the second coordinate of π. For
each good map π and each i1, . . . , it, let ei1,...,it,π denote the
simple tensor

ei1,...,it,π
def
=

2t⊗
j=1

eiπ1(j)
. (1)

Clearly ei1,....it,π is a good simple tensor, since π is a bijection
and thus each π1(j) appears twice.

For each good map π and each i1, . . . , it, if Di1,...,it =
(c(j,`))1≤j≤t,`=1,2, then let wi1,...,it,π denote the tensor

wi1,...,it,π
def
=

2t⊗
j=1

c(π1(j),π2(j)). (2)

As c(π1(j),π2(j)) are all in V , each wi1,...,it,π is in W = V ⊗2t.

Claim II.1. Each wi1,...,it,π , written in the standard basis of
FN2t

has at most 3t good simple tensors.

Proof. Note that supp(c(j,`)) ⊆ {ij} ∪ Rj,`, and furthermore
that Rj,` are pairwise disjoint. Thus, each of i1, . . . , it appears
in at most three supports supp(c(j,`)); that is, ij can appear
in supp(c(j,1)), supp(c(j,2)), and then in supp(c(j

′,`)) for at
most one other (j′, `), so that ij ∈ Rj′,`. Further, any element
i ∈ [N ]\{i1, . . . , it} appears in at most one set Rj,` and hence
in at most one support supp(c(j,`)). Thus, any simple tensor
ei′1 ⊗ · · · ⊗ ei′2t appearing in the standard basis representation
of wi1,...,it,π has at most three of any of ei1 , . . . , eit and at
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most one any other ei in the product. Thus, in any good simple
tensor ei′1 ⊗ · · · ⊗ ei′2t in the standard basis representation of
wi1,...,it,π , there must be two of each of ei1 , . . . , eit in the
product. For each eij , there are at most three of the 2t positions
where it can appear in the standard basis representation: in the
(two) positions j′ such that π(j′)1 = j, or the (at most one)
position j′ such that Rπ(j′)1,π(j′)2 contains {ij}. Thus, there
are at most

(
3
2

)
= 3 choices for the positions of eij for each

j, so there are at most 3t good tensors in wi1,...,it .

Claim II.2. Each wi1,...,it,π , written in the standard basis of
FN2t

contains the simple tensor ei1,...,it,π .

Proof. For each j = 1, . . . , 2t, the dual codeword c(π1(j),π2(j))

has a nonzero coefficient in coordinate iπ1(j), so wi1,...,it,π =⊗2t
j=1 c

(π1(j),π2(j)) has a nonzero coefficient in coordinate
(iπ1(1), iπ1(2), . . . , iπ1(2t)). Hence, the standard basis represen-
tation of wi1,...,it,π contains the simple tensor

⊗2t
j=1 eiπ1(j)

=
ei1,...,it,π .

Now consider the set E of all good simple tensors ei1,...,it,π
with i1 > · · · > it and π a good map. Note that there are
exactly

(
n
t

)(
2t

2,2,...,2

)
elements of E, as we may first choose

i1 > · · · > it and then choose π1. (Notice that the definition
of ei1,...,it,π does not depend on π2). Choose a sequence
(e(1), w(1)), (e(2), w(2)), · · · ∈ E × W as follows: given
(e(1), w(1)), . . . , (e(r), w(r)), choose e(r+1) = ei1,...,it,π to be
a good simple tensor not in the standard basis representation
of any of w(1), . . . , w(r), and let w(r+1) def

= wi1,...,it,π , which
contains e(r+1) by Claim II.2. By Claim II.1, since each
w(r) has at most 3t good simple tensors in the standard
basis representation, this process can be continued for at least
D

def
= |E|/3t steps. Furthermore, we guarantee that w(r) con-

tains e(r) and none of e(r+1), . . . , e(D) for any r = 1, . . . , D.
Thus, by Lemma I.5, the tensors w(1), . . . , w(D) are linearly
independent. Hence, we have

(dimV )2t = dimW ≥ D = |E|/3t =

(
n

t

)
· (2t)!

2t
· 1

3t

≥
(n
t

)t
· (2t)2t/e2t

2t · 3t
=

nttt

(3e2/2)t
. (3)

Hence, the redundancy is at least

dimV ≥ 1√
3e2/2

·
√
nt ≥ 0.1

√
nk, (4)

as desired. Here, we used that t = bk/3c ≥ k/5.
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