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ABSTRACT 1 

Purpose: Deep learning (DL) is rapidly finding applications in low-dose CT image denoising. While having the 2 

potential to improve image quality over the filtered back projection method (FBP) and produce images quickly, 3 

performance generalizability of the data-driven DL methods is not fully understood yet. The main purpose of this work 4 

is to investigate the performance generalizability of a low-dose CT image denoising neural network in data acquired 5 

under different scan conditions, particularly relating to these three parameters: reconstruction kernel, slice thickness 6 

and dose (noise) level.  A secondary goal is to identify any underlying data property associated with the CT scan 7 

settings that might help predict the generalizability of the denoising network.   8 

Methods: We select the residual encoder-decoder convolutional neural network (REDCNN) as an example of a low-9 

dose CT image denoising technique in this work. We use the patient scans in the Low-Dose Grand Challenge (LDGC) 10 

dataset to train the network. To study how the network generalizes on the three acquisition parameters, we analyze the 11 

denoising performance changes under three scenarios: smooth vs sharp reconstruction kernels, 1 mm vs 3 mm slice 12 

thicknesses, fixed (25%) vs mixed dose levels. In each scenario, we vary only one acquisition parameter between the 13 

training and testing data to avoid interacting effects among parameters. Denoising performances are evaluated on 14 

patient scans, simulated phantom scans and physical phantom scans using multiple types of image quality (IQ) metrics, 15 

including mean squared error (MSE), contrast-dependent modulation transfer function (MTF), noise power spectrum 16 

(NPS) and low-contrast lesion detectability (LCD).   17 

Results: REDCNN had larger MSE when the testing data was different from the training data in reconstruction kernel, 18 

but no significant MSE difference when varying slice thickness in the testing data. REDCNN trained with quarter-dose 19 

data had slightly worse MSE in denoising 80%-dose images than that trained with mixed-dose data.  The MTF tests 20 

showed that REDCNN trained with the two reconstruction kernels and slice thicknesses yielded images of similar 21 

image resolution. However, REDCNN trained with mixed-dose data preserved the low-contrast resolution better 22 

compared to REDCNN trained with quarter-dose data. In the NPS test, it was found that REDCNN trained with smooth-23 

kernel data could not remove high-frequency noise in the test data of sharp kernel, possibly because the lack of high-24 

frequency noise in the smooth-kernel data limited the ability of the trained model in removing high-frequency noise. 25 

Finally, in the LCD test, REDCNN improved the lesion detectability over the original FBP images regardless of 26 

whether the training and testing data had matching reconstruction kernels.  27 

Conclusions: REDCNN is observed to be poorly generalizable between reconstruction kernels, more robust in 28 

denoising data of different dose levels when trained with mixed-dose data, and not sensitive to slice thickness. It is 29 

known that reconstruction kernel affects the in-plane NPS shape of a CT image whereas slice thickness and dose level 30 

do not, so it is possible that the noise correlation structure described by the in-plane NPS may be used as an underlying 31 

property to predict the generalizability of this CT image denoising network. 32 

 33 
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1. INTRODUCTION 35 

CT imaging is widely used in modern medicine for almost every disease or condition. It is highly recommended that 36 

the x-ray dose be as low as reasonable in CT exams for patient safety while maintaining the CT image quality to avoid 37 

misdiagnosis. Various approaches have been developed toward low-dose CT through improved hardware design such 38 

as automatic exposure control, kV optimization and dynamic bowtie filters [1, 2], and through advanced image 39 

reconstruction/denoising methods, such as statistical and model-based iterative reconstruction (IR) algorithms [3, 4].  40 

Deep learning (DL) methods are now being developed for this purpose, thanks to the availability of software tools and 41 

increased computational power. Publications on applying DL in low-dose CT image denoising are growing rapidly [5-42 

10]. Commercial DL products have become available on some CT scanners, such as AiCE from Canon Medical 43 

Systems and TrueFidelity from GE Healthcare, both receiving FDA clearance in 2019.     44 

DL methods have been shown to be capable of improving image quality over FBP, similar to state-of-the-art iterative 45 

denoising methods [9, 11-13]. However, unlike IR algorithms that are derived based on imaging physics and data 46 

statistics, a DL method relies on training data to optimize the network coefficients to attain a noise reduction function. 47 

This data-driven mechanism makes the DL performance less generalizable when applied to processing data of different 48 

distribution from that of the training data. In most cases, characterizing the underlying data distribution to circumscribe 49 

the performance generalizability zone (i.e., the data range for which a DL network preserves its performance) is not 50 

straightforward.  In CT,  image resolution and noise properties are affected by image acquisition parameters such as 51 

kVp, mA, reconstruction kernel, slice thickness, pitch, etc. Therefore, it is reasonable to investigate the generalizability 52 

performance of a DL network on data of different acquisition conditions.  Changes in the network’s performance 53 

between two differently acquired testing datasets could indicate a potential data distribution shift caused by the 54 

associated acquisition parameters. Thus, an analysis of the data properties associated with the acquisition parameters 55 

may provide insight on possible ways to characterize the data distributions for the generalizable range of a DL-based 56 

CT image denoising network.   57 

Following this reasoning, we investigated a residual encoder-decoder convolutional neural network (REDCNN) for 58 

low-dose CT image denoising [5] and used patient scans from the Low Dose Grand Challenge (LDGC) dataset [14] to 59 

train that network [15]. We examined the denoising performance changes under three scenarios. In each scenario only 60 

one acquisition parameter changed between the training and testing data. The three acquisition parameters were 61 

reconstruction kernel, slice thickness and dose level. The image quality (IQ) metrics for evaluating the denoising 62 

performance included 1) mean squared error (MSE), a global IQ metric; 2) contrast-dependent modular transfer 63 

function (MTF) and noise power spectrum (NPS), standard CT IQ metrics that characterize the image resolution and 64 

noise properties; and 3) low-contrast lesion detectability (LCD), a more clinically relevant task-based IQ metric.  We 65 

included these multiple IQ metrics to examine how well they support the evaluation of a denoising method’s impact 66 

on task-based image quality. While a denoising algorithm may appear to beautify an image, there is the possibility that 67 

it impairs the detection or characterization of subtle signals and other image features  68 

We compared the performance behavior of the DL denoising network under different training and testing conditions, 69 

particularly, varying the reconstruction kernel, slice thickness and dose level bewteen the training and testing data As 70 
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being mentioned previously, these acquisition parameters affect the image resolution and noise property of a CT image 71 

set. For example, reconstruction kernel changes the in-plane resolution and noise correlation structure. Slice thickness 72 

mainly affects the z-direction resolution. Dose level determined the noise magnitude. A degradation in the DL 73 

network’s denoising efficiency due to a mismatch of a data acquisition parameter would be associated with the 74 

underlying data properties that are altered by that acquisition parameter. Based on the findings regarding whether a 75 

change in each of the three parameters causes a substantial degradation in the DL’s denoising perfomrances or not, we 76 

may learn and identify which underlying data properties are most important in predicting the denoising network’s 77 

generalizability.   78 

 The rest of the paper is organized as follows. Section 2 explains the low-dose CT denoising network, the training 79 

scheme for preparing the generalizability tests, the evaluation methods and testing data. Section 3 presents the results. 80 

Section 4 discusses our observations on the DL generalizability performance followed by the conclusions.     81 

 82 

2. METHODS 83 

2.1. Low-dose CT denoising network 84 

Let 끫欲 ∈ 끫殊끫殴×끫殶  denote a low-dose CT reconstructed image; the DL-based denoising problem is to optimize the 85 

network 끫歬(끫欲): 끫殊끫殴×끫殶 → 끫殊끫殴×끫殶  that maps 끫欲 to its corresponding high-dose image 끫欴 ∈ 끫殊끫殴×끫殶  by minimizing a loss 86 

function between 끫欲 and 끫欴 over a given set of training data. After the network is optimized, a noisy CT image can be 87 

passed through the network to produce an image intended to have reduced noise.  88 

Various network structures have been explored in the literature for low-dose CT image denoising. Some typical 89 

networks include convolutional neural networks [6], residual networks [5, 10, 16, 17], UNet [8, 18] and Generative 90 

adversarial networks [7, 19]. For this paper, we selected the residual encoder-decoder convolutional neural network 91 

(REDCNN) developed by Chen et al.[5] as a denoising example for the generalizability test. Our emphasis here is not 92 

on the demonstration of an innovative denoising algorithm, but rather the illustration of an approach for assessing DL 93 

generalizability. We come back to this point in the discussion. 94 

As illustrated in Fig.1, REDCNN contains ten layers, the first five being convolutional layers and the last five being 95 

deconvolutional layers. A rectified linear unit (ReLU) activation function follows the convolutional or deconvolutional 96 

operator in each layer. Residual learning is realized by including three shortcuts connecting the convolution layer and 97 

deconvolution layer. All the convolutional and deconvolutional layers have a filter size of 5×5. The number of filters 98 

is 96 for all the layers except that the last layer has one filter. For more details about the network design, please refer 99 

to [5]. We selected this residual network design because it was not very complicated but has been shown to have 100 

potential for effective CT image denoising similar to some traditional iterative denoising methods under the conditions 101 

tested in the papers by Chen et. al. and Zeng et. al. [5, 20].  102 
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 103 
Fig. 1.  Illustration of the REDCNN denoising network. 104 

The loss function for training the denoising network we used was the MSE between the network output and the 105 

corresponding high-dose target images. Some investigators add terms to the loss function to encourage image 106 

smoothness and feature similarity, or to regularize the network parameters with weight decay to avoid overfitting [8, 107 

10]. However, we focused on the most commonly used MSE loss function in this work.  108 

2.2. Training data categorization 109 

The denoising network was trained using the patient scans in the Low-Dose Grand Challenge (LDGC) dataset [14].  110 

There are ten datasets in LDGC covering chest to abdomen. Each patient dataset contains a full-dose scan acquired on 111 

a Siemens Somatom Definition AS+ or Definition Flash scanner model and a simulated quarter-dose scan. Each scan 112 

was reconstructed with two slice thicknesses (1 mm and 3 mm) and two reconstruction kernels (a sharp kernel named 113 

D45 and a smooth kernel named B30). The corresponding quarter- and full-dose image pairs were treated as training 114 

input and training target in the DL training process, respectively. Among the ten patient datasets, seven patient datasets 115 

were used for training since more data were needed to train than test the network that contained more than 1.8 million 116 

coefficients. 350 slices of size 512x512 were randomly selected from the seven patients and each slice was divided 117 

into 55x55 patches excluding the air patches outside of the body, resulting in about 70,000 training patches in total.  118 

The variety of reconstruction thickness, reconstruction kernel and dose level make the LDGC datasets suitable for 119 

this performance generalizability study. We grouped the CT volumes into three pairs of training data according to the 120 

acquisition parameters as shown below. In each pair, only one acquisition parameter value was varied to avoid 121 

interacting effects among the parameters. 122 

Dose level effect:  123 

- Smooth kernel / 3 mm thickness / 25% dose level  124 

- Smooth kernel / 3 mm thicknesS / Mixed dose levels 125 

Kernel effect:  126 

- Sharp kernel / 3 mm thickness / mixed dose level  127 

- Smooth kernel / 3 mm thickness / mixed dose level 128 

Thickness effect:  129 

- Smooth kernel / 1 mm thickness / mixed dose level  130 

- Smooth kernel / 3 mm thickness / mixed dose level 131 

 132 

With this data arrangement, we can obtain three pairs of trained DL networks. For convenience, we name the networks 133 

according to the parameter setting of the training data as follows: DLkernel-thickness-dose. For example, “DLsharp-134 
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3mm-mix%” represents the REDCNN trained with images of sharp kernel, 3mm thickness and mixed dose levels; 135 

“DLsmooth-1mm-25%” represents the REDCNN trained with images of smooth kernel, 1mm thickness and a single 136 

25% dose level. Each pair of networks was cross evaluated on two types of test sets to determine how the performance 137 

may change when the testing data were acquired with a different parameter value. 138 

There was only one reduced dose level (25%) available in LDGC. The mixed-dose data were synthesized using the 139 

full and quarter-dose scans by a simple blending of the two scans: A noise map was obtained by subtracting the quarter-140 

dose image from the full-dose image and then a portion of the noise map was blended back into the full-dose image as 141 

follows: 142 끫欲끫殢 = 끫欲끫殦 +끫毸 (끫欲끫欤 − 끫欲끫殦), 끫毸 ≥ 0, 143 

where 끫欲끫殢 ,끫欲끫殦 , and 끫欲끫欤 represent the synthesized noisy image at a dose level 끫殢, the original full-dose and the quarter-144 

dose images, respectively. The scaler 끫毸 denotes the blending factor. When 끫毸 = 1, the outcome is exactly the quarter-145 

dose image. When 끫毸 = 0, the outcome is the full-dose image. For an arbitrary nonnegative 끫毸, the outcome corresponds 146 

to 1/((1 − 끫毸)2 + 4끫毸2) of the full-dose scan. We varied the blending factor randomly in the interval of [0.5, 1.2] for 147 

the mixed dose training data case, resulting in images of dose levels ranging from 17% to 80% of the full-dose level. 148 

2.3. Performance evaluation 149 

To evaluate the performance, we considered the following IQ metrics: MSE, contrast-dependent MTF, NPS, and 150 

LCD. MSE reflects how well the network performs in minimizing the loss function that it is designed to do. We did  151 

not evalute the other global metrics like PSNR or SSIM in this work since they are highly correlated with MSE. 152 

However, it is well known that a denoised image with smaller MSE does not necessarily have better diagnostic image 153 

quality. We included the standard CT IQ metrics MTF and NPS as they are commonly used to characterize the image 154 

resolution and noise texture. Lastly, we evaluated the denoising performance in terms of LCD, a task-based IQ metric 155 

measuring the capability of detecting low-contrast lesions in the denoised images. 156 

2.3.1. Mean Squared Errors (MSE) test 157 

For the MSE measure, the slices from one patient dataset in LDGC that were not included in the training were used 158 

as a test set. The total slice numbers were more than 200 slices and 500 slices for the testing cases of 3mm and 1mm 159 

slice thickness CT volumes respectively. For each slice, the full-dose image was used as a reference to calculate the 160 

MSE (=
‖Noisy Image−Ref Image‖2The total number of pixels ) before and after the DL denoising. Then the MSE reduction rate (= 161 MSE before denoising – MSE after denoising MSE before denoising × 100%) was calculated to quantify the denoising performance. Based on the 162 

multiple slices in the test CT volumes, statistics of the MSE reduction rates can be obtained and compared between the 163 

pairs of DL networks. 164 

2.3.2. Contrast-dependent Modular Transfer Function (MTF) and Noise Power Spectrum (NPS) test 165 

We simulated 2D phantom CT scans for the MTF and NPS tests. We also collected multi-slice CT phantom scans to 166 

validate the simulation-based results, which are described in Sect 2.4. For the MTF measure, a contrast phantom (Fig. 167 

2) similar to the CATPHAN600 contrast module was simulated. The contrast phantom contained eight disks of 2 cm 168 
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diameter, similar to the HU contrasts contained in the CATPHAN600 phantom.  Contrast-dependent MTF was 169 

measured using the methods described in [21]. Note that a noiseless CT scan of the contrast phantom was simulated 170 

for the MTF test to eliminate any uncertainties caused by random noise, since MTF represents a deterministic behavior 171 

of an imaging system. For the NPS measurement, 50 noisy water phantom CT scans were simulated. A Region of 172 

Interest (ROI) of size 64 x 64 pixels at the image center was extracted from each realization. Local NPS was estimated 173 

by taking the average of the modulus square of the Fourier transform of the noise images after being subtracted from 174 

the mean of the 50 realizations. 175 

 
Fig. 2: Sketch of the digital contrast phantom that is used to measure the MTF. It mimics the CATPHAN600 contrast module with an added disk 176 

of 15HU contrast.  177 

 178 

The simulated CT scans were created from a virtual fan-beam 2D CT scanner.  The virtual scanner had distances of 179 

595 mm from the x-ray tube to the isocenter and 1085.6 mm to the detector, the same as those in the Siemens CT 180 

scanner used to collect the LDGC dataset.  Poisson noise was modeled at the detector but electronic noise was not. We 181 

varied the air photon flux to achieve different noise levels. To simulate the reconstruction kernels in the LDGC data, 182 

two Hann filters of different cutoff frequencies (named Hann1 & Hann2) were used in our FBP reconstruction. The 183 

cutoff frequencies were tuned to closely match the MTF50% and MTF10% of the D45 and B30 filters (see Table 1). 184 

Note that MTF50% and MTF10% are the frequency values where MTF drops to half and 10% respectively.  For 185 

convenience, we refer to Hann1 and D45 as sharp kernels, and Hann2 and B30 as smooth kernels in this paper.  The 186 

reconstruction pixel size was set to 0.664 mm, corresponding to a 512×512 reconstruction matrix of a 340 mm field of 187 

view (FOV). Since we only simulated 2D scans, slice thickness was not a modeled parameter in the virtual scanner. 188 

The simulated scans could be treated as a very thin slice thickness setting. The CT simulation code was implemented 189 

based on the Michigan Image Reconstruction Toolbox (MIRT) that is available online at 190 

https://web.eecs.umich.edu/~fessler/code.  191 

Table 1. The MTF50% and MTF10% values in lp/cm of the commercial reconstruction kernels (D45, B30) and simulated reconstruction kernels 192 
(Hann1 and Hann2). 193 

Resolution 

(lp/cm) 

D45 

(sharp) 

Hann1 

(sharp) 

B30 

(smooth) 

Hann2 

(smooth) 

MTF50% 5.6 5.6 3.5 3.5 

MTF10% 9.4 10.4 5.9 6.2 

  194 

2.3.3. Low-Contrast Detectability (LCD) test 195 

Low-contrast detectabilites were estimated using a model observer and simulated phantom images containing very 196 

low-contrast objects. Specifically, we simulated 200 CT scans of the signal module and 100 scans of the background 197 

module of the MITA-LCD phantom CCT189 (Fig. 3) at five exposure levels. The signal module contained four low-198 

contrast disks with varying size/HU combinations (3mm/14HU, 5mm/7HU, 7mm/5HU, 10mm/3HU) to mimic sutble 199 

https://web.eecs.umich.edu/%7Efessler/code/index.html
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lesions.  Five exposure levels were simulated: 100%, 85%, 70%, 55% and 30%.  The 100% dose level corresponded 200 

to an air photon count of 3×105 per detector pixel.   For each disk signal, a signal-present (SP) ROI was cropped from 201 

the scan of the signal module and five signal-absent (SA) ROIs were cropped from the background module at the 202 

vicinity of the signal location. A Laguerre-Gauss channelized Hoteling model observer (LG-CHO) was applied to 203 

estimate the signal detectability [22]. The LG-CHO had five channels and the Gaussian width was adjusted to match 204 

the size of the disk to be detected. Among the 200 SP ROIs and 500 SA ROIs, 80 pairs of SP and SA ROIs were used 205 

to train the model observer. The remaining ROIs were used to estimate the detectability, quantified by the area under 206 

the receiver operating curve (AUC). 207 

 208 

 
(a)  

 
(b) 

Fig. 3: Sample CT images of the signal module (left) and the background module (right) for the LCD test. Red and green boxes illustrate the 209 
locations for cropping signal-present ROIs and the corresponding signal-absent ROIs. Note that the CT image of the signal module shown here 210 
is an average of 20 realizations from the highest dose level reconstructed with FBP of smooth kernel to make the low-contrast signals visible. 211 
The display window is [-50 50] for both images. 212 

 213 

2.4. Validation with physical phantom scans 214 

CT scans of a CATPHAN600 phantom (The Phantom Laboratory, Salem, NY) were collected on a Somatom 215 

Definition AS model (Siemens Medical Solutions USA, Inc, Malvern, PA) to validate the observations in the MTF and 216 

NPS test with simulated phantom scans. The scan protocols were designed to closely match the settings in the LDGC 217 

dataset, including the parameters of kVp, x-ray filter, detector collimation, slice thickness, convolution kernel and 218 

reconstruction field of view. Table 2 provides a summary of those major scan parameters in the LDGC, together with 219 

the parameter settings for our phantom scans. As can be seen from the table, the reconstruction kernel and the slice 220 

thickness were the same for the LDGC patient scans and the phantom scans. However, there existed some differences 221 

in the other parameters as discussed next.  222 

First, we turned the automatic exposure control (AEC) off since “on” or “off” would not matter much for a cylindrical 223 

phantom with minor interior background variation. The patient scans had kVp varying in the range of 100 – 120 kV 224 

across the slices due to AEC. For our phantom scan, the kVp  was fixed at 120 kV.  Second, we scanned the phantom 225 

with three dose options, named high-dose, full-dose and quarter-dose. The full-dose option was set to match the average 226 

values of the CTDI of the full-dose patient scans. The high-dose option (higher than the full-dose option) was added 227 

to reduce the uncertainty in the MTF estimations.   Third, for the x-ray filter setting that may affect the x-ray spectrum 228 

shape, we used “FLAT” filter since most of the patient scans were with this option. Fourth, our phantom scans had the 229 
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same single collimator width 0.6 mm as the LDGC patient scans. However, the total collimator width was 12 mm, 230 

narrower than 38.4 mm in the LDGC scans, because the 38.4 mm collimator option was not available on the scanner 231 

model we used. Fifth, the pitch factors in the patient scans varied from 0.6 to 0.8. In our phantom scan, the pitch was 232 

set to 0.8 to save scan time. As long as the pitch factor was smaller than 1, degradation in the z-directional sampling 233 

would be negligible for the scans of the cylinder-shaped CATPHAN600 phantom. Lastly, the reconstruction field of 234 

view (FOV) varied in the patient scans, ranging from 340 to 420 mm due to the different patient sizes. Reconstruction 235 

FOV affects the pixel size. For the phantom scans, we set the FOV to be 380mm, close to the average FOV of the 10 236 

patient scans. This resulted in a pixel size of 0.74 mm in the reconstructed phantom volume. 237 

In total, we collected one high-dose scan, and five repeats of the full-dose and quarter-dose scans. For each scan, 238 

reconstructions with 1 mm and 3mm slice thickness, sharp and smooth kernel were generated, resulting in 44 CT 239 

volumes.  240 

Table 2: Comparison of the data acquisition parameters between the LDGC dataset and our phantom scans. 241 
Dataset AEC kVp 

(kV) 

CTDI 

(mGy) 

x-ray filter Single/Total 

Collimator 

width (mm) 

Pitch FOV 

(mm) 

Slice 

Thickness 

(mm) 

Reconstruction 

kernels 

LDGC XYZ-EC 100 - 

120 

19.7 (mean for 

Full) 

FLAT (8) 

WEDGE_3 (2) 

0.6 / 38.4 0.6 to 0.8 378 

(mean) 

3 

1 

B30f 

D45f 

Phantom 

scans 

OFF 120 32.1 (High) 

20.0 (Full) 

5.0(Quarter) 

FLAT 0.6 / 12 0.8 380 3 

1 

B30f 

D45f 

 242 

3. RESULTS  243 

3.1. Mean Squared Errors 244 

Fig. 4 shows box plots comparing the MSE reduction rates of the three pairs of DL networks. For the dose effect 245 

(Fig. 4a), when tested on the quarter-dose images, the DL networks trained solely with quarter-dose data and trained 246 

with mixed-dose data had almost equivalent MSE reduction rate. When tested on the 80% dose images, the DL network 247 

trained with mixed dose reduced MSE noticeably more. This indicates that the DL denoising network trained with 248 

mixed-dose data generalized better on data of different dose levels. For the reconstruction kernel effect, Fig. 4b shows 249 

that when the training and testing data had a different reconstruction kernel, the DL network performed subtantially 250 

worse. This indicates that the DL denoising network did not generalize well on data with a different reconstruction 251 

kernel. For the thickness effect (Fig. 4c), in both the 3mm and 1mm thickness testing cases, the MSE reduction rate 252 

was similar between the DL networks trained with the two different thickness datasets. The DL network trained with 253 

3mm thickness appeared to be slightly better at maintaining testing performance across thicknesses, but the difference 254 

was not statistically significant since the two distribution ranges heavily overlapped. The similar performances indicate 255 

that the slice thickness parameter may not be critical to the DL denoising network. 256 

Fig. 5 presents sample CT images to visually demonstrate the effect of reconstruction kernel. As can be seen , in the 257 

test case of FBP smooth (top two rows in Fig. 5), the DLsharp-3mm-mix% processed image obviously appears to be 258 

much noiser than the image processed by DLsmooth-3mm-mix%. Meanwhile, in the test case of FBP sharp (bottom 259 

two rows in Fig. 5), the image texture of the DLsmooth-3mm-mix% processed FBP sharp image appears quite different 260 

from the others. It is also noticeable that the anatomical structures in the DLsmooth-3mm-mix% processed image slice 261 

are oversmoothed and some small features are lost.  262 

 263 
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 264 

 265 

Test image set: FBP smooth-3mm-25% 

 

Test image set: FBP smooth-3mm-80% 

 

(a) Dose effect 

Test image set: FBP smooth-3mm-25% 

 

Test image set: FBP sharp-3mm-25% 

 

(b) Kernel effect 

Test image set: FBP smooth-3mm-25% 

 

Test image set: FBP smooth-1mm-25% 

 

(c) Slice thickness effect 

 266 
Fig. 4 Effects of the training parameters on the MSE reduction rate of the DL networks. The first row compares the dose level effect, the second 267 

row compares the reconstruction kernel effect and the third row compares the thickness effect.  268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 
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 286 
                   Full-dose FBP  Quarter-dose FBP             DLsharp-3mm-mix%       DLsmooth-3mm-mix% 

 

 

(a) Processing a FBP-Soft image: full images (top) and zoomed regions of interest  (bottom) 

 

 

(b) Processing a FBP-sharp image: full images (top) and zoomed regions of interest (bottom) 

Fig. 5 Images to illustrate the effect of reconstruction kernel. From left to right are images of a full-dose FBP slice, its corresponding quarter-dose 287 
FBP slice, DLsharp-3mm-mix% and DLsmooth-3mm-mix% denoised quarter-dose slice. a). for processing a quarter-dose FBP image reconstructed 288 
with smooth kernel and b) for processing a quarter-dose FBP image reconstructed with sharp kernel. The red box in the full-dose FBP image in (a) 289 
indicates the region of interest that is zoomed for display.  290 

  Contrast-dependent Modular Transfer Function 291 

In this test, we generated a noiseless sinogram of the contrast phantom and reconstructed the sinogram with FBP 292 

using sharp and smooth kernels. The noiseless FBP images were then processed by the DL networks. Contrast-293 

dependent MTF curves were estimated at these five contrasts: 990, 340, 200, 120 and 35 HU.  The MTF50% value 294 

was calculated for each MTF curve and plotted as a function of the HU contrast to characterize the contrast-dependent 295 

image resolution. 296 
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Fig. 6a and 6b show the contrast-dependent image resolution curves for the DL networks in processing FBP-smooth 297 

and FBP-sharp images, respectively. The curves clearly show that the image resolution decreases with contrast. This 298 

nonlinear smoothing behavior is similar to that of traditional iterative reconstruction and denoising methods. We also 299 

see that the curves in Fig 6a and 6b show the same contrast-dependent trends for both smooth and sharp FBP input 300 

recontructions: the DL network trained with sharp-kernel data had slightly better image resolution (higher MTF50% 301 

value) than the DL network trained on smooth-kernel data; the DL network trained with thicker slice data had slightly 302 

better image resolution than the DL network trained with thinner slice data; the DL network trained with mixed-dose 303 

data had slightly better image resolution than the DL network trained with single-dose data, except at the contrast level 304 

of 35 HU where the resolution dropped greatly for the single-dose DL network. In summary, the trends in the MTF 305 

test indicate that the image resolution of the DL denoising network was not very sensitive to the kernel and slice 306 

thickness parameters. However, it appears that with mixed-dose training data, low contrast resolution was much better 307 

preserved.     308 

 309 

 
(a) 

 
(b) 

 310 
Fig. 6: Contrast-dependent MTF50% curves of the DL networks for processing the FBP-smooth images (a) and FBP-sharp images (b).  311 

3.3. Noise Power Spectrum 312 

We simulated 50 noisy scans of a cylindrical water phantom for the NPS estimation, with an air photon count of 313 

2.4×105 per pixel. Each noisy scan was reconstructed by FBP for both sharp and smooth kernels. Then the noisy images 314 

were processed by the DLsharp-3mm-mix% and DLsmooth-3mm-25% to compare the effect of kernel in the NPS test.  315 

Note that we did not further examine the effects of the slice thickness and dose level parameters in the NPS and the 316 

LCD test, because the pervious MSE and MTF test results showed that the DL network trained with thicker slice 317 

thickness and mixed-dose data had better performances. For convenience, we simplify the names of DLsharp-3mm-318 

mix% and DLsmooth-3mm-mix% as DLsharp and DLsmooth afterward in the NPS and LCD test. 319 

Fig. 7 presents the NPS images and Fig. 8 plots the corresponding radial profiles. The radial profiles clearly show 320 

that the DL networks reduced the noise magnitude and shifted the peak frequency toward zero. Again, this is a behavior 321 

similar to that of traditional iterative reconstruction and denoising methods. In general, DL denoised images had noise 322 

components concentrated more in the lower frequency bands compared to the original FBP images. However, one may 323 
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notice a contrasting appearance in the NPS of DLsmooth processed FBP-sharp image (the rightmost in Fig 7b): much 324 

higher magnitude at the four corners (high-frequency regions). The 1D radial profile clearly shows that the 325 

corresponding NPS curve has a rising tail (as indicated by the arrow in the Fig. 8b) after about 5 lp/mm. Moreover, the 326 

tail’s shape and height closely match those of the NPS curve of the original FBP-sharp images, indicating that the high-327 

frequency noise was not removed by the DLsmooth network. An example CT image patch from a uniform background 328 

(Fig. 8c) also demonstrates the remaining high-frequency noise in the DLsmooth processed FBP-sharp images, 329 

appearing as tiny checker-board like artifacts. This phenomenon suggests that the DLsmooth network possibly did not 330 

learn to remove the high-frequency noise from the smooth kernel training data, since the training data did not contain 331 

noise in the high-frequency band.  332 

 333 

FBP-smooth 

(display window [0 250]) 

 

DLsharp 

(display window [0 120]) 

 

DLsmooth 

(display window [0 120]) 

 

(a) 
FBP-sharp 

(display window [0 500]) 

 

DLsharp 

(display window [0 150]) 

 

DLsmooth 

(display window [0 150]) 

 

(b) 
 334 
Fig. 7: 2D NPS of the original FBP images and the corresponding DLsharp and DLsmooth processed images. Results on FBP smooth kernel is in 335 

(a) and on FBP sharp kernel is in (b).  336 

 337 

 338 

  

 

 

 

(a) (b) (c) 

 339 
Fig. 8: The 1D radial profiles of the NPS of the original images and the corresponding DLsharp and DLsmooth processed images in (a). The 1D 340 

NPS radial profiles of the original FBP-sharp images and the corresponding DLsharp and DLsmooth processed images in (b). The blue arrow in (b) 341 
indicates the raised tail in the NPS of the DLsmooth processed FBP-sharp images and the sample image patch in (c) illustrates the remaining high-342 
frequency noise, which appears as tiny checker-board like artifacts. 343 

 344 
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3.4. MTF and NPS test using physical phantom CT scans 345 

We conducted the MTF and NPS tests again using the physical CT scans of CATPHAN600 to validate the 346 

observations found in the results using simulated phantom CT scans.  347 

First, we measured the contrast-dependent image resolution of the DL networks processing 3mm thickness high-348 

dose FBP images. Fig. 9 displays the resolution curves.  Due to image noise, the MTF function estimated from the 349 

disks of contrast below 100HU were not reliable. Therefore, the contrast-dependent image resolution curves were based 350 

on the disks of air, PMP, LDPE and Polystyrene in the CATPHAN600 contrast module, which had measured mean 351 

absolute contrast of 1100, 260, 170 and 115. The resolution curves in Fig. 9 also show that DL networks trained with 352 

data of sharp kernel, thicker slice thickness, mixed-dose levels had better image resolution than their counter parts, 353 

similar to the findings obtained in the testing results with simulated 2D CT scans. 354 

Second, we estimated the NPS images and extracted their 1D radial profiles of the DL networks processing 3mm 355 

thickness full-dose FBP images, as shown in Fig. 10. A rising tail in the NPS curve of the DLsmooth processed FBP-356 

sharp images was also observed, similar to that in Fig. 7b.  We omitted the NPS results for processing the low-dose 357 

FBP images since they present similar trends. These experiments showed that the NPS results obtained with the 358 

physical phantom CT scans agreed with those obtained with the simulated CT scans.   359 

 360 

 
(a) 

 
(b) 

 361 
Fig. 9: Contrast-dependent MTF50% curves of the DL networks for processing the FBP-smooth-3mm images in (a) and FBP-sharp-3mm images 362 

in (b) using the physical phantom CT scans.  363 

  364 
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(a) 
FBP-sharp-3mm 

(display indow [0 650]) 
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(c) 

Fig.10: 2D NPS and radial profiles of the original FBP images and the corresponding DLsharp and DLsmooth processed physical phantom CT 365 
images. Results for processing FBP smooth images are in (a) and the left plot in (c). Results for processingFBP sharp kernel are in (b) and the right 366 
plot in (c). 367 

 368 

 369 

3.5. Low Contrast Detectability  370 

Fig. 11 plots AUC, a measure of low-contrast detectability, as a function of dose for detecting the 10mm/3HU inserts 371 

in the simulated MITA-LCD phantom. As can be seen in the figure, both the DLsharp and DLsmooth networks 372 

improved the detectability over the original FBP images regardless of the original reconstruction kernels. The 373 

DLsmooth network had similar AUCs as the DLsharp network in processing FBP-smooth images but significantly 374 

higher AUCs in processing FBP-sharp images. We will explain the possible reasons later in the discussion. The 375 

detectability curves are not shown here for the other three inserts (3mm/14HU, 5mm/7HU, 7mm/5HU). In general, we 376 

observed that the detectability curves in the original FBP images and the DL denoising images were almost the same 377 

for detecting the  two smaller inserts (3mm/14HU and 5mm/7HU), then became more separated as the size of the insert 378 

increased, but the relative performance trends were the same for detecting these inserts. Therefore, we only present the 379 

curves for detecting the 10mm/3HU insert since the curves separated the most in this case.  380 

 381 

 382 
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10mm-3HU 

 
(a) 

10mm-3HU 

 
(b) 

 383 
Fig. 11 Detectability curves for the insert (10mm-3HU) in the original FBP images, and denoised FBP images with DLsharp and DLsmooth: (a) for 384 

processing FBP sharp images and (b) for processing FBP smooth images 385 
 386 

4. DISCUSSION 387 

In this work we presented a framework for the evaluation of performance generalizability of a DL-based CT image 388 

denoising method, using the REDCNN as an example denoising algorithm. We used the patient CT scans in the LDGC 389 

dataset to train the network on data acquired with different acquisition parameters. Based on the data variety, we 390 

examined the performance generalizability of the denoising network on three parameters: reconstruction kernel, slice 391 

thickness and dose levels. Performances were evaluated using MSE, contrast-dependent MTF, NPS and LCD. We 392 

observed the following three points from the testing results. 393 

First, the denoising network did not generalize well between the sharp and smooth reconstruction kernels. This is 394 

reasonable since the reconstruction kernel is the most dominant factor that determines the noise correlation structure 395 

in a FBP reconstructed image. The NPS curves of the FBP-sharp and FBP-smooth images in Fig. 8 & 10 obviously 396 

differ in both the peak and the cutoff frequencies. Due to the DL’s data-driven mechanism, a denoising network may 397 

not recognize noise components that are not seen in its training data. This explains the remaining high-frequency noise 398 

in the DLsmooth processed FBP-sharp images. On the other hand, the image resolution property was not much different 399 

between the DLsmooth and DLsharp networks since the denoising network was not trained to alter image resolution.   400 

Second, the denoising network was not sensitive to slice thickness. When all the other acquisition parameters are 401 

kept the same, a 3mm slice thickness CT volume may be considered as being formed by a moving average (or weighted 402 

average) of every three adjacent slices of the 1mm slice thickness CT volumes. Averaging along the longitudinal 403 

direction does not alter the noise correlation structure within a slice, so the denoising networks trained with 3mm and 404 

1mm thickness image slices were not much different. However, the noise magnitude in a 3mm thickness slice is usually 405 

lower than that in the corresponding 1mm slice. In this sense, the target images in the 3mm thickness training data had 406 

slightly better image quality, which may explain why the DL-3mm network performed slightly better than the DL-407 

1mm network in both the MSE and MTF tests.  408 

Third, the denoising network was more robust in processing images of an unknown noise level when trained with 409 

mixed-dose data. The MSE results showed that the DL-mix% network maintained the MSE reduction rate in processing 410 

quarter-dose slices and reduced MSE more when processing slices of a different dose level than the DL-25% network. 411 
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The DL-mix% also preserved the low-contrast image resolution better, as shown in the MTF test where the testing data 412 

may be considered as a very high-dose scan. Since the noise correlation structure did not change except the magnitude 413 

in the various dose level settings, training with mixed-dose data increased the adaptivity of the network in processing 414 

CT images with unknown noise levels. The finding on the dose parameter agrees with the observation in Chen et. al. 415 

[6], where a three-layer convolutional neural network (CNN-3) trained with mixed-dose data was found to have better 416 

denoising performance than the CNN3 trained with single-dose data in processing data at all the tested noise levels. 417 

Mixing the data of different dose levels in training can also be considered as a data augmentation strategy that is 418 

commonly used to improve robustness of a DL network performance [23, 24]. 419 

Despite the finding based on the MSE and NPS tests that the denoising network did not generalize well between 420 

reconstruction kernels, the DLsmooth network surprisingly achieved much better detection performance than the 421 

DLsharp network in detecting the 7mm and 10mm disks after processing the FBP-sharp images. It appears that the 422 

remaining high-frequency noise in the DLsmooth processed FBP-sharp images did not negatively affect these detection 423 

performances. The reason could be that the signal information of the four disks mostly concentrated in the lower 424 

frequency band such that the high-frequency information was not used by the model observer in the detection tasks. 425 

As shown in Fig. 7b, the rising tail of the NPS curve of DLsmooth starts at about 5 lp/cm. Even for the smallest 3mm 426 

disk, its main spectrum lobe is within 3.3 lp/cm; the signal power of most of the low-contrast disks included in the 427 

LCD phantom already dimishes at 5 lp/mm. Based on the MTF and NPS tests, the DLsmooth appeared to have 428 

comparable resolution and better noise reduction in the lower frequency band compared to DLsharp, which may have 429 

contributed to the higher detectabilities of DLsmooth in the LCD test. The results and our analysis indicate the 430 

limitation of this LCD test in evaluating the overall performance of DL denoising networks. Additional tasks focusing 431 

on high-frequency information need to be developed to allow a thorough evaluation of a DL method’s denoising 432 

performance, such as shape discrimination, size estimation, etc.       433 

Due to the limited data variety in LDGC, we examined the performance generalizability only on three CT acquisition 434 

parameters in this work. Other parameters associated with a CT scan can also affect the FBP image quality, such as 435 

kV, helical pitch, detector collimation width and scan FOV. It is worth discussing how the DL denoising network 436 

REDCNN may generalize across other parameters. As is known, a DL network usually generalizes well within its 437 

training data distribution. In a FBP-reconstructed CT image, the noise approximately follows a correlated multi-variate 438 

Gaussian distribution. The noise correlation structure can be described by the (local) NPS. The results in this study 439 

provide evidences to support the hypothesis that NPS may be used as an underlying property to predict the 440 

generalizability performance for REDCNN denoising algorithm among different CT acquisition parameters: if a 441 

different parameter value associated with the testing data does not alter the NPS shape relative to the training data, the 442 

DL network will maintain its denoising performance, such as between the two different thickness settings and between 443 

different dose levels; If a different parameter value substantially changes the NPS shape, the DL network will likely 444 

have poorer denoising performance, such as between the sharp and smooth reconstruction kernels. Based on this 445 

hypothesis, we make the following predictions on the generalizability related to other scan parameters.  446 
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Since the kV setting mainly affects the image contrast and not the noise color, we expect a denoising network to 447 

generalize well in the typical kV range (80-140 kVp) of CT scans. Helical pitch and detector collimation width mainly 448 

affect the longitudinal resolution, similar to the effect of the slice thickness parameter. Therefore, the denoising network 449 

should not be sensitive to the change of these two parameters as well. The scan FOV (or reconstruction FOV) setting 450 

usually varies with the patient size. With a fixed CT reconstruction matrix size (512×512), the scan FOV setting 451 

determines the pixel size of the reconstruction grid, i.e., the image-domain sampling frequency. Backprojecting the 452 

noisy sinogram to a finer or a coarser image grid will affect the  noise correlation between adjacent image pixels. 453 

Therefore, the NPS of CT scans reconstructed with different FOVs will be different. If the FOV setting changes 454 

significantly, such as from average-size patients to obese patients or to pediatric patients, the denoising performance 455 

may not generalize well. We will conduct experiments to confirm these predictions with appropriate patient and 456 

phantom CT data in the future.  Please note that the above generalizability discussion is regarding the acquisition 457 

parameters assuming that the body part to be scanned is the same.  When a network is trained on CT images of the 458 

abdomen, it may not maintain the denoising performance in head or extremity scans and vice versa, since the noise 459 

property could differ significantly due to substantial changes in anatomical structure and size in a different body part.      460 

A limitation of this work is that it investigated generalizability of a single denoising network, REDCNN. There are 461 

other popular networks applied to low-dose CT image denoising, such as ResNet, UNet and GAN. Different networks 462 

may have different ways of extracting relevant features in the training data, resulting in images of different resolution 463 

and noise properties [25]. However, DL methods share a common property: data-driven-based learning machnism.  464 

Therefore, training data is always an essential element affecting the performance of DL methods. We anticipate that 465 

the generalizability performances observed on REDCNN likely apply to other types of DL networks if they are 466 

similarly trained to perform a slice-wise low-dose CT image denoising function.   The experiments conducted in this 467 

work will be performed using other typical types of DL networks to confirm this anticipation. 468 

In summary, generalizability performance is an important characteristic of DL methods. Loss of generalizability of 469 

a DL network can be rooted in a shift of the testing data distribution from the training data. There are many different 470 

CT scan acquisition settings. Without any knowledge about the generalization behavior, we may have to test a CT 471 

image denosing network tediously on data from a large variety of scan settings to understand its use range.   Our results 472 

imply that the noise correlation property described by NPS may be used as one way to predict the generalizability zone 473 

of a DL-based CT image denoising network.  CT images with acquisition parameters that significantly change the NPS 474 

relative to the training data would possibly fall out of the generalizability zone, such as images reconstructed with a 475 

different convolutional kernel.  CT images with acquisition parameters that have similar NPS shape to that of the 476 

training data would be still within the generalizability zone, such as the slice thickness parameter.  This finding can be 477 

helpful to the development as well as regulartory evaluation of DL-based CT image denoising methods. For developers, 478 

the training data cohort may be more effectively designed. One may emphasize adding training data that has different 479 

NPS properties to improve the generalizability of a CT image denoising network or training the network separately on 480 

those categories of data. For regulartory evaluation, the categories of testing data may be  appropriatedly reduced to 481 

support the assessment of the generalizability of a DL-based CT image denoising software within its intended use, 482 
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according to the FDA least-burdensome principle (https://www.fda.gov/regulatory-information/search-fda-guidance-483 

documents/least-burdensome-provisions-concept-and-principles). Validated intended uses and product labelings will 484 

allow clinicians to have better information on what kinds of images are suitable to be processed by a DL denoising 485 

algorithm available at their site.   486 

5. CONCLUSIONS 487 

This paper reported our work in testing the performance (MSE, MTF, NPS and LCD) generalizability of a DL-based 488 

CT denoising method (REDCNN) on three CT acquisition parameters (reconstruction kernel, slice thickness and dose). 489 

Our results showed that the DL performance did not generalize well between the sharp and smooth reconstruction 490 

kernels, was not sensitive to the slice thickness parameter, and was better when trained with mixed-dose data. The 491 

observed DL performance behaviors provide evidence to support the hypothesis that the noise property of training data, 492 

specifically the NPS, may be a data characteristic to predict the generalizability zone of a DL-based CT image denoising 493 

network. Future work is needed to investigate the impacts of other acquisition parameters on the performance 494 

generalizability to consolidate this hypothesis. Tasks that challenge possible differences in the higher spatial-frequency 495 

content of the denoised images should also be explored to allow a more complete performance evaluation.  496 
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