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Generalizability performance of a deep learning-based
CT image denoising method

Rongping Zeng, Claire Yilin Lin, Qin Li, Jiang Lu, Marlene Skopec, Jeffrey A Fessler and Kyle J Myers

ABSTRACT
Purpose: Deep learning (DL) is rapidly finding applications in low-dose CT image denoising. While having the

potential to improve image quality over the filtered back projection method (FBP) and produce images quickly,
performance generalizability of the data-driven DL methods is not fully understood yet. The main purpose of this work
is to investigate the performance generalizability of a low-dose CT image denoising neural network in data acquired
under different scan conditions, particularly relating to these three parameters: reconstruction kernel, slice thickness
and dose (noise) level. A secondary goal is to identify any underlying data property associated with the CT scan
settings that might help predict the generalizability of the denoising network.

Methods: We select the residual encoder-decoder convolutional neural network (REDCNN) as an example of a low-
dose CT image denoising technique in this work. We use the patient scans in the Low-Dose Grand Challenge (LDGC)
dataset to train the network. To study how the network generalizes on the three acquisition parameters, we analyze the
denoising performance changes under three scenarios: smooth vs sharp reconstruction kernels, 1 mm vs 3 mm slice
thicknesses, fixed (25%) vs mixed dose levels. In each scenario, we vary only one acquisition parameter between the
training and testing data to avoid interacting effects among parameters. Denoising performances are evaluated on
patient scans, simulated phantom scans and physical phantom scans using multiple types of image quality (1Q) metrics,
including mean squared error (MSE), contrast-dependent modulation transfer function (MTF), noise power spectrum
(NPS) and low-contrast lesion detectability (LCD).

Results: REDCNN had larger MSE when the testing data was different from the training data in reconstruction kernel,
but no significant MSE difference when varying slice thickness in the testing data. REDCNN trained with quarter-dose
data had slightly worse MSE in denoising 80%-dose images than that trained with mixed-dose data. The MTF tests
showed that REDCNN trained with the two reconstruction kernels and slice thicknesses yielded images of similar
image resolution. However, REDCNN trained with mixed-dose data preserved the low-contrast resolution better
compared to REDCNN trained with quarter-dose data. In the NPS test, it was found that REDCNN trained with smooth-
kernel data could not remove high-frequency noise in the test data of sharp kernel, possibly because the lack of high-
frequency noise in the smooth-kernel data limited the ability of the trained model in removing high-frequency noise.
Finally, in the LCD test, REDCNN improved the lesion detectability over the original FBP images regardless of
whether the training and testing data had matching reconstruction kernels.

Conclusions: REDCNN is observed to be poorly generalizable between reconstruction kernels, more robust in
denoising data of different dose levels when trained with mixed-dose data, and not sensitive to slice thickness. It is
known that reconstruction kernel affects the in-plane NPS shape of a CT image whereas slice thickness and dose level
do not, so it is possible that the noise correlation structure described by the in-plane NPS may be used as an underlying
property to predict the generalizability of this CT image denoising network.

Index Terms—Deep learning, CT image denoising, Generalizability performance, Image quality assessment
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1. INTRODUCTION

CT imaging is widely used in modern medicine for almost every disease or condition. It is highly recommended that
the x-ray dose be as low as reasonable in CT exams for patient safety while maintaining the CT image quality to avoid
misdiagnosis. Various approaches have been developed toward low-dose CT through improved hardware design such
as automatic exposure control, kV optimization and dynamic bowtie filters [1, 2], and through advanced image
reconstruction/denoising methods, such as statistical and model-based iterative reconstruction (IR) algorithms [3, 4].
Deep learning (DL) methods are now being developed for this purpose, thanks to the availability of software tools and
increased computational power. Publications on applying DL in low-dose CT image denoising are growing rapidly [5-
10]. Commercial DL products have become available on some CT scanners, such as AiCE from Canon Medical
Systems and TrueFidelity from GE Healthcare, both receiving FDA clearance in 2019.

DL methods have been shown to be capable of improving image quality over FBP, similar to state-of-the-art iterative
denoising methods [9, 11-13]. However, unlike IR algorithms that are derived based on imaging physics and data
statistics, a DL method relies on training data to optimize the network coefficients to attain a noise reduction function.
This data-driven mechanism makes the DL performance less generalizable when applied to processing data of different
distribution from that of the training data. In most cases, characterizing the underlying data distribution to circumscribe
the performance generalizability zone (i.e., the data range for which a DL network preserves its performance) is not
straightforward. In CT, image resolution and noise properties are affected by image acquisition parameters such as
kVp, mA, reconstruction kernel, slice thickness, pitch, etc. Therefore, it is reasonable to investigate the generalizability
performance of a DL network on data of different acquisition conditions. Changes in the network’s performance
between two differently acquired testing datasets could indicate a potential data distribution shift caused by the
associated acquisition parameters. Thus, an analysis of the data properties associated with the acquisition parameters
may provide insight on possible ways to characterize the data distributions for the generalizable range of a DL-based
CT image denoising network.

Following this reasoning, we investigated a residual encoder-decoder convolutional neural network (REDCNN) for
low-dose CT image denoising [5] and used patient scans from the Low Dose Grand Challenge (LDGC) dataset [14] to
train that network [15]. We examined the denoising performance changes under three scenarios. In each scenario only
one acquisition parameter changed between the training and testing data. The three acquisition parameters were
reconstruction kernel, slice thickness and dose level. The image quality (IQ) metrics for evaluating the denoising
performance included 1) mean squared error (MSE), a global 1Q metric; 2) contrast-dependent modular transfer
function (MTF) and noise power spectrum (NPS), standard CT IQ metrics that characterize the image resolution and
noise properties; and 3) low-contrast lesion detectability (LCD), a more clinically relevant task-based 1Q metric. We
included these multiple IQ metrics to examine how well they support the evaluation of a denoising method’s impact
on task-based image quality. While a denoising algorithm may appear to beautify an image, there is the possibility that
it impairs the detection or characterization of subtle signals and other image features

We compared the performance behavior of the DL denoising network under different training and testing conditions,

particularly, varying the reconstruction kernel, slice thickness and dose level bewteen the training and testing data As
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being mentioned previously, these acquisition parameters affect the image resolution and noise property of a CT image
set. For example, reconstruction kernel changes the in-plane resolution and noise correlation structure. Slice thickness
mainly affects the z-direction resolution. Dose level determined the noise magnitude. A degradation in the DL
network’s denoising efficiency due to a mismatch of a data acquisition parameter would be associated with the
underlying data properties that are altered by that acquisition parameter. Based on the findings regarding whether a
change in each of the three parameters causes a substantial degradation in the DL’s denoising perfomrances or not, we
may learn and identify which underlying data properties are most important in predicting the denoising network’s
generalizability.

The rest of the paper is organized as follows. Section 2 explains the low-dose CT denoising network, the training
scheme for preparing the generalizability tests, the evaluation methods and testing data. Section 3 presents the results.

Section 4 discusses our observations on the DL generalizability performance followed by the conclusions.

2. METHODS

2.1. Low-dose CT denoising network
Let x € R™ ™ denote a low-dose CT reconstructed image; the DL-based denoising problem is to optimize the

network C(x): R™™ — R™*™ that maps X to its corresponding high-dose image y € R™ ™ by minimizing a loss
function between x and y over a given set of training data. After the network is optimized, a noisy CT image can be
passed through the network to produce an image intended to have reduced noise.

Various network structures have been explored in the literature for low-dose CT image denoising. Some typical
networks include convolutional neural networks [6], residual networks [5, 10, 16, 17], UNet [8, 18] and Generative
adversarial networks [7, 19]. For this paper, we selected the residual encoder-decoder convolutional neural network
(REDCNN) developed by Chen et al.[5] as a denoising example for the generalizability test. Our emphasis here is not
on the demonstration of an innovative denoising algorithm, but rather the illustration of an approach for assessing DL
generalizability. We come back to this point in the discussion.

As illustrated in Fig.1, REDCNN contains ten layers, the first five being convolutional layers and the last five being
deconvolutional layers. A rectified linear unit (ReL.U) activation function follows the convolutional or deconvolutional
operator in each layer. Residual learning is realized by including three shortcuts connecting the convolution layer and
deconvolution layer. All the convolutional and deconvolutional layers have a filter size of 5x5. The number of filters
is 96 for all the layers except that the last layer has one filter. For more details about the network design, please refer
to [5]. We selected this residual network design because it was not very complicated but has been shown to have
potential for effective CT image denoising similar to some traditional iterative denoising methods under the conditions

tested in the papers by Chen et. al. and Zeng et. al. [5, 20].
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Fig. 1. lllustration of the REDCNN denoising network.
The loss function for training the denoising network we used was the MSE between the network output and the

corresponding high-dose target images. Some investigators add terms to the loss function to encourage image
smoothness and feature similarity, or to regularize the network parameters with weight decay to avoid overfitting [8,

10]. However, we focused on the most commonly used MSE loss function in this work.

2.2. Training data categorization
The denoising network was trained using the patient scans in the Low-Dose Grand Challenge (LDGC) dataset [14].

There are ten datasets in LDGC covering chest to abdomen. Each patient dataset contains a full-dose scan acquired on
a Siemens Somatom Definition AS+ or Definition Flash scanner model and a simulated quarter-dose scan. Each scan
was reconstructed with two slice thicknesses (1 mm and 3 mm) and two reconstruction kernels (a sharp kernel named
D45 and a smooth kernel named B30). The corresponding quarter- and full-dose image pairs were treated as training
input and training target in the DL training process, respectively. Among the ten patient datasets, seven patient datasets
were used for training since more data were needed to train than test the network that contained more than 1.8 million
coefficients. 350 slices of size 512x512 were randomly selected from the seven patients and each slice was divided
into 55x55 patches excluding the air patches outside of the body, resulting in about 70,000 training patches in total.

The variety of reconstruction thickness, reconstruction kernel and dose level make the LDGC datasets suitable for
this performance generalizability study. We grouped the CT volumes into three pairs of training data according to the
acquisition parameters as shown below. In each pair, only one acquisition parameter value was varied to avoid
interacting effects among the parameters.

Dose level effect:

- Smooth kernel / 3 mm thickness / 25% dose level

- Smooth kernel / 3 mm thicknesS / Mixed dose levels
Kernel effect:

- Sharp kernel / 3 mm thickness / mixed dose level

- Smooth kernel / 3 mm thickness / mixed dose level
Thickness effect:

- Smooth kernel / 1 mm thickness / mixed dose level

- Smooth kernel / 3 mm thickness / mixed dose level

With this data arrangement, we can obtain three pairs of trained DL networks. For convenience, we name the networks

according to the parameter setting of the training data as follows: DLkernel-thickness-dose. For example, “DLsharp-

4
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3mm-mix%” represents the REDCNN trained with images of sharp kernel, 3mm thickness and mixed dose levels;
“DLsmooth-1mm-25%" represents the REDCNN trained with images of smooth kernel, 1mm thickness and a single
25% dose level. Each pair of networks was cross evaluated on two types of test sets to determine how the performance
may change when the testing data were acquired with a different parameter value.

There was only one reduced dose level (25%) available in LDGC. The mixed-dose data were synthesized using the
full and quarter-dose scans by a simple blending of the two scans: A noise map was obtained by subtracting the quarter-
dose image from the full-dose image and then a portion of the noise map was blended back into the full-dose image as
follows:

Xq = X5 ta (xqg — X)), a =0,
where x4, Xf, and x4 represent the synthesized noisy image at a dose level d, the original full-dose and the quarter-
dose images, respectively. The scaler a denotes the blending factor. When a = 1, the outcome is exactly the quarter-
dose image. When a = 0, the outcome is the full-dose image. For an arbitrary nonnegative «, the outcome corresponds
to 1/((1 — @)? + 4a?) of the full-dose scan. We varied the blending factor randomly in the interval of [0.5, 1.2] for

the mixed dose training data case, resulting in images of dose levels ranging from 17% to 80% of the full-dose level.

2.3. Performance evaluation

To evaluate the performance, we considered the following 1Q metrics: MSE, contrast-dependent MTF, NPS, and
LCD. MSE reflects how well the network performs in minimizing the loss function that it is designed to do. We did
not evalute the other global metrics like PSNR or SSIM in this work since they are highly correlated with MSE.
However, it is well known that a denoised image with smaller MSE does not necessarily have better diagnostic image
quality. We included the standard CT IQ metrics MTF and NPS as they are commonly used to characterize the image
resolution and noise texture. Lastly, we evaluated the denoising performance in terms of LCD, a task-based 1Q metric

measuring the capability of detecting low-contrast lesions in the denoised images.

2.3.1.Mean Squared Errors (MSE) test
For the MSE measure, the slices from one patient dataset in LDGC that were not included in the training were used

as a test set. The total slice numbers were more than 200 slices and 500 slices for the testing cases of 3mm and Imm

slice thickness CT volumes respectively. For each slice, the full-dose image was used as a reference to calculate the

Noisy Image—Ref Image||?
MSE (= INoisy Imag gell

) before and after the DL denoising. Then the MSE reduction rate (=

The total number of pixels

MSE before denoising - MSE after denoising

0 . ..
MSE before denoising X 100%) was calculated to quantify the denoising performance. Based on the

multiple slices in the test CT volumes, statistics of the MSE reduction rates can be obtained and compared between the
pairs of DL networks.
2.3.2.Contrast-dependent Modular Transfer Function (MTF) and Noise Power Spectrum (NPS) test
We simulated 2D phantom CT scans for the MTF and NPS tests. We also collected multi-slice CT phantom scans to
validate the simulation-based results, which are described in Sect 2.4. For the MTF measure, a contrast phantom (Fig.

2) similar to the CATPHANG600 contrast module was simulated. The contrast phantom contained eight disks of 2 cm
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diameter, similar to the HU contrasts contained in the CATPHANG600O phantom. Contrast-dependent MTF was
measured using the methods described in [21]. Note that a noiseless CT scan of the contrast phantom was simulated
for the MTF test to eliminate any uncertainties caused by random noise, since MTF represents a deterministic behavior
of an imaging system. For the NPS measurement, 50 noisy water phantom CT scans were simulated. A Region of
Interest (ROI) of size 64 x 64 pixels at the image center was extracted from each realization. Local NPS was estimated
by taking the average of the modulus square of the Fourier transform of the noise images after being subtracted from

the mean of the 50 realizations.

15 HU

120HU -35 HU

340 HU -100 HU

-200 HU
990 HU

-1000 HU

Fig. 2: Sketch of the digital contrast phantom that is used to measure the MTF. It mimics the CATPHANG00 contrast module with an added disk
of 15HU contrast.

The simulated CT scans were created from a virtual fan-beam 2D CT scanner. The virtual scanner had distances of
595 mm from the x-ray tube to the isocenter and 1085.6 mm to the detector, the same as those in the Siemens CT
scanner used to collect the LDGC dataset. Poisson noise was modeled at the detector but electronic noise was not. We
varied the air photon flux to achieve different noise levels. To simulate the reconstruction kernels in the LDGC data,
two Hann filters of different cutoff frequencies (named Hannl & Hann2) were used in our FBP reconstruction. The
cutoff frequencies were tuned to closely match the MTF50% and MTF10% of the D45 and B30 filters (see Table 1).
Note that MTF50% and MTF10% are the frequency values where MTF drops to half and 10% respectively. For
convenience, we refer to Hannl and D45 as sharp kernels, and Hann2 and B30 as smooth kernels in this paper. The
reconstruction pixel size was set to 0.664 mm, corresponding to a 512x512 reconstruction matrix of a 340 mm field of
view (FOV). Since we only simulated 2D scans, slice thickness was not a modeled parameter in the virtual scanner.
The simulated scans could be treated as a very thin slice thickness setting. The CT simulation code was implemented
based on the Reconstruction Toolbox (MIRT) that is available online at

Michigan Image

https://web.eecs.umich.edu/~fessler/code.

Table 1. The MTF50% and MTF10% values in Ip/cm of the commercial reconstruction kernels (D45, B30) and simulated reconstruction kernels
(Hann1 and Hann2).

Resolution D45 Hannl B30 Hann2
(Ip/cm) (sharp) (sharp) (smooth) (smooth)
MTF50% 5.6 5.6 3.5 3.5
MTF10% 9.4 10.4 5.9 6.2

2.3.3.Low-Contrast Detectability (LCD) test
Low-contrast detectabilites were estimated using a model observer and simulated phantom images containing very

low-contrast objects. Specifically, we simulated 200 CT scans of the signal module and 100 scans of the background
module of the MITA-LCD phantom CCT189 (Fig. 3) at five exposure levels. The signal module contained four low-
contrast disks with varying size/HU combinations (3mm/14HU, Smm/7HU, 7mm/5HU, 10mm/3HU) to mimic sutble
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lesions. Five exposure levels were simulated: 100%, 85%, 70%, 55% and 30%. The 100% dose level corresponded
to an air photon count of 3x10° per detector pixel. For each disk signal, a signal-present (SP) ROI was cropped from
the scan of the signal module and five signal-absent (SA) ROIs were cropped from the background module at the
vicinity of the signal location. A Laguerre-Gauss channelized Hoteling model observer (LG-CHO) was applied to
estimate the signal detectability [22]. The LG-CHO had five channels and the Gaussian width was adjusted to match
the size of the disk to be detected. Among the 200 SP ROIs and 500 SA ROIs, 80 pairs of SP and SA ROIs were used
to train the model observer. The remaining ROIs were used to estimate the detectability, quantified by the area under

the receiver operating curve (AUC).

(a) (b)

Fig. 3: Sample CT images of the signal module (left) and the background module (right) for the LCD test. Red and green boxes illustrate the
locations for cropping signal-present ROls and the corresponding signal-absent ROls. Note that the CT image of the signal module shown here
is an average of 20 realizations from the highest dose level reconstructed with FBP of smooth kernel to make the low-contrast signals visible.
The display window is [-50 50] for both images.

2.4. Validation with physical phantom scans
CT scans of a CATPHANG600 phantom (The Phantom Laboratory, Salem, NY) were collected on a Somatom

Definition AS model (Siemens Medical Solutions USA, Inc, Malvern, PA) to validate the observations in the MTF and
NPS test with simulated phantom scans. The scan protocols were designed to closely match the settings in the LDGC
dataset, including the parameters of kVp, x-ray filter, detector collimation, slice thickness, convolution kernel and
reconstruction field of view. Table 2 provides a summary of those major scan parameters in the LDGC, together with
the parameter settings for our phantom scans. As can be seen from the table, the reconstruction kernel and the slice
thickness were the same for the LDGC patient scans and the phantom scans. However, there existed some differences
in the other parameters as discussed next.

First, we turned the automatic exposure control (AEC) off since “on” or “off” would not matter much for a cylindrical
phantom with minor interior background variation. The patient scans had kVp varying in the range of 100 — 120 kV
across the slices due to AEC. For our phantom scan, the kVp was fixed at 120 kV. Second, we scanned the phantom
with three dose options, named high-dose, full-dose and quarter-dose. The full-dose option was set to match the average
values of the CTDI of the full-dose patient scans. The high-dose option (higher than the full-dose option) was added
to reduce the uncertainty in the MTF estimations. Third, for the x-ray filter setting that may affect the x-ray spectrum

shape, we used “FLAT” filter since most of the patient scans were with this option. Fourth, our phantom scans had the
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same single collimator width 0.6 mm as the LDGC patient scans. However, the total collimator width was 12 mm,
narrower than 38.4 mm in the LDGC scans, because the 38.4 mm collimator option was not available on the scanner
model we used. Fifth, the pitch factors in the patient scans varied from 0.6 to 0.8. In our phantom scan, the pitch was
set to 0.8 to save scan time. As long as the pitch factor was smaller than 1, degradation in the z-directional sampling
would be negligible for the scans of the cylinder-shaped CATPHANG600 phantom. Lastly, the reconstruction field of
view (FOV) varied in the patient scans, ranging from 340 to 420 mm due to the different patient sizes. Reconstruction
FOV affects the pixel size. For the phantom scans, we set the FOV to be 380mm, close to the average FOV of the 10
patient scans. This resulted in a pixel size of 0.74 mm in the reconstructed phantom volume.

In total, we collected one high-dose scan, and five repeats of the full-dose and quarter-dose scans. For each scan,

reconstructions with 1 mm and 3mm slice thickness, sharp and smooth kernel were generated, resulting in 44 CT

volumes.
Table 2: Comparison of the data acquisition parameters between the LDGC dataset and our phantom scans.
Dataset AEC kVp CTDI x-ray filter Single/Total Pitch FOV Slice Reconstruction
(kV) (mGy) Collimator (mm) Thickness kernels
width (mm) (mm)
LDGC XYZ-EC 100 - 19.7 (mean for FLAT (8) 0.6/38.4 0.6t0 0.8 378 3 B30f
120 Full) WEDGE 3 (2) (mean) D45f
Phantom OFF 120 32.1 (High) FLAT 0.6/12 0.8 380 3 B30f
scans 20.0 (Full) 1 D45f
5.0(Quarter)
3. RESULTS

3.1. Mean Squared Errors
Fig. 4 shows box plots comparing the MSE reduction rates of the three pairs of DL networks. For the dose effect

(Fig. 4a), when tested on the quarter-dose images, the DL networks trained solely with quarter-dose data and trained
with mixed-dose data had almost equivalent MSE reduction rate. When tested on the 80% dose images, the DL network
trained with mixed dose reduced MSE noticeably more. This indicates that the DL denoising network trained with
mixed-dose data generalized better on data of different dose levels. For the reconstruction kernel effect, Fig. 4b shows
that when the training and testing data had a different reconstruction kernel, the DL network performed subtantially
worse. This indicates that the DL denoising network did not generalize well on data with a different reconstruction
kernel. For the thickness effect (Fig. 4c), in both the 3mm and Imm thickness testing cases, the MSE reduction rate
was similar between the DL networks trained with the two different thickness datasets. The DL network trained with
3mm thickness appeared to be slightly better at maintaining testing performance across thicknesses, but the difference
was not statistically significant since the two distribution ranges heavily overlapped. The similar performances indicate
that the slice thickness parameter may not be critical to the DL denoising network.

Fig. 5 presents sample CT images to visually demonstrate the effect of reconstruction kernel. As can be seen , in the
test case of FBP smooth (top two rows in Fig. 5), the DLsharp-3mm-mix% processed image obviously appears to be
much noiser than the image processed by DLsmooth-3mm-mix%. Meanwhile, in the test case of FBP sharp (bottom
two rows in Fig. 5), the image texture of the DLsmooth-3mm-mix% processed FBP sharp image appears quite different
from the others. It is also noticeable that the anatomical structures in the DLsmooth-3mm-mix% processed image slice

are oversmoothed and some small features are lost.
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Fig. 4 Effects of the training parameters on the MSE reduction rate of the DL networks. The first row compares the dose level effect, the second

row compares the reconstruction kernel effect and the third row compares the thickness effect.
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(a) Processing a FBP-Soft image: full images (top) and zoomed regions of interest (bottom)

(b) Processing a FBP-sharp image: full images (top) and zoomed regions of interest (bottom)

287 Fig. 5 Images to illustrate the effect of reconstruction kernel. From left to right are images of a full-dose FBP slice, its corresponding quarter-dose
288 FBP slice, DLsharp-3mm-mix% and DLsmooth-3mm-mix% denoised quarter-dose slice. a). for processing a quarter-dose FBP image reconstructed
289 with smooth kernel and b) for processing a quarter-dose FBP image reconstructed with sharp kernel. The red box in the full-dose FBP image in (a)
290 indicates the region of interest that is zoomed for display.

291 Contrast-dependent Modular Transfer Function

292 In this test, we generated a noiseless sinogram of the contrast phantom and reconstructed the sinogram with FBP

293 using sharp and smooth kernels. The noiseless FBP images were then processed by the DL networks. Contrast-
294  dependent MTF curves were estimated at these five contrasts: 990, 340, 200, 120 and 35 HU. The MTF50% value
295  was calculated for each MTF curve and plotted as a function of the HU contrast to characterize the contrast-dependent

296  image resolution.
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Fig. 6a and 6b show the contrast-dependent image resolution curves for the DL networks in processing FBP-smooth
and FBP-sharp images, respectively. The curves clearly show that the image resolution decreases with contrast. This
nonlinear smoothing behavior is similar to that of traditional iterative reconstruction and denoising methods. We also
see that the curves in Fig 6a and 6b show the same contrast-dependent trends for both smooth and sharp FBP input
recontructions: the DL network trained with sharp-kernel data had slightly better image resolution (higher MTF50%
value) than the DL network trained on smooth-kernel data; the DL network trained with thicker slice data had slightly
better image resolution than the DL network trained with thinner slice data; the DL network trained with mixed-dose
data had slightly better image resolution than the DL network trained with single-dose data, except at the contrast level
of 35 HU where the resolution dropped greatly for the single-dose DL network. In summary, the trends in the MTF
test indicate that the image resolution of the DL denoising network was not very sensitive to the kernel and slice
thickness parameters. However, it appears that with mixed-dose training data, low contrast resolution was much better

preserved.
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Fig. 6: Contrast-dependent MTF50% curves of the DL networks for processing the FBP-smooth images (a) and FBP-sharp images (b).

3.3. Noise Power Spectrum
We simulated 50 noisy scans of a cylindrical water phantom for the NPS estimation, with an air photon count of

2.4x10° per pixel. Each noisy scan was reconstructed by FBP for both sharp and smooth kernels. Then the noisy images
were processed by the DLsharp-3mm-mix% and DLsmooth-3mm-25% to compare the effect of kernel in the NPS test.
Note that we did not further examine the effects of the slice thickness and dose level parameters in the NPS and the
LCD test, because the pervious MSE and MTF test results showed that the DL network trained with thicker slice
thickness and mixed-dose data had better performances. For convenience, we simplify the names of DLsharp-3mm-
mix% and DLsmooth-3mm-mix% as DLsharp and DLsmooth afterward in the NPS and LCD test.

Fig. 7 presents the NPS images and Fig. 8 plots the corresponding radial profiles. The radial profiles clearly show
that the DL networks reduced the noise magnitude and shifted the peak frequency toward zero. Again, this is a behavior
similar to that of traditional iterative reconstruction and denoising methods- In general, DL denoised images had noise

components concentrated more in the lower frequency bands compared to the original FBP images. However, one may
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notice a contrasting appearance in the NPS of DLsmooth processed FBP-sharp image (the rightmost in Fig 7b): much

higher magnitude at the four corners (high-frequency regions). The 1D radial profile clearly shows that the

corresponding NPS curve has a rising tail (as indicated by the arrow in the Fig. 8b) after about 5 Ip/mm. Moreover, the

tail’s shape and height closely match those of the NPS curve of the original FBP-sharp images, indicating that the high-

frequency noise was not removed by the DLsmooth network. An example CT image patch from a uniform background

(Fig. 8c) also demonstrates the remaining high-frequency noise in the DLsmooth processed FBP-sharp images,

appearing as tiny checker-board like artifacts. This phenomenon suggests that the DLsmooth network possibly did not

learn to remove the high-frequency noise from the smooth kernel training data, since the training data did not contain

noise in the high-frequency band.
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Fig. 7: 2D NPS of the original FBP images and the corresponding DLsharp and DLsmooth processed images. Results on FBP smooth kernel is in
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Fig. 8: The 1D radial profiles of the NPS of the original images and the corresponding DLsharp and DLsmooth processed images in (a). The 1D
NPS radial profiles of the original FBP-sharp images and the corresponding DLsharp and DLsmooth processed images in (b). The blue arrow in (b)
indicates the raised tail in the NPS of the DLsmooth processed FBP-sharp images and the sample image patch in (c) illustrates the remaining high-
frequency noise, which appears as tiny checker-board like artifacts.
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3.4. MTF and NPS test using physical phantom CT scans
We conducted the MTF and NPS tests again using the physical CT scans of CATPHANG600 to validate the

observations found in the results using simulated phantom CT scans.

First, we measured the contrast-dependent image resolution of the DL networks processing 3mm thickness high-
dose FBP images. Fig. 9 displays the resolution curves. Due to image noise, the MTF function estimated from the
disks of contrast below 100HU were not reliable. Therefore, the contrast-dependent image resolution curves were based
on the disks of air, PMP, LDPE and Polystyrene in the CATPHANG600 contrast module, which had measured mean
absolute contrast of 1100, 260, 170 and 115. The resolution curves in Fig. 9 also show that DL networks trained with
data of sharp kernel, thicker slice thickness, mixed-dose levels had better image resolution than their counter parts,
similar to the findings obtained in the testing results with simulated 2D CT scans.

Second, we estimated the NPS images and extracted their 1D radial profiles of the DL networks processing 3mm
thickness full-dose FBP images, as shown in Fig. 10. A rising tail in the NPS curve of the DLsmooth processed FBP-
sharp images was also observed, similar to that in Fig. 7b. We omitted the NPS results for processing the low-dose
FBP images since they present similar trends. These experiments showed that the NPS results obtained with the

physical phantom CT scans agreed with those obtained with the simulated CT scans.
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Fig. 9: Contrast-dependent MTF50% curves of the DL networks for processing the FBP-smooth-3mm images in (a) and FBP-sharp-3mm images
in (b) using the physical phantom CT scans.
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images. Results for processing FBP smooth images are in (a) and the left plot in (c). Results for processingFBP sharp kernel are in (b) and the right
plot in (c).

3.5. Low Contrast Detectability
Fig. 11 plots AUC, a measure of low-contrast detectability, as a function of dose for detecting the 10mm/3HU inserts

in the simulated MITA-LCD phantom. As can be seen in the figure, both the DLsharp and DLsmooth networks
improved the detectability over the original FBP images regardless of the original reconstruction kernels. The
DLsmooth network had similar AUCs as the DLsharp network in processing FBP-smooth images but significantly
higher AUCs in processing FBP-sharp images. We will explain the possible reasons later in the discussion. The
detectability curves are not shown here for the other three inserts (3mm/14HU, Smm/7HU, 7mm/5HU). In general, we
observed that the detectability curves in the original FBP images and the DL denoising images were almost the same
for detecting the two smaller inserts (3mm/14HU and Smm/7HU), then became more separated as the size of the insert
increased, but the relative performance trends were the same for detecting these inserts. Therefore, we only present the

curves for detecting the 10mm/3HU insert since the curves separated the most in this case.
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Fig. 11 Detectability curves for the insert (10mm-3HU) in the original FBP images, and denoised FBP images with DLsharp and DLsmooth: (a) for
processing FBP sharp images and (b) for processing FBP smooth images

4. DISCUSSION
In this work we presented a framework for the evaluation of performance generalizability of a DL-based CT image

denoising method, using the REDCNN as an example denoising algorithm. We used the patient CT scans in the LDGC
dataset to train the network on data acquired with different acquisition parameters. Based on the data variety, we
examined the performance generalizability of the denoising network on three parameters: reconstruction kernel, slice
thickness and dose levels. Performances were evaluated using MSE, contrast-dependent MTF, NPS and LCD. We
observed the following three points from the testing results.

First, the denoising network did not generalize well between the sharp and smooth reconstruction kernels. This is
reasonable since the reconstruction kernel is the most dominant factor that determines the noise correlation structure
in a FBP reconstructed image. The NPS curves of the FBP-sharp and FBP-smooth images in Fig. 8 & 10 obviously
differ in both the peak and the cutoff frequencies. Due to the DL’s data-driven mechanism, a denoising network may
not recognize noise components that are not seen in its training data. This explains the remaining high-frequency noise
in the DLsmooth processed FBP-sharp images. On the other hand, the image resolution property was not much different
between the DLsmooth and DLsharp networks since the denoising network was not trained to alter image resolution.

Second, the denoising network was not sensitive to slice thickness. When all the other acquisition parameters are
kept the same, a 3mm slice thickness CT volume may be considered as being formed by a moving average (or weighted
average) of every three adjacent slices of the 1mm slice thickness CT volumes. Averaging along the longitudinal
direction does not alter the noise correlation structure within a slice, so the denoising networks trained with 3mm and
Imm thickness image slices were not much different. However, the noise magnitude in a 3mm thickness slice is usually
lower than that in the corresponding 1mm slice. In this sense, the target images in the 3mm thickness training data had
slightly better image quality, which may explain why the DL-3mm network performed slightly better than the DL-
Imm network in both the MSE and MTF tests.

Third, the denoising network was more robust in processing images of an unknown noise level when trained with
mixed-dose data. The MSE results showed that the DL-mix% network maintained the MSE reduction rate in processing

quarter-dose slices and reduced MSE more when processing slices of a different dose level than the DL-25% network.
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The DL-mix% also preserved the low-contrast image resolution better, as shown in the MTF test where the testing data
may be considered as a very high-dose scan. Since the noise correlation structure did not change except the magnitude
in the various dose level settings, training with mixed-dose data increased the adaptivity of the network in processing
CT images with unknown noise levels. The finding on the dose parameter agrees with the observation in Chen et. al.
[6], where a three-layer convolutional neural network (CNN-3) trained with mixed-dose data was found to have better
denoising performance than the CNN3 trained with single-dose data in processing data at all the tested noise levels.
Mixing the data of different dose levels in training can also be considered as a data augmentation strategy that is
commonly used to improve robustness of a DL network performance [23, 24].

Despite the finding based on the MSE and NPS tests that the denoising network did not generalize well between
reconstruction kernels, the DLsmooth network surprisingly achieved much better detection performance than the
DLsharp network in detecting the 7mm and 10mm disks after processing the FBP-sharp images. It appears that the
remaining high-frequency noise in the DLsmooth processed FBP-sharp images did not negatively affect these detection
performances. The reason could be that the signal information of the four disks mostly concentrated in the lower
frequency band such that the high-frequency information was not used by the model observer in the detection tasks.
As shown in Fig. 7b, the rising tail of the NPS curve of DLsmooth starts at about 5 Ip/cm. Even for the smallest 3mm
disk, its main spectrum lobe is within 3.3 Ip/cm; the signal power of most of the low-contrast disks included in the
LCD phantom already dimishes at 5 Ip/mm. Based on the MTF and NPS tests, the DLsmooth appeared to have
comparable resolution and better noise reduction in the lower frequency band compared to DLsharp, which may have
contributed to the higher detectabilities of DLsmooth in the LCD test. The results and our analysis indicate the
limitation of this LCD test in evaluating the overall performance of DL denoising networks. Additional tasks focusing
on high-frequency information need to be developed to allow a thorough evaluation of a DL method’s denoising
performance, such as shape discrimination, size estimation, etc.

Due to the limited data variety in LDGC, we examined the performance generalizability only on three CT acquisition
parameters in this work. Other parameters associated with a CT scan can also affect the FBP image quality, such as
kV, helical pitch, detector collimation width and scan FOV. It is worth discussing how the DL denoising network
REDCNN may generalize across other parameters. As is known, a DL network usually generalizes well within its
training data distribution. In a FBP-reconstructed CT image, the noise approximately follows a correlated multi-variate
Gaussian distribution. The noise correlation structure can be described by the (local) NPS. The results in this study
provide evidences to support the hypothesis that NPS may be used as an underlying property to predict the
generalizability performance for REDCNN denoising algorithm among different CT acquisition parameters: if a
different parameter value associated with the testing data does not alter the NPS shape relative to the training data, the
DL network will maintain its denoising performance, such as between the two different thickness settings and between
different dose levels; If a different parameter value substantially changes the NPS shape, the DL network will likely
have poorer denoising performance, such as between the sharp and smooth reconstruction kernels. Based on this

hypothesis, we make the following predictions on the generalizability related to other scan parameters.
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Since the kV setting mainly affects the image contrast and not the noise color, we expect a denoising network to
generalize well in the typical kV range (80-140 kVp) of CT scans. Helical pitch and detector collimation width mainly
affect the longitudinal resolution, similar to the effect of the slice thickness parameter. Therefore, the denoising network
should not be sensitive to the change of these two parameters as well. The scan FOV (or reconstruction FOV) setting
usually varies with the patient size. With a fixed CT reconstruction matrix size (512x512), the scan FOV setting
determines the pixel size of the reconstruction grid, i.e., the image-domain sampling frequency. Backprojecting the
noisy sinogram to a finer or a coarser image grid will affect the noise correlation between adjacent image pixels.
Therefore, the NPS of CT scans reconstructed with different FOVs will be different. If the FOV setting changes
significantly, such as from average-size patients to obese patients or to pediatric patients, the denoising performance
may not generalize well. We will conduct experiments to confirm these predictions with appropriate patient and
phantom CT data in the future. Please note that the above generalizability discussion is regarding the acquisition
parameters assuming that the body part to be scanned is the same. When a network is trained on CT images of the
abdomen, it may not maintain the denoising performance in head or extremity scans and vice versa, since the noise
property could differ significantly due to substantial changes in anatomical structure and size in a different body part.

A limitation of this work is that it investigated generalizability of a single denoising network, REDCNN. There are
other popular networks applied to low-dose CT image denoising, such as ResNet, UNet and GAN. Different networks
may have different ways of extracting relevant features in the training data, resulting in images of different resolution
and noise properties [25]. However, DL methods share a common property: data-driven-based learning machnism.
Therefore, training data is always an essential element affecting the performance of DL methods. We anticipate that
the generalizability performances observed on REDCNN likely apply to other types of DL networks if they are
similarly trained to perform a slice-wise low-dose CT image denoising function. The experiments conducted in this
work will be performed using other typical types of DL networks to confirm this anticipation.

In summary, generalizability performance is an important characteristic of DL methods. Loss of generalizability of
a DL network can be rooted in a shift of the testing data distribution from the training data. There are many different
CT scan acquisition settings. Without any knowledge about the generalization behavior, we may have to test a CT
image denosing network tediously on data from a large variety of scan settings to understand its use range. Our results
imply that the noise correlation property described by NPS may be used as one way to predict the generalizability zone
of a DL-based CT image denoising network. CT images with acquisition parameters that significantly change the NPS
relative to the training data would possibly fall out of the generalizability zone, such as images reconstructed with a
different convolutional kernel. CT images with acquisition parameters that have similar NPS shape to that of the
training data would be still within the generalizability zone, such as the slice thickness parameter. This finding can be
helpful to the development as well as regulartory evaluation of DL-based CT image denoising methods. For developers,
the training data cohort may be more effectively designed. One may emphasize adding training data that has different
NPS properties to improve the generalizability of a CT image denoising network or training the network separately on
those categories of data. For regulartory evaluation, the categories of testing data may be appropriatedly reduced to

support the assessment of the generalizability of a DL-based CT image denoising software within its intended use,
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according to the FDA least-burdensome principle (https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/least-burdensome-provisions-concept-and-principles). Validated intended uses and product labelings will

allow clinicians to have better information on what kinds of images are suitable to be processed by a DL denoising

algorithm available at their site.

5. CONCLUSIONS
This paper reported our work in testing the performance (MSE, MTF, NPS and LCD) generalizability of a DL-based

CT denoising method (REDCNN) on three CT acquisition parameters (reconstruction kernel, slice thickness and dose).
Our results showed that the DL performance did not generalize well between the sharp and smooth reconstruction
kernels, was not sensitive to the slice thickness parameter, and was better when trained with mixed-dose data. The
observed DL performance behaviors provide evidence to support the hypothesis that the noise property of training data,
specifically the NPS, may be a data characteristic to predict the generalizability zone of a DL-based CT image denoising
network. Future work is needed to investigate the impacts of other acquisition parameters on the performance
generalizability to consolidate this hypothesis. Tasks that challenge possible differences in the higher spatial-frequency

content of the denoised images should also be explored to allow a more complete performance evaluation.
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