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Abstract—An error correcting code exhibits the t-Disjoint
Repair Group Property (t-DRGP) (for message symbols) if it is
possible to recover a single symbol of a codeword (message) in t
ways, each from a disjoint set of symbols of the codeword. Codes
with the DRGP have found applications in private information
retrieval (PIR) and distributed storage, and are related to several
notions of locality in coding theory. In this work we prove an
impossibility result for codes with the DRGP. We show that the
redundancy of any code with the t-DRGP is Ω(

√
n) for all t ≥ 2.

Our bound is tight, even including the leading constant, for t = 2,
and is tight up to a constant factor for t = O(1). We also show an
analogous result for binary codes with the t-DRGP for message
symbols, which has applications to PIR.

These results first appeared in 2016 and were never published.
As our results have not yet been improved upon, and have been
referenced by multiple works over the years, we are prompted
to publish them now. We hope that publishing these results now
will spur more work in the area, and in particular will lead to
improved bounds.

Index Terms—Information retrieval, Privacy, Coding theory,
Distributed storage

I. INTRODUCTION

A. Background and importance

Let C ⊆ Fn be a linear code over a finite field F. We are
often interested in the locality of C. There are many different
ways of defining locality, but typically it refers to the ability
to obtain a small amount of information about a message or
codeword locally, by looking at only at a few symbols. One
notion of locality that has recently been fruitful in several
domains is the disjoint repair group property (DRGP), which
roughly says that any (codeword or message) symbol should
have many disjoint ways of recovering it. While we do not
explicitly consider the size of these recovery sets in this work,
the requirement that they be disjoint implies that most must
be relatively “local;” we discuss the relationship between the
DRGP and other notions of locality below.

Below, we formalize the DRGP, first for codeword symbols
(Definition 1) and then for message symbols (Definition 2).

Definition 1 (DRGP). Let C ⊂ Fn be a linear code. We say
that C has the t-disjoint-repair-group property for s symbols
((t, s)-DRGP) if the following holds. For any given i ∈ [s],
there are vectors λ(1), . . . , λ(t) ∈ Fn so that:

1) The sets Supp(λ(j)) are disjoint from each other for all
j ∈ [t], and are disjoint from {i}; and
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2) for all c ∈ C and j ∈ [t] we have ci =
∑n

`=1 λ
(j)
` c`.

That is, for any i ∈ [s] and any c ∈ C, ci can be recovered
in t different ways (other than looking at ci itself), each of
which relies on a disjoint set of indices. The t-DRGP has been
studied in many different areas. When t is small, it is related
to notions in distributed storage, like locally repairable codes
(LRCs) with availability.1 When t = Ω(n) is large, codes
with the t-DRGP are constant-query locally correctable code
(LCCs). The DRGP is also closely related to batch codes. We
refer the reader to [11] for a survey of some of these notions.

When we only wish to recover message symbols, rather than
any codeword symbol, we can define a version of the t-DRGP
for message symbols.

Definition 2 (DRGP for message symbols). Let C ⊆ Fn be a
linear code with an encoding map encC : Fk → Fn. We say
that C has the t-disjoint-repair-group property for s message
symbols ((t, s)-DRGP-m) if the following holds. For any given
i ∈ [s], there are vectors λ(1), . . . , λ(t) ∈ Fn so that:

1) The sets Supp(λ(j)) are disjoint for all j ∈ [t]; and
2) for all j ∈ [t] and all messages m ∈ Fk, we have mi =∑n

`=1 λ
(j)
` c`, where c = encC(m) ∈ C.

Binary codes with the DRGP for message symbols are
also known as PIR codes due to their applications to private
information retrieval [4]. For large t, (t = Ω(n)), codes with
the t-DRGP-m are constant-query locally decodable codes
(LDCs).

We note that for a systematic linear code of dimension k,
the (t, s)-DRGP is the same as the (t+1, s)-DRGP-m for any
s ≤ k.2 However, in general the two notions are different.
Similarly, any linear code with the (t, s)-DRGP (for any s)
has the (t+ 1,min{s, k})-DRGP-m for some encoding map;
thus proving negative results for the DRGP-m is more difficult
than proving negative results for the DRGP.

For both the DRGP and the DRGP-m, we are interested
in the trade-off between the parameters t and s and the
redundancy r of the code; if C ⊂ Fn has dimension k, the
redundancy is defined as r = n− k.

In this paper we present two lower bounds on the redun-
dancy of codes with the DRGP(-m), focusing on the case

1We note that typically for LRCs with availability, one is also interested
in the size of the repair groups, while we are only interested in their being
disjoint.

2For historical reasons, the use of “t” is off by one between the two
definitions.
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where t is constant. Our first result applies to codes with the
DGRP, and applies to codes over all fields. Our second result
applies to codes with the DRGP-m, but only works for binary
fields. Both results are tight for constant t. While our bounds
hold for any value of t, they are agnostic to t and we suspect
that they are not tight for t = ω(1).

B. Related work

As noted in the abstract, this work first appeared online in
2016 [10], [14], but it was never published. Since then, there
has been a great deal of work on codes with the DRGP, which
we summarize below. However, almost all of these are positive
results (constructions of codes). To our knowledge there have
been no major improvements on the negative results presented
in this work since it first appeared. We note that there have
been new negative results for the related notion of batch codes,
which we discuss below.

a) Constructions of codes with the DRGP: For t = 2,
there is a straightforward construction of a code with the
(2, n)-DRGP with redundancy r, where r is such that

(
r+1
2

)
=

n (see Example 1). We will show in Theorem 1 that this is
optimal, and that we must have

(
r+1
2

)
≥ n. There has been a

great deal of work on constructing codes with the DRGP for
larger values of t, for example [4]–[8]. Most of these are based
on the algebraic notion of lifting. The landscape of what is
possible is a bit complicated (see [7] for a detailed overview),
but over large fields, for t ≤

√
n, the smallest redundancy

known is Θ(tlog2(3)−1
√
n) [8]. Our bounds apply for t > 2,

but continue to imply only that
(
r+1
2

)
≥ n. Thus, despite much

effort, the best possibility results for large t are quite far off
from the best impossibility results given by our work, even
over large fields.

b) Constructions of codes with the DRGP-m: Motivated
by private information retrieval, the work [4] introduced codes
with the DRGP-m (calling them PIR codes). They showed
that, as with the DRGP for t = 2, there is a construction
(Example 2) of a code with the (t, k)-DRGP-m for t = 3 that
has with redundancy r for any r so that

(
r
2

)
≥ k; our work

implies that this is nearly optimal. For larger t, the work [4]
gave constructions with redundancy at most t

√
k(1 + o(1)).

Since that work, there have been improved constructions [1],
[3] constructing good DRGP-m codes, but as with the DRGP,
these are not known to be optimal for t = ω(1).

c) Other impossibility results: To the best of our knowl-
edge, there have been no improvements to the results presented
in this paper since they appeared over five years ago. In
particular, it has remained open to meaningfully extend our
results to larger values of t. However, we mention the recent
work [9], which uses similar techniques to one of our proofs
(and is in fact inspired by it) to prove stronger impossibility
results for the related notion of batch codes. We also mention
[12], which pre-dates our work and which establishes bounds
for the related notion of LRCs with availability. These bounds
take into account the size of the recovery sets, and thus are
not directly comparable to our work. Finally, while the best
redundancy for LDCs and LCCs is a major open question,

there have been some negative results [2], [13]. However, since
the t-DRGP(-m) is related to LDC/LCCs when t = Ω(n)
is very large, while our results are most interesting when
t = O(1) is very small, this work is again not comparable
to our work (and unfortunately our bounds do not shed any
light on the best rate of constant-query LDC/LCCs).

C. Our results

In this section we present our two results. The first result
is a general lower bound on the redundancy of (t, s) DRGP
correctable codes over any field.

Theorem 1 (Bound for DRGP). Let C ⊂ Fn be a linear code
of length n, dimension k and redundancy r = n− k that has
the (2, s)-DRGP. Then (

r + 1

2

)
≥ s.

This bound is tight for s = n, as the following construction
shows.

Example 1 (Optimal construction for t = 2, s = n). Let r
be a positive integer and let n =

(
r+1
2

)
. Let H ∈ F(r+1)×n

2

be the matrix so that H`,{i,j} = 1[` ∈ {i, j}],3 where we
index the columns of H by pairs {i, j} so that i 6= j. Let
C = {c ∈ Fn

2 : Hc = 0}. The C has the (2, n)-DRGP. Notice
that in this construction the redundancy is r (it is not r + 1
because the rows of H sum to zero and hence are linearly
dependent), and the length of the code is n =

(
r+1
2

)
.

To see that the code in Example 1 indeed has the (2, n)-
DRGP, suppose that we wish to recover a coordinate `, which
we associate with a pair {i, j}. The i’th and j’th row of H
have support intersecting only in `, and thus give two disjoint
repair groups for `.

Theorem 1 is also nearly tight for s = k: the following
example gives a construction (due to [4]) with s =

(
r
2

)
.

Example 2 (Near-optimal construction for t = 2, s = k [4]).
Let r be a positive integer and choose n = r +

(
r
2

)
. Let G ∈

F(r
2)×n

2 be the block matrix given by G = [I(r
2)
|P ], where

P ∈
(
r
2

)
× r is the matrix whose rows are indexed by pairs

{i, j} for i, j ∈ [r] so that P{i,j},` = 1[` ∈ {i, j}]. Then G
is the (systematic) generator matrix of a code with the (2, k)-
DRGP and the (3, k)-DRGP-m. Notice that in this construction
the redundancy is r and the dimension of the code is k =

(
r
2

)
.

To see that the code in Example 2 indeed has the (2, k)-
DRGP (or equivalently the (3, k)-DRGP-m, as the code is
systematic), suppose that we wish to recover a symbol indexed
by some ` ∈ [k]; as k =

(
r
2

)
, we identify ` with a tuple {i, j}.

Consider the two parity-checks given by columns i and j of
the parity part P of the generator matrix G; call them p(i) and

3Here, 1[` ∈ {i, j}] is the indicator function that is 1 if ` ∈ {i, j} and 0
otherwise.
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p(j). The supports of these columns intersect in location ` and
are otherwise disjoint. Thus one can write e(`) in two ways as

e(`) = p(i) −
∑

h∈Supp(p(i))\{`}

g(h)

and as
e(`) = p(j) −

∑
h∈Supp(p(j))\{`}

g(h).

where g(h) = e(h) is the h’th column of G. We observe that
the sets of column indices used in these two different ways
are disjoint (and are disjoint from {`}), and so these provide
our two disjoint repair groups for ` (in addition to {`} itself).

As mentioned above, proving negative results for the
DRGP-m is harder than for the DRGP. In the following
theorem, we provide a similar result that holds for the DRGP-
m; however, it only applies to binary codes.

Theorem 2 (Bound for DRGP-m). Let C ⊂ Fn
2 be a binary

linear code with length n, dimension k, and redundancy r =
n− k that has the (3, k)-DRGP-m. Then(

r + 1

2

)
≥ k.

Again, this bound is nearly tight, as Example 2 shows.

Remark 1 (Comparison between Theorems 1 and 2). Theo-
rem 2 is not comparable to Theorem 1. While Theorem 1 does
apply for s = k, if the code in question is not systematic,
it does not yield an impossibility result for the DRGP-m;
thus Theorem 2 is stronger in this respect. On the other
hand, Theorem 1 applies to codes over general fields, while
Theorem 2 applies only over F2.

Next, we observe that both Theorems 1 and 2 hold for any
t ≥ 2. More precisely, as was observed in [4], it is clear that
the best redundancy possible for codes with the (t, s)-DRGP(-
m) is non-decreasing in t. (Indeed, if a code C has the (t, s)-
DRGP(-m), then it also trivially has the (t′, s)-DRGP(-m) for
any t′ ≤ t). Thus, we have the following corollary.

Corollary 1. Theorem 1 holds when “(2, s)-DRGP” is re-
placed by “(t, s)-DRGP” for any t ≥ 2. Theorem 2 holds
when “(3, k)-DRGP-m” is replaced by “(t, k)-DRGP-m” for
any t ≥ 3.

As noted above, Theorems 1 and 2 first appeared online
over five years ago [10], [14], to the best of our knowledge
they have not been improved; in particular we are not aware of
any results that obtain improved bounds for larger t. We hope
that one contribution of the current work will be to highlight
the open problem of improving our bounds.

Question 1. Is there some constant c > 0 so that the following
holds? For any 2 ≤ t ≤

√
n, for any code C with the (t, n)-

DRGP (or (t, k)-DRGP-m) with redundancy r and length n,
we must have r = Ω(tc

√
n).

Current constructions imply that such a c must satisfy c ≤
log2(3)− 1.

D. Overview of the paper

In Section II we will introduce preliminary notation and
definitions. In Section III we prove Theorem 1 about the t-
DRGP, and in Section IV we prove Theorem 2 on the t-DRGP-
m for binary codes.

II. PRELIMINARIES

In this section we define notions we will need going
forward. For vectors x, y ∈ Fn, we use the notion 〈x, y〉 =∑n

i=1 xiyi to denote the dot product between x and y. For an
integer t, we use [t] to mean the set {1, 2, . . . , t}. We use e(i)

to refer to the i’th standard basis vector. (The dimension of
e(i) depends on the context, and we will make it clear when
we use it).

The following product operation ◦ will be useful in the proof
of Theorem 2.

Definition 3 (Product operation ◦). Given two binary vectors
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), we define their
product component wise,

u ◦ v := (u1v1, u2v2, . . . , unvn)

where u1v1, u2v2, . . . , unvn are computed in F2.

Next, we define the square of a set as its square under the
◦ operation.

Definition 4 (Square of a set). Given a set X ⊆ Fn
2 , we define

the square of X as the set of component-wise products of the
elements in X . That is,

X2 = {x ◦ y : x, y ∈ X}.

Definition 5 (Span of a set). We let Span(X) denote the linear
span over F2 of a set X ⊆ Fn

2 .

The following propositions follow straightforwardly from
Definitions 3 and 4 of the operation ◦ and of X2 respectively.

Proposition 1. For any set X ⊆ Fn
2 , |X2| ≤

(|X|+1
2

)
.

Proof. If |X| = r, then X2 consists of the
(
r
2

)
vectors u◦v =

v ◦u for some u 6= v in X , along with the r vectors u◦u = u
for some u ∈ X . Some of these vectors may coincide.

Proposition 2. If a, b ∈ Span(X), then a ◦ b ∈ Span(X2).

Proof. Let X = {x1, x2, . . . , xr}. Since a, b ∈ Span(X) we
can write a =

∑
i

αixi and b =
∑
i

βixi for some binary

coefficients α1, α2, . . . αr, β1β2, . . . , βr.
Then

a ◦ b =

(
r∑

i=1

αixi

)
◦

 r∑
j=1

βjxj


=

r∑
i=1

r∑
j=1

αiβj(xi ◦ xj) ∈ Span(X2).
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Proposition 3. Let u, v1, v2, v3 ∈ Fn
2 such that v1 ◦ v2 + v1 ◦

v3 + v2 ◦ v3 = 0, then

(u+v1)◦(u+v2)+(u+v2)◦(u+v3)+(u+v3)◦(u+v1) = u

Proof. The proof follows by straightforward verification using
distributivity and commutativity of ◦.

III. PROOF OF THEOREM 1: DRGP

Proof. Let C ⊂ Fn be a code of dimension k and redundancy
r = n−k, as in the statement of Theorem 1. Consider the dual
code C⊥, which is a linear code of dimension r and length n.
Let ω(1), . . . , ω(n) ∈ Fr be vectors so that

C⊥ =
{(
〈α, ω(1)〉, 〈α, ω(1)〉, . . . , 〈α, ω(n)〉

)
: α ∈ Fr

}
.

(That is, for i ∈ [n], the ω(i) are the columns of a parity-check
matrix for C). In this language, the (2, s)-DRGP correctable
can be restated as follows:

For all i ∈ [s], there exist some α(i), β(i) ∈ Fr so that
1. 〈α(i), ω(i)〉 · 〈β(i), ω(i)〉 6= 0, and
2. for all j 6= i, 〈α(i), ω(j)〉 · 〈β(i), ω(j)〉 = 0.
Indeed, suppose that λ(1) and λ(2) are the vectors guaran-

teed by Definition 1 for t = 2. Then for i ∈ [s] and j ∈ {1, 2},
we have λ(j)−e(i) ∈ C⊥, where e(i) ∈ Fn is the i’th standard
basis vector. Let H ∈ Fr×n be the parity-check matrix for C
with the vectors {ω(j) : j ∈ [n]} as columns. Then we see the
correspondence between the above condition and Definition 1
as follows. For i ∈ [s], set α(i) ∈ Fr so that α(i)H = λ(1)−e(i)
and set β(i) so that β(i)H = λ(2) − e(i).

Now for i ∈ [s], construct polynomials Pi : Fr → F as

Pi(X1, . . . , Xr) =

 r∑
j=1

α
(i)
j Xj

 ·
 r∑

j=1

β
(i)
j Xj

 .

Note that the conditions 1 and 2 above implies that

Pi(ω
(j)) =

{
〈α(i), ω(i)〉 · 〈β(j), ω(j)〉 6= 0, if i = j

0, if i 6= j

Thus, the Pi’s are linearly independent over F. However,
they are spanned by the monomials of degree exactly two in
X1, . . . , Xr. But there are

(
r+1
2

)
of these, and so s ≤

(
r+1
2

)
,

as claimed.

IV. PROOF OF THEOREM 2: DRGP FOR MESSAGE
SYMBOLS

We now prove Theorem 2 using Propositions 1, 2, 3. In
particular we establish a lower bound on the redundancy of
binary linear codes with the (t, k)-DRGP-m for t ≥ 3.

Proof. Let C ⊆ Fn
2 be a binary code of dimension k and

redundancy r = n − k, with the (t, k)-DRGP-m, as in the
theorem statement. Let G ∈ Fk×n

2 be a generator matrix for C
so that for all i ∈ [k], there are three disjoint sets of columns
of G that add up to e(i) ∈ Fk

2 . Notice that such a matrix
exists by the definition of the DRGP for message symbols
(Definition 2). Let x(1), x(2), . . . , x(n) denote the columns of

G. Fix i ∈ [k], and let R1, R2, R3 ⊂ [n] denote the disjoint
sets so

e(i) =
∑
j∈R1

x(j) =
∑
j∈R2

x(j) =
∑
j∈R3

x(j)

Since G has full column rank, some k columns of G are
linearly independent, and we assume without loss of generality
that these are the first k columns. Consequently, there exists
a non-singular matrix A ∈ Fk×k

2 such that

G′ = AG = [Ik|P ]

where Ik is the k × k identity matrix and P ∈ Fk×r
2 . Let

y(1), y(2), . . . , y(n) denote the columns of G′, with y(j) = e(j)

for j ∈ [k].
Then it follows that

a(i) =
∑
j∈R1

y(j) =
∑
j∈R2

y(j) =
∑
j∈R3

y(j) (1)

where a(1), a(2), . . . , a(k) ∈ Fk
2 are the columns of A.

Note that dim Span(a(1), . . . , a(k)) = k, since the matrix A
is non-singular. Let us now further define for ` ∈ [3]:

S` = R` ∩ [k]

T` = R` ∩ ([n]\[k]) ,

v(`) =
∑
j∈S`

y(j) =
∑
j∈S`

e(j)

With this notation, we can rewrite (1) as follows:

a(i) + v(`) =
∑
j∈T`

y(j) ∀` ∈ [3]

Finally, let us define X =
{
y(k+1), y(k+2), . . . , y(n)

}
. It

follows that a(i) + v(1), a(i) + v(2), a(i) + v(3) ∈ Span(X).
We are now ready to use Propositions 1, 2, and 3 in order to
complete the proof. Since the sets S1, S2, S3 are disjoint, it
follows that the supports of v(1), v(2), v(3) are also disjoint. In
other words, v(1) ◦ v(2) = v(1) ◦ v(3) = v(2) ◦ v(3) = 0. Using
Proposition 3, we conclude that

a(i) = (a(i) + v(1)) ◦ (a(i) + v(2))

+ (a(i) + v(2)) ◦ (a(i) + v(3))

+ (a(i) + v(3)) ◦ (a(i) + v(1)).

Since the vectors a(i) + v(1), a(i) + v(2), a(i) + v(3) ∈
Span(X), it follows from Proposition 2 that the products
of these vectors are in Span(X2). This implies that a(i) ∈
Span(X2) for all i. Hence

dim Span(X2) ≥ dim Span(a(1), a(2), . . . , a(k)) = k

Using Proposition 1, we have dim Span(X2) ≤ |X2| ≤(
r+1
2

)
. Thus

(
r+1
2

)
≥ k, which completes the proof of the

theorem.
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