
1 
 

D 

Focal Stack Based Image Forgery Localization 
Zhengyu Huang, Jeffrey A. Fessler, Fellow, and Theodore B. Norris 

 

 

 
Abstract—Image security is becoming an increasingly im- 

portant issue due to advances in deep learning based image 
manipulations, such as deep image inpainting and deep fakes. 
There has been considerable work to date on detecting such image 
manipulations using improved algorithms, with little attention 
being paid to the possible role that hardware advances may have 
for improving security. This paper proposes to use a focal stack 
camera as a novel secure imaging device that facilitates localizing 
modified regions in manipulated images. We show that applying 
convolutional neural network (CNN) detection methods to focal 
stack images achieves significantly better detection accuracy 
compared to single image based forgery detection. This work 
demonstrates that focal stack images could be used as a novel 
secure image file format and opens up a new direction for secure 
imaging. 

 
 

I. INTRODUCTION 

IGITAL images are convenient to store and share, but 

they are also susceptible to malicious manipulations. 

With common photo editing tools, little effort or expertise is 

needed to convincingly manipulate an image. With advances 

in deep learning, this issue becomes even more severe: Gen- 

erative Adverserial Networks (GAN) are able to synthesize 

realistic non-existing images, change the style of an image, or 

inpaint an image to remove specific objects in it. Deepfakes can 

even seamlessly swap the face of one person with another in 

images [1], [2]. These malicious manipulated images could 

appear in the news, causing misleading opinions in the public 

or being provided in the court as evidence, with obvious serious 

consequences. 

Verifying the integrity of multi-media has been a research 

topic for long time in the field of multi-media forensics [3]– 

[8]. Traditional methods verify the integrity of a digital medium 

and detect traces of malicious manipulation by examining 

some signatures in the image, using either passive or active 

approaches. In the active approach, semi-fragile watermarks 

are pro-actively embedded into the image. The introduced 

watermark (which is visually imperceptible) is persistent after 

benign image operations such as brightness adjustment, 

resizing and compression, but can be destroyed by malicious 

editing. In the passive approach, imaging artifacts such as those 

due to lens distortion [9], color filtering [7], Photo Response 

Non-Uniformity (PRNU) [8], or compression are used to 

authenticate an image. 

Each method has its own limitations, however. The passive 

approach, while being simple to implement, relies on weak 

traces that are likely to be destroyed by compression/resizing. 

PRNU fingerprint analysis, while being a popular forensic 
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method, requires knowledge about the source camera9s PRNU. 

On the other hand, the active watermarking approach is more 

robust against compression/resizing, but alters the original 

content due to the watermark embedding. More recently, deep 

learning based forensic detection methods have also been 

proposed [10]–[13]. However, the ability to generalize data-

driven models remains as a key challenge: these models 

perform well on images that are similar to the training data, 

but the performance can quickly degrade when the models are 

fed with images that differ too much from the training data 

distribution [14], [15]. 

Most existing image forgery detection methods assume a 

conventional camera and attempt to determine the image 

authenticity by analyzing features present in a given 2D image 

file. Such methods are widely applicable to present-day 2D 

image file formats, but forgery detection remains a significant 

and growing problem as the sophistication of image 

manipulation techniques continues to grow. 

In this paper we propose to make image manipulation and 

forgery more detectable through a combined hardware and 

software approach. Specifically, we  propose to use a focal stack 

of images, instead of a single image, for secure media sharing, 

where the entire focal stack image file  is shared publicly. By 

enriching the information carried by the digital images, 

essentially extending the data into a third dimension, we can 

dramatically improve our ability to detect image manipulation. 

Because the image formation requires  a focal stack, this 

approach may not be as widely applicable as present-day 2D 

imaging approaches; it is nevertheless critical to consider 

alternatives that may involve more complex optical systems 

for imaging where security is an over-riding concern, given the 

severe limitations faced by 2D image forgery detection. 

 

Fig. 1 illustrates the idea: images in the focal stack contain 

depth-dependent defocus blur. Because generating physically 

realistic content with defocus blur that is consistent across the 

focal stack is extremely challenging, we show that detecting 

image manipulation is much easier using a focal stack com- 

pared to using a single image, by using such inter-focal stack 

consistency cues. This approach leads to a much more secure 

media format. Someone attempting to manipulate the image 

would have to modify every image in the focal stack, and it 

would be extremely challenging to accomplish this in a way 

where the consistencies of the content and the defocus blur 

are maintained across the focal stack. Note that the proposed 

method is not for forgery detection of single 2D image, which 

is probably too easy to fake. The future of secure imaging could 

possibly rely on novel image representations rather than on 

single 2D images. We show that using the focal stack as a 

novel secure image format substantially improves the 

performance of forgery detection compared to using a single 

conventional 2D image. 

To demonstrate the advantage of focal stack image sets over 
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single 2D images as a tamper-evident image file, we limit our 

scope to inpainting types of image manipulation. We generated 

inpainted focal stacks using several CNN-based methods [16]– 

[18]; we then trained inpainting region localization CNNs to 

detect regions in the focal stack that are inpainted. We show 

that the focal stack based method achieves significantly better 

detection performance and generalization ability, compared to 

single image based methods. We further study how detection 

performance depends on the number of images in the focal 
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(a) (b) 

Fig. 1: Focal stack system for inpainting region localization. (a) Imaging system schematic showing depth dependent defocus 

blur of a cube-ball object. (b) Inpainting localization CNN estimates inpainting regions from a focal stack. 

 

stack and also whether the performance gain of using a focal 

stack might be mainly due to increased total pixel number. 

The paper is organized as follows. Section II describes 

related work on image inpainting, forgery localization and focal 

stack cameras. Section III describes the method we used to 

generate inpainted focal stacks and the method to localize 

inpainted regions. Section IV presents multiple numerical 

experiments and results. Finally, Section V gives a summary 

and concluding remarks. 

 
II. RELATED WORK 

A. Image Inpainting 

Traditional image inpainting methods work well on highly 

textured or patterned regions, but fail on inpainted regions with 

rich context and semantic meaning, such as natural scenes and 

human faces. Simakov et al. proposed a bidirectional similarity 

measure, a metric based on nearest neighbor patch search, 

to determine if two signals are similar and can be used as 

the objective function for image inpainting. PatchMatch [19] 

accelerated the patch matching process in the bidirectional 

similarity measure using random search and coherence prop- 

agation. Shift-Map [20] achieved inpainting by computing 

a shift-map, where the pixels in the inpainting region are 

sampled from a relative position indicated by the shift-map. 

The shift-map is estimated by a global optimization objective 

function that contains a data term and a smoothness term. The 

optimization is done in a hierarchical way to accelerate the 

computation, with low resolution shift-map estimated first and 

then refined by high-resolution one. 

Deep learning based inpainting methods have better per- 

formance for inpainting complex objects and scenes due to their 

powerful capability for modeling the high level semantics 

presented in the image. The context encoder [21] is an early 

approach to image inpainting using deep learning methods. 

An encoder extracts semantic information from a masked input 

image, and a decoder reconstructs a full image with coherent 

contents filled in the inpainting region. Pixel-wise 

reconstruction loss and adversarial loss are used as the loss 

function to train the network. Later works typically follow 

this adversarial training to improve the fidelity of the inpainted 

region. GMCNN [17] used a multi-column network to inpaint 

missing regions at multiple-scales in parallel. A confidence 

driven pixel reconstruction loss is used to constrain filling 

boundary pixels more strictly, compared to those pixels that are 

far away from the boundary. A Markov Random Fields (MRF) 

type regularization promotes content diversity in the inpainting 

region. As standard convolution9s response is conditioned on 

both valid pixels and also placeholder values in the inpainting 

region, it also leads to color discrepancies. To resolve this issue, 

Liu et al. [22] proposed partial convolution to reduce these 

artifacts by introducing a layer-wise binary valid mask to 

select out only valid pixels for convolution computation and 

to normalize the convolution output. Gated Convolu- tion [18] 

further generalized the partial convolution by having a 

learnable gating mechanism to select only proper pixels for 

convolution. Nazeri et al. [16] divided the inpainting process 

into edge generation and colorization stages. In the first stage, 

the edges of the inpainting regions are first generated. Then 

the colorization network inpaints the region conditioned on 

the input image and also the edge map. Such proposed two- 

stage inpainting exhibits better details in the inpainting region. 

There has been continued progress on improving inpainting 

using deep learning methods. Li et al. proposed to use a 

recurrent feature reasoning module to improve the inpainting 

performance on large continuous holes. Yi et al. proposed a 

contextual residual aggregation mechanism to inpaint ultra- 

high resolution images with good quality [23]. Peng et al. pro- 

posed to use a hierarchical vector quantized variational auto- 

encoder (VQ-VAE), to generate diverse inpainting results [24]. 

 
B. Forgery Localization 

Early attempts to localize manipulated regions in images 

relied on local anomalies of some signatures present in the 

image. Johnson et al. [9] analyzed the chromatic aberration 

presented in the image and identified the image regions where 

the chromatic aberrations are inconsistent with other regions in 

the image. Popescu et al. [7] showed that the color 

interpolation algorithm used for the color filter array in 

commercial cameras leads to periodic correlation patterns that 

can be revealed by Fourier analysis. They demonstrated that 

this signature can be used to localize tampered regions in an 

image. Assuming a known camera model or other reference 
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images available, sensor pattern noise can also be used to 

localize a forged region by checking whether a region has 

such noise patterns [8]. In addition, splicing and copy-move 

forgery likely involves several post-processing steps, such as 

scaling/rotating the object and blurring the object/background 

boundary. These steps can generate re-sampling artifacts and 

can also be detected by spectral analysis [25]. 

Recent deep learning based methods, in contrast, learn 

discriminating forgery features from the data directly. Salloum 

et al. [26] trained a multi-task CNN (MFCN) for splicing 

localization. The network estimates both the splicing region 

and the splicing boundaries, with partially shared parameters 

between two tasks. Such multi-task design leads to better 

localization performance, compared to only estimating the 

splicing region. Huh et al. detected image splicing by training 

a classifier to determine whether two image patches have EXIF 

meta consistency [10]. Wang et al. [11] detected image warping 

manipulation by training a CNN on script-generated warped 

images in Photoshop. Wu et al. [12] proposed a two- branch 

CNN model (BusterNet) to localize copy-move forgery regions. 

Li et al. [13] localized inpainted regions by using a CNN model 

with the first few layers initialized as high-pass filters to 

enhance the inpainting traces. Despite these efforts, developing 

a well performing forgery detection method with good 

generalization ability remains as a challenge. 

 
C. Focal Stack 

Recently, a focal stack camera employing transparent sensor 

arrays has been introduced that enables focal stack capture in 

a single camera exposure [27], [28]. For static or sufficiently 

slow-moving scenes, focal stacks may also be captured by 

sequential exposure with refocusing by a conventional cam- 

era, or be synthesized from a light field using the add-shift 

algorithm [29]. There are numerous applications of focal stack 

imaging. Lien et al. [27] demonstrated model-based light field 

reconstruction from focal stacks and 1D ranging. Zhang et 

al. [28] demonstrated 3D object localization and orientation 

estimation from focal stack. Hazirbas et al. [30] trained a CNN 

to estimate depth maps from focal stack images. To the best 

of our knowledge, there is no prior work using focal stacks for 

image forensic related applications and this work is the first one 

to propose using focal stack imaging as a secure image format. 

 
III. METHOD 

To demonstrate the effectiveness of using focal stacks as 

a secure image format, we generated datasets containing 

manipulated focal stacks and trained a detection CNN to 

localize the forgery regions. The localization performance is 

then compared with single image based methods to show the 

advantage of focal stack over conventional images for image 

security applications. We focus on image inpainting forgery 

where the inpainting is done by deep learning methods. Section 

III-A describes how we generate inpainted focal stacks using 

CNN methods. Section III-B describes how we localize 

inpainting regions in the manipulated focal stack. 

A. Generating CNN Inpainted Focal Stack 

We first generated a set of authentic focal stacks from the 

Lytro flower light field dataset [31], using the add-shift 

algorithm [29]. The Lytro flower light field dataset contains 

3343 light fields of flower scenes captured by Lytro Illum light 

field camera. Each light field has a size of   , and 

following [31], we used only the central sub-aperture images 

for focal stack generation. Each generated focal stack contains 

 images with differing focus positions. The focus 

positions are chosen to have their corresponding disparities 

evenly distributed in range [-1, 0.3], which covers roughly the 

entire possible object depth range. The first row of Fig. 2 shows 

example generated authentic focal stacks images. 

Then we generated inpainted focal stack datasets, using three 

CNN based methods: GMCNN [17], EdgeConnect [16] and 

Gated Convolution [18]. GMCNN uses a multi-column 

network to extract features at different scale level. A special ID-

MRF loss is designed to promote the diversity and realism of 

the inpainted region. EdgeConnect is a two-stage inpainting 

process. In the first stage, an edge generator generates edges for 

the inpainting region. In the second stage, an inpainting 

network fills the missing region with the help of the completed 

edges from the first stage. Gated Convolution [18] uses a 

learnable feature gating mechanism to solve the issue that a 

normal convolution treats both all pixels equally and inpaints 

the image following a two-stage coarse to fine process. We 

generated inpainted focal stacks using multiple methods to test 

the generalization ability of the network; we train the detection 

network using focal stacks inpainted by one method and then 

evaluate its performance on focal stacks inpainted by another 

method. This investigation mimics the more realistic scenario 

where the method used to inpaint the focal stack is unknown 

at the time of detection. 

We generated random stroke-type regions to be inpainted for 

each focal stack. All images in the same focal stack shared 

the same spatial inpainting region. The goal of inpainting is 

typically trying to hide something in the original image and 

hence identical inpainting region across images in the same 

focal stack should be a reasonable assumption. Each image 

is then inpainted independently using one of the above CNN 

methods. 

The CNN inpainting models were pre-trained on the places2 

[32] dataset using their original implementation and fined tuned 

on the flower focal stack dataset. Fig. 2 shows example 

inpainted focal stacks. 

 
B. Detecting CNN In-painted Focal Stack 

The detection network we used for localizing inpainting 

region is based on DeepLabv3 [33]. DeepLabv3 was originally 

proposed for semantic segmentation and we re-purposed it for 

region localization due to the similarity in these two tasks. The 

Atrous Spatial Pyramid Pooling (ASPP) layer in DeepLabv3 

ensures large receptive field and fine detailed network output at 

the same time, which is beneficial for our inpainting region 

localization. We used ResNet-18 [34] as the backbone for 

feature extraction. A normal input image to the DeepLabv3 

is a 3D tensor of shape , whereas focal stack is a 
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Fig. 2: Example real and inpainted focal stacks. Only the first and the last image in each focal stack is shown. The region to 

be inpainted is shown as white in the second row. 

 

4D tensor of shape  , so we reshaped the focal 

stack to be by concatenating images along the 

color channel. The network outputs a pixel-wise probability 

map that indicates whether a pixel is inpainted and we train 

the network using binary cross-entropy loss. 

Wang et al. [35] showed that proper data augmentations, 

such as applying JPEG compression, lead to a model with better 

generalization ability and robustness against common post-

processing. Motivated by this, we followed their approach and 

trained our detection network with JPEG augmentation. 

Specifically, the training input focal stacks have a 50% prob- 

ability of being JPEG compressed, with a JPEG quality factor 

of 70. For reference, we also trained models without JPEG 

augmentation; these models performed worse so the results 

are shown in the Appendix. 

 
IV. EXPERIMENTS AND RESULTS 

A. Implementation 

1) Dataset: The inpainted focal stack dataset generated from 

Lytro flower light fields contains 3343 focal stacks for each 

inpainting method (GMCNN, EdgeConnect, Gated 

Convolution). Each focal stack contains  images with 

changing focus depth and is associated with a ground truth 

inpainting region for training and evaluation. We used 2843 

focal stacks for fine-tuning the inpainting networks and also 

training the detection network. The remaining 500 focal stacks 

are used for evaluating the inpainting localization performance. 

2) Training set-up: We trained the detection network using 

Adam optimizer [36] with batch size 3. The models were trained 

for 110 epochs, with an initial learning rate −

that was 

reduced to −

after 70 epochs. We used data augmentation in 

the form of horizontal flipping with 50% probability, in addition 

to the JPEG compression augmentation described above. 

3) Evaluation: We counted the true positive (TP), false pos- 
itive (FP) and false negative (FN) predictions at the pixel level 
for each test sample, with the classification probability thresh- 

old set to 0.5. Then the  scores, defined as 
TP    

TP , 

were computed and averaged over all test samples to evaluate 

the network9s inpainting localization performance. 

We additionally tested the models9 robustness against com- 

mon post-processing methods including JPEG compression, 

gaussian noise, and resizing. Specifically, we added additive 

white gaussian noise with σ in range [0, 1.6] to test the 
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Fig. 3: Localization  scores for focal stack data with networks trained on GMCNN dataset with JPEG augmentation and 

tested on GMCNN data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. The robustness 

against Gaussian noise (1st row), resizing (2nd row) and JPEG compression(3rd row) are shown for each model. Symbol 8*9 
on x-axis indicates the result without JPEG compression. 

 
Scene G.T. Inpainting Region Prediction ( ) Prediction ( ) Prediction ( ) 

 

 

 

Fig. 4: Example localization results of the model trained on GMCNN dataset and tested on Gated Convolution dataset. 
Probability threshold of 0.5 is used for classification. scores are indicated in green for each prediction. 

 

robustness against noise. We downsampled test focal stacks using nearest neighbor interpolation with ratio in range [1, 2] 
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to test the robustness against resizing. We JPEG compressed 

test focal stacks with JPEG quality in range [30, 100] to test 

the robustness against compression. Note that these post- 

processing processes are only applied to the test focal stacks; 

the models were trained using augmentation based only on 

horizontal flipping and JPEG compression with quality 70. 

To study the dependence of the localization performance 
on the focal stack size , we trained models using inpainted 
focal stack datasets with  . Specifically, the 
  dataset is the one described in section IV-A1. We 
obtained the dataset by only using the 7th (last) image 

of each focal stack in dataset. Similarly, the 
dataset contains the 1st and 7th images, the dataset 
contains the 1st, 4th, 7th images, and the    dataset 
contains the 1st, 3rd, 4th, 5th and 7th images. 

 
B. Results 

Fig. 3 shows the localization results trained on the GM- 

CNN inpainted focal stack dataset and evaluated on testing 

focal stacks inpainted by GMCNN, EdgeConnect and Gated 

Convolution. The advantage of using focal stack () over 

single image (  ) for inpainting region localization is 

apparent and significant for every test configuration. Taking the 

1st row of Fig. 3 for example, training and testing both on 

the GMCNN dataset using has a score about 

0.67 and using    has a  score about 0.87. The 

difference is even more dramatic when training is performed on 
the GMCNN dataset and testing is performed on the Gated 
Convolution dataset (top-right subplot):    has a 

score about 0.11 and using    has a  score 
about 0.80. Increasing  further improves the score, 
though not significantly. Although the single image () 
localization method performs fairly well when the testing 

data are generated by the same inpainting method as the 

training data, it performs poorly when the testing data are 

inpainted by a different method. On the other hand, there is only 

a very small performance drop for the focal stack based method 

when testing on focal stacks inpainted by a method different 

from training. These results show that the focal stack based 

method has a much better generalization ability across different 

inpainting methods. This benefit can be understood as follows: 

for single image based inpainting region localization, the 

network relies heavily on detecting inpainting method specific 

artifacts, such as checkerboard patterns produced by transpose 

convolutions [37] or unnatural transitions between inpainted 

and not inpainted regions, to determine whether a region is 

inpainted. However, these criteria cannot be universal for 

detecting inpainting because a different method will likely have 

a different checker board pattern or a different transition artifact 

between inpainted and not inpainted region. On the other hand, 

the focal stack based method has a much more inpainting-

method agnostic clue to determine whether a region is inpainted 

or not: it can check whether the content and the defocus blur 

across a focal stack in a region is physically and semantically 

consistent. Such consistency checks do not depend on the 

methods used for inpainting and hence it should better 

generalize across different inpainting methods. 

Fig. 4 shows example predicted inpainting regions, using a 

model trained on GMCNN inpainted focal stacks and tested 

on Gated Convolution inpainted focal stacks. The single image 

based inpainting localization performs poorly, whereas using 

a focal stack of only greatly improves the prediction 

and model has the best performance. 

We also trained models using EdgeConnect inpainted focal 

stacks, and using Gated Convolution inpainted focal stacks, to 

verify that the trends above are not specific to the particular 

training dataset. Fig. 5 and Fig. 6 show the results. The general 

findings are similar as those from Fig. 3, with some minor 

differences: the advantage of a focal stack over a single image 

for the model trained and tested on EdgeConnect inpainted 

dataset is smaller, as shown in the middle column of Fig. 5. 

This is likely because the EdgeConnect inpainted images 

contain more visually apparent inpainting artifacts. Indeed, 

when we inspect closely some EdgeConnect inpainted regions, 

they tend to be darker, compared to non-inpainted regions. This 

makes inpainting localization using single image easier so the 

additional images in the focal stack do not help much. 

However, when the model is evaluated on the dataset inpainted 

by a method different from the training data, the single image 

localization performance degrades severely, as shown in the 1st 

and 3rd column of Fig. 5, while the focal stack based models 

retain high performance in these cases. This is again because 

the focal stack based method uses the more generalizable 

inter-focal stack consistency check to localize the inpainting 

region. For models trained on Gated Convolution, the single 

image based method performs poorly (3rd column of Fig. 6), 

even when tested on focal stacks inpainted by the same method. 

This is because the Gated Convolution inpainted images contain 

fewer artifacts and are more visually realistic. This makes the 

single image based method struggle to find discriminating 

forgery traces. 

All results presented in Fig. 3, Fig. 6 and Fig. 5 demonstrate 

good robustness against several post-processing methods, in- 

cluding Gaussian noise (1st row), image resizing (2nd row) and 

JPEG compression (3rd row), showing that our proposed 

method would be useful in practical cases, such as in determin- 

ing whether an internet image file is authentic or not, where 

these post-processing operations are common. 

To verify that the advantage of a focal stack over a single 

image is not simply due to the increase in the number of total 

pixels, we trained additional models for , using focal 

stacks downsampled by factors of    and . Fig. 7 shows the 
results. The , downsampling ratio system has the 

same total number of pixels as    system without 

downsampling, and , downsampling ratio model 

has two times fewer total pixels, compared to the system of 
, without downsampling. Fig. 7 shows that reducing 

the total pixel numbers in the focal stack system only slightly 

reduces the localization performance; the main performance 

gain of using a focal stack for inpainting localization is due to 

the multiple sensor plane nature of the focal stack system that 

encodes robust inter-focal stack consistency clues for forgery 

detection. 

In practical applications, the testing focal stack to be authen- 

ticated may have a different focus setting than the training 
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Fig. 5: Localization  scores for focal stack data with networks trained on EdgeConnect dataset with JPEG augmentation 

and tested on GMCNN (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. Symbol 8*9 
on x-axis indicates the result without JPEG compression. 

 

TABLE I:  scores of the model trained on GMCNN in- 

painted focal stacks with focusing disparity range [-1, 0.3], and 

evaluated on focal stacks inpainted by GMCNN, EdgeConnect 

and Gated Convolution. Three values in each field correspond 

to the results on focal stacks with focusing disparity range 

[-1, 0.3], [-0.8, 0.5] and [-1.2, 0.5], respectively. 

 
 GMCNN EdgeConnect Gated Convolution 

1 0.68 / 0.66 / 0.66 0.40 / 0.37 / 0.37 0.11 / 0.10 / 0.10 

2 0.88 / 0.87 / 0.87 0.83 / 0.82 / 0.81 0.80 / 0.79 / 0.79 

3 0.91 / 0.91 / 0.85 0.88 / 0.87 / 0.82 0.87 / 0.86 / 0.80 

5 0.91 / 0.92 / 0.89 0.89 / 0.89 / 0.86 0.88 / 0.89 / 0.85 

7 0.92 / 0.92 / 0.90 0.90 / 0.89 / 0.87 0.89 / 0.89 / 0.87 

 

time focus setting. Thus, in Table I we also evaluated our model 

using inpainted focal stacks having a different focus setting 

compared to the training time. Specifically, the model is trained 

using GMCNN inpainted Lytro flower focal stacks, with 

focusing disparity evenly distributed in range [-1, 0.3], and 

tested on Lytro flower focal stacks with focusing disparity 

evenly distributed in range [-1, 0.3] (same setting as training), 

and in the ranges [-0.8, 0.5], and [-1.2, 0.5]. The case [-0.8, 0.5] 

corresponds to the scenario where every image in the testing 

focal stack is focusing closer to the camera and the case [-

1.2, 0.5] corresponds to the scenario where the focus depth 

range is larger for the testing data compared to the training data. 

The table shows that there is only a slight drop 

in inpainting localization performance when testing the trained 

focal stack based model on focal stacks with different focus 

setting. This excellent generalization ability across camera 

focus settings is due to the fact that the focal stack based model 

relies on the inter-focal stack consistency for detection, which 

is insensitive to the focus of each image. 

 

 
V. CONCLUSION 

 
We proposed a novel system and method of using a focal 

stack for localizing image inpainting regions in manipulated 

images. We trained CNN models for inpainting localization and 

showed that using an image focal stack, instead of a single 

image, leads to significantly better localization performance 

and significant robustness to common post-processing image 

perturbations. The proposed method also shows excellent 

generalization ability across different inpainting methods and 

different camera focus settings. 

Although we focused on the inpainting type of forgery, we 

expect the findings are applicable to many other types of 

forgery detection as well. We hope this work can lead to a 

new direction for image forgery detection and make images in 

the future more secure. 
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Fig. 6: Localization scores for focal stack data with networks trained on Gated Convolution dataset with JPEG augmentation 

and tested on GMCNN (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. Symbol 8*9 
on x-axis indicates the result without JPEG compression. 

 

 

APPENDIX 

EFFECT OF JPEG AUGMENTATION FOR TRAINING 

Here we include additional results of models trained without 

JPEG augmentation (section III-B). Comparing Fig. 3 and Fig. 

8 shows that include JPEG augmentation during train- ing 

leads to a model more robust against post-processing 

perturbations and better performance. The benefit is more 

significant for Gaussian noise perturbation (1st row of Fig. 8) 

and JPEG compression (3rd row of Fig. 8). The  score of 

the model trained without JPEG augmentation will degrade 

quickly when the images are JPEG compressed or noise is 

added. Regardless, the advantage of using focal stack over 

single image based method is still significant for this training 

scheme as well. 
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Fig. 7: Localization  scores for focal stack data with networks trained on GMCNN dataset with JPEG augmentation and 

tested on GMCNN (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets, showing the total 
pixel dependence. Symbol 8*9 on x-axis indicates the result without JPEG compression. 

 

 
Conference on Computer Vision (ICCV), 2019, pp. 8301–8310. 

[14] X. Zhang, S. Karaman, and S.-F. Chang, <Detecting and simulating 
artifacts in GAN fake images,= in 2019 IEEE International Workshop 

on Information Forensics and Security (WIFS). IEEE, 2019, pp. 1–6. 
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Fig. 8: Localization scores for focal stack data with networks trained on GMCNN dataset without JPEG augmentation and 

tested on GMCNN (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. Symbol 8*9 on x-axis 
indicates the result without JPEG compression. 
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