Focal Stack Based Image Forgery Localization

Zhengyu Huang, Jeffrey A. Fessler, Fellow, and Theodore B. Norris

Abstract—Image security is becoming an increasingly im-
portant issue due to advances in deep learning based image
manipulations, such as deep image inpainting and deep fakes.
There has been considerable work to date on detecting such image
manipulations using improved algorithms, with little attention
being paid to the possible role that hardware advances may have
for improving security. This paper proposes to use a focal stack
camera as a novel secure imaging device that facilitates localizing
modified regions in manipulated images. We show that applying
convolutional neural network (CNN) detection methods to focal
stack images achieves significantly better detection accuracy
compared to single image based forgery detection. This work
demonstrates that focal stack images could be used as a novel
secure image file format and opens up a new direction for secure
imaging.

I. INTRODUCTION

IGITAL images are convenient to store and share, but

they are also susceptible to malicious manipulations.
With common photo editing tools, little effort or expertise is
needed to convincingly manipulate an image. With advances
in deep learning, this issue becomes even more severe: Gen-
erative Adverserial Networks (GAN) are able to synthesize
realistic non-existing images, change the style of an image, or
inpaint an image to remove specific objects in it. Deepfakes can
even seamlessly swap the face of one person with another in
images [1], [2]. These malicious manipulated images could
appear in the news, causing misleading opinions in the public
or being provided in the court as evidence, with obvious serious
consequences.

Verifying the integrity of multi-media has been a research
topic for long time in the field of multi-media forensics [3]—
[8]. Traditional methods verify the integrity of a digital medium
and detect traces of malicious manipulation by examining
some signatures in the image, using either passiveor active
approaches. In the active approach, semi-fragile watermarks
are pro-actively embedded into the image. The introduced
watermark (which is visually imperceptible) is persistent after
benign image operations such as brightness adjustment,
resizing and compression, but can be destroyed bymalicious
editing. In the passive approach, imaging artifacts such as those
due to lens distortion [9], color filtering [7], Photo Response
Non-Uniformity (PRNU) [8], or compression are used to
authenticate an image.

Each method has its own limitations, however. The passive
approach, while being simple to implement, relies on weak
traces that are likely to be destroyed by compression/resizing.
PRNU fingerprint analysis, while being a popular forensic
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method, requires knowledge about the source camera’s PRNU.
On the other hand, the active watermarking approach is more
robust against compression/resizing, but alters the original
content due to the watermark embedding. More recently, deep
learning based forensic detection methods have also been
proposed [10]-[13]. However, the ability to generalize data-
driven models remains as a key challenge: these models
perform well on images that are similar to the training data,
but the performance can quickly degrade when the models are
fed with images that differ too much from the training data
distribution [14], [15].

Most existing image forgery detection methods assume a
conventional camera and attempt to determine the image
authenticity by analyzing features present in a given 2D image
file. Such methods are widely applicable to present-day 2D
image file formats, but forgery detection remains a significant
and growing problem as the sophistication of image
manipulation techniques continues to grow.

In this paper we propose to make image manipulation and
forgery more detectable through a combined hardware and
software approach. Specifically, we propose to use a focal stack
of images, instead of a single image, for secure media sharing,
where the entire focal stack image file is shared publicly. By
enriching the information carried by the digital images,
essentially extending the data into a third dimension, we can
dramatically improve our ability to detect image manipulation.
Because the image formation requires a focal stack, this
approach may not be as widely applicable as present-day 2D
imaging approaches; it is nevertheless critical to consider
alternatives that may involve more complex optical systems
for imaging where security is an over-riding concern, given the
severe limitations faced by 2D image forgery detection.

Fig. 1 illustrates the idea: images in the focal stack contain
depth-dependent defocus blur. Because generating physically
realistic content with defocus blur that is consistent across the
focal stack is extremely challenging, we show that detecting
image manipulation is much easier using a focal stack com-
pared to using a single image, by using such inter-focal stack
consistency cues. This approach leads to a much more secure
media format. Someone attempting to manipulate the image
would have to modify every image in the focal stack, and it
would be extremely challenging to accomplish this in a way
where the consistencies of the content and the defocus blur
are maintained across the focal stack. Note that the proposed
method is not for forgery detection of single 2D image, which
is probably too easy to fake. The future of secure imaging could
possibly rely on novel image representations rather thanon
single 2D images. We show that using the focal stackas a
novel secure image format substantially improves the
performance of forgery detection compared to using a single
conventional 2D image.

To demonstrate the advantage of focal stack image sets over



single 2D images as a tamper-evident image file, we limit our
scope to inpainting types of image manipulation. We generated
inpainted focal stacks using several CNN-based methods [16]—
[18]; we then trained inpainting region localization CNNs to
detect regions in the focal stack that are inpainted. We show
that the focal stack based method achieves significantly better
detection performance and generalization ability, compared to
single image based methods. We further study how detection
performance depends on the number of images in the focal
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Fig. 1: Focal stack system for inpainting region localization. (a) Imaging system schematic showing depth dependent defocus
blur of a cube-ball object. (b) Inpainting localization CNN estimates inpainting regions from a focal stack.

stack and also whether the performance gain of using a focal
stack might be mainly due to increased total pixel number.

The paper is organized as follows. Section II describes
related work on image inpainting, forgery localization andfocal
stack cameras. Section III describes the method we used to
generate inpainted focal stacks and the method to localize
inpainted regions. Section IV presents multiple numerical
experiments and results. Finally, Section V gives a summary
and concluding remarks.

II. RELATED WORK
A. Image Inpainting

Traditional image inpainting methods work well on highly
textured or patterned regions, but fail on inpainted regions with
rich context and semantic meaning, such as natural scenes and
human faces. Simakov et al. proposed a bidirectional similarity
measure, a metric based on nearest neighbor patch search,
to determine if two signals are similar and can be used as
the objective function for image inpainting. PatchMatch [19]
accelerated the patch matching process in the bidirectional
similarity measure using random search and coherence prop-
agation. Shift-Map [20] achieved inpainting by computing
a shift-map, where the pixels in the inpainting region are
sampled from a relative position indicated by the shift-map.
The shift-map is estimated by a global optimization objective
function that contains a data term and a smoothness term. The
optimization is done in a hierarchical way to accelerate the
computation, with low resolution shift-map estimated first and
then refined by high-resolution one.

Deep learning based inpainting methods have better per-
formance for inpainting complex objects and scenes due to their
powerful capability for modeling the high level semantics
presented in the image. The context encoder [21] is an early
approach to image inpainting using deep learning methods.
An encoder extracts semantic information from a masked input
image, and a decoder reconstructs a full image with coherent
contents filled in the inpainting region. Pixel-wise
reconstruction loss and adversarial loss are used as the loss
function to train the network. Later works typically follow
this adversarial training to improve the fidelity of the inpainted
region. GMCNN [17] used a multi-column network to inpaint

missing regions at multiple-scales in parallel. A confidence
driven pixel reconstruction loss is used to constrain filling
boundary pixels more strictly, compared to those pixels that are
far away from the boundary. A Markov Random Fields (MRF)
type regularization promotes content diversity in the inpainting
region. As standard convolution’s response is conditioned on
both valid pixels and also placeholder values in the inpainting
region, it also leads to color discrepancies. To resolve this issue,
Liu et al. [22] proposed partial convolution to reduce these
artifacts by introducing a layer-wise binary valid maskto
select out only valid pixels for convolution computationand
to normalize the convolution output. Gated Convolu- tion [18]
further generalized the partial convolution by having a
learnable gating mechanism to select only proper pixels for
convolution. Nazeri et al. [16] divided the inpainting process
into edge generation and colorization stages. In the first stage,
the edges of the inpainting regions are first generated. Then
the colorization network inpaints the region conditioned on
the input image and also the edge map. Such proposed two-
stage inpainting exhibits better details in the inpainting region.
There has been continued progress on improving inpainting
using deep learning methods. Li et al. proposed to use a
recurrent feature reasoning module to improve the inpainting
performance on large continuous holes. Yi et al. proposed a
contextual residual aggregation mechanism to inpaint ultra-
high resolution images with good quality [23]. Peng et al. pro-
posed to use a hierarchical vector quantized variational auto-
encoder (VQ-VAE), to generate diverse inpainting results [24].

B. Forgery Localization

Early attempts to localize manipulated regions in images
relied on local anomalies of some signatures present in the
image. Johnson et al. [9] analyzed the chromatic aberration
presented in the image and identified the image regions where
the chromatic aberrations are inconsistent with other regions in
the image. Popescu et al. [7] showed that the color
interpolation algorithm used for the color filter array in
commercial cameras leads to periodic correlation patterns that
can be revealed by Fourier analysis. They demonstrated that
this signature can be used to localize tampered regions in an
image. Assuming a known camera model or other reference



images available, sensor pattern noise can also be used to
localize a forged region by checking whether a region has
such noise patterns [8]. In addition, splicing and copy-move
forgery likely involves several post-processing steps, such as
scaling/rotating the object and blurring the object/background
boundary. These steps can generate re-sampling artifacts and
can also be detected by spectral analysis [25].

Recent deep learning based methods, in contrast, learn
discriminating forgery features from the data directly. Salloum
et al. [26] trained a multi-task CNN (MFCN) for splicing
localization. The network estimates both the splicing region
and the splicing boundaries, with partially shared parameters
between two tasks. Such multi-task design leads to better
localization performance, compared to only estimating the
splicing region. Huh et al. detected image splicing by training
a classifier to determine whether two image patches haveEXIF
meta consistency [10]. Wang et al. [11] detected image warping
manipulation by training a CNN on script-generated warped
images in Photoshop. Wu et al. [12] proposed a two- branch
CNN model (BusterNet) to localize copy-move forgeryregions.
Li et al. [13] localized inpainted regions by using a CNN model
with the first few layers initialized as high-pass filters to
enhance the inpainting traces. Despite these efforts, developing
a well performing forgery detection method with good
generalization ability remains as a challenge.

C. Focal Stack

Recently, a focal stack camera employing transparent sensor
arrays has been introduced that enables focal stack capture in
a single camera exposure [27], [28]. For static or sufficiently
slow-moving scenes, focal stacks may also be captured by
sequential exposure with refocusing by a conventional cam-
era, or be synthesized from a light field using the add-shift
algorithm [29]. There are numerous applications of focal stack
imaging. Lien et al. [27] demonstrated model-based light field
reconstruction from focal stacks and 1D ranging. Zhang et
al. [28] demonstrated 3D object localization and orientation
estimation from focal stack. Hazirbas et al. [30] trained a CNN
to estimate depth maps from focal stack images. To the best
of our knowledge, there is no prior work using focal stacks for
image forensic related applications and this work is the first one
to propose using focal stack imaging as a secure image format.

III. METHOD

To demonstrate the effectiveness of using focal stacks as
a secure image format, we generated datasets containing
manipulated focal stacks and trained a detection CNN to
localize the forgery regions. The localization performance is
then compared with single image based methods to show the
advantage of focal stack over conventional images forimage
security applications. We focus on image inpainting forgery
where the inpainting is done by deep learning methods.Section
III-A describes how we generate inpainted focal stacksusing
CNN methods. Section III-B describes how we localize
inpainting regions in the manipulated focal stack.

A. Generating CNN Inpainted Focal Stack

We first generated a set of authentic focal stacks from the
Lytro flower light field dataset [31], using the add-shift
algorithm [29]. The Lytro flower light field dataset contains
3343 light fields of flower scenes captured by Lytro Illum light
field camera. Each light field has a size of 376 %41 14« 14¥and
following [31], we used only the central § 8 subXapertureimages
for focal stack generation. Each generated focal stack contains
ne = 7 images with differing focus positions. The focus
positions are chosen to have their corresponding disparities
evenly distributed in range [-1, 0.3], which covers roughly the
entire possible object depth range. The first row ofFig. 2 shows
example generated authentic focal stacks images.

Then we generated inpainted focal stack datasets, usingthree
CNN based methods: GMCNN [17], EdgeConnect [16] and
Gated Convolution [18]. GMCNN uses a multi-column
network to extract features at different scale level. A special ID-
MREF loss is designed to promote the diversity and realism of
the inpainted region. EdgeConnect is a two-stage inpainting
process. In the first stage, an edge generator generates edges for
the inpainting region. In the second stage, an inpainting
network fills the missing region with the help of the completed
edges from the first stage. Gated Convolution [18] uses a
learnable feature gating mechanism to solve the issue that a
normal convolution treats both all pixels equally and inpaints
the image following a two-stage coarse to fine process. We
generated inpainted focal stacks using multiple methods to test
the generalization ability of the network; we train the detection
network using focal stacks inpainted by one method and then
evaluate its performance on focal stacks inpainted by another
method. This investigation mimics the more realistic scenario
where the method used to inpaint the focal stack is unknown
at the time of detection.

We generated random stroke-type regions to be inpainted for
each focal stack. All images in the same focal stack shared
the same spatial inpainting region. The goal of inpainting is
typically trying to hide something in the original image and
hence identical inpainting region across images in the same
focal stack should be a reasonable assumption. Each image
is then inpainted independently using one of the above CNN
methods.

The CNN inpainting models were pre-trained on the places2
[32] dataset using their original implementation and fined tuned
on the flower focal stack dataset. Fig. 2 shows example
inpainted focal stacks.

B. Detecting CNN In-painted Focal Stack

The detection network we used for localizing inpainting
region is based on DeepLabv3 [33]. DeepLabv3 was originally
proposed for semantic segmentation and we re-purposed it for
region localization due to the similarity in these two tasks. The
Atrous Spatial Pyramid Pooling (ASPP) layer in DeepLabv3
ensures large receptive field and fine detailed network output at
the same time, which is beneficial for our inpainting region
localization. We used ResNet-18 [34] as the backbone for
feature extraction. A normal input image to the DeepLabv3
is a 3D tensor of shape (C, H, W), whereas focal stack is a
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Fig. 2: Example real and inpainted focal stacks. Only the first and the last image in each focal stack is shown. The region to

be inpainted is shown as white in the second row.

4D tensor of shape (n:, C, H, W), so we reshaped the focal
stack to be (nr €, H, W) by concatenating images along the
color channel. The network outputs a pixel-wise probability
map that indicates whether a pixel is inpainted and we train
the network using binary cross-entropy loss.

Wang et al. [35] showed that proper data augmentations,
such as applying JPEG compression, lead to a model with better
generalization ability and robustness against common post-
processing. Motivated by this, we followed their approachand
trained our detection network with JPEG augmentation.
Specifically, the training input focal stacks have a 50% prob-
ability of being JPEG compressed, with a JPEG quality factor
of 70. For reference, we also trained models without JPEG
augmentation; these models performed worse so the results
are shown in the Appendix.

IV. EXPERIMENTS AND RESULTS
A. Implementation
1) Dataset: The inpainted focal stack dataset generated from
Lytro flower light fields contains 3343 focal stacks for each

inpainting method (GMCNN, EdgeConnect, Gated
Convolution). Each focal stack contains nr = 7 images with

changing focus depth and is associated with a ground truth
inpainting region for training and evaluation. We used 2843
focal stacks for fine-tuning the inpainting networks and also
training the detection network. The remaining 500 focal stacks
are used for evaluating the inpainting localization performance.

2) Training set-up: We trained the detection network using
Adam optimizer [36] with batch size 3. The models weretrained
for 110 epochs, with an initial learning rate 10~ that was
reduced to 10~ after 70 epochs. We used data augmentation in
the form of horizontal flipping with 50%probability, in addition
to the JPEG compression augmentationdescribed above.

3) Evaluation: We counted the true positive (TP), false pos-
itive (FP) and false negative (FN) predictions at the pixel level
for each test sample, with the classification probability thresh-
old set to 0.5. Then the F: scores, defined as TPTZRIT:P?FN)’
were computed and averaged over all test samples to evaluate
the network’s inpainting localization performance.

We additionally tested the models’ robustness against com-
mon post-processing methods including JPEG compression,
gaussian noise, and resizing. Specifically, we added additive
white gaussian noise with ¢ in range [0, 1.6] to test the
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Fig. 3: Localization Fi scores for focal stack data with networks trained on GMCNN dataset with JPEG augmentation and
tested on GMCNN data (1st column), EdgeConnect (2nd column) and Gated Convolution (3rd column) datasets. The robustness

against Gaussian noise (1st row), resizing (2nd row) and JPEG compression(3rd row) are shown for each model. Symbol “*’
on x-axis indicates the result without JPEG compression.
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Fig. 4: Example localization results of the model trained on GMCNN dataset and tested on Gated Convolution dataset.
Probability threshold of 0.5 is used for classification. Fi scores are indicated in green for each prediction.

robustness against noise. We downsampled test focal stacks using nearest neighbor interpolation with ratio in range [1, 2]



to test the robustness against resizing. We JPEG compressed
test focal stacks with JPEG quality in range [30, 100] to test
the robustness against compression. Note that these post-
processing processes are only applied to the test focal stacks;
the models were trained using augmentation based only on
horizontal flipping and JPEG compression with quality 70.

To study the dependence of the localization performance
on the focal stack size nr, we trained models using inpainted
focal stack datasets with nr =1, 2, 3, 5, 7. Specifically, thens
= 7 dataset is the one described in section IV-Al. We
obtained the nr = ] dataset by only using the 7th (last) image
of each focal stack in nr = 7 dataset. Similarly, the ne = 2
dataset contains the 1st and 7th images, the nr = 3 dataset
contains the 1st, 4th, 7th images, and the nr = 5 dataset
contains the Ist, 3rd, 4th, 5th and 7th images.

B. Results

Fig. 3 shows the localization results trained on the GM-
CNN inpainted focal stack dataset and evaluated on testing
focal stacks inpainted by GMCNN, EdgeConnect and Gated
Convolution. The advantage of using focal stack (1 2)dver
single image (n= = 1) for inpainting region localizationis
apparent and significant for every test configuration. Takingthe
1st row of Fig. 3 for example, training and testing both on
the GMCNN dataset using 1= = 1 has a F1 score about
0.67 and using nr = 2 has a I\ score about 0.87. The
difference is even more dramatic when training is performed on
the GMCNN dataset and testing is performed on the Gated
Convolution dataset (top-right subplot): nr = 1 hasa I
score about 0.11 and using n= = 2 has a F\ score
about 0.80. Increasing nr further improves the Fi score,
though not significantly. Although the single image (n:=1)
localization method performs fairly well when the testing
data are generated by the same inpainting method as the
training data, it performs poorly when the testing data are
inpainted by a different method. On the other hand, there is only
avery small performance drop for the focal stack based method
when testing on focal stacks inpainted by a method different
from training. These results show that the focal stackbased
method has a much better generalization ability across different
inpainting methods. This benefit can be understood asfollows:
for single image based inpainting region localization, the
network relies heavily on detecting inpainting method specific
artifacts, such as checkerboard patterns produced by transpose
convolutions [37] or unnatural transitions between inpainted
and not inpainted regions, to determine whether a region is
inpainted. However, these criteria cannot be universal for
detecting inpainting because a different method will likely have
a different checker board pattern or a different transition artifact
between inpainted and not inpainted region. On the other hand,
the focal stack based method has a much more inpainting-
method agnostic clue to determine whether a regionis inpainted
or not: it can check whether the content and the defocus blur
across a focal stack in a region is physicallyand semantically
consistent. Such consistency checks do not depend on the
methods used for inpainting and hence it should better
generalize across different inpainting methods.

Fig. 4 shows example predicted inpainting regions, using a
model trained on GMCNN inpainted focal stacks and tested
on Gated Convolution inpainted focal stacks. The single image
based inpainting localization performs poorly, whereas using
a focal stack of only nr = 2 greatly improves the prediction
and nr =7 model has the best performance.

We also trained models using EdgeConnect inpainted focal
stacks, and using Gated Convolution inpainted focal stacks, to
verify that the trends above are not specific to the particular
training dataset. Fig. 5 and Fig. 6 show the results. The general
findings are similar as those from Fig. 3, with some minor
differences: the advantage of a focal stack over a single image
for the model trained and tested on EdgeConnectinpainted
dataset is smaller, as shown in the middle columnof Fig. 5.
This is likely because the EdgeConnect inpainted images
contain more visually apparent inpainting artifacts. Indeed,
when we inspect closely some EdgeConnect inpaintedregions,
they tend to be darker, compared to non-inpainted regions. This
makes inpainting localization using single imageeasier so the
additional images in the focal stack do not help much.
However, when the model is evaluated on the dataset inpainted
by a method different from the training data, the single image
localization performance degrades severely, as shown in the 1st
and 3rd column of Fig. 5, while the focal stack based models
retain high performance in these cases. This is again because
the focal stack based method uses the more generalizable
inter-focal stack consistency check to localize the inpainting
region. For models trained on Gated Convolution, the single
image based method performs poorly (3rd column of Fig. 6),
even when tested on focal stacksinpainted by the same method.
This is because the GatedConvolution inpainted images contain
fewer artifacts and are more visually realistic. This makes the
single image based method struggle to find discriminating
forgery traces.

All results presented in Fig. 3, Fig. 6 and Fig. 5 demonstrate
good robustness against several post-processing methods, in-
cluding Gaussian noise (1st row), image resizing (2nd row) and
JPEG compression (3rd row), showing that our proposed
method would be useful in practical cases, such as in determin-
ing whether an internet image file is authentic or not, where
these post-processing operations are common.

To verify that the advantage of a focal stack over a single
image is not simply due to the increase in the number of total
pixels, we trained additional models for nr = 2, using focal
stacks downsampled by factors of 2 and 2. Fig. 7 shows the
results. The nr = 2, downsampling ratio = 2 system has the
same total number of pixels as nr = | system without
downsampling, and n= = 2, downsampling ratio = 2 model
has two times fewer total pixels, compared to the system of
nr = 1, without downsampling. Fig. 7 shows that reducing
the total pixel numbers in the focal stack system only slightly
reduces the localization performance; the main performance
gain of using a focal stack for inpainting localization is due to
the multiple sensor plane nature of the focal stack system that
encodes robust inter-focal stack consistency clues for forgery
detection.

In practical applications, the testing focal stack to be authen-
ticated may have a different focus setting than the training
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TABLE I: Fi scores of the model trained on GMCNN in-
painted focal stacks with focusing disparity range [-1, 0.3], and
evaluated on focal stacks inpainted by GMCNN, EdgeConnect
and Gated Convolution. Three values in each field correspond

to the results on focal stacks with focusing disparity range
[-1, 0.3], [-0.8, 0.5] and [-1.2, 0.5], respectively.

ng GMCNN EdgeConnect Gated Convolution
1 0.68 /0.66 / 0.66 | 0.40/0.37 /0.37 0.11/0.10 /0.10
2 0.88/0.87 /0.87 | 0.83/0.82/0.81 0.80/0.79 / 0.79
3 0.91/091/70.85 | 0.88/0.87/0.82 0.87 / 0.86 / 0.80
5 0.91/092/089 | 0.89/0.89/0.86 0.88/0.89 /0.85
7 0.92/0.92/0.90 | 0.90/0.89/0.87 0.89 /0.89 / 0.87

time focus setting. Thus, in Table I we also evaluated our model
using inpainted focal stacks having a different focus setting
compared to the training time. Specifically, the model is trained
using GMCNN inpainted Lytro flower focal stacks, with
focusing disparity evenly distributed in range [-1, 0.3], and
tested on Lytro flower focal stacks with focusing disparity
evenly distributed in range [-1, 0.3] (same setting as training),
and in the ranges [-0.8, 0.5], and [-1.2, 0.5]. The case [-0.8, 0.5]
corresponds to the scenario where every image in the testing
focal stack is focusing closer to the camera and thecase [-
1.2, 0.5] corresponds to the scenario where the focus depth
range is larger for the testing data compared to thetraining data.
The table shows that there is only a slight drop

in inpainting localization performance when testing the trained
focal stack based model on focal stacks with different focus
setting. This excellent generalization ability across camera
focus settings is due to the fact that the focal stack based model
relies on the inter-focal stack consistency for detection, which
is insensitive to the focus of each image.

V. CONCLUSION

We proposed a novel system and method of using a focal
stack for localizing image inpainting regions in manipulated
images. We trained CNN models for inpainting localization and
showed that using an image focal stack, instead of a single
image, leads to significantly better localization performance
and significant robustness to common post-processing image
perturbations. The proposed method also shows excellent
generalization ability across different inpainting methods and
different camera focus settings.

Although we focused on the inpainting type of forgery,we
expect the findings are applicable to many other types of
forgery detection as well. We hope this work can lead to a
new direction for image forgery detection and make images in
the future more secure.
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APPENDIX
EFFECT OF JPEG AUGMENTATION FOR TRAINING

Here we include additional results of models trained without
JPEG augmentation (section III-B). Comparing Fig. 3 andFig.
8 shows that include JPEG augmentation during train-ing
leads to a model more robust against post-processing
perturbations and better performance. The benefit is more
significant for Gaussian noise perturbation (1st row of Fig. 8)
and JPEG compression (3rd row of Fig. 8). The F: score of
the model trained without JPEG augmentation will degrade
quickly when the images are JPEG compressed or noise is
added. Regardless, the advantage of using focal stack over
single image based method is still significant for this training
scheme as well.
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