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Abstract—Given a probability distribution D over the non-
negative integers, a D-repeat channel acts on an input symbol by
repeating it a number of times distributed as D. For example,
the binary deletion channel (D=Bernoulli) and the Poisson repeat
channel (D=Poisson) are special cases. We say a D-repeat channel is
square-integrable if D has finite first and second moments. In this
paper, we construct explicit codes for all square-integrable D-
repeat channels with rate arbitrarily close to the capacity, that
are encodable and decodable in linear and quasi-linear time,
respectively. We also consider possible extensions to the repeat
channel model, and illustrate how our construction can be
extended to an even broader class of channels capturing
insertions, deletions, and substitutions.

Our work offers an alternative, simplified, and more general
construction to the recent work of Rubinstein [3], who attains
similar results to ours in the cases of the deletion channel and the
Poisson repeat channel. It also slightly improves the runtime and
decoding failure probability of the polar codes constructions of
Tal et al. [1] and of Pfister and Tal [2] for the deletion channel and
certain insertion/deletion/substitution channels. Our techniques
follow closely the approaches of Guruswami and L i  [4] and Con
and Shpilka [5]; what sets apart our work is that to obtain our
result, we show that a capacity-achieving code for the channels in
question can be assumed to have an “approximate balance” in the
frequency of zeros and ones of all sufficiently long substrings of all
codewords. This allows us to attain near-capacity-achieving codes
in a general setting. We consider this “approximate balance”
result to be of independent interest, as it can be cast in much
greater generality than just repeat channels.

A  full version of this paper is available at https://arxiv.org/
abs/2201.12746.

Index Terms—synchronization channels, efficient codes, ex-
plicit codes.

I . INTRODUC T I ON

Fixing a probability distribution D  over the natural numbers
N, a D-repeat channel acts on an input bit by repeating it a
number of times distributed like D. Special cases include the
binary deletion channel, Poisson repeat channel, and the sticky
channels (the latter two were introduced by Mitzenmacher et al
[6], [7]). We say a D-repeat channel is square-integrable if D
has finite first and second moments. In general, the output of a D-
repeat channel has random length, and does not preserve
synchronization; that is, one cannot see the index at the input

FP is supported by CURIS 2021. R L  is supported by NSF Grants DGE-
1656518, CCF-1814629. MW is partially supported by NSF Grant CCF-
1844628 and by a Sloan Research Fellowship. We thank Ido Tal for pointing
out an error in our description of [1], [2] in an earlier version of this work, and
anonymous reviewers for helpful comments.

of a given observed bit at the output. This introduces memory
into the channel, making its analysis much more complicated
than its memoryless counterparts. For example, in stark con-
trast with the memoryless case, even in the simplest case of
the binary deletion channel (where D  =  Bernoulli(p)), the
capacity is unknown, although several lower and upper bounds
have been proved (see [8], [9] for two excellent surveys on
synchronization channels).

More recently, progress has been made on constructing
explicit and efficient codes whose rates approximate the state
of the art lower bounds on capacity for certain simple special
cases of repeat channels. Guruswami and L i  [4] gave the
first explicit and efficient codes for the deletion channel with
Θ(1 −  d) rate, where d is the deletion probability, achieving
a rate of (1 −  d)/120. This was later improved by Con and
Shpilka [5] to (1 −  d)/16. Tal et al. [1] gave a construction
using polar codes proved to achieve the capacity of the deletion
channel by considering a sequence of hidden-markov input
processes that approach the maximum mutual information. In
[2], their construction was extended to a more general
model of synchronization errors, which allows for simple
insertions and bit flips. Very recently, Rubinstein [3] gave
a black-box construction, which takes a general (inefficient
and non-explicit) code for the deletion channel or the Poisson
repeat channel of a given rate R  and produces an efficient
and explicit code of rate R  −  ε, for any ε >  0. In particular,
this yields an efficient and explicit code achieving capacity on
these channels. However, to our knowledge, no efficient and
explicit code construction has been given of even non-trivial
rate for general square-integrable repeat channels.

In this paper, we show that, by extending the techniques of
[4], [5], we can obtain codes for any square-integrable repeat
channel that are efficiently encodable and decodable and of
rate within ε of the capacity, for any ε >  0. In the full version
[10], we also illustrate how our construction can give explicit,
efficient capacity achieving codes for an even broader class of
channels capturing insertions, deletions, and substitutions.

As mentioned above, similar results appeared in the litera-
ture before, and our result differs in the following ways. First,
the work [3] proves the same result for the deletion channel
and the Poisson repeat channel. Our construction generalizes
the result to general repeat channels, and we illustrate how it
can be generalized further to channels capturing insertions,
deletions, and substitutions (see the full version, [10]). We
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also believe our proof is simpler and contains techniques
that may be of independent interest. Second, the works [1],
[2] obtain similar results for the deletion channel [1] and
insertion/deletion/substitution channels [2]. Compared to these
works, we give slightly faster decoding algorithms and slightly
smaller error probability: for any 0 <  ν′ <  ν <  1/3, [1], [2]
give decoding error probability e −Ω ( n ν ′  

)  in time O(n1+3ν ),
while we achieve decoding error probability e −Ω ( n )  in time
O(n poly log n).

A. Organization
In Section II  we review some background material needed

for the proofs. In Section II I  we give the construction, and
prove its correctness. We refer the reader to the full version of
the paper for a more detailed comparison between our work
and [3], who obtains similar results. In the full version of the
paper, we also give an overview of how our results can be
extended to a more general error model.

I I . P R E L I M I N A R I E S

A. Notation and Basic Concepts
In what follows, {0, 1}n  for n � N � {∞ }  denotes the set of

bit strings of length n; we also let {0, 1}� =             {0, 1}n .
For x  � {0, 1}n , we let x k  denote the substring of x  starting
at index j  and ending at k, inclusive, and unless specified
otherwise, we let x i      : =  x i .  For n � N, we let [n] =
{1, 2, . . . , n}; even if n � R + ,  we let [n] : =  [�n�]. For two
strings x, y � {0, 1}�, we let xy denote their concatenation,
and for k � N, (x) k  denotes the k-wise concatenation of x
with itself; we let (x)0 be the empty string. For x  � {0, 1}n ,
|x| =  n denotes the length of x. We denote the capacity of an
arbitrary channel Ch by Cap(Ch). All logs (hence entropies,
etc.) in this paper are base 2. For a probability distribution
D  over R,  we let µ(D) denote the expectation; whenever D
is understood we sometimes just write µ. Similarly we let
σ2 (D) denote the variance, and we sometimes just write σ2.
Throughout, “quasi-linear time” means O(n poly(log n)) time.

For completeness, we give a definition of a general binary
communication channel, introducing further notation.

Definition II.1. For Ω a probability space, a binary commu-
nication channel is a map Ch : Ω ×  {0, 1}� → {0, 1}�. For x
� {0, 1}�, we write Ch(x) to denote the random variable ω →
Ch(ω, x).

In this paper we deal specifically with square-integrable
binary repeat channels, which we define next.

Definition II.2. For a probability distribution D  over N, let
Ω =  N∞  (the infinite product space), with a D ∞  measure
(the infinite product measure). The binary D-repeat channel is
defined as RC D (ω , x )  =  (x1 )ω1  (x2 )ω2  . . . (xn )ωn      for x  �
{0, 1}n . We say R C D  is square-integrable if µ(D) <  ∞ and
σ2 (D) <  ∞.

That is, each bit sent through the R C D  gets repeated R  � D
times. We note that it is well-defined to speak of the index at
the input that gave rise to a given bit at the output: the origin

bit of the j th bit at the output is the min{i ≥  1 : 
P i ωk ≥

j } ’th bit at the input.
Finally we define the trimming repeat channels, which un-

like the objects defined above are non-standard, but which are
an important part of our construction. We note that “trimming
versions” of synchronization channels appear in the works [1],
[2] and play a role similar to the one in our construction.

Definition II.3. Let T R I M  be a (deterministic) channel which
acts on x  � {0, 1}n  by deleting the longest possible substrings

at the beginning and end of x  consisting entirely of zeros.
Specifically, T R IM ( x )  =  xm a x { i�[ n ] : x i = 1 }      (or the empty
string if x  is all zeros). Let R C D  be as in Definition II.2. We
then define the trimming D-repeat channel by the composition
T R C D  : =  T R I M ◦ R C D  .

B. Dobrushin’s Theorem

For the square-integrable D-repeat channels, as well as a
wide class of other synchronization channels, Dobrushin [11]
showed that the capacity is given by a certain limit of the
finite-length message maximum mutual information between
input and output; this extended the fundamental result of
Shannon [12] for memoryless channels. Here we state his
theorem in our setting and notation. We refer the reader to
the excellent survey of Cheraghchi and Ribeiro [8] for an
illuminating discussion. Before the theorem we give a simple
(non-general) definition of a stationary ergodic process, which
will be important in our proof.

Definition II.4. A  stochastic process { X j } j ≥ 1  is station-
ary if for every j , N      � N we have (X1 , . . . , XN  )  =
( X j + 1 , . . . , X j + N  ), where =  denotes equality in distribution.
Moreover, the process { X j } j ≥ 1  is stationary ergodic if it
is stationary and it satisfies Birkhoff’s Pointwise Ergodic
Theorem, i.e. for every f  � L 1  we almost surely have

E f ( X 1 )  =  lim 
1 X

f ( X j ) .
j = 1

Theorem II.5 (Dobrushin’s Theorem [11]). Consider a chan-
nel Ch that acts independently on each input bit, and ap-
pends the corresponding outputs, i.e. we have Ch(x) =
(Ch1 (x1 ))(Ch2 (x2)) . . . (Chn (xn )) for x  � {0, 1}n , where
the Ch are independent copies of Ch . Suppose further that
E| Ch(b)| <  ∞ for b � {0, 1}, i.e. the channel output has finite
expected length for each input bit. Then the capacity is given
by

C ap(Ch) =  lim sup I (X n ; Y n),
X n

where the sup is taken over all random variables X n  supported
on {0, 1}n  and Y n  =  Ch(X n ).  Moreover, the capacity is
achieved by a stationary ergodic input process.

We remark that Theorem II.5 applies to square-integrable
repeat channels. When understood from context, we will drop
the parameter n and just write X  for a random variable
supported on {0, 1}n , and let Y =  Ch(X ). For channels
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for which Dobrushin’s Theorem does not necessarily apply
(like trimming D-repeat channels), we refer to the limit
l imn→∞  

1 sup n  I ( X n ; Y  n )  as the information rate of the
channel. We emphasize that the fact that the capacity is
attained by a stationary ergodic process in Theorem II.5 will
be instrumental in our construction.

C. Worst-case insertion/deletion codes

We now state the result of Haeupler and Shahrasbi [13],
which is an important component of our construction, as it
was in [4] and [5].

Theorem II.6 ( [13], [14]). For every ε, δ � (0, 1) there exists a
family of codes Cn of rate 1 − δ − ε  over an alphabet Σ  of size
Oε(1) that can (deterministically) correct insertion/deletion
(worst-case) errors resulting in an edit distance (the minimum
number of insertions and/or deletions to convert the input into
the ouput) at most δn. Moreover, the Cn have encoding and
decoding algorithms that run in linear and quasi-linear time,
respectively.

I I I . MAIN R E S U LT

Our main result is a proof of existence of efficient near-
optimal codes for square-integrable repeat channels with rates
approaching capacity. When restricted to the binary deletion
channel or the Possion repeat channel, our construction stream-
lines the approach of [3]. Specifically, we prove the following:

Theorem III.1. Fix a square-integrable repeat channel R C D .
For every ε >  0, there exists a family of codes { C n }  with rate
R  for the R C D  with R  ≥  C a p ( RC D ) − ε  and linear and quasi-
linear time encoding and decoding algorithms, respectively.
Moreover, the decoder has probability of failure e−Ω ( n ) .

We organize the remaining of this section as follows: in
Section III-A we give the construction, and in Section III-B
we give the proof of correctness.

A. Construction

We prove in Lemma III.2 that the information rates of the
R C D  and T R C D  are the same. In Proposition III.4, we further
show that we can assume the existance of a general (non-
explicit and inefficient) code Cin for the T R C D  such that each
sufficiently long substring of each codeword in Cin is approx-
imately balanced in zeros and ones (see Proposition III.4),
with rate R  ≥  C ap ( RC D )  −  ε, for any ε >  0. This will
be the inner code in our construction, which we assume has
(not necessarily efficient) encoding and decoding algorithms
Encin and Decin, respectively. Then, as in the work of Con
and Shpilka [5], for a codeword length m to be fixed later, we
take 2m as the desired alphabet size for the [13], [14] code
(i.e. |Σ| =  2m in Theorem II.6), making sure to take m large
enough for the code of [13], [14] to be effective. Our encoding
procedure Enc : {0, 1}k m  → {0, 1}n  for some x  � {0, 1}k m

works as follows:
1) We split x  into x1, . . . , xk , with |xj| =  m, and we view

each x j  as a member of Σ ,  hence x  � Σ k .  We then use

the encoder of Theorem II.6 (call it Encout) to encode x.
This yields xe =  Encout (x) � Σ k / ( 1 − δ − ε ) .

2) We again split xe into xe1, . . . , xek ′      where xej  � Σ , k ′  =
k/(1 − δ − ε),  and view each xej  as an element in {0, 1}m .
We then encode each xej  with our inner code to produce
xbj  =  Encin (xej ) � {0 , 1} m / ( R −ε ) ,  where, by taking m
large enough, we have made the rate of the inner code
R  −  ε. We note that since m =  O(1), this can be done
in time O(1).

3) Finally we concatenate the xbj  and put buffers of all zeros
in between. Specifically, our final encoding of x  is

Enc(x) =  xb10bxb20b . . . 0bxbk ′  ,

where b =  b(m) =  ηm is a constant independent of
n =  k ′ · (  m   + b )  =  km/(C ap(RCD ) − ψ (ε, δ, η , k, m))
with ψ → 0 as ε, δ, η → 0 and k, m → ∞, so by taking
ε, δ, η small enough and m large enough, we can make
the rate of the code get arbitrarily close to C ap(RC D ) .

We note that since Encout runs in linear time, so does our
encoding Enc. For the decoding Dec of a received string y �
{0, 1}�, we reverse the steps above:

1) We identify the buffers of zeros by interpreting any
maximal contiguous block of ≥  µ ηm zeros as a buffer.
We remove the buffers, producing the received inner
strings y1, . . . , yℓ.

2) We decode each yj  with our inner code to produce ye =
Decin(yj ) � {0, 1}m  for j  ≤  ℓ.

3) We interpret each ye as a symbol in Σ ,  and we decode
the concatenation ye =  ye . . . ye � Σ ℓ  with the outer code, to
produce our final decoding of y:

Dec(y) =  Decout(ye) � {0, 1}k m .

We note that the identification of the buffers runs in linear
time and Decout runs in quasi-linear time, hence our overall
decoding Dec runs in quasi-linear time as well.

B. Proof of Correctness
We organize the proof of Theorem III.1 as follows. First

we prove that the information rates of the repeat channels are
unchanged if we trim off the zeros at the ends of the output.
Second, we argue that we can assume there exist capacity-
achieving codes with a sufficiently balanced distribution of
zeros and ones in all its codewords. Finally, we put these re-
sults together into our proof of correctness of the construction
given in Section III-A. We begin with the first required result.

Lemma III.2. Let R C D  be a square-integrable repeat channel.
Then the information rate of T R C D  is C ap(RC D ) .

Proof. Let X  be supported on {0, 1}n  and Y =  R C D ( X ) .
Let L  =  min{i � [n] : Yi =  1} , R  =  max{i � [n] : Yi =  1}  be
as in Definition II.3 for the random string Y : they are the
(random) indices that mark the all-zero substrings that would
be trimmed if Y were passed through TRIM .  Now let L , R  be
the indices of the bits in X  that, when X  is passed through the
R C D ,  end up at indices L , R  in Y.
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Claim III.3. Let Y =  R C D ( X )  and Y ′  =  T R C D ( X ) .  Then

|I (X ; Y ) −  I ( X ; Y  |L, R)| =  o(n) (1)

and

n →∞  n 
sup I (X ; Y |L, R) =  lim 

n 
sup I (X ; Y ′ ) (2)

By Dobrushin’s Theorem, Claim III.3 proves the lemma.
For the proof of Claim III.3, we will assume that that there
exists deterministic B  >  0 such that if R  � D , then R  ≤  B n
with probability 1. This assumption is without loss; if D  has
unbounded support, we consider the “truncation of D  at Bn,”
denoted Dn :  for R  � D , R ′  � Dn ,  we define

′                               P(R =  k ) / (
P

ℓ ≤ B n  P(R =  ℓ))     if k ≤  B n
0                                                          otherwise.

Note that for each x  � {0, 1}n , we have T R C D n  (x )  =
T R C D ( x )  and R C D  (x)      =      R C D ( x )  outside the set

{ R i  >  B n},  where R i  � D  is the number of repetitions
of x i  when passed through T R C D  or R C D .  By Chebyshev’s
inequality and a union bound, this set has probability O(n−1 ).
It’s easy to show that this implies that the information rates of
T R C D       and T R C D  are the same, as are the information rates
of R C D       and RC D . 1  We refer the reader to the appendix of
the full version [10] for a complete proof of this simple fact.

Now assuming D  is bounded by B n >  0 as above, for (1),
we have

I ( X ; Y  |L, R) =  H ( X | L , R )  −  H (X |Y , L, R).

We also have H ( X | L , R )  ≤  H ( X ) ,  and by the chain rule,

H ( X | L , R )  =  H ( X , L , R )  −  H ( L , R )

≥  H ( X )  −  H ( L , R ) ,

so H ( X | L , R )  −  H ( X )  ≤  0 and H ( X | L , R )  −  H ( X )  ≥
−H ( L , R ) ,  hence |H (X )  −  H (X |L, R)| ≤  H ( L , R )  and by
an identical derivation also |H (X |Y ) −  H (X |Y , L, R)| ≤
H ( L , R ) .  Hence by the triangle inequality |I (X ; Y ) −
I ( X ; Y  |L, R)| ≤  2 H ( L , R )  ≤  4 log n =  o(n) since ( L , R )
is supported in [n]2, proving (1). For (2), we have

I ( X ; Y  |L, R) =  I ( X L, X R − 1 , X n ; Y  L , Y R − 1 , Y n )

=  I ( X L, X R − 1 , X n ; Y  R − 1 )  +  I ( X L , X
L + 1  

, X n; Y L , Y n )

≤  I ( X ; Y L + 1  |L, R) +  H (Y L , Y n )

≤  I ( X ; Y  R −1 |L , R )  +  H (L, R, |Y |)

=  I ( X ; Y L + 1  |L, R) +  o(n),

where the penultimate inequality is because by definition,
Y L  and Y n  are strings of all zeros, so they are uniquely
specified if the length of Y and the indices L  and R  are given,

1More precisely, we consider the of channel Ch which acts on x  � {0, 1} n

as Ch(x)  =  R C D  (x) ,  (or Ch ′  x  =  T R C D  (x)), where D n  is the
described truncation of D .  By the “information rate” of e.g. R C D       we mean
the information rate of Ch.

and the last equality is because (L, R, |Y |) is supported on
[Bn]3. Now by the same argument as in (1), we again obtain
|I (X ; Y R − 1 | L , R ) − I ( X ; Y  R−1 )| =  o(n), and since Y R−1  =
TRIM(Y ), we get |I (X ; Y |L , R ) − I (X ; Y  ′)| =  o(n), where
Y ′  =  T R C D ( X ) .  This then gives

lim 
1 

sup I (X ; Y |L, R) =  lim 
1 

sup I (X ; Y ′ ),
X X

where Y =  R C D ( X )  and Y ′  =  T R C D ( X ) ,  proving (2). This
proves Claim III.3 and hence the lemma.

Next, we show that we may assume an approximately
balanced distribution of zeros and ones in all sufficiently long
substrings of all codewords in an information-rate-achieving
code. The following lemma, though simple, constitutes the
substantial improvement in our argument as compared to those
of [5] or [4]. We remark that this result is much more general
than just the setting of repeat channels, and in particular
applies to all channels to which Dobrushin’s Theorem II.5
applies; for simplicity we state the lemma in the context
relevant to our proof.

Proposition III.4. Fix a square-integrable D-repeat channel
Ch =  R C D ,  or the trimming version Ch =  T R C D ,  with
information rate I .  For every ζ , ε � (0, 1) there exists γ �
(0, 1 ) and a family of codes Cn � {0, 1}n  for Ch with
rate R  ≥  I − ε  such that for every c � C and i  � [n− ζn], we
have γζn ≤  w ( x i + ζ n )  ≤  (1 −  γ)ζn, where w : {0, 1}� → N
is the Hamming weight (number of ones).

Proof. The result follows from the fact that in Dobrushin’s
Theorem, we may assume that the process which achieves the
information rate is stationary ergodic (see Theorem II.5). Even
if we deal with the trimming version of such a channel, by
Lemma III.2, the same statement holds.2 Now let { X j } j ≥ 1 ,
with X j  � {0, 1}, be a stationary ergodic process such that

I  =  lim 
n

I ( X 1  ; Y n),

where Y n      =  Ch(X n )  and where X n  denotes the first n
symbols of the process { X j } j ≥ 1 .  Let P  : =  P(X1  =  1), and
note that by stationarity we have P  � (0, 1) or else { X j }  is a
trivial process, hence does not achieve the information rate. By
Birkhoff ’s pointwise ergodic theorem, almost surely

t

P  =  
t
lim 

t 
j = 1  

1 { X j  =  1}  =  
t
lim 

t 
w(X t ),

so in particular setting t =  ζn, for any δ >  0, with probability
p → 1, we have (P  − δ )ζn ≤  w ( X ζ n )  ≤  (P  + δ )ζn. Picking
δ, γ small enough, we can ensure that γζn ≤  w ( X ζ n )  ≤
(1−γ )ζn with probability pn . Now to extend to the substrings,

2In fact, the statement of Lemma III.2 is that the information rates
coincide; but by looking at the proof it is clear that we prove the stronger
statement that each fixed process { X j } j ≥ 1  satisfies l i m n →∞        I ( X ; Y  )  =
l i m n →∞        I ( X ; Y  ′ )  for Y  =  R C D ( X )  and Y  ′  =  T R C D ( X ) .  Hence the
information rate of the T R C D  is again attained by the stationary ergodic
processes.
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we first look at disjoint consecutive blocks: by stationarity we
have X ( i + 1 ) ζ n  =  X ζ n  for all i  � [1/ζ ], so by a union bound
over a constant 1/ζ  number of substrings, with probability pe
→ 1 we have γζn ≤  w (x ( i + 1 ) ζ n )  ≤  (1 −  γ )ζn simul-
taneously for all i  � [1/ζ ]. But we note that each substring
x i + 3 ζ n  fully contains at least one block substring of the form
x ( j + 1 ) ζ n ;  hence γ  3ζn ≤  w (x i + 3 ζ n )  ≤  (1 −  γ  )3ζn for all
i  � [n −  ζn] simultaneously with probability pe . Then re-
setting ζ  =  3ζ and γe =  γ/3 yields the property of the lemma
with probability pe . Finally we note that we may extract a
family of codes Cn of rate R  ≥  l imn→∞  

1 I ( X n ; Y  n )  −  ε
from { X j }  via sampling, as in the standard proof of Shannon’s
theorem, and as extended by Dobrushin [11] (see also [15],
Theorem 7.7.1). Since with high probability this process
satisfies the required property, we may discard any codewords
from Cn that don’t satisfy it to obtain our desired family of
codes Cn of the same rate. This concludes the proof.

Proof of Theorem III.1. It remains to show that the decoding
algorithm Dec described in Section III-A succeeds with high
probability, for properly chosen (independent of n) inner code
blocklength m. There are four potential sources of error in the
decoding; the first three pertain to identifying the buffers of
zeros, and the fourth to the inner code failures.

1) For a given buffer 0b at the sender, less than µ b =  µ ηm
zeros survive, so the buffer is not identified.

2) All ones in a given inner codeword are deleted, so two
adjacent buffers are incorrectly merged during decoding.

3) A  substring of a received inner word longer than µ ηm
arrives with all zeros, so that a spurious buffer appears.

4) For a given correctly identified received inner word, the
inner code decoding fails.

We note that error (1) results in the merging of two inner code-
words in the decoding process. Since this merged codeword is
not the output of the T R C D  with an inner codeword as input,
we have no guarantee of a small probability of decoding error
of the inner code. We consider the worst-case scenario: assume
the inner decoding always fails in this string. At the outer code
level, this then results in the deletion of two letters, and the
insertion of another in the same location, i.e. an edit distance of
3. For error (2), we clearly have a deletion at the outer code
level, i.e. an edit distance of 1. For error (3), we again cannot
assume the inner code will succeed in decoding these two
halves of a received codeword, and hence we assume the worst
case scenario: one deletion and two insertions, i.e. edit distance
3. Finally for error (4) we clearly have a substitution at the
outer code level, (which is equivalent to a deletion followed
by an insertion), i.e. edit distance 2.

Now suppose that each of these errors occurs at most kδ/9
times. Then the total edit distance is at most kδ/9 · (3 +  1 +
3 +  2) =  kδ. Hence to conclude the proof we must show
that each error occurs more than kδ/9 times with vanishing
probability, for properly chosen m. This then implies that our
outer code has to correct from an edit distance more than kδ
with vanishing probability, i.e. the outer code succeeds with
probability approaching 1 as k → ∞ (hence n → ∞).

Error (1) occurs with probability P(| RC (0mη )| <
µηm) =  O(m−1 ) by Chebyshev’s inequality. Hence for
any η, taking m a large enough constant we can make this
probability less than δ/10. Since this error can happen inde-
pendently for each of the k − 1  buffers, the number of buffers
that suffer from error (1) is given by a B inomial(k −  1, p)
random variable, where p ≤  δ/10. Again by a standard
concentration bound, the probability that there are more than
kδ/9 errors vanishes as k → ∞, as desired.

By Proposition III.4, each inner codeword has at least γm
ones, for some γ >  0 independent of m. Hence error (2)
occurs with probability dγm . As before, we take m large
enough such that dγ m  <  δ/10, and then as k → ∞, the
probability of having more than kδ/9 errors vanishes.

We now consider error (3). Consider the event that we
receive a string s of all zeros with |s| ≥  µ ηm as part of
the output of the channel for a codeword x  � Cin as input.
This implies one of two things: (a) that some substring se of
length >  1ηm of the input had all its one bits deleted and gave
rise to s, or (b) that some substring se of length ≤  1ηm at the
input gave rise to any string of length ≥  1 µηm at the output.
We analyze each case separately. For (a), by Proposition III.4,
choosing ζ  =  1 µη, we must have w(se) ≥  γζm. But then the
probability that such a substring s, say at the beginning of the
received word, exists in the first place is less than dγ ζm , and
by a union bound the probability that any such substring exists is
less than O(1) · dγ ζ m  (since the received word has length
≤  m, and hence we can discretize it into O(1) substrings of
size ≥  µηm) which can be made less than δ/20 for m chosen
large enough. For (b), note that a substring of length ≤  1ηm at
the input giving length ≥  1 µηm at the output implies that
there’s a substring of length exactly 1ηm giving an output of
length ≥  1 µηm (since a bigger input can only give a bigger
output). But if Z  =  X 1  + · · · + X t ,  for t =  1ηm and X j  � D, the
probability of this happening is

P(Z  ≥  
2

µηm) ≤  P |Z −  EZ | ≥  
4

µηm

2 2
≤  

( 1 µηm)2 
=  1 µηm 

=  O(m )

by Chebyshev’s inequality. Again by a union bound over O(1)
possible initial substrings s, making m large enough we can
make this ≤  δ/20. Hence, the probability of error (3) is ≤
δ/20 +  δ/20 =  δ/10, and by concentration of measure, more
than δ/9 errors occur with vanishing probability.

Error (4) occurs with vanishing probability as m → ∞ by
soundness of the inner code for the T R C D .  For m large
enough this probability is less than δ/10, and hence as above
when k → ∞ we get kδ/9 errors with vanishing probability.

Finally, the error probability is e −Ω ( n )  because, as was
mentioned, the frequency of each error type (1-4) is a
Binomial(t, p) random variable with t =  k −  1 or t =  k
and p ≤  δ/10. Hence by a standard Chernoff bound, and
union bounding over errors (1-4), we obtain the desired e −Ω ( n )

probability of edit distance greater than kδ/9, i.e. a e −Ω ( n )

probability of failure. This concludes the proof.
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