Foundations and Trends® in Signal Processing
Bilevel Methods for Image
Reconstruction

Suggested Citation: Caroline Crockett and Jeffrey A. Fessler (2021), “Bilevel Methods
for Image Reconstruction”, Foundations and Trends® in Signal Processing: Vol. xx, No.
xx, pp 1-18. DOI: 10.1561 /XXXXXXXXX.

Caroline Crockett
University of Michigan
cecroc@umich.com

Jeffrey A. Fessler
University of Michigan
fessler@umich.edu

This article may be used only for the purpose of research, teaching, n‘w

and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-

plicit Publisher approval. Boston — Delft

the essence of knowledge

Contents

Introduction

1.1 Notation
1.2 Defining a Bilevel Problem
1.3 Running Example 000
1.4 Conclusion

Background: Cost Functions and Image Reconstruction

2.1 Image Reconstruction
2.2 Sparsity-Based Regularizers
2.3 Brief History of Analysis Regularizer Learning
24 Summary

Background: Loss Functions and
Hyperparameter Optimization

3.1 Image Quality Metrics
3.2 Parameter Search Strategies
33 Summary

Gradient Based Bilevel Methodology:
The Groundwork

4.1 Set-up
4.2 Minimizer Approach

N ot W

12
15

17
17
20
25
30

31
33
38
43

4.3 Translation to a Single Level
4.4 Unrolled Approaches
45 Summary ...

Gradient-Based Bilevel Optimization Methods

5.1 Double-Loop Algorithms
5.2 Single-Loop Algorithms
5.3 Complexity Analysis
5.4 Summary of Methods

Survey of Applications

6.1 Lower-level Cost Function Design
6.2 Upper-Level Loss Function Design
6.3 Conclusion

Connections and Future Directions

7.1 Connection: Learnable Optimization Algorithms
7.2 Connection: Equilibrium-based Networks
7.3 Connection: Plug-and-play Priors
7.4 Connection: Single-Level Parameter Learning
7.5 Future Directions
7.6 Summary of Advantages and Disadvantages

Acknowledgements

Appendices

A

B

Background: Primal-Dual Formulations
Forward and Reverse Approaches to Unrolling

Additional Running Example Results
C.1 Derivatives for Convolutional Filters
C.2 Evaluating Assumptions for the Running Example

68
69
76
78
87

91
92
97
101

103
105
107
110
112
115
118

122

123

124

129

D Implementation Details
D.1 Vertical Bar Training Image
D.2 Cameraman Training Image

References

Bilevel Methods for Image
Reconstruction

Caroline Crockett! and Jeffrey A. Fessler!

! Department of EECS, University of Michigan, Ann Arbor, Michigan,
USA; {cecroc,fessler}@Qumich.edu

ABSTRACT

This review discusses methods for learning parameters for
image reconstruction problems using bilevel formulations.
Image reconstruction typically involves optimizing a cost
function to recover a vector of unknown variables that agrees
with collected measurements and prior assumptions. State-
of-the-art image reconstruction methods learn these prior
assumptions from training data using various machine learn-
ing techniques, such as bilevel methods.

One can view the bilevel problem as formalizing hyperpa-
rameter optimization, as bridging machine learning and cost
function based optimization methods, or as a method to
learn variables best suited to a specific task. More formally,
bilevel problems attempt to minimize an upper-level loss
function, where variables in the upper-level loss function are
themselves minimizers of a lower-level cost function.

This review contains a running example problem of learning
tuning parameters and the coefficients for sparsifying filters
used in a regularizer. Such filters generalize the popular
total variation regularization method, and learned filters are
closely related to convolutional neural networks approaches
that are rapidly gaining in popularity. Here, the lower-level

Caroline Crockett and Jeffrey A. Fessler (2021), “Bilevel Methods for Image Recon-
struction”, Foundations and Trends® in Signal Processing: Vol. xx, No. xx, pp 1-18.
DOLI: 10.1561 /XXXXXXXXX.

problem is to reconstruct an image using a regularizer with
learned sparsifying filters; the corresponding upper-level
optimization problem involves a measure of reconstructed
image quality based on training data.

This review discusses multiple perspectives to motivate the
use of bilevel methods and to make them more easily ac-
cessible to different audiences. We then turn to ways to
optimize the bilevel problem, providing pros and cons of the
variety of proposed approaches. Finally we overview bilevel
applications in image reconstruction.

1

Introduction

Methods for image recovery aim to estimate a good-quality image from
noisy, incomplete, or indirect measurements. Such methods are also
known as computational imaging. For example, image denoising and
image deconvolution attempt to recover a clean image from a noisy
and/or blurry input image, and image inpainting tries to complete miss-
ing measurements from an image. Medical image reconstruction aims
to recover images that humans can interpret from the indirect measure-
ments recorded by a system like a Magnetic Resonance Imaging (MRI)
or Computed Tomography (CT) scanner. Such image reconstruction
applications are a type of inverse problem [1].

New methods for image reconstruction attempt to lower complexity,
decrease data requirements, or improve image quality for a given input
data quality. For example, in CT one goal is to provide doctors with
information to help their patients while reducing radiation exposure [2].
To achieve these lower radiation doses, the CT system must collect data
with lower beam intensity or fewer views. Similarly, in MRI collecting
fewer k-space samples can reduce scan times. Such “undersampling”
leads to an under-determined problem, with fewer knowns (measure-
ments from a scanner) than unknowns (pixels in the reconstructed

3

4 Introduction

image), requiring advanced image reconstruction methods.

Existing reconstruction methods make different assumptions about
the characteristics of the images being recovered. Historically, the as-
sumptions are based on easily observed (or assumed) characteristics of
the desired output image, such as a tendency to have smooth regions
with few edges or to have some form of sparsity [3]. More recent machine
learning approaches use training data to discover image characteristics.
These learning-based methods often outperform traditional methods,
and are gaining popularity in part because of increased availability of
training data and computational resources [4], [5].

There are many design decisions in learning-based reconstruction
methods. How many parameters should be learned? What makes a set
of parameters “good?” How can one learn these good parameters? Using
a bilevel methodology is one systematic way to address these questions.

Bilevel methods are so named because they involve two “levels” of
optimization: an upper-level loss function that defines a goal or measure
of goodness (equivalently, badness) for the learnable parameters and a
lower-level cost function that uses the learnable parameters, typically as
part of a regularizer. The main benefits of bilevel methods are learning
task-based hyperparameters in a principled approach and connecting
machine learning techniques with image reconstruction methods that
are defined in terms of optimizing a cost function, often called model-
based image reconstruction methods. Conversely, the main challenge
with bilevel methods is the computational complexity. However, like
with neural networks, that complexity is highest during the training
process, whereas deployment has lower complexity because it uses only
the lower-level problem.

The methods in this review are broadly applicable to bilevel prob-
lems, but we focus on formulations and applications where the lower-level
problem is an image reconstruction cost function that uses regulariza-
tion based on analysis sparsity. The application of bilevel methods to
image reconstruction problems is relatively new, but there are a growing
number of promising research efforts in this direction. We hope this
review serves as a primer and unifying treatment for readers who may
already be familiar with image reconstruction problems and traditional
regularization approaches but who have not yet delved into bilevel

1.1. Notation 5

methods.

This review lies at the intersection of a specific machine learning
method, bilevel, and a specific application, filter learning for image re-
construction. For overviews of machine learning in image reconstruction,
see [5], [6]. For an overview of image reconstruction methods, includ-
ing classical, variational, and learning-based methods, see [7]. Finally,
for historical overviews of bilevel optimization and perspectives on its
use in a wide variety of fields, see [8], [9]. Within the image recovery
field, bilevel methods have also been used, e.g., in learning synthesis
dictionaries [10].

The structure of this review is as follows. The remainder of the in-
troduction defines our notation and presents a running example bilevel
problem. Section 2 provides background information on the lower-level
image reconstruction cost function and analysis regularizers. Section 3
provides background information on the upper-level loss function, specif-
ically loss function design and hyperparameter optimization strategies.
These background sections provide motivation and context for the rest
of the review; they are not exhaustive overviews of these broad topics.
Section 4 presents building blocks for optimizing a bilevel problem.
Section 5 uses these building blocks to discuss optimization methods
for the upper-level loss function. Section 6 discusses previous appli-
cations of the bilevel method in image recovery problems, including
signal denoising, image inpainting, and medical image reconstruction.
It also overviews bilevel formulations for blind learning and learning
space-varying tuning parameters. Finally, Section 7 offers summarizing
commentary on the benefits and drawbacks of bilevel methods for com-
putational imaging, connects and compares bilevel methods to other
machine learning approaches, and proposes future directions for the

field.

1.1 Notation

This review focuses on continuous-valued, discrete space signals. Some
papers, e.g., [11], [12], analyze signals in function space, arguing that
the goal of high resolution imagery is to approximate a continuous space
reality and that analysis in the continuous domain can yield insights

6 Introduction

and optimization algorithms that are resolution independent. However,
the majority of bilevel methods are motivated and described in discrete
space. The review does not include discrete-valued settings, such as
image segmentation; those problems often require different techniques
to optimize the lower-level cost function, although some recent work
uses dual formulations to bridge this gap [13], [14].

The literature is inconsistent in how it refers to variables in machine
learning problems. For consistency within this document, we define the
following terms:

e Hyperparameters: Any adjustable parameters that are part
of a model. Tuning parameters and model parameters are both
sub-types of hyperparameters. This document uses y to denote a
vector of hyperparameters.

o Tuning parameters: Scalar parameters that weight terms in a
cost function to determine the relative importance of each term.
This review uses [to denote individual tuning parameters.

e« Model parameters: Parameters, generally in vector or matrix
form, that are used in the structure of a cost or loss function,
typically as part of the regularization term. In the running example
in the next section, the model parameters are typically filter
coefficients, denoted c.

We write vectors as column vectors and use bold to denote matrices
(uppercase letters) and vectors (lowercase letters). Subscripts index
vector elements, so x; is the ith element in . For functions that are
applied element-wise to vectors, we use notation following the Julia
programming language [15], where f.(x) denotes the function f applied
element wise to its argument:

f(z1)
xclfV — f(x)= : e FN.
flzn)

We will often use this notation in combination with a transposed vector
of ones to sum the result of a function applied element-wise to a vector,
i.e.,

VF (@) =Y f), (L1)

1.2. Defining a Bilevel Problem 7

For example, the standard Euclidean norm is equivalent to 1'f.(x)
when f(x) = |z|? and and the vector 1-norm can be similarly written
when f(x) = |z|. This notation is helpful for regularizers that do not
correspond to norms. The field F can be either R or C, depending on
the application.

Convolution between a vector, , and a filter, ¢, is denoted as c® x.
This review assumes all convolutions use circular boundary conditions.
Thus, convolution is equivalent to multiplication with a square, circulant
matrix:

c®x=C.

The conjugate mirror reversal of ¢ is denoted as ¢ and its application is
equivalent to multiplying with the adjoint of C"

cox=Cz,

where the prime indicates the Hermitian transpose operation.
Finally, for partial derivatives, we use the notation that

vwf(mvy) = af(amx’y) € FNa
2
vmyf(may) = [W €]FNXMa and (12)

waf(:f:,’g) = vxyf(wa y)

where f:FN xFM - F.
Tables 1.1 and 1.2 summarize our frequently used notation for
variables and functions.

1.2 Defining a Bilevel Problem

This section introduces a generic bilevel problem; the next presents a
specific bilevel problem that serves as a running example throughout
the review. Later sections discuss many of the ideas presented here
more thoroughly. Our hope is that an early introduction to the formal
problem motivates readers and that this section acts as a quick-reference
guide to our notation.

Introduction

Variable Dim Description

w}rue N One of J clean, noiseless training signals. Often
used in a supervised training set-up.

A M x N Forward operator for the system of interest.

Yj M During the bilevel learning process, y; refers to
simulated measurements, where y; = A:I:;rue—knj.
Once vy is learned, y refers to collected measure-
ments.

n; N A noise realization.

z; N A reconstructed image.

Y R The vector of parameters to learn using bilevel
methods. This often includes ¢, and/or S.

ci S One of K convolutional filters. A 2D filter might
be VS x V/S.

Cr. S Conjugate mirror reversal of filter cy.

C N x N The convolution matrix such that Cpx = ¢ ® @
and Cjx = é, ® x.

B R The tuning parameter associated with cy.

Bo R An overall regularization (tuning) parameter, ap-
pearing as e® in (Ex).

Q F x N A matrix with filters in each row. For the stacked
convolution matrices in (2.7) F' = KN.

z Varies A sparse vector, often from Cyx.

€ Ry Parameter used to define ¢. Typically determines
the amount of corner-rounding.

t 0,...,T Iteration counter for the lower-level optimization
iterates, e.g., ¥ is the estimate of the lower-
level optimization variable & at the tth iteration.

U 0,...,U Iteration counter for the upper-level optimization

iterates, e.g., y(“).

Table 1.1: Overview of frequently used symbols in the review.

1.2. Defining a Bilevel Problem 9

Function Description

(y) — R or Upper-level loss function used as a fitness measure

Ly,) — R of y. Although / is a function of y, it is often helpful
to write it with two inputs, where typically © = &.

®O(x;y) — R Lower-level cost function used for reconstructing an
image.

R(x)— R Regularization function. Incorporates prior infor-
mation about likely image characteristics.

d(z,y) — R Data-fit term.

o(z) = R Sparsity promoting function, e.g., O-norm, 1-norm,
or corner-rounded 1-norm. Typically used in R.

Table 1.2: Overview of frequently used functions in the review.

This review considers the image reconstruction problem where the
goal is to form an estimate & € FV of a (vectorized) latent image,
given a set of measurements y € F™. For denoising problems, N = M,
but the two dimensions may differ significantly in more general image

FM*N models the

reconstruction problems. The forward operator, A €
physics of the system such that one would expect y = Ax in an ideal
(noiseless) system. We focus on linear imaging systems here, but the
concepts generalize readily to nonlinear forward models. When known
(in a supervised training setting), we denote the true, underlying signal
as '™ € FN. Most bilevel methods are supervised, but Section 6.2
presents a few examples of unsupervised bilevel methods.

We focus on model-based image reconstruction methods where the
goal is to estimate x from y by solving an optimization problem of the
form

T =2(y) =argmin®(z;v,y). (1.3)

xelFN

To simplify notation, we drop y from the list of ® arguments except
where needed for clarity. The quality of the estimate & can depend
greatly on the choice of the hyperparameters y. Historically there have
been numerous approaches pursued for choosing y, such as cross vali-
dation [16], generalized cross validation [17], the discrepancy principle
[18] and Bayesian methods [19], among others.

10 Introduction

Bilevel methods provide a framework for choosing hyperparameters.
A bilevel problem for learning hyperparameters y has the following
“double minimization” form:

Y = argmin/(y; &(y)) where (UL)
()
2Z(y) = argmin O(x;y). (LL)
zeFN

Fig. 1.1 depicts a generic bilevel problem for image reconstruction. The
upper-level (UL) loss function, £ : R® x FV i+ R, quantifies how (not)
good is a vector y of learnable parameters. The upper-level depends
on the solution to the lower-level (LL) cost function, ®, which depends
on Y. The upper-level can also be called the outer optimization, with
the lower-level being the inner optimization. Another terminology is
leader-follower, as the minimizer of the lower-level follows where the
upper-level loss leads. We will also write the upper-level loss function
with a single parameter as £(y) := £(y; Z(y))-

We write the lower-level cost as an optimization problem with
“argmin” and thus implicitly assume that ® has unique minimizer, &.
The lower-level is guaranteed to have a unique minimizer when @ is a
strictly convex function of @. (See Section 4 for more discussion of this
point). More generally, there may be a set of lower-level minimizers,
each having some possibly distinct upper-level loss function value. For
more discussion, [8] defines optimistic and pessimistic versions of the
bilevel problem for the case of multiple lower-level solutions.

Bilevel methods typically use training data. Specifically, one often
assumes that a given set of J good quality images x{™®, ...z € FN
are representative of the images of interest in a given application. (For
simplicity of notation we assume the training images have the same size,
but they can have different sizes in practice.) We typically generate
corresponding simulated measurements for each training image using
the imaging system model:

Yj = A:c}me +nj, j=1,...,J, (1.4)

where n; € FM denotes an appropriate random noise realization'. In

LA more general system model allows the noise to depend on the data and system

1.2. Defining a Bilevel Problem 11

Loss

Function

Forward Model
y; = Az; + n;
. v
{yi}i= Model-based
Reconstruction

)
Model-based

Test data:' ‘—>

' Reconstruction
Figure 1.1: Depiction of a typical bilevel problem for image reconstruction,
illustrated using XCAT phantom from [20]. The upper box represents the
training process, with the upper-level loss and lower-level cost function. Dur-
ing training, one minimizes the upper-level loss with respect to a vector of
parameters, y, that are used in the image reconstruction task. Once learned,

¥ is typically deployed in the same image reconstruction task, shown in the
lower box.

(1.4), we add one noise realization to each of the J images; in practice
one could add multiple noise realizations to each m}r“e to augment
the training data. We then use the training pairs (azgr“e, y;) to learn
a good value of y. After those parameters are learned, we reconstruct
subsequent test images using (1.3) with the learned hyperparameters y.

An alternative to the upper level formulation (UL) is the following
stochastic formulation of bilevel learning:

Y = argmin E [4(y)] (1.5)
yEFR ?,—/
A5 2o LY 25(Y)
where &;(y) = argmin ®(x; v, y;). (1.6)
zeFN

model, i.e., n;(A, x;). This generality is needed for applications with certain noise
distributions such as Poisson noise.

12 Introduction

The expectation, taken with respect to the training data and noise
distributions, is typically approximated as a sample mean over J training
examples.

The definition of bilevel methods used in (UL) is not universal in the
literature. In some works, bilevel methods refer to nested optimization
problems with two levels, even when the two levels result from reformu-
lating a single-level problem, e.g., [21]. That definition is much more
encompassing, and includes primal-dual reformulations, Lagrangian
reformulations of constrained optimization problems, and alternating
methods that introduce then minimize over an auxiliary variable.

Another term in the literature, sometimes used interchangeably
with a bilevel problem, is a mathematical program with equilibrium
constraints (MPEC). As shown in Section 4, many bilevel optimization
methods start by transforming the two-level problem into an equivalent
single-level problem by replacing the lower-level optimization with a
set of constraints based on optimally conditions. Bilevel problems are
thus a subset of MPECs. MPECs are generally challenging due to their
non-convex nature; even when the lower-level cost function is convex,
the upper-level loss function is rarely convex. Importantly, £(-,) is often
convex with respect to both arguments. However, ¢(y) = ¢(y; &(y)) is
generally non-convex in y due to how the lower-level minimizer depends
on y. There is a large literature on MPEC problems, e.g., [8], [22], [23],
and on non-convex optimization more generally [24]. Bilevel methods
are one sub-field in this large literature.

1.3 Running Example

To offer a concrete example, this review will frequently refer to the
following running example (Ex), a filter learning bilevel problem:

N 1
¥ = argmin - ||£(y) — £""°||3, where

YeFE 2
1 K
2(y) = argmin - [|[Az — y[2 + e 3 M Vo (cr @ zie), (Ex)
€N 2 k=1

where y € F contains all variables that we wish to learn: the filter
coefficients ¢; € F° and tuning parameters 8, € R for all k € [1, K]. We

1.3. Running Example 13

include an auxiliary tuning parameter, 5y € R, for easier comparison to
other models. Fig. 1.2 depicts the running example and Fig. 1.3 shows
example learned filters for a toy training image. Ref. [25] demonstrates
how a spectral analysis of learned filters and penalty functions can be
interpreted to provide insight into real-world problems.

The learnable hyperparameters can also include the sparsifying
function ¢, its corner rounding parameter €, the forward model A,
or some aspect of the data-fit term. For example, [25], [26] learn the
regularization functional and [27], [28] learn part of the forward model.
Such examples are relatively rare in the bilevel methods literature to
date.

Unlike many learning problems (see examples in Section 7.4), the
running example (Ex) does not include any constraints on y. Learned
filters should be those that are best at the given task, where “best”
is defined by the upper-level loss function. Therefore, a zero mean
or norm constraint is not generally required, though some authors
have found such constraints helpful, e.g., [29], [30]. Following previous

Forward Model

y=Ax+n
l Y e’ 1. (xem)4 T
Jo 1/
1 e ¢ (ze 8)+
v 1'¢.(x®H)

Figure 1.2: Bilevel problem in (Ex). The vector of learnable hyperparameters,
v, includes the tuning parameters, §i, and the filter coefficients, ¢, shown as
example filters. Although this review will generally consider learning filters of
a single size, the figure depicts how the framework easily extends to 2d filters
of different sizes.

14 Introduction

y (12.69 dB)
Normalized filters

= r I' t i
-.25
NECT. IR S] L T A 05
-25 En.‘ Wl L [LiL] . u '
1 16 32 1 16 32 0
Column index Column index 05
(d) h

(a) (b)

Figure 1.3: Example learned filters for a simple training image, normalized
for easier visualization. The true image is zero-mean and repeats three columns
of signal value -0.25 and one column of signal value 0.75. (a) Noisy image.
The lower plot shows a profile of one row of the image (marked by a dotted
line). The signal-to-noise ratio, as defined in (3.2), is given in parenthesis. (b)
The denoised image using learned filters as in (Ex). (¢) Randomly initialized
filters for the bilevel method (K =4 and S = 4-2). (d) Corresponding learned
filters. As expected based on the training image, the learned filters primarily
involve vertical differences. Appendix D.1 provides further details including
the regularization strength of each learned filter.

literature, e.g., [31], the tuning parameters in (Ex) are written in terms
of an exponential function to ensure positivity. One could re-write
(Ex) without this exponentiation “trick” and then add a non-negativity
constraint to the upper-level problem; most of the methods discussed in
this review generalize to this common variation by substituting gradient
methods for projected gradient methods.

In (Ex), we drop the sum over J training images for simplicity; the
methods easily extend to multiple training signals. For ease of notation,
we further simplify by considering ¢j to be of length S for all &, e.g., a
2D filter might be /S x v/S. In practice, the filters may be of different
lengths with minimal impact on the methods presented in this review.

The function ¢ in (Ex) is a sparsity-promoting function. If we were
to choose ¢(z) = |z|, then the regularizer would involve 1-norm terms

1.4. Conclusion 15

of the type common in compressed sensing formulations:
V¢.(cr®x) = e ® x| .

However, to satisfy differentiability assumptions (see Section 4), this
review will often consider ¢ to denote the following “corner rounded”
1-norm having the shape of a hyperbola with the corresponding first
and second derivative:

d(z) = V22 + €2 (CRIN)

z

d(z) = NErw €1[0,1)
. €2 1
P(z) = m € (0, E]a

where € is a small, relative to the expected range of z, parameter that
controls the amount of corner rounding. (Here, we use a dot over the
function rather than V to indicate a derivative because ¢ has a scalar
argument.)

1.4 Conclusion

Bilevel methods for selecting hyperparameters offer many benefits. Pre-
vious papers motivate them as a principled way to approach hyperpa-
rameter optimization [9], [32], as a task-based approach to learning [12],
[26], [33], and/or as a way to combine the data-driven improvements
from learning methods with the theoretical guarantees and explain-
ability provided by cost function-based approaches [11], [29], [34]. A
corresponding drawback of bilevel methods are their computational
cost; see Sections 4 and 5 for further discussion.

The task-based nature of bilevel methods is a particularly important
advantage; Section 7.4 exemplifies why by comparing the bilevel problem
to single-level, non-task-based approaches for learning sparsifying filters.
Task-based refers to the hyperparameters being learned based on how
well they work in the lower-level cost function—the image reconstruction
task in our running example. The learned hyperparameters can also
adapt to the training dataset and noise characteristics. The task-based
nature yields other benefits, such as making constraints or regularizers

16 Introduction

on the hyperparameters generally unnecessary; Section 6.2 presents some
exceptions and [9] further discusses bilevel methods for applications
with constraints.

There are three main elements to a bilevel approach. First, the lower-
level cost function in a bilevel problem defines a goal, such as image
reconstruction, including what hyperparameters can be learned, such
as filters for a sparsifying regularizer. Section 2 provides background
on this element specifically for image reconstruction tasks, such as the
one in (Ex). Section 6.1 reviews example cost functions used in bilevel
methods.

Second, the upper-level loss function determines how the hyperpa-
rameters should be learned. While the squared error loss function in
the running example is a common choice, Section 3 discusses other loss
functions based on supervised and unsupervised image quality metrics.
Section 6.2 then reviews example loss functions used in bilevel methods.

While less apparent in the written optimization problem, the third
main element for a bilevel problem is the optimization approach, espe-
cially for the upper-level problem. Section 3.2 briefly discusses various
hyperparameter optimization strategies, then Sections 4 and 5 present
multiple gradient-based bilevel optimization strategies. Throughout
the review, we refer to the running example to show how the bilevel
optimization strategies apply.

2

Background: Cost Functions and Image
Reconstruction

This review focuses on bilevel problems having image reconstruction
as the lower-level problem. Image reconstruction involves undoing any
transformations inherent in an imaging system, e.g., a camera or CT
scanner, and removing measurement noise, e.g., thermal and shot noise,
to realize an image that captures an underlying object of interest, e.g.,
a patient’s anatomy. Fig. 2.1 shows an example image reconstruction
pipeline for CT data. The following sections formally define image
reconstruction, discuss why regularization is important, and overview
common approaches to regularization.

2.1 Image Reconstruction

Although the true object is in continuous space, image reconstruction is

almost always performed on sampled, discretized signals [35]. Without

going into detail of the discretization process, we define x'™'¢ ¢ FV

as the “true,” discrete signal. The goal of image reconstruction is to

true given corrupted measurements y € FV.

Although we define the signal as a one-dimensional vector for notational

recover an estimate & ~ x

convenience, the mathematics generalize to arbitrary dimensions.
To find &, image reconstruction involves minimizing a cost function,

17

18 Background: Cost Functions and Image Reconstruction

CT Machine Sinogram Output image
| =

Data
acquisition

Image
reconstruction

A: System y: Observed x: Reconstructed
model data image

Figure 2.1: Example image reconstruction pipe-line, illustrated using XCAT

phantom from [20]. Here A denotes the actual physical mapping of the imaging
system and A denotes the numerical system matrix used for reconstruction.

®(x;7y), with two terms:

Data-fit Regularizer
& = argmind(z;y) + B R(x;y) (2.1)
zeFN
O(z;y)

The first term, d(x;y), is a data-fit term that captures the physics of
the ideal (noiseless) system using the matrix A € FM*N: that matrix
models the physical system such that we expect an observation, y, to
be y ~ Ax.

The most common data-fit term penalizes the square Euclidean
norm of the “measurement error,” d(x;y) = ||[Ax — y||§ This intuitive
data-fit term can be derived from a maximum likelihood perspective,
assuming a white Gaussian noise distribution [36]. Using the system
model (1.4) and assuming the noise is normally distributed with zero-
mean and variance 2, the maximum likelihood estimate &g is the
image that is most likely given the observation y, i.e.,

&yg = argmax Prob(z ; y, 02).
xeFfN
Substituting the assumed Gaussian distribution (and ignoring constants
independent of x),

-1 12 1
#niip = argmax e20? 47717 = aremin 5 |Az — y|* = Ay,
zeFN zeFN

where AT is the pseudo-inverse of A.

2.1. Image Reconstruction 19

The regularization term in (2.1) can be motivated by maximum a
posteriori probability (MAP) estimation [36]. Rather than maximizing
the likelihood of @, the MAP estimate &yap maximizes the conditional
probability of & given the observation y

Zyap = argmax Prob(z|y)
xzcFN

= argmax Prob(y|x)Prob(x)
zeFN

by Bayes theorem. A MAP estimator requires assuming a prior distribu-
tion on @. Taking the logarithm and substituting the assumed Gaussian
distribution for Prob(y|z ; ¢?) yields

A 1 2

Zyap = argmin —— ||Az — y||” — log (Prob(x)),

£CFN 202

where the regularization term in (2.1) comes from the log probability
of x, i.e., the two are equivalent when one assumes the probability
model Prob(x) = ﬁexp{—R(w; Y)}, where Z(y) is a scalar such
that the probability integrates to one. The MLE estimate is equivalent
to the MAP estimate when the prior on @ is an (unbounded) “uniform”
distribution.

While MAP estimation provides a useful perspective, common regu-
larizers do not correspond to proper probability models. Further, the
connection between the regularization perspective and the Bayesian
perspective is simplest when the parameters y are given. To learn v,
Bayesian formulations must consider the partition function Z(y); that
complication is avoided for bilevel formulations using a regularized
lower-level problem.

Many image reconstruction problems have linear system models.
In image denoising problems, one takes A = I. For image inpainting,
A is a diagonal matrix of 1’s and 0’s, where the 0’s correspond to
sample indices of missing data [37]. In MRI, the system matrix is often
approximated as a diagonal matrix times a discrete Fourier transform
matrix, though more accurate models are often needed [38]. In some
settings, one can learn A [39], or at least parts of A [40], as part of the
estimation process. Although the bilevel method generalizes to learning

20 Background: Cost Functions and Image Reconstruction

A, the majority of papers in the field assume A is known; Section 6
discusses a few exceptions.

Using the system model (1.4), if n were known and A were invertible,
we could simply compute £ = z'™¢ = A-l(y — n). However, n is
random and, while we may be able to model its characteristics, we never
know it exactly. Further, the system matrix, A, is often not invertible
because the reconstruction problem is frequently under-determined, with
fewer knowns than unknowns (M < N). Therefore, we must include
prior assumptions about z'"® to make the problem feasible. These
assumptions about £ are captured in the second, regularization term
in (2.1), which depends on y. The following section further discusses
regularizers.

In sum, image reconstruction involves finding & that matches the
collected data and satisfies a set of prior assumptions. The data-fit term
encourages & to be a good match for the data; without this term, there
would be no need to collect data. The regularization term encourages
& to match the prior assumptions. Finally, the tuning parameter, 5,
controls the relative importance of the two terms. The cost function
can be minimized using different optimization techniques depending on
the form of each term.

This section is a very short overview of image reconstruction methods.
See [7] for a more thorough review of biomedical image reconstruction.

2.2 Sparsity-Based Regularizers

The regularization, or prior assumption, term in (2.1) often involves as-
sumptions about sparsity [3], [41]. The basic idea behind sparsity-based
regularization is that the true signal is sparse in some representation,
while the noise or corruption is not. Thus, one can use the representation
to separate the noise and signal, and then keep only the sparse signal
component. In fact, a known sparsifying representation for a signal
can help to “reconstruct a signal from far fewer measurements than
required by the Shannon-Nyquist sampling theorem” [41].

The regularization design problem therefore requires determining
what representation best sparsifies the signal. There are two main types
of sparsity-based regularizers corresponding to two representational

2.2. Sparsity-Based Regularizers 21

assumptions: synthesis and analysis [6], [36]; Fig. 2.2 depicts both.
While both are popular, this review concentrates on analysis regularizers,
which are more widely represented in the bilevel image reconstruction
literature. This section briefly compares the analysis and synthesis
formulations. Here we simplify the formulas by considering A = I;
the discussion generalizes to reconstruction by including A. For more
thorough discussions of analysis and synthesis regularizers, see [6], [36],
[42].

2.2.1 Synthesis Regularizers

Synthesis regularizers model a signal being composed of building blocks,
or “atoms.” Small subsets of the atoms span a low dimensional subspace
and the sparsity assumption is that the signal requires using only a few
of the atoms. More formally, the synthesis model is y = @ 4+ n, where
the signal = Dz and z is a sparse vector. The columns of D € FN*K
contain contain the K dictionary atoms and form a low dimensional
subspace for the signal. If D is a wide matrix (N < K), the dictionary
is over-complete and it is easier to represent a wide range of signals
with a given number of dictionary atoms. The dictionary is complete
when D is square (and full rank) and under-complete if D is tall (an
uncommon choice).

Synthesis: € = o Analysis:

| '"ﬂ'
- H+.3i+.ﬂ

Figure 2.2: Depiction of synthesis and analysis sparsity. Under the synthesis
model of sparsity (left), « is a linear combination of a few dictionary atoms.
The dictionary, D, is typically wide, with more atoms (columns) than elements
in . Under the analysis model of sparsity (right), @ is orthogonal to many

filters. The filter matrix, €, is typically tall, with more filters (rows) than
elements in .

22 Background: Cost Functions and Image Reconstruction

Assuming one knows or has already learned D, one can use the
sparsity synthesis assumption to denoise a noisy signal y by optimizing

1
& =D - (argmin = | Dz — y|* + 1'¢.(2)). (2.2)
z€FK 2

z

The estimation procedure involves finding the sparse codes, 2, from
which the image is synthesized via & = D2. Common sparsity-inducing
functions, ¢, are the absolute value or a non-zero indicator function,
equivalent to the 1-norm and 0-norm respectively. The 2-norm is occa-
sionally used in the regularizer, but it does not yield true sparse codes
and it over-penalizes large values [43].

As written in (2.2), the synthesis formulation constrains the signal, x,
to be in the range of D. This “strict synthesis” model can be undesirable
in some applications, e.g., when one is not confident in the quality of
the dictionary. An alternative formulation is

1
& = argmin — ||z — y|!2 + fR(x),
zeFN 2

R(z) = min = |z — Dz| +1'6.(2), (2.3)
2€FK 2
which no longer constrains x to be exactly in the range of D. One can
also learn D while solving (2.3) [44].
Both synthesis denoising forms have equivalent sparsity constrained
versions; one can replace 1’¢.(z) with a characteristic function that is 0
within some desired set and infinite outside it, e.g.,

0 if 2l <x

P(z) = (2.4)

oo else,

for some sparsity constraint given by the hyperparameter x € N.

See [43], [45] for discussions of when the synthesis model can guar-
antee accurate recovery of signals. The minimization problem in (2.3) is
called sparse coding and is closely related to the LASSO problem [46].
One can think of the entire dictionary D as a hyperparameter that can
be learned with a bilevel method [47].

2.2. Sparsity-Based Regularizers 23

2.2.2 Analysis Regularizers

Analysis regularizers model a signal as being sparsified when mapped
into another vector space by a linear transformation, often represented
by a set of filters. More formally, an analysis model assumes the signal
satisfies Qax = z for a sparse coeflicient vector z. Often the rows of the
matrix Q € FEXN are thought of as filters and the rows of Q where
[Qz] = 0 span a subspace to which is orthogonal. The analysis
operator is called over-complete if €2 is tall (N < K'), complete if € is
square (and full rank), and under-complete if € is wide.

A particularly common analysis regularizer is based on a discretized
version of total variation (TV) [48], and uses finite difference filters (or,
more generally, filters that approximate higher-order derivatives). The
finite difference filters sparsify any piece-wise constant (flat) regions
in the signal, leaving the edges that are often approximately sparse in
natural images. Other common analysis regularizers include the discrete
Fourier transform (DFT), curvelets, and wavelet transforms [49].

The literature is less consistent in analysis regularizer vocabulary,
and € has been called an analysis dictionary, an analysis operator, a
filter matrix, and a cosparse operator. The term “cosparse” comes from
the sparsity holding in the codomain of the transformation T'{x} = Q.
The cosparsity of & with respect to €2 is the number of zeros in Qx or
K —||Qx||, [42]. Correspondingly, “cosupport” describes the indices of
the rows where Qax = 0. We find the phrase “analysis operator” intuitive
for general 2’s and “filter matrix” more descriptive when referring to
the specific (common) case when the rows of € are dictated by a set of
convolutional filters.

Assuming one knows, or has already learned, €2, one can use the
analysis sparsity assumption to denoise a noisy signal, y, by optimizing

1
& = argmin _ ||z — y||* + f1'¢.(Qx). (2.5)
:ZZEFN 2
An alternative version is
1
& = argmin - ||z — y||> + BR(z) (2.6)
rcFN 2

o1
R(z) = min 5 |Qx — z||> + 1/.(2).

24 Background: Cost Functions and Image Reconstruction

As in the synthesis case, both analysis formulations have equivalent
sparsity-constrained forms using a characteristic function as in (2.4).

See [49] for an error bound on the estimated signal & when using a
1-norm as the regularization function.

2.2.3 Comparing Analysis and Synthesis Approaches

The analysis and synthesis models are equivalent when the dictionary
and analysis operator are invertible, with D = Q! [36]. Furthermore,
in the denoising scenario where the system matrix A is identity, the
two are almost equivalent in the under-complete case, with the lack of
full equivalence stemming from the analysis form not constraining « to
be in the range space D [36].

As shown in [41, Example 3.1], the analysis model can more generally
be related to a Lasso-like problem using Legendre-Fenchel conjugates
and convex duality. Appendix A briefly reviews duality and the main
results from primal-dual analysis used throughout this review. Consid-
ering the analysis operator learning problem (2.5), when the sparsity
promoting function ¢ is convex and ¢(z) < oo for some z, the dual
problem corresponding to (2.5) is

d= argmim1 |Q'd - y||2 + ¢ (d),
deFK 2

where d is the dual variable and ¢* is the conjugate function of ¢.
(The primal solution & can be computed from d using (A.11).) This
dual problem is similar in form to the inner minimization in the strict
synthesis formulation (2.2). This relation between the analysis model
and its dual formulation is limited to cases where ¢ is convex.

Whether analysis-based or synthesis-based regularizers are generally
preferable is an open question, and the answer likely depends on the
application and the relative importance of reconstruction accuracy and
speed [36]. Synthesis regularization is perhaps easier to interpret because
of its generative nature. In contrast, bilevel analysis filter learning is a
discriminative learning approach: the task-based filters must learn to
distinguish “good” and “bad” image features.

The synthesis approach used to be “widely considered to provide
superior results” [36, p. 950]. However, [36] goes on to show that an

2.3. Brief History of Analysis Regularizer Learning 25

analysis regularizer produced more accurate reconstructed images in
experiments on real images. Later analysis-based results also show
competitive, if not superior, quality results when compared to simi-
lar synthesis models [50], [51]. See [52] for a survey of optimization
methods for MRI reconstruction and a comparison of the computa-
tional challenges for cost functions with synthesis and analysis-based
regularizers.

The analysis and synthesis regularizers in (2.2) and (2.6) quickly
yield infeasibly large operators as the signal size increases. In practice,
both approaches are usually implemented with patch-based formulations.
For the synthesis approach, the patches typically overlap and there is an
averaging effect. Analysis regularizers that have rows corresponding to
filters, called the convolutional analysis model, extend very naturally to
a global image regularizer. For example, in the lower-level cost function
of our running filter learning example (Ex), we can define an analysis
regularizer matrix as follows:

C
Q= | | eFENXN (2.7)
Ck

Imposing this convolutional structure on €2 helps make learning prob-
lems feasible as one only has to learn the S coefficients of each of the
K filters rather than learning the full 2 matrix. This structure also
ensures translation invariance of the regularizer. See [30] and [53] for
discussion of the connections between global models and patch-based
models for analysis regularizers. The running example in this survey
focuses on bilevel learning of convolutional analysis regularizers.

2.3 Brief History of Analysis Regularizer Learning

In 2003, Haber and Tenorio [26] proposed using bilevel methods to learn
part of the regularizer in inverse problems. The authors motivate the
use of bilevel methods through the task-based nature, noting that “the
choice of good regularization operators strongly depends on the forward
problem.” They consider learning tuning parameters, space-varying
weights, and regularization operators (comparable to defining ¢), all

26 Background: Cost Functions and Image Reconstruction

for regularizers based on penalizing the energy in the derivatives of
the reconstructed image. Their framework is general enough to handle
learning filters. Ref. [26] was published a few years earlier than the other
bilevel methods we consider in this review and was not cited in most
other early works; [54] calls it a “groundbreaking, but often overlooked
publication.”

In 2005, Roth and Black [55] proposed the Field of Experts (FoE)
model to learn filters. Although the FoE is not formulated as a bilevel
method, many papers on bilevel methods for filter learning cite FoE as a
starting or comparison point. The FoE model is a translation-invariant
analysis operator model, built on convolutional filters. It is motivated
by the local operators and presented as a Markov random field model,
with the order of the field determined by the filter size.

Under the FoE model, the negative log' of the probability of a full
image, x, is proportional to

zk:ﬁk ¢.(cx ® x) where ¢(z) = log <1 + ;f) . (2.8)

This (non-convex) choice of sparsity function ¢ stems from the Student-t
distribution. Ref. [55] learns the filters and filter-dependent tuning pa-
rameters such that the model distribution is as close as possible (defined
using Kullback-Leibler divergence) to the training data distribution.
In 2007, Tappen, Liu, Adelson, et al. [56] proposed a different model
based on convolutional filters: the Gaussian Conditional Random Field
(GCRF) model. Rather than using a sparsity promoting regularizer,
the GCRF uses a quadratic function for ¢. The authors introduce
space-varying weights, W, so that the quadratic model does not overly
penalize sharp features in the image. The general idea behind W
is to use the given (noisy) image to guess where edges occur, and
correspondingly penalize those areas less to avoid blurring edges. The
likelihood for GCRF model is thus (to within a proportionality constant

!By taking the log of the probability model in [55], the connection between the
FoE and the regularization term in the lower-level of the running filter learning
example (Ex) is more evident.

2.3. Brief History of Analysis Regularizer Learning 27

and monotonic function transformations):
Y ller® @ —enfz}y, ,
k

where the term eg{x} captures the estimated value of the filtered image.
For example, [56] used one averaging filter and multiple differencing
filters for the ¢;’s. The corresponding estimated values are @ for the
averaging filter and zero for the differencing filters.

The filters, ¢, are pre-determined in the GCRF model; the learned
element is how to form the weights as a function of image features.
Specifically, each Wy, is formed as a linear combination of the (absolute)
responses to a set of edge-detecting filters, with the linear combination
coefficients learned from training data. Rather than maximizing the
likelihood of training data as in [55], [56] learns these coefficients to
minimize the (corner-rounded) I; norm of the error of the predicted
image, which is a form of bilevel learning even though not described
with that terminology.

Apparently one of the first papers to explicitly propose using bilevel
methods to learn filters appeared in 2009, where Samuel and Tappen
[31] considered a bilevel formulation where the upper-level loss was the
squared Euclidean norm of training data and the lower-level cost was a
denoising task based on filter sparsity equivalent to (Ex). The method
builds on the FoE model, using the same ¢ as in [55], but now learning
the filters using a bilevel formulation rather than by maximizing a
likelihood.

In 2011, Peyré and Fadili [33] proposed a similar bilevel method
to learn analysis regularizers. The authors generalized the denoising
task to use an analysis operator matrix and a wider class of sparsifying
functions. Their results concentrate on the convolutional filter case with
a corner-rounded 1-norm for ¢.

Both [31] and [33] focus on introducing the bilevel method for
analysis regularizer learning, with denoising or inpainting as illustrations.
Section 4 further discusses the methodology of both papers. Many of the
bilevel based papers in this review build on one or both of their efforts.
The rest of the review will summarize other bilevel based papers; here,
we highlight some of papers in the non-bilevel thread of the literature

28 Background: Cost Functions and Image Reconstruction

for context and comparison.

Ophir, Elad, Bertin, et al. [57] proposed another approach to learning
an analysis operator. The method learns the operator one row at a time
by searching for vectors orthogonal to the training signals. Algorithm
parameters were chosen empirically without an upper-level loss function
as a guide.

Between 2011 [58] and 2013 [59], Yaghoobi, Nam, Gribonval, and
Davies were among the first to formally present analysis operator learn-
ing as an optimization problem. Their conference paper [58] considered
noiseless training data and proposed learning an analysis operator as

argmin | QX"||; s.t. € S (2.9)
Q

for some constrained set S. Each column of X' ¢ FN*J contains a
training sample. The authors discussed varying options for §, including
a row norm, full rank, and tight frame constrained set.

Without any constraint on €, the trivial solution to (2.9) would
be to learn the zero matrix, which is not informative for any problem
such as image denoising. Section 7.4 discusses in more detail the need
for constraints and the various constraint options proposed for filter
learning.

Ref. [59] extends (2.9) to the noisy case where one does not have
access to X" The proposed cost function is

argmin ||QX ||, + 5 X -Y|? st. Qe S, (2.10)
QX 2

where each column of Y contains a noisy data vector. Ref. [59] minimized
(2.10) by alternating updating X, using alternating direction method
of multipliers (ADMM), and €2, using a projected subgradient method
for various constraint sets S, especially Parseval tight frames.

In the same time-frame, Kunisch and Pock [60] started to analyze
the theory behind the bilevel problem, building off the ideas in [31],
[33]. Among the theoretical analysis, [60] proves the existence of upper-
level minimizers when the bilevel problem takes the form of (Ex), y
is the tuning parameters (the S values), and ¢ corresponds to the
squared 2-norm or the 1-norm. When ¢(z) = 22, there is an analytic

2.3. Brief History of Analysis Regularizer Learning 29

solution to the lower-level problem and a corresponding closed-form
solution to the gradient of the upper-level problem; [60] uses this fact to
discuss qualitative properties of the minimizer. Ref. [60] also proposed
an efficient semi-smooth Newton algorithm for finding y (using corner
rounding for the 1-norm case) and used this algorithm to make empirical
comparisons of multiple sparsifying functions (2-norm, 1-norm, and
p = 1/2-norm) and different pre-defined filter banks.

Also in 2013, Ravishankar and Bresler [51] made a distinction
between the analysis model, where one models y = © + n with z = Qx
being sparse, and the transform model, where Qy = z + n where z is
sparse. The analysis version models the measurement as being a cosparse
signal plus noise; the transform version models the measurement as
being approximately cosparse. Another perspective on the distinction
is that, if there is no noise, the analysis model constrains y to be in the
range space of {2, while there is no such constraint on the transform
model. The corresponding transform learning problem is

argminmzin QY — Z|[34+R(Q) st. || Zi]l, < o Vi, (2.11)
Q

where ¢ indexes the columns of Z. Ref. [51] considers only square
matrices €. The regularizer, R, promotes diversity in the rows of €2 to
avoid trivial solutions, similar to the set constraint in (2.10).

A more recent development is directly modeling the convolutional
structure during the learning process. In 2020, [61] proposed Convolu-
tional Analysis Operator Learning (CAOL) to learn convolutional filters
without patches. The CAOL cost function is

K
argmin Z min1 ek ®x — 2|5+ B z]ly st [e1...ex] €S. (2.12)
[c1,mCK] =1 z 2
Unlike the previous cost functions, which typically require patches,
CAOL can easily handle full-sized training images & due to the nature
of the convolutional operator.
While model-based methods were being developed in the signal
processing literature, convolutional neural network (CNN) models were

being advanced and trained in the machine learning and computer
vision literature [62] [63] [64]. The filters used in CNN models like

30 Background: Cost Functions and Image Reconstruction

U-Nets [65] can be thought of as having analysis roles in the earlier
layers, and synthesis roles in the final layers [66]. See also [67] for further
connections between analysis and transform models within CNN models.
CNN training is usually supervised, and the supervised approach of
bilevel learning of filters strengthens the relationships between the two
approaches. A key distinction is that CNN models are generally feed-
forward computations, whereas bilevel methods of the form (LL) have
a cost function formulation. See Section 7 for further discussion of the
parallels between CNNs and bilevel methods.

2.4 Summary

This background section focused on the lower-level problem: image
reconstruction with a sparsity-based regularizer. After defining the
problem and the need for regularization, Section 2.3 reviewed the history
of analysis regularizer learning and included many examples of methods
to learn hyperparameters.

Bilevel methods are just one, task-based way to learn such hyperpa-
rameters. Section 7.4 further expands on this point, but we can already
see benefits of the task-based nature of bilevel methods. Without the
bilevel approach, filters are often learned such that they best sparsify
training data. These sparsifying filters can then be used in a regularizer
for image reconstruction tasks. However, they are learned to sparsify,
not necessarily to best reconstruct. In contrast, the bilevel approach
aims to learn filters that best reconstruct images (or whatever other
task is desired), even if those filters are not the ones that best sparsify.
Although this distinction may seem subtle, [68] shows that different
filters work better for image denoising versus image inpainting.

Having provided some background on the lower-level cost function
and motivated bilevel methods, this review now turns to defining the
upper-level loss function and surveying methods of hyperparameter
optimization.

3

Background: Loss Functions and
Hyperparameter Optimization

Most inverse problems involve at least one hyperparameter. For example,
the general reconstruction cost function (2.1) requires choosing the
tuning parameter § that trades-off the influence of the data-fit and
regularization terms. The field of hyperparameter optimization is large
and encompasses categorical hyperparameters, such as which optimizer
to use; conditional hyperparameters, where certain hyperparameters are
relevant only if others take on certain values; and integer or real-valued
hyperparameters [69]. Here, we focus on learning real-valued, continuous
hyperparameters.

A hyperparameter’s value can greatly influence the properties of
the minimizer and a tuned hyperparameter typically improves over a
default setting [69]. Fig. 3.1 illustrates how changing a tuning parameter
can dramatically impact the visual quality of the reconstructed image.
If 5 is too low, not enough weight is on the regularization term, and
the minimizer is likely to be corrupted by noise in the measurements.
If B is too high, the regularization term dominates, and the minimizer
will not align with the measurements.

Generalizing to an arbitrary learning problem that could have mul-
tiple hyperparameters, the goal of hyperparameter optimization is to

31

Background: Loss Functions and
32 Hyperparameter Optimization

B=-6 f=-3 p=1

() (d) (¢)

Figure 3.1: Example reconstructed simulated MRI images that demonstrate
the importance of tuning parameters. (a) The original image, £'™¢ € RV, is
a SheppLogan phantom [70] and N is the number of pixels. (b) A simplistic
reconstruction %A’y of the noisy, undersampled data, y. This image is used
as initialization, (), for the following reconstructions. (c-e) Reconstructed

images, found by optimizing argmin,, %||Aw—y||§+10'8N¢(Cm), where C is an
operator that takes vertical and horizontal finite differences. The reconstructed
images correspond to (c) 8 = —6, resulting in an image that contains ringing
artifacts, (d) 8 = —3, resulting in a visually appealing &, and (e) 8 = 1,
resulting in a blurred image. The demonstration code and more details about
the reconstruction set-up are available on github [71].

find the “best” set of hyperparameters, ¥, to meet a goal, described by
a loss function £. Specifically, we wish to solve

¥ = argmin E [£(y)] (3.1)

yer
where I is the set of all possible hyperparameters and the expectation
is taken with respect to the distribution of the input data. If evaluating
¢ uses the output of another optimization problem, e.g., &, then (3.1)
is a bilevel problem as defined in (UL).
There are two key tasks in hyperparameter optimization.

1. The first is to quantify how good a hyperparameter is; this step
is equivalent to defining ¢ in (3.1). Section 3.1 focuses on a high-
level discussion of loss functions in the broader image quality
assessment (IQA) literature. Section 6.2 builds on this discussion

3.1. Image Quality Metrics 33

by reviewing specific loss functions used in bilevel methods.

2. The second step is finding a good hyperparameter, which is equiv-
alent to designing an optimization algorithm to minimize (3.1).
Section 3.2 introduces common approaches, all of which have
computational requirements that scale at least linearly with the
number of hyperparameters. This scaling quickly becomes infea-
sible for large y, which motivates the focus on gradient-based
bilevel methods in the remainder of this review.

The next two sections address each of these tasks in turn.

3.1 Image Quality Metrics

This section concentrates on the part of the upper-level loss function
that compares the reconstructed image, £(7y), to the true image, x'r"°.
As mentioned in Section 1, bilevel methods rarely require additional
regularization for y, but it is simple to add a regularization term to any
of the loss functions if useful for a specific application. To discuss only
the portion of the loss function that measures image quality, we use the
notation £(y; (y)) = (&, z"°).

Picking a loss function is part of the engineering design process.
No single loss function is likely to work in all scenarios; users must
decide on the loss function that best fits their system, data, and goals.
Consequently, there are a wide variety of loss functions proposed in the
literature and some approaches combine multiple loss functions [5], [72].

One important decision criteria when selecting a loss function is the
end purpose of the image. Much of the IQA literature focuses on metrics
for images of natural scenes and is often motivated by applications where
human enjoyment is the end-goal [73], [74]. In contrast, in the medical
image reconstruction field, image quality is not the end-goal, but rather
a means to achieving a correct diagnosis. Thus, the perceptual quality
is less important than the information content.

There are two major classes of image quality metrics in the IQA
literature, called full reference and no reference IQA'. The principles

IThere are also reduced-reference image quality metrics, but we will not consider
those here.

Background: Loss Functions and
34 Hyperparameter Optimization

are somewhat analogous to supervised and unsupervised approaches
in the machine learning literature. This section discusses some of the
most common full reference and no reference loss functions; see [75] for
a comparison of 11 full-reference IQA metrics and [76] for additional
no-reference IQA metrics.

Perhaps surprisingly, the bilevel filter learning literature contains few
examples of loss functions other than squared error or slight variants
(see Section 6.2). While this is likely at least partially due to the
computational requirements of bilevel methods (see Section 4 and 5),
exploring additional loss functions is an interesting future direction for
bilevel research.

3.1.1 Full Reference IQA

Full reference IQA metrics assume that you have a noiseless image,
¢ for comparison. Some of the simplest (and most common) full
reference loss functions are:

e Mean squared error (MSE or /5 error):

1 2

Insi (&, 270 = = & _ ptrue)
o Mean absolute error (or {1 error): Iyag(#, 27°) = % ||& — ™|,
« Signal to Noise Ratio (SNR, commonly expressed in dB):
. true el
Isnr (2, 2"¢) = 10log (W) (3.2)

« Peak SNR (PSNR, in dB): lpgnr (2, 1) = 10log <M>

[[&—atrue||;
The Euclidean norm is also frequently used as the data-fit teerfor
reconstruction.

MSE (and the related metrics SNR and PSNR) are common in the
signal processing field; they are intuitive and easy to use because they
are differentiable and operate point-wise. However, these measures do
not align well with human perceptions of image quality [75], [77]. For
example, scaling an image by 2 leads to the same visual quality but
causes 100% MSE. Fig. 3.2 shows a clean image and five images with

3.1. Image Quality Metrics 35

Figure 3.2: Example distortions that yield images with identical normalized
squared error values: ||z'™"¢ — x| /||"™¢| = 0.17. (a) The original image,
'™ is a SheppLogan phantom [70]. The remaining images are displayed with
the same colormap and have the following distortions: (b) blurred with an
averaging filter, (c) additive, white Gaussian noise, (d) salt and pepper noise,
and (e) a constant value added to every pixel.

different degradations. All five degraded images have almost equivalent
squared errors, but humans judge their qualities as very different.

Tuning parameters using MSE as the loss function tends to lead to
images that are overly-smoothed, sacrificing high frequency information
[78], [79]. High frequency details are particularly important for percep-
tual quality as they correspond to edges in images. Therefore, some
authors use the MSE on edge-enhanced versions of images to discourage
solutions that blur edges. For example, [80] used a “high frequency error
norm” metric consisting of the MSE of the difference of & and x*u°
after applying a Laplacian of Gaussian (LoG) filter.

Another common full-reference IQA is Structural SIMilarity (SSIM)
[81] that attempts to address the issues with MSE discussed above.
SSIM is defined in terms of the local luminance, contrast, and structure
in images. A multiscale extension of SSIM, called MS-SSIM, considers
these features at multiple resolutions [82]. The method computes the
contrast and structure measures of SSIM for downsampled versions
of the input images and then defines MS-SSIM as the product of the
luminance at the original scale and the contrast and structure measures
at each scale. However, SSIM and MS-SSIM may not correlate well with
human observer performance on radiological tasks [83].

Recent works, e.g., [76], [84], consider using (deep) CNN models for
IQA. CNN methods are increasingly popular and their use as a model

Background: Loss Functions and
36 Hyperparameter Optimization

for the human visual system [85] makes them an attractive tool for
assessing images. For example, [84] proposed a CNN with convolutional
and pooling layers for feature extraction and fully connected layers
for regression. They used VGG [86], a frequently-cited CNN design
with 3 x 3 convolutional kernels, as the basis of the feature extraction
portion of their network. Ref. [84] showed that deeper networks with
more learnable parameters were able to better predict image quality.
However, datasets of images with quality labels remain relatively scarce,
making it difficult to train deep networks.

3.1.2 No Reference IQA

No reference, or unsupervised, IQA metrics attempt to quantify an
image’s quality without access to a noiseless version of the image. These
metrics rely on modeling statistical characteristics of images or noise.
Many no reference IQA metrics assume the noise distribution is known.

The discrepancy principle is a classic example of an IQA metric that
uses an assumed noise distribution to characterize the expected relation
between the reconstructed image and the noisy data. For additive zero-
mean white Gaussian noise with known variance o2, the discrepancy
principle uses the fact that the expected MSE in the data space is the
noise variance [18]:

L oiaa 2
B[1480 - ylE] = 0%

The discrepancy principle can be used as a stopping criteria in machine
learning methods or as a loss function, e.g.,

2
ysam) = (7 1480 -yl - o)

However, images of varying quality can yield the same noise estimate,
as seen in Fig. 3.2. Related methods have been developed for Poisson
noise as well [87].

Paralleling MSE’s popularity among supervised loss metrics, Stein’s
Unbiased Risk Estimator (SURE) [88] is an unbiased estimate of MSE
that does not require noiseless images. Let y = x'™"® 4+ n denote a
signal plus noise measurement where n is, as above, Gaussian noise

3.1. Image Quality Metrics 37

with known variance 2. The SURE estimate of the MSE of a denoised
signal, &, is

1 202

3 18) — i3~ 0+ ST (V,8(9) (33)

where we write & as a function of y to emphasize the dependence and
Tr (-) denotes the trace operation. For large signal dimensions N, such as
is common in image reconstruction problems, the law of large numbers
suggests SURE is a fairly accurate approximation of the true MSE.

It is often impractical to evaluate the divergence term in (3.3), due
to computational limitations or not knowing the form of &(y). A Monte-
Carlo approach to estimating the divergence [89] uses the following key
equation:

Tr (V,2(y)) — lim E |- 28T = 2] (3.4)

e—0 €

where b is a independent and identically distributed (i.i.d.) random
vector with zero mean, unit variance, and bounded higher order moments.
Theoretical and empirical arguments show that a single noise vector can
well-approximate the divergence [89], so only two calls to the lower-level
solver &(y) are required. This method treats the lower-level problem like
a blackbox, thus allowing one to estimate the divergence of complicated
functions, including those that may not be differentiable.

See [90]-]92] for examples of applying the Monte-Carlo estimation
of SURE to train deep neural networks, and [93], [94] for two examples
of learning a tuning parameter using a bilevel approach with SURE as
the upper-level loss function. For extensions to inverse problems (where
A # I) and to noise from exponential families, see [95]-[97].

While SURE and the discrepancy principle are popular no-reference
metrics in the signal processing literature, there are many additional
no-reference metrics in the image quality assessment literature. These
metrics typically depend on modeling one (or more) of three things [74]:

e image source characteristics,

o image distortion characteristics, e.g., blocking artifact from JPEG

compression, and/or

e human visual system perceptual characteristics.

Background: Loss Functions and
38 Hyperparameter Optimization

As an example of a strategy that can capture both image source and
human visual system characteristics, natural scene? statistics character-
ize the distribution of various features in natural scenes, typically using
some filters [74], [98]. If a feature reliably follows a specific statistical
pattern in natural images but has a noticeably different distribution in
distorted images, one can use that feature to assign quality scores to
images. Some IQA metrics attempt to first identify the type of distortion
and measure features specific to that distortion, while others use the
same features for all images.

In addition to their use in full-reference IQA, CNN models have
be trained to perform no-reference IQA [84], [99]. For example, [99]
proposes a CNN model that extracts small (32 x 32) patches from
images, estimates the quality of each one, and averages the scores over all
patches to get a quality score for the entire image. Briefly, their method
involves local contrast normalization for each patch, applying (learned)
convolutional filters to extract features, maximum and minimum pooling,
and fully connected layers with rectified linear units (ReLUs). As with
most no reference IQAs, [99] trained their CNN on a dataset of human
encoded image quality scores (see [100] for a commonly used collection
of publicly available test images with quality scores). Unlike most
other IQA approaches, [99] used backpropagation to learn all the CNN
weights rather than learning a transformation from handcrafted features
to quality scores.

Interestingly, some of the no-reference IQA metrics [74], [98], [99]
approach the performance of the full-reference IQAs in terms of their
ability to match human judgements of image quality. This observation
suggests that there is room to improve full-reference IQA metrics and
that assessing image quality is a very challenging problem!

3.2 Parameter Search Strategies

After selecting a metric to measure how good a hyperparameter is, the
next task is devising a strategy to find the best hyperparameter accord-
ing to that metric. Search strategies fall into three main categories: (i)

2Natural scenes are those captured by optical cameras (not created by computer
graphics or other artificial processes) and are not limited to outdoor scenes.

3.2. Parameter Search Strategies 39

model-free, ¢-only; (ii) model-based, ¢-only; and (iii) gradient-based,
using both ¢ and V/. Model-free strategies do not assume any informa-
tion about about the hyperparameter landscape, whereas model-based
strategies use historical ¢ evaluations to predict the loss-function at
untested hyperparameter values.

The following sections describe common model-free and model-based
hyperparameter search strategies that only use £. See [9, Ch. 13 and
Ch. 20.6] for discussion of additional gradient-free methods for bilevel
problems, e.g., population-based evolutionary algorithms, and [101] for
a general discussion of derivative-free optimization methods.

The third class of hyperparameter optimization schemes are ap-
proaches based on gradient descent of a bilevel problem. The high-level
strategy in bilevel approaches is to calculate the gradient of the upper-
level loss function ¢ with respect to y and then use any gradient descent
method to minimize y. Although this approach can be computationally
challenging, it generalizes well to a large number of hyperparameters.
Section 4 and Section 5 discuss this point further and go into depth on
different methods for computing this gradient.

3.2.1 Model-free Hyperparameter Optimization

The most common search strategy is probably an empirical search, where
a researcher tries different hyperparameter combinations manually. A
punny, but often accurate, term for this manual search is GSD: grad|uate]
student descent [102]. Bergstra and Bengio [103] hypothesizes that
manual search is common because it provides some insight as the user
must evaluate each option, it requires no overhead for implementation,
and it can perform reliably in very low dimensional hyperparameter
spaces.

Grid search is a more systematic alternative to manual search. When
there are only one or two continuous hyperparameters, or the possible
set of hyperparameters, T', is small, a grid search (or exhaustive search)
strategy may suffice to find the optimal value, vy, to within the grid
spacing. However, the complexity of grid search grows exponentially
with the number of hyperparameters. Regularizers frequently have many
hyperparameters, so one generally requires a more sophisticated search

Background: Loss Functions and
40 Hyperparameter Optimization

strategy.

One popular approach is random search, which [103] shows is supe-
rior to a grid search, especially when some hyperparameters are more
important than others. There are also variations on random search, such
as using Poisson disk sampling theory to explore the hyperparameter
space [104]. The simplicity of random search makes it popular, and,
even if one uses a more complicated search strategy, random search can
provide a useful baseline or an initialization strategy. However, random
search, like grid search, suffers from the curse of dimensionality, and is
less effective as the hyperparameter space grows.

Another group of model-free blackbox strategies are population-
based methods such as evolutionary algorithms. A popular population-
based method is the covariance matrix adaption evolutionary strategy
(CMA-ES) [105]. In short, every iteration, CMA-ES involves sampling a
multivariate normal distribution to create a number of “offspring” sam-
ples. Mimicking natural selection, these offspring are judged according
to some fitness function, a parallel to the upper-level loss function. The
fittest offspring determine the update to the normal distribution and
thus “pass on” their good characteristics to the next generation.

3.2.2 Model-based Hyperparameter Optimization

Model-based search strategies assume a model (or prior) for the hyper-
parameter space and use only loss function evaluations (no gradients).
This section discusses two common model-based strategies: Bayesian
methods and trust region methods.
Bayesian methods fit previous hyperparameter trials’ results to a
model to select the hyperparameters that appear most promising to
evaluate next [106]. For example, a common model for the hyperparam-
eters is the Gaussian Process prior. Given a few hyperparameter and
cost function points, a Bayesian method involves the following steps.
1. Find the mean and covariance functions for the Gaussian Process.
The mean function will generally interpolate the sampled points.
The covariance function is generally expressed as a kernel function,
often using squared exponential functions [107].

2. Create an acquisition function. The acquisition function captures

3.2. Parameter Search Strategies 41

how desirable it is to sample (“acquire”) a hyperparameter setting.
Thus, it should be large (desirable) for hyperparameter values
that are predicted to yield small loss function values or that
have high enough uncertainty that they may yield low losses.
The design of the acquisition function thus trades-off between
exploring new areas of the hyperparameter landscape with high
uncertainty and a more locally focused exploitation of the current
best hyperparameter settings. See [107] for a discussion of specific
acquisition function designs.

3. Maximize the acquisition function (typically designed to be easy
to optimize) to determine which hyperparameter point to sample
next.

4. Evaluate the loss function at the new hyperparameter candidate.

These steps repeat for a given amount of time or until convergence.

The derivative-free, trust-region method (TRM) [108] is similar to
Bayesian optimization in that it involves fitting an easier to optimize
function to the loss function of interest, £, and then minimizing the easier,
surrogate function (the “model”). The “trust-region” in TRM captures
how well the model matches the observed ¢ values and determines the
maximum step at every iteration, typically by comparing the actual
decrease in ¢ (based on observed function evaluations) to the predicted
decrease (based on the model).

TRM requires only function evaluations, not gradients, to con-
struct and then minimize the model. However, unlike most Bayesian
optimization-based approaches, TRM uses a local (often quadratic)
model for £ around the current iterate, rather than a surrogate that fits
all previous points. In taking a step based on this local information,
TRM resembles gradient-based approaches.

Following the methods from [27], who assume an additively separable
and quadratic upper-level loss function?, e.g.,

J
U(y) = %Zf(v;:ﬁj(y)) = %Z(@](Y) _ $;rue)2’

j=1 Jj=1 ~
i (V&5 (y)

30ne could generalize the method to non-quadratic loss functions by approxi-
mating ¢ with its second order Taylor expansion.

42

Background: Loss Functions and
Hyperparameter Optimization

an outline for a TRM is

1. Create a quadratic model for the upper-level loss function.

(a)

Select a set of upper-level interpolating points and (approxi-
mately) evaluate r at each one. After an initialization, one
can generally reuse samples from previous iterations. Ref. [27]
discusses requirements on the interpolation set to guarantee a
good geometry and conditions for re-setting the interpolation
sample.

Estimate the gradients of r; by interpolating a set of R
samples (recall ¥ € FF) of the upper-level loss function. This
requires solving a set of R linear equations in R unknowns.

Model the upper-level by replacing r; with its tangent-plane
approximation: r;(y + &) ~ r(y) + (Vr;(y))'s, where Vr;(y)
is the estimated gradient from the previous step.

2. Minimize the model within some trust region to find the next

candidate set of upper-level parameters. By construction, this is

a simple convex-constrained quadratic problem.

3. Accept or reject the updated parameters and update the trust

region. If the ratio between the actual reduction and predicted
reduction is low, the model may no longer be a good fit, the
update is rejected, and the trust region shrinks.

Recall that evaluating ¢ is typically expensive in bilevel problems as

each upper-level function evaluation involves optimizing the lower-level

cost. Thus, even constructing the model for a TRM can be expensive.

To mitigate this computational complexity, [27] incorporated a dynamic
accuracy component, with the accuracy for the lower-level cost initially
set relatively loose (leading to rough estimates of £) but increasing

with the upper-level iterations (leading to refined estimates of ¢ as the

algorithm nears a stationary point).
A main result from [27] is a bound on the number of iterations to
reach an e-optimal point (defined as min, ||Vy£(y™)|| < ¢, where u

indexes the upper-level iterates). The bound derivation assumes (i) @

3.3. Summary 43

is differentiable in @, (i) @ is p-strongly convex, i.e., ®(x) — § 2|2
is convex for p > 0, (iii) the derivative of @ is Lipschitz continuous,
and (iv) the first and second derivative of the lower-level cost with
respect to x exist and are continuous. These requirements are satisfied
by the example filter learning problem (Ex), when A has full column
rank, and more generally when there are certain constraints on the
hyperparameters. The iteration bound is a function of the following:

e the tolerance e,

o the trust region parameters (parameters that control the increase
and decrease in trust region size based on the actual to predicted
reduction, the starting trust region size, and the minimum possible
trust region size),

o the initialization for y, and

e the maximum possible error between the gradient of the upper-
level loss function and the gradient of the model for the upper-
level loss within a trust region (when the gradient of ¢ is Lipschitz
continuous, this bound is the corresponding Lipschitz constant).

The number of iterations required to reach such an e-optimal point
is (’)(E%) [27] and the number of required upper-level loss function
evaluations depends more than linearly on R [109]. The growth with
the number of hyperparameters impedes its use in problems with many
hyperparameters. However, new techniques such as [110] may be able to
decrease or remove the dependency, making TRMs promising alterna-
tives to the gradient-based bilevel methods described in the remainder
of this review.

3.3 Summary

Turning from the discussion of the lower-level problem in Section 2, this
section concentrated on the other two aspects of bilevel problems: the
upper-level loss function and the optimization strategy.

The loss function defines what a “good” hyperparameter is, typically
using a metric of image quality to compare &(y) to a clean, training
image, x'*°. Variations on squared error are the most common upper-
level loss functions. It is well known from statistical estimation that the
estimator that minimizes MSE is the conditional mean, &(y) = E [z|y].

Background: Loss Functions and
44 Hyperparameter Optimization

Thus, if MSE is the true metric of interest, then lower-level problems
should be designed to try to approximate E [x|y] closely. Yet lower-level
formulations in most bilevel papers are not described as conditional
mean estimators or approximations thereof. Section 3.1 discussed many
other full reference and no reference options, including ones motivated
by human judgements of perceptual quality, from the image quality
assessment literature; Section 6.2 gives examples of bilevel methods
that use some of these other loss functions.

The second half of this section concentrated on model-free and
model-based hyperparameter search strategies. The grid search, CMA-
ES, and trust region methods described above all scale at least linearly
with the number of hyperparameters. Similarly, Bayesian optimization
is best-suited for small hyperparameter dimensions; [107] suggests it is
typically used for problems with 20 or fewer hyperparameters.

The remainder of this review considers gradient-based strategies
for hyperparameter optimization. The main benefit of gradient-based
methods is that they can scale to the large number of hyperparameters
that are commonly used in machine learning applications. Correspond-
ingly, the main drawbacks of a gradient-based method over the methods
discussed in this section are the implementation complexity, the per-
iteration computational complexity, and the differentiability requirement.
Sections 4 and 5 discuss multiple options for gradient-based methods.

4

Gradient Based Bilevel Methodology:
The Groundwork

When the lower-level optimization problem (LL) has a closed-form
solution, &, one can substitute that solution into the upper-level loss
function (UL). In this case, the bilevel problem is equivalent to a single
level problem and one can use classic single-level optimization methods
to minimize the upper-level loss. (See [60] for analysis and discussion of
some simple bilevel problems with closed-form solutions for &.) This
review focuses on the more typical bilevel problems that lack a closed-
form solution for &.

Although there are a wide variety of optimization methods for this
challenging category of bilevel problems, many methods are built on
gradient descent of the upper-level loss. The primary challenge with
gradient-based methods is that the gradient of the upper-level function
depends on a variable that is itself the solution to an optimization
problem involving the hyperparameters of interest. This section de-
scribes two common approaches for overcoming this challenge. The first
approach uses the fact that the gradient of the lower-level cost function
is zero at the minimizer to compute an exact gradient at the exact
minimizer. The second approach uses knowledge of the update scheme
for the lower-level cost function to calculate the exact gradient for an

45

Gradient Based Bilevel Methodology:
46 The Groundwork

approximation to the minimizer after a specific number of lower-level
optimization steps.

With this (approximation of the) gradient of the lower-level opti-
mization variable with respect to the hyperparameters, one can compute
the gradient of the upper-level loss function with respect to the hyper-
parameters, y. Section 5 uses the building blocks from this section to
explain various bilevel methods based on this gradient.

4.1 Set-up

Recall from Section 1.2 that a generic bilevel problem is

argmin £(y; &(y)) where &(y) = argmin ©(x;vy). (4.1)
2% x

For simplicity, hereafter we focus on the case F = R. Using the chain
rule, the gradient of the upper-level loss function with respect to the
hyperparameters is

VUY) = Vyl(y;2(v) + (V2 (v)) Val(y; 2(v)), (42)

where on the right hand side V., and V; denote partial derivatives w.r.t.
the first and second arguments of £(y; x), respectively. We typically
select the loss function such that it is easy to compute these partials.
For example, if ¢ is the squared error training loss, i.e., {(y;&(y)) =
5 [#(v) - 2'"]3, then

Vyl(y;#(y)) = 0 and Vo L(y;2(y)) = 2(y) — "™

The following sections survey methods to find the remaining, more
challenging piece in (4.2): the Jacobian V,&(y) € FV*! for a given
value of vy.

4.2 Minimizer Approach

The first approach finds the Jacobian V,&(y) by assuming the gradient
of ® at the minimizer is zero. There are two ways to arrive at the
final expression: the implicit function theorem (IFT) perspective (as in
[31], [111]) and the Lagrangian/KKT transformation perspective (as

4.2. Minimizer Approach 47

in [30], [32]). This section presents both perspectives in sequence. The
end of the section summarizes the required assumptions and discusses
computational complexity and memory requirements.

The first step in both perspectives is to assume we have computed
2(y) and that the lower-level problem 4.1 is unconstrained (e.g., no
non-negativity or box constraints). Therefore, the gradient of ® with
respect to and evaluated at & must be zero:

Vo®(;y) =V, O(2;v)=0. (4.3)
z=2(v)

After this point, the two perspectives diverge.

4.2.1 Implicit Function Theorem Perspective

In the IFT perspective, we apply the IFT (c¢f. [112]) to define a function
h such that &(y) = h(y,y). If we could write h explicitly, then the
bilevel problem could be converted to an equivalent single-level. However,
per the IFT, we do not need to define h, we only state that such an h
exists. Combining this definition with (4.3) yields

0=V,O(h(y,v);v) (4.4)

Using the chain rule, we differentiate both sides of (4.4) with respect
to y. The I in the equation below follows from the chain rule because
Vyy = I. We then rearrange terms to solve for the desired quantity,
noting that V,&(yv) = Vyh(y,v). Thus, evaluating all terms at & leads
to the Jacobian expression of interest:

0 =Vaa @(h(y,¥); V)Vyh(y,Y) + I - Vary ©(h(y, v); ¥)
Vyh(y,Y) = = [Vaa @by, ¥); V)] - Vay @ (h(y, v);)

Va2 (Y) = = [Vaa @(2;7)] 7' - Vay ©(2; 7). (4.5)
When O is strictly convex, the Hessian of @ is positive definite and
Ve @ (&;7y) is invertible.

Substituting (4.5) into (4.2) yields the following expression for the
gradient of the upper-level loss function with respect to y:

Vi) = Vyl(v;:2(Y) = (Vay®(@:¥)) (Vaa @ (&;7)) ' Val(v: 2).

Gradient Based Bilevel Methodology:
48 The Groundwork

If there is a closed-form solution to the lower-level problem, one can
verify that the IFT gradient agrees with the analytic gradient; see [111]
for examples.

4.2.2 KKT Conditions

In the Lagrangian perspective, (4.3) is treated as a constraint on the
upper-level problem, creating a single-level problem with N equality
constraints:

argmin £(y ;) subject to VO (x;y) = 0. (4.6)
Y

Using the KKT conditions to transform the bilevel problem into a single-
level, constrained problem is sometimes called the “KKT transformation”
of the bilevel problem. This transformation relates bilevel optimization
to mathematical programs with equilibrium constraints (MPEC); see [9,
Ch. 12] and some authors use approaches from the broader MPEC liter-
ature to approach bilevel problems [113]. The Lagrangian corresponding
to (4.6) is

L(z,y,v) = {(y;z) + v Vo0(z;Y)

where v € F¥ is a vector of Lagrange multipliers associated with the
N equality constraints in (4.6).

The Lagrange reformulation is generally well-posed because many
bilevel problems, such as (Ex), satisfy the linear independence constraint
qualification (LICQ) [8], [114]. The LICQ requires that the matrix of
derivatives of the constraint has full row rank [114], i.e.,

rank ([me(D(a: Y) Ve (z; y)D —N.

Strict convexity of @ (x ;y) is therefore a sufficient condition for LICQ to
hold. (Note the similarity to the IFT perspective, where strict convexity
is sufficient for the Hessian to be invertible.) Ref. [115] explores more
generally how bilevel problems relate to MPECs and when the global
and local minimizers of the KKT reformulation are minimizers of the
original bilevel problem.

The first KKT condition states that, at the optimal point, the
gradient of the Lagrangian with respect to must be 0. We can use

4.2. Minimizer Approach 49

this fact to solve for the optimal Lagrangian multiplier, ©:

()+vww®(Y)’) =0
(O (2;7)) ' Val(y; @)

Vel(#,y,0)

Substituting the expression for © into the gradient of the Lagrangian
with respect to y yields

VyL(&,v,0) = Vyl(y; &) + (Vay @ (&) &
=Vyl(v;2) = (Voy ®(2;7)) (Vau @ (#;7)) ' Val(y; 2),

which is equivalent to (4.8).

Ref. [32] generalized the Lagrangian approach to the case where
the forward model is defined only implicitly, e.g., as the solution to a
differential equation. The authors write the lower-level problem as

& = argmin min ||y — ﬂHg + R(x) s.t. e(y,x) =0, (4.7)
x Yy

where the constraint function, e, incorporates the implicit system
model. For example, when the forward model is linear (Ax), taking
e(§,x) = | Az — §||5 shows the equivalence of the approach here to the
one in [32].

4.2.3 Summary of Minimizer Approach

In summary, the upper-level gradient expression for the minimizer ap-
proach (i.e., when one “exactly” minimizes the lower-level cost function)
is

Vi(y) = Vyl(v;2) — (Vay@(@;7)) (Vaa® (&57)) " Val(y; 2).
(4.8)

Thus, for a given loss function and cost function, calculating the gradient
of the upper-level loss function (with respect to y) requires the following
components all evaluated at x = &: V {(y;x) € FZ, Vay@(xz;7Y) €
FNXE . ®(x;y) € FN*N and Vi l(y;x) € FV.

Continuing the specific example of learning filter coefficients and

Gradient Based Bilevel Methodology:
50 The Groundwork

tuning parameters (Ex), the components are:

K
Va®(#;y) = A'(Az —y) + D" e™& @ d.(cr @ x5 €)
k=1

Y
Vwck,sq)(:f3 ;Y) = eﬁo+ﬁk (é((ck ® @)(s)) + ék ® ((Z)(Ck €3 @) ® ;ﬁ<'5>>)
Y

Vee®(2;Y) = A'A + €Y e Cldiag(d.(ck ® £))Cy
k

Vally; &) = &(y) — ', (4.9)

Here, the notation (® means circularly shifting the vector & by %
elements, and ¢ s denotes the sth element of the kth filter ¢, where
s is a tuple that indexes each dimension of c¢;. Appendix C.1 gives
examples of using the (%) notation and derives Ve, (€ ® fcp ®x)),
which is the key step to expressing Vg, , @ (2 ;7). The other components
follow directly from V,®(&;vy) using standard gradient tools for matrix
expressions [116].

The minimizer approach to finding V£(y) uses the following assump-
tions:

1. Both the upper and lower optimization problems have no inequal-
ity constraints.

2. & is the minimizer to the lower-level cost function, not an ap-
proximation of the minimizer. This constraint ensures that (4.3)
holds.

3. The cost function @ is twice-differentiable in « and differentiable
with respect to « and vy.

4. The Hessian of the lower-level cost function, V,,®(x;7v), is in-
vertible; this is guaranteed when @ is strictly convex.

The first condition technically excludes applications like CT imaging,
where the image is typically constrained to be non-negative. However,
non-negativity constraints are rarely required when good regularizers
are used, so the resulting non-constrained image can still be useful in
practice [112].

4.2. Minimizer Approach 51

The second constraint is often the most challenging since the lower-
level problem typically uses an iterative algorithm that runs for a certain
number of iterations or until a given convergence criteria is met. As
previously noted, if there were a closed-form solution for &, then we
would not have needed to use the IFT or Lagrangian to find the partial
derivative of & with respect to y. Since one usually does not reach
the exact minimizer, the calculated gradient will have some error in
it, depending on how close the final iterate is to the true minimizer &.
Thus, the practical application of this method is more accurately called
Approximate Implicit Differentiation (AID) [117], [118]. Section 4.5
further discusses gradient accuracy.

The third condition disqualifies sparsity-promoting functions such
as the 0-norm and 1-norm as choices for ¢.

Finally, the fourth (strict convexity) condition is easily satisfied in
denoising problems where A = I whenever ¢ is convex. Common convex
¢ choices include (CRIN) and the Fair potential [119]. However, in
applications like compressed sensing where A’A is not positive definite,
the strict convexity of @ depends non-trivially on y. The condition is
likely to hold in practice for “good” values of y. Specifically, if ¢ is
strictly convex, then the condition will hold for any value of 'y such that
the null-space of the regularization term is disjoint from the null-space
of A and the regularization parameters are sufficiently large (e’ cannot
approach 0). To interpret this condition, recall that regularization helps
compensate for the under-determined nature of A (Section 2.1). Values
of vy that do not sufficiently “fill-in” the null-space of A will leave the
lower-level cost function under-determined. The task-based nature of the
bilevel problem should discourage these “bad” values, but this intuition
is insufficient to claim that the minimizer approach is well-defined at
all iterations. To ensure that the lower-level problem is strongly convex,
one could include a term like ||z||3 with a small positive regularization
parameter, like is done with elastic-net regularization [120].

4.2.4 Computational Costs

The largest cost in computing the gradient of the upper-level loss using
(4.8) is often finding (an approximation of) &. However, this cost is

Gradient Based Bilevel Methodology:
52 The Groundwork

difficult to quantify, as the IFT approach is agnostic to the lower-level
optimization methodology. To compare the bilevel gradient methods,
we will later assume the cost is comparable to the gradient descent
calculations used in the unrolled approach (described in Section 4.4).
However, this is an over-estimation of the cost, as the IFT approach
is not constrained to smooth lower-level updates, and one can use
optimization methods with, e.g., warm starts and restarts to reduce
this cost.

When the lower-level problem satisfies the assumptions above, and
assuming one has already found &, a straight-forward approach to com-
puting the gradient (4.8) would be dominated by the O(N?) operations
required to compute the Hessian’s inverse. For many problems, N is
large, and that matrix inversion is infeasible due to computation or
memory requirements. Instead, as described in [121], one can use a
conjugate gradient (CG) method to compute the matrix-vector product

(Vaa® (£:7))" Vol (v) (4.10)
because the Hessian is symmetric and positive definite (see assumption
#4 in the previous section). For a generic A, each CG iteration requires
multiplying the Hessian by a vector, which is O(N?).

CG takes N iterations to converge fully (ignoring finite numerical
precision), so the final complexity is still O(N?) in general. However,
the Hessian often has a special structure that simplifies computing the
matrix-vector product. Consider the running example of learning filters
per (Ex). The Hessian, as given in (4.9), multiplied with any vector
velFNis

vmm(D(:%;Y7 y) ‘U=

N
A'(Av) +e™)" Pk C- diag(¢.(cp ® £))- (Cpv) . (4.11)
—— L ~~ S =
N2 NS NS NS

The annotations show the multiplications required for each compo-
nent, where we used the simplifying assumption that the number of
measurements matches the number of unknowns (M = N).

As written, (4.11) does not made any assumptions on A, so the
first term is still computationally expensive. If A is the identity matrix

4.3. Translation to a Single Level 53

(as in denoising), the N? term could instead be zero cost. If A’A is
circulant, e.g., if A is a MRI sampling matrix that can be written in
terms of a discrete Fourier transform, then the cost is Nlog (N). More
generally, the computational cost for one (of N) iterations of CG is
O(caN) where c4 € [0, N] is some constant dependent on the structure
of A.

For the second addend in (4.11), we assume that S < N, so direct
convolution is most efficient and the matrix-vector product requires
O(NS) multiplies. When the filters are relatively large, one can use
Fourier transforms for the filtering, and the cost is O(Nlog(NN)). The
final cost of the Hessian-vector product for (Ex) is O(c4N + RN). This
cost includes a multiplication by K to account for the sum over all
filters, which simplifies since SK is' O(R).

If N is small enough that storing the inverse Hessian is feasible,
then one can estimate the Hessian inverse rather than computing it
directly. Consider using a quasi-Newton algorithm to find &, which
involves estimating the inverse Hessian as a pre-conditioning matrix for
the gradient steps. This inverse Hessian estimate can be “shared” to
efficiently approximate the inverse Hessian-vector product in (4.8) [89].
Ref. [122] used this strategy and also incorporated information from
the upper-level loss function to improve the estimated inverse Hessian
vector product while maintaining the super-linear convergence rate of
the quasi-Newton algorithm.

4.3 Translation to a Single Level

Before discussing the other widely used approach to calculating the
gradient of the upper-level loss, we summarize a specialized approach
for 1-norm regularizers. Like the minimizer approach described above,
this approach assumes we have computed an (almost) exact minimizer
of the lower-level cost function. It writes the minimizer as an (almost
everywhere) differentiable function in terms of that &, then substitutes
this expression for the minimizer into the upper-level loss to create a

!The full parameter dimension includes the filters and tuning parameters, so
R=S(K+1)+1.

Gradient Based Bilevel Methodology:
54 The Groundwork

single-level optimization problem that is suitable for one hyperparameter
update step.

Ref. [123] proposed the translation to a single-level approach to solve
a bilevel problem with both synthesis and analysis operators. Refs. [124],
[125] more recently presented versions specific to analysis operators.
The bilevel problem considered in [124], [125] is:

. Lo
argmin > 5l (v) = 253
J

() =argmin | & — ;3 + [9yal], (112)
zelFN

where 2, € FFXN is a matrix constructed based on y. We write £
without the y subscript and &;(y) without the j subscript in the
following discussion to simplify notation. As in the minimizer approach,
the first step is to compute &(y) for the current guess of vy, e.g., using
ADMM. After optimizing for &(y), [124], [125] both used the known
sign pattern of the filtered signal, Q&(y) to rewrite the lower-level
problem (4.12) in a simpler, (almost everywhere) differentiable form.
By rewriting the problem, the translation to a single level approaches
handle the non-smooth 1-norm in (4.12) directly—they do not require
any corner rounding as in the minimizer approach.

One way to rewrite the lower-level problem is to split the 1-norm
into its positive and negative elements, e.g.,

12, = > Q)i > Q&)
€L (v) i€Z_(v)
where 7, (y) and Z_(y) denote the set of indices where Q&(7y) is positive
and negative, respectively. Ref. [124] used this approach and defined
a diagonal sign matrix, S(y) = diag(sign(Q&(y))), having positive
and negative diagonal elements at the appropriate indices. For a single
training image, the lower-level problem (4.12) is thus equivalent to

A 1

2(y) = argmin _ || Az - yll5 + A1 S(y)Qe, s.t. [Qx]z,y) =0,
zeFN

(4.13)

where Zp(y) denotes the set of indices where [2&(y)]; = 0. The rewritten

problem (4.13) it is a quadratic cost function with a linear equality

4.3. Translation to a Single Level 55

constraint and thus has a closed-form solution. Ref. [124] states that
&(7y) is differentiable everywhere except a set of measure zero when
A = I and when the rows of Q corresponding to Zy(y) are linearly
independent.

Another way to rewrite (4.12) uses the results from [126]. The
lower-level problem (4.12) can be transformed into the dual problem

1 2 1 2)
Z||-¥'d - = t.|d;| <1 V. 4.14
min Llva syt Ll sl <1

where the dual variable d is related to the filtered signal by

0 c {sign([ﬂmm if [Q&]; # 0

[-1,1] if [Q&]; =0 (4.15)

(compare to (A.9) and (A.13) in Appendix A). Ref. [126] defines bound-
ary indices as the set of indices where the dual variable is at the edges
of its allowed range: B := {i : |d;| = 1}. The complement to this set
is B:= {i:|d;] # 1} and contains all coordinates where d is in the
interior of its allowed range. Let Qg4 € FIZXN contain the rows of Q
that correspond to B and similarly for 2. By taking the gradient of
the Lagrangian of the dual formulation and then substituting the dual
variable minimizer into (A.11), [126] derives the following closed-form
expression for &

&= (I-Q5Qp) (y — Qpsign(Qp)), (4.16)

which is a projection onto the null space of 2 5. Thus, similar to splitting
the 1-norm based on the sign of Q&, splitting the dual variable into
boundary and interior indices yields a rewritten problem with a simpler
structure.

Ref. [125] used (4.16) to rewrite the lower-level problem (4.12) and
then used matrix gradient relations to derive a closed-form expression
for Vy&(y). Unlike [124], the final upper-level gradient V/(y) in [125]
does not require that the rows of € that are orthogonal to &(y) are
linearly independent.

In both (4.13) and (4.16), the rewritten problem has the same
minimizer as the original problem (4.12), but the reformulated problem
has a simpler structure. Recall that the rewriting process requires &(y),

Gradient Based Bilevel Methodology:
56 The Groundwork

so one cannot use this equivalence to optimize the lower-level problem.
However, the closed-form expressions can be differentiated. Because of
the discontinuity of the sign function, both methods require the sign
pattern of 2& to be constant within a region to compute an accurate
gradient [124], [125]. The authors have shown that this condition holds
in various empirical settings [127].

In summary, the translation to a single level approach involves
computing &, creating a closed-form expression for &, and then differ-
entiating the closed-form expression to compute the desired Jacobian,
Vy&(v). As in the minimizer approach, V,&(y) is related to the upper-
level gradient by the chain rule (4.2). In terms of computation, both
translation to a single level approaches require optimizing the lower-level
cost sufficiently precisely to ensure the sign pattern converges; [125]
used thousands of iterations of ADMM. Ref. [125] demonstrates that
evaluating the closed-form expression for V/(y) is faster than using
automatic differentiation tools that rely on backpropagation.

4.4 Unrolled Approaches

A popular approach to finding V,&(7y) is to assume that the lower-level
cost function is approximately minimized by applying T iterations of
some (sub)differentiable optimization algorithm, where we write the
update step at iteration t € [1...7] as

2 = U y),

for some mapping ¥ : FV — FV that should have the fixed-point
property ¥(&(y);v) = &(y). For example, GD has ¥(z;y) = = —
apVO(x;y) for some step size agp. We write the update here only
in terms of @; the idea easily extends to updates in terms of a state
vector that allows one to include momentum terms, weights, and other
accessory variables in y [128].

In contrast to the two approaches described above, the “unrolled”
approach no longer assumes the solution to the lower-level problem is
an exact minimizer. Instead, the unrolled approach reformulates the

4.4. Unrolled Approaches 57

bilevel problem (LL) as
argmin ¢ (y; zD) (y)) s.t. (4.17)
Y

e (y) =0(zV;y), vte[l...T],

where () is an initialization, e.g., A’y. One can then take the (sub)gradient
of a finite number T' of iterations of ¥, hoping that (*) approximately
minimizes the lower-level function ©.

The chain rule for derivatives is the foundation of the unrolled
method. The gradient of interest, V£(y), depends on the gradient of the
optimization algorithm step with respect to & and y. For readability,
define the following matrices for the tth unrolled iteration

H, = V,0 (m(t—l) ;y) e FVN and J, i= VU (m(t—l) ;Y) e FNXE,

for t € [1,T]. We use these letters because, when using gradient descent
as the optimization algorithm, V,U(x;vy) is closely related to the
Hessian of ® and V,V¥(x;7y) is proportional to the Jacobian of the
gradient?. Thus, when ¥ corresponds to GD, an unrolled approach
involves computing the same quantities as required by the IF'T approach
(4.8).
By the chain rule, the gradient of (4.17) is
T !/
VIy) =Vyl(y;2™) + (Z (Hr---Hyipq) Jt) Val(y;a™)) e FR
t=1
(4.18)

One can derive this gradient expression using a reverse or forward
perspective, with parallels to back-propagation through time and real-
time recurrent learning respectively [128]. Appendix B describes the
reverse and forward approaches to unrolling.

Most unrolled implementations use the reverse-mode approach (back-
propagation) due to its lower computational burden, but unrolling with
reverse mode differentiation may have prohibitively high memory re-
quirements if T is large or if the training dataset includes large images

*When ¥(x;y) = — aoVaD(x;Y), then VoU(z;Y) = I — 0o Vea®(x;Y)
and V,U(z;y) =-aoVay @(z;y).

Gradient Based Bilevel Methodology:
58 The Groundwork

[68]. A strategy to trade-off the memory and computation requirements
is checkpointing, which stores x every few iterations. Checkpointing is
an active research area; see [129] for an overview. Another option is to
use (some or all) reversible network layers [130] to trade off the memory
and computational requirements.

The following sections overview some design decisions for unrolling
and draw some parallels to unrolled methods as used in the (non-bilevel
specific) machine learning literature. Section 7.1 further discusses the
relation between bilevel problems and unrolling methods common in
the broader literature.

4.4.1 Number of lterations

Unlike the minimizer approach, where the goal is to run the lower-level
optimization until (close to) convergence so that an optimally condition
holds and one can use implicit differentiation to find V/(y), most
unrolling methods set the number of lower-level iterations 7" in advance.
The set number of lower-level iterations mimics the depth of neural
networks and allows a precise estimate of how much computational effort
each lower-level optimization takes. The chosen number of iterations
is important as, at test time, “one cannot deviate from the choice of
[number of unrolled iterations] and expect good performance” [131].

Although it is generally not equal to the gradient of the original
bilevel problem (UL), the unrolled gradient is exact for the reformulated
problem (4.17). Therefore, when 7T is small enough that the lower-
level optimizer is far from convergence, the unrolled method is only
loosely tied to the original bilevel optimization problem. To maintain
a stronger connection to the bilevel problem while avoiding setting T
larger than necessary for convergence, [132] used a convergence criterion
to determine the number of W iterations rather than pre-specifying a
number of iterations. Unrolling until convergence is also used in deep
equilibrium or fixed point networks, see Section 7.2.

A subtle point in unrolling gradient-based methods for the lower-
level cost function is that the Lipschitz constant of its gradient is a
function of the hyperparameters, so the step size range that ensures
convergence cannot be pre-specified. Many unrolled methods use a

4.4. Unrolled Approaches 59

fixed step size alongside a fixed T' and allow the learned parameters to
adapt to these set values. An alternative approach is to compute a new
step-size as a function of the current parameters, y(“), every upper-level
iteration. For example, from (C.5), for a given value y of the tuning
parameters and filter coefficients, a Lipschitz constant of the lower-level
gradient for (Ex) is

L=07(A)+ePL;> ™ |lelf;, (4.19)
k

where L is a Lipschitz constant for #(z) (for (CRIN), Ly=1/e). A
reasonable step size for the classical gradient descent method would be
1/L. Tt is relatively inexpensive to update this L as y evolves.

The adaptive approach to setting the step size ensures that any
theoretical guarantees of the lower-level optimizer hold. This approach
may be beneficial when using a convergence criteria for the lower-level
optimization algorithm or when running sufficiently many lower-level
iterations to essentially converge. However, updating the step-size every
upper-level iteration is incompatible with fixing the number of unrolled
iterations. To illustrate, consider an upper-level iteration where the
tuning parameters increase, leading to a larger L and a smaller step size.
In a fixed number of iterations, the smaller step size means the lower-
level optimization algorithm will be farther from convergence, and the
estimated minimizer, £(y(**1)), may be worse (as judged by the upper-
level loss function) than &(y(), even if the updated hyperparameters
are better when evaluated with the previous (larger) step-size or more
lower-level iterations.

Another approach is to learn the step-size and/or number of itera-
tions. For example, [25] provides a continuous-time perspective on the
unrolling approach and learns the stopping time, which translates to
the number of iterations in the discrete approach.

The continuous time perspective on unrolling models the lower-level
problem as a differential equation with an initial condition enforc-
ing that « at time 0 is @ [25], [133]. Just as the unrolled approach
better approximates the bilevel problem as the number of iterations
approaches infinity, the continuous perspective on unrolling approaches
the bilevel problem as the stopping time T — co. The discretization of

Gradient Based Bilevel Methodology:
60 The Groundwork

the continuous-time gradient flow corresponds to an unrolled optimiza-
tion algorithm (or, more generally, to a variational network with shared
weights) and back-propagation can be seen as a discretization of the
continuous-time adjoint equation [25], [133]. Solving the differentiable
adjoint equation does not require saving the forward-pass output at
every “step,” making the backward pass feasible for large problems such
as 3D CT image reconstruction [134].

Like many other bilevel methods for filter learning, [25] uses a
regularizer based on the Field of Experts [55] and the standard data-fit
term. The lower-level problem in [25] is
dx(t)

dt

State equation:

=-A'(Az(t) —y) — Y _ Crou(Cra(2))
K

Initial condition: x(0) = =,

where [25] learns a separate penalty function for each filter. Ref. [25]
found that beyond a certain depth, increasing the number of layers
did not significantly decrease the upper-level loss. Further, following
intuition, the learned stopping time increased with higher noise levels
or blur strengths in the denoising and deblurring problem settings [25].

4.4.2 Application to Non-smooth Cost Functions

An important distinction between the minimizer approach and the
unrolled approach is that the unrolled approach depends on the opti-
mization algorithm. Therefore, in addition to the number of iterations
and step size, one must select an optimization algorithm to unroll. The
choice is typically driven by parameters such as memory availability and
desired run-time, with the one requirement being that ¥ be differen-
tiable in both @ and y. For certain cost functions, a resulting advantage
of the unrolling method is that one can use a smooth ¥ to optimize a
non-smooth cost function, removing the need for smoothing techniques
such as used in (CRIN).

Ochs et al. [14] describe one such smooth update algorithm for a
non-smooth cost function. At a high-level, their approach is to:

1. transform the lower-level cost function to a primal-dual, saddle-
point problem, using the Legendre-Fenchel conjugate of ¢ (defined

4.4. Unrolled Approaches 61

in Appendix A),

2. use a forward-backward splitting algorithm to alternatively update
the primal (z) and dual (d) variables, and

3. replace the Euclidean norm in the proximal operator in the dual
variable update equation with a Bregman divergence measure.

If the Bregman divergence measure is chosen carefully, the resulting
update is smooth and standard backpropagation tools can compute
V{(y). This section overviews how the approach in [14] applies to (Ex).
Ref. [14] derives the full backpropagation formula and uses Bregman
divergences to unroll non-smooth cost functions in a multi-label segmen-
tation problem, but the approach generalizes to image reconstruction
as shown here.

Using the stacked convolutional matrix notation for the learned
filters defined in (2.7) and selecting ¢ to be the absolute value function?,
the lower-level optimization problem is

1
argmin | Az — y|* + 2]
From (A.8), the corresponding saddle-point formulation is
1
argminmjn §||Am —y|? - (d,Qx) s.t. |d;| <1V,
xr

where d is the dual variable. The minimum cost value and corresponding
minimizer, &, of the saddle-point problem are equivalent to those of the
original problem because the 1-norm is convex.

To optimize the saddle-point problem, one can alternate x and
z updates. Ref. [14] uses the primal-dual algorithm from [135] that
introduces a proximity function to each update step:

2D = argmin %HAZL' —y|> = (d?, Qx) + i1/D.(:13, z®)
x o

X

1 ~
dV) = argmin —1'D.(d,d) — (d, Q&) s.t. |d;| < 1Vi, (4.20)
d ad

3When using the absolute value, one can absorb the tuning parameters 3 into
the filter magnitudes, conveniently reducing the dimension of y.

Gradient Based Bilevel Methodology:
62 The Groundwork

where & and d are defined in terms of previous iterates, e.g., when
including momentum, and ay and aqg are step size parameters chosen
according to the theory in [135]. The @ update is a smooth, quadratic
problem and is straight-forward. However, the standard dual update
involves a non-smooth projection; in particular, if the proximal distance
function is the standard Euclidean 2-norm, i.e., D(d,d) = $(d— d)?,
then the d update is the projection

d(t+1) = sjgn.(d+ ozdﬂi:) ® min.(l, |J + adﬂi\),

which is non-smooth.

To make the d update smooth, [14] replaces the standard Euclidean
norm in the proximity operator with a Bregman divergence. For the
1-norm regularizer, [14] considers the divergence measure

D(d,d) = ¥(d) — ¥(d) — V(d)' (d — d) (4.21)

where t(d) = % ((d+ 1)log (d + 1) + (1 — d)log (1 — d)). Similar to stan-

dard distance metrics, this Bregman divergence is zero when d = d.
However, it is not symmetric, i.e., D(d,d) # D(d,d) in general. Using
this definition for D, one can differentiate and solve for the minimizer
in the d update (4.20) [14]. Because all the functions are separable, the
update can be done independently for each d coordinate:

e20a[Qa]; _ 1=d;

4D = Lid; (4.22)
e2ca[Qx]; };ZJ

4+

When the step-size ag approaches infinity, approaches +1 (its

extreme values). When a4 approaches 0, dl(»tH) = d;. The updated
coordinate is guaranteed to satisfy the constraint |d;| < 1 whenever
d; does, so there is no need for a (non-smooth) projection. Although
this approach allows for applying the unrolled method to non-smooth
cost functions, [14] comments that “the [equivalent of a] ‘smoothing
parameter’ in our approach is the number of iterations of the algorithm
that replaces the lower level problem.” Fig. 4.1 demonstrates how the
number of iterations impacts the effective smoothing for a simple version
of the problem where A =1 and 2 = 1.

4.4. Unrolled Approaches 63

0.5 -Iterations 0.5 b
— 5 —0.05
= 10 —0.25
5 ||—20 0.5
=4 —40 1.0 /
0 s . . | 0 . - i |
0 0.5 1 0 0.5 1
Y Y
(a) Estimate using the Bregman (b) Proximal operator with
divergence. p = 3/2 term.
1
Figure 4.1: Proximal operators for R(z) = §|x\ and some smooth rela-

tives. The black line in both plots is the soft thresholding function, which
is the proximal operator for the absolute value function, i.e., prox(y) =
1 1

argmin, —(z — y)2 + =|z|. (a) As described in [14], the number of iterations
of the primal-dual algorithm with the Bregman proximity function acts as
a smoothing parameter for the proximal operator estimate and the estimate
improves as the number of iterations increases (from light to dark lines). (b)
Smooth proximal operator for the non-smooth penalty function (4.23) for
p = 3/2, B = 0.5, and four different values of 3. The proximal operator is
closer to soft thresholding for smaller values of § (darker lines).

Ref. [68] uses the same saddle-point problem as in [14] to propose
another approach to computing V/(y). Instead of unrolling an algorithm
and then back-propagating, [68] uses a sensitivity analysis and introduces
additional adjoint variables that allow for simultaneously computing
V{(7y) in the same forward iteration as &(y), without incurring the large
matrix-matrix multiplications costs as in the forward-mode method of
computing (4.18). Although the theoretical analysis of the resulting
“piggy-backing” optimization algorithm is for smooth functions, [68]
found it worked well empirically in non-smooth settings.

Christof [136] shows another approach to achieving a smooth opti-
mization algorithm for a non-smooth cost function. Ref. [136] specifically
considers cost functions with penalty functions of the form

B(2) = Blz| + QB’zp‘p for 1 <p< 2. (4.23)

As a simple demonstration, in the case where there are no convolutional

Gradient Based Bilevel Methodology:
64 The Groundwork

filters and p = 3/2, the lower-level cost function is the proximal operator

1
prox,(y) = argmin 3 (& — 9)° + ¢(a)

Differentiating and solving for the minimizer yields
2

_ Jsen) (VB el -5) it >

0 else,

prox,(y

which is continuous and differentiable everywhere with respect to y
despite the non-differential absolute value function in ¢! Fig. 4.1 shows
this proximal operator alongside the proximal operator when ¢(z) = |z|
(soft thresholding). Ref. [136] proves that this simple example generalizes
to the bilevel problem of learning filters.

4.5 Summary

This section focused on computing V/(y), the gradient of the upper-level
loss function with respect to the learnable parameters. Section 5 builds
on this foundation to consider optimization methods for bilevel problems.
Many of those optimization methods can be used in conjunction with
the minimizer, translation to a single level, or unrolled approaches to
compute V£(y). Thus, how one selects an approach may depend on the
structure of the specific bilevel problem, how closely tied one wishes to
be to the original bilevel problem, computational cost, and/or gradient
accuracy.

The translation to a single level approach is tailored to a specific type
of bilevel problem. A benefit of the translation approach is the ability
to use the 1-norm (without any corner rounding) in the lower-level cost
function. However, the corresponding drawback is the (current) lack
of generality in the minimizer approach; the closed-form expression
derived in [123]-[125] is specific to using the 1-norm as ¢. Expanding
this approach to regularizers other than the 1-norm is a possible avenue
for future work.

One difference among the methods is whether they depend on the
lower-level optimization algorithm; while the unrolled approach depends

4.5. Summary 65

on the specific optimization algorithm, the minimizer approach and the
translation to a single level approach do not. A resulting downside of
unrolling is that one cannot use techniques such as warm starts and

T) may be farther from the minimizer

non-differentiable restarts, so !
than the approximation from a similar number of iterations of a more
sophisticated, non-differentiable update method. However, the unrolled
method’s dependence on V¥ is also a benefit, as an unrolled method can
be applied to non-smooth cost functions, as long as the resulting update
mapping ¥ is smooth. Further, defining ¥ and the initial starting
point ensures that D) is unique, avoiding concerns about non-unique

minimizers.

Another advantage of unrolling is that one can run a given number
of iterations of the optimization algorithm, without having to reach
convergence, and still calculate a valid gradient. Particularly in image
reconstruction problems, where finding & exactly can be time intensive,
the benefit of a more flexible run-time could outweigh the disadvantages.
However, the corresponding downside of unrolling is that the learned
hyperparameters are less clearly tied to the original cost function than
when one uses the minimizer approach. Section 7.1 further discusses
this point in connection to how unrolling for bilevel methods can differ
from (deep) learnable optimization algorithms.

One way to connect the minimizer and unrolling strategies is to
consider the limit as the number of unrolled iterations approaches
infinity. Assuming the optimization algorithm converges, this “fixed
point” approach is strongly related to the minimizer approach. For
instance, [137] shows that backpropagating through the last T iterations
of a converged unrolled algorithm can be viewed as approximating
the matrix inverse in the minimizer gradient equation (4.8) with an
order-T" Taylor series. Section 7.2 further discusses how fixed point
networks (or “equilibrium networks”) relate the unrolled-to-convergence
and minimizer approaches.

Gradient accuracy and computational cost are, unsurprisingly, trade-
offs. Tab. 4.1 summarizes the cost of the minimizer and unrolled ap-
proaches, derived in Section 4.2.4 and Appendix B respectively, but the
total computation will depend on the required gradient accuracy. By

Gradient Based Bilevel Methodology:
66 The Groundwork

accuracy, we mean error from the true bilevel gradient

IVre(y) = Ve) |,
—_—— ——

Estimated True bilevel
gradient gradient

where T denotes the number of lower-level optimization steps. The
unrolled gradient is always accurate for the unrolled mapping, but
not for the original bilevel problem. Therefore, unrolling may be more
computationally feasible when one cannot run a sufficient number of
lower-level optimization steps to reach close enough to a minimizer to
assume the gradient in (4.3) is approximately zero [29].

In all of the approaches considered, the accuracy of the estimated
hyperparameter gradient in turn depends on the solution accuracy or
number of unrolled iterations of the lower-level cost function. Ref. [124]
notes that their translation to a single level approach failed if they
did not optimize the lower-level problem to a sufficient accuracy level.

Minimizer Unrolled: reverse Unrolled: forward
Memory 0 O(TN) O(NR)
Hessian-vector 0 o) O(TR)
products
Hessian-inverse 1 0 0
vector products
Other multipli- NR O(TNR) O(NR)
cations

Table 4.1: Memory and computational complexity of the minimizer approach
(4.8), reverse-mode unrolled approach (B.2), and forward-mode unrolled ap-
proach (B.3) to computing V. £(y;&(y)). Computational costs do not include
running the optimization algorithm (typically expensive but often comparable
across methods), computing V4¢(y;x(™)) (typically cheap), or computing
Vl(y;x) (frequently zero). Memory requirements do not include storing a
single copy of ¢, A, v, H and J. Recall € FY, vy € FE, and there are T
iterations of the lower-level optimization algorithm for the unrolled method.
Hessian-vector products (first row) and Hessian-inverse-vector products (mid-
dle row) are listed separately from all other multiplications (last row) as the
computational cost of Hessian operations can vary widely; see discussion in
Section 4.2.4.

4.5. Summary 67

However, [123]-[125] did not investigate how the solution accuracy of
the lower-level problem impacts the upper-level gradient estimate.

For the minimizer and unrolled approaches, [117], [118] found that
the gradient estimate from the minimizer approach converges to the true
gradient faster than the unrolled approach (in terms of computation).
To state the bounds, [117], [118] assert conditions on the structure of
the bilevel problem. They assume that &(y) is the unique minimizer of
the lower-level cost function, the Hessian of the lower-level is invertible,
the Hessian and Jacobian of ® are Lipschitz continuous with respect to
x, the gradients of the upper-level loss are Lipschitz continuous with
respect to @, the norm of x is bounded, and the lower-level cost is
strongly convex and Lipschitz smooth for every y value. Section 5.3.1
discusses similar investigations that use these conditions, how easy or
hard they are to satisfy, and how they apply to (Ex).

Ref. [118] initializes the lower-level iterates for both the unrolled
and minimizer approach with the zero vector, i.e., ® = 0. Under
their assumptions, [118] prove that both the unrolled and minimizer
gradients converge linearly in the number of lower-level iterations when
the lower-level optimization algorithm and conjugate gradient algorithm
for the minimizer approach converge linearly. Although the rate of the
approaches is the same, the minimizer approach converges at a faster
linear rate and [118] generally recommends the minimizer approach,
though they found empirically that the unrolled approach may be more
reliable when the strong convexity and Lipschitz smooth assumptions
on the lower-level cost do not hold.

Ref. [117] extended the analysis from [118] to consider a warm start
initialization for the lower-level optimization algorithm. They similarly
find that the minimizer approach has a lower complexity than the
unrolled approach. Sections 5.3.2 and 5.3.3 further discuss complexity
results after introducing specific bilevel optimization algorithms.

5

Gradient-Based Bilevel Optimization Methods

The previous section discussed different approaches to finding V4(y),
the gradient of the upper-level loss function with respect to the learnable
parameters. Building on those results, we now consider approaches for
optimizing the bilevel problem. In particular, this section concentrates
on gradient-based algorithms for optimizing the hyperparameters. While
there is some overlap with single-level optimization methods, this section
focuses on the challenges due to the bilevel structure. Therefore, we
do not discuss the lower-level optimization algorithms in detail; for
overviews of lower-level optimization, see, e.g., [41], [138].

Gradient-based methods for bilevel problems are an alternative to
the approaches described in Section 3, e.g., grid or random search,
Bayesian optimization, and trust region methods. By incorporating
gradient information, the methods presented in this section can scale
to problems having many hyperparameters. In fact, Section 5.3 reviews
papers that provide bounds on the number of upper-level gradient
descent iterations required to reach a point within some user-defined
tolerance of a solution. While the bounds depend on the regularity of
the upper-level loss and lower-level cost functions, they do not depend
on the number of hyperparameters nor the signal dimension. Although

68

5.1. Double-Loop Algorithms 69

having more hyperparameters will increase computation per iteration,
using a gradient descent approach means the number of iterations need
not scale with the number of hyperparameters, R.

Bilevel gradient methods fall into two broad categories. Most gradient-
based approaches to the bilevel problem fall under the first category:
double-loop algorithms. These methods involve (i) optimizing the lower-
level cost, either to some convergence tolerance if using a minimizer
approach or for a certain number of iterations if using an unrolled
approach, (ii) calculating V£(vy), (iii) taking a gradient step in y, and
(iv) iterating. The first step is itself an optimization algorithm and may
involve many inner iterations, thus the categorization as a “double-loop
algorithm.”

The second category, “single-loop” algorithms, involve one loop,
with each iteration containing one gradient step for both the lower-level
optimization variable, &, and the upper-level optimization variable, y.
Single-loop algorithms may alternate updates or update the variables si-
multaneously. Section 4 used ¢ to denote the lower-level iteration counter;
this section introduces u as the iteration counter for the upper-level
iterations and as the single iteration counter for single-loop algorithms.

5.1 Double-Loop Algorithms

After using one of the approaches in Section 4 to compute the hyper-
parameter gradient V{(7y), typical double-loop algorithms for bilevel
problems run some type of gradient descent on the upper-level loss.
Alg. 1 shows an example double-loop algorithm [139]. Line 10 of Alg. 1
uses the CG method to compute the product of the Hessian inverse with
a vector in (4.8). Thus, Alg. 1 actually involves three loops. However,
the third, CG loop is often left as an implementation detail and we will
continue to use the term “double-loop” for the overall strategy. There is
similarly a third, hidden loop in approaches that use the reverse mode
method for backpropogation in the unrolled approaches described in
Section 4.4.

The final iterate of a lower-level optimizer is only an approxima-
tion of the lower-level minimizer. However, the minimizer approach to
calculating the upper-level gradient V/(y) from Section 4.2 assumes

70 Gradient-Based Bilevel Optimization Methods

Loss function Angle between estimated and true gradient (°)
10°
1
1072
1071
co 0-15 ¢ 0-15 o 107°

(a) (b)ezzlo—l (c)e=10""3 (d)e::10*5

Figure 5.1: Error in the upper-level gradient, V{(y), for various convergence
thresholds for the lower-level optimizer. The bilevel problem is (Ex) with a
single filter, ¢ = [cp 1], e =0, e’ = =5, and ¢(z) = 2% so there is an
analytic solution for V(). The training data is piece-wise constant 1d signals
and the learnable hyperparameters are the filter coefficients. (a) Upper-level
loss function, £(y). The cost function is low (dark) where ¢; & ¢, corresponding
to approximate finite differences. The star indicates the minimum. (b-d) Error
in the estimated gradient angle using the minimizer approach (4.8), defined as
the angle between V/ (v) and V£(y), when the lower-level optimization is run
until ||Vz®(x;v)|, <e.

Vz®(&;7v) = 0. Any error stemming from not being at an exact critical
point can be magnified in the full calculation (4.8), and the resulting
hyperparameter gradient will be an approximation of the true gradient,
as illustrated in Fig. 5.1. Thus, how accurately one optimizes the lower-
level problem can greatly impact the quality of the learned parameters,
¥ [140]. Alternatively, if one uses the unrolled approach with a set
number of iterations (4.17), the gradient is accurate for that specific
number of iterations, but the lower-level optimization sequence may not
have converged and the overall method may not accurately approximate
the original bilevel problem.

Due to such inevitable inexactness when computing V/(7y), one may
wonder about the convergence of double-loop algorithms for bilevel
problems. Considering the unrolled method of computing V£(vy), [141]
showed that the sequence of hyperparameter values in a double-loop
algorithm, y(*), converges as the number of unrolled iterations increases.
To prove this result, [141] assumed the hyperparameters were constrained
to a compact set, £(y;) and ®(x;7y) are jointly continuous, there

5.1. Double-Loop Algorithms 71

Algorithm 1 Hyperparameter optimization with approximate gradi-
ent (HOAG) from [139]. As written below, the HOAG algorithm is
impractical because it uses #(y(®) in the convergence criteria; how-
ever, for strongly convex lower-level problems, the convergence criteria,
|&(y™) — 2® (y®)||, is easily upper-bounded.

1: procedure HOAG ({e™ v =1,2,...}, (O, 2 ¢)
2 for v do=0,1,. .. > Upper-level iteration counter
3 t=20 > Lower-level iteration counter
) while [2(y®) — 20 (y)[> ¢ do
5: 2D = U (x® ;yW) Lower-level optimization step
6 t=t+1
7 end while
8 Compute gradient V £(y™ ;") and
9: Jacobian Vg, @ (z® ;y®)
10: Using CG, find q such that

Ve @ (2D y() g — Vol (y™ ;20| < e
1 g =Tyl :20) — (Vay @(a®:v™)) g > From (4.8)
12: yutl) = (w) %g > L is a Lipschitz constant of V/(y)
13: end for
14: return y(“+t1)

15: end procedure

is a unique solution &(y) to the lower-level cost for all y; and &(y)
is bounded for all y. These conditions are satisfied for problems with
strictly convex lower-level cost functions and suitable box constraints
on y. Section 5.3.2 further discusses convergence results for double-loop
algorithms.

Pedregosa [139] proved a similar result for the minimizer formula
(4.8) using CG to compute (4.10). Specifically, [139] showed that the
hyperparameter sequence convergences to a stationary point if the
sequence of positive tolerances, {e*),u = 1,2,...} in Alg. 1, is summable.
The convergence results are for the algorithm version shown in Alg. 1
that uses a Lipschitz constant of ¢(y), which is generally unknown.
Although [139] discusses various empirical strategies for setting the step

72 Gradient-Based Bilevel Optimization Methods

size, the convergence theory does not consider those variations. Thus,

the double-loop algorithm [139] requires multiple design decisions.
There are four key design decisions for double-loop algorithms:

How accurately should one solve the lower-level problem?

What upper-level gradient descent algorithm should one use?

How does one pick the step size for the upper-level descent step?

What stopping criteria should one use for the upper-level itera-

W

tions?

This section first reviews some (largely heuristic) approaches to these
design decisions and presents example bilevel gradient descent methods
with no (or few) assumptions beyond those made in Section 4. Without
any further assumptions, the answers to the questions above are based
on heuristics, with few theoretical guarantees but often providing good
experimental results. Section 5.3.2 discusses recent methods with stricter
assumptions on the bilevel problem and their theory-backed answers to
the above questions.

The first step in a double-loop algorithm is to optimize the lower-
level cost, for which there are many optimization approaches. The only
restriction is computability of the gradient of the upper-level loss V{(y),
which typically includes a smoothness assumption (see Section 4 for
discussion). Many bilevel methods use a standard optimizer for the
lower-level problem, although others propose new variants, e.g., [34].

The first design decision (how accurately to solve the lower-
level problem) involves a trade-off between computational complexity
and accuracy. Example convergence criteria are fairly standard to the
optimization literature, e.g., the Euclidean norm of the lower-level
gradient [30], [142] or the normalized change in the estimate x [143]
being less than some threshold. For example, [30] used a convergence
criteria of ||V @ (2 ;y)||2 < 10 (where the image scale is 0-255). As
mentioned above, [139] uses a sequence of convergence tolerances so
that the lower-level cost function is optimized more accurately as the
upper-level iterations continue.

Ref. [140] investigated the importance of lower-level optimization ac-
curacy. The authors use the same training model as in [31], which is the
bilevel extension of the Field of Experts [55], but varied the convergence
criteria for the lower-level problem. When using a convergence tolerance

5.1. Double-Loop Algorithms 73

of |V ®(x® ;v)|l2/v/N <107, [140] found an average improvement of
0.65dB in the PSNR for test images over [31], who ran their lower-level
optimization algorithm for a set number of iterations. Ref. [140] also
plots the test PSNR and training loss versus the lower-level conver-
gence criteria and shows how test PSNR increases and training loss
decreases with increased lower-level solution accuracy for this specific
filter learning bilevel problem.

Many publications do not report a specific threshold or discuss how
they chose a convergence criteria or number of lower-level iterations.
However, a few note the importance of such decisions. For example,
[124] found that their learning method fails if the lower-level optimizer
is insufficiently close to the minimizer and [30] stated their results
are “significantly better” than [31] because they solve the lower-level
problem “with high[er| accuracy.”

After selecting a level of accuracy, finding (an approximation of) &,
and calculating V/(y) using one of the approaches from Section 4, one
must make the second design decision: which gradient-based method
to use for the upper-level problem. Many bilevel methods suggest a
simple gradient-based method such as plain gradient descent (GD) [33],
GD with a line search (see the third design decision), projected GD
[132], or stochastic GD [124]. These methods update 'y based on only
the current upper-level gradient; they do not have memory of previous
gradients nor require/estimate any second-order information.

Methods that incorporate some second-order information use more
memory and computation per iteration, but may converge faster than
basic GD methods. For example, Broyden-Fletcher-Goldfarb-Shanno
(BFGS) and L-BFGS (the low-memory version of BFGS) [144] are
quasi-Newton algorithms that store and update an approximate Hessian
matrix that serves as a preconditioner for the gradient. The R x R size
of the Hessian grows as the number hyperparameters increases, but
quasi-Newton methods like L-BFGS use practical rank-1 updates with
storage O(R). Adam [145] is a popular GD method, especially in the
machine learning community, that tailors the step size (equivalently the
learning rate) for each hyperparameter based on moments of the gradi-
ent. Although Adam requires its own parameters, the parameters are
relatively easy to set and the default settings often perform adequately.

74 Gradient-Based Bilevel Optimization Methods

Example bilevel papers using methods with second-order information
include those that use BFGS [32], L-BFGS [30], Gauss-Newton [146],
and Adam [34].

Many gradient-based methods require selecting a step size parameter,
e.g., one must choose a step size ay in classical GD:

YO =y o, ve (y).

This choice is the third design decision. Bilevel problems are gen-
erally non-convex, and typically a Lipschitz constant is unavailable,
so line search strategies initially appear appealing. However, any line
search strategy that involves attempting multiple values quickly becomes
computationally intractable for large-scale problems. The upper-level
loss function in bilevel problems is particularly expensive to evaluate
because it requires optimizing the lower-level cost! Further, recall that
the upper-level loss is typically an expectation over multiple training
samples (UL), so evaluating a single step size involves optimizing the
lower-level cost J times (or using a stochastic approach and selecting a
batch size).

Despite these challenges, a line search strategy may be viable if
it rarely requires multiple attempts. For example, the backtracking
line search in [142] that used the Armijo—Goldstein condition required
57-59 lower-level evaluations (per training example) over 40 upper-level
gradient descent steps, so most upper-level steps required only one
lower-level evaluation. Other bilevel papers that used backtracking
with Armijo-type conditions include [11], [32], [143]; [147] used the
Barzilai-Borwein method for picking an adaptive step size.

Other approaches to determining the step size are: (i) normalize the
gradient by the dimension of the data and pick a fixed step size [124],
(ii) pick a value that is small enough based on experience [33], or (iii)
adapt the step size based on the decrease from the previous iteration
[139].

The fourth design decision is the convergence criteria for the
upper-level loss. As with the lower-level convergence criteria, few pub-
lications include a specific threshold, but most bilevel methods tend
to use traditional convergence criteria such as the norm of the hyper-
parameter gradient falling below some threshold [32], the norm of the

5.1. Double-Loop Algorithms 75

change in parameters falling below some threshold [30], and/or reach-
ing a maximum iteration count (many papers). One specific example
is to terminate when the normalized change in learned parameters,
[yt — y@)|| /][y, is below 0.01 [143]. The normalized change
bound is convenient because it is unitless and thus invariant to scaling
of y.

Fig. 5.2 shows example upper-level convergence plots for a double-
loop algorithm for the bilevel problem (Ex). After an initial first
run of OGM to get the lower-level initialization &(y(?)) such that
\/% HV;AD <§3(y(0)) ; y(o)) H2 < 1077, the lower-level optimizer consisted
of 10 iterations of OGM [148], initialized with the estimate from the
previous upper-level iteration. The upper-level optimizer is Adam [145]
with the default parameters, negating the need for a separate upper-level
step-size parameter. We ran 10,000 outer-loop iterations. The final norm
of the upper-level gradient, ﬁHV@(y)(U)H was 0.08 when learning the
filter coefficients and tuning parameters and 5 - 10 when learning only
B. Fig. 6.2 shows the corresponding denoised images and Appendix D.2
further details the experiment settings.

(u) m(w) u
¢ (v, 2) Fe Ve (25 v, [
1072 =8

106

10000 0 10000
Iteration (u) Iteration (u)

(a) (b)

Figure 5.2: Example convergence plots for a double-loop bilevel method when
v includes h and B (solid lines) and when y = 8 (dotted lines). (a) Estimated
upper-level loss function evaluated at the current estimate of the lower-level
minimizer, £(7) = 2(T) (y(®), versus upper-level iteration u. (b) Lower-level
convergence metric, averaged over all training samples, versus upper-level
iteration. The estimated lower-level minimizer remains close to convergence
throughout the double-loop method.

76 Gradient-Based Bilevel Optimization Methods

5.2 Single-Loop Algorithms

Unlike double-loop algorithms, single-loop algorithms take a gradient
step in 'y without optimizing the lower-level problem each step. Two early
bilevel method papers [26], [60] proposed single-loop approaches based
on solving the system of equations that arises from the Lagrangian.

The system of equations approach in [26], [60] closely follows the
KKT perspective on the minimizer approach in Section 4.2.2. Recall
that the gradient of the lower-level problem is zero at a minimizer, &,
and one can use this equality as a constraint on the upper-level loss
function. The corresponding Lagrangian is

L(z,y,v) =L(y;z) + V'V, O(x;Y), (5.1)

where v is a vector of Lagrange multipliers. For the filter learning
example (Ex), the Lagrangian is

1
L(z,y,v) = |z — =™+
K
v (A’(A:v —y)+e™ > e @ ¢.(c, @ e)) .
k=1

As in Section 4.2.2, we consider derivatives of the Lagrangian with
respect to v, x, and y. Here are the general expressions and the specific
equations for the filter learning example (Ex) when considering the
element of y corresponding to S:

K
= Al(Azx —y) + o Z e E, ® ¢.(cp ® ;€
k=1
Val(z, v, v) = Val(y;x) + Ve O (z;v)V
o xtrue
VYL(:B7Y7 v)= VYE(Y; x) + I/’wa(l)(a: ;Y)
= (eﬂoeﬂkék ® b.(cp ® :?3)) when vy = 8.

These expressions are equivalent to the primal, adjoint, and optimality
conditions respectively in [60].

5.2. Single-Loop Algorithms 77

Here the minimizer and single-loop approach diverge. Section 4.2.2
used the above Lagrangian gradients to solve for £, substitute £ into the
gradient of the Lagrangian with respect to y, and thus find the minimizer
expression for V/(y). The single-loop approach instead considers solving
the system of gradient equations directly:

VyL(z,y,v)
G(x,v,v) = |VzL(z,vy,v)| =0.
VyLiz,vy,v)

For example, [60] proposed a Newton algorithm using the Jacobian of
the gradient matrix G.

Another approach to single-loop algorithms is to replace the “while”
loop in Alg. 1 line 4 with a single gradient step in the lower-level
optimization variables. Two single-loop algorithms are the two-timescale
stochastic approximation (TTSA) method [149] and the Single Timescale
stochAstic BiLevEl optimization (STABLE) method [150]. Alg. 2 shows
TTSA as an example single-loop algorithm. Both TTSA and STABLE
alternate between one gradient step for the lower-level cost and one
gradient step for the upper-level problem.

There are two main challenges in designing such a single loop algo-
rithm for bilevel optimization. Because both TTSA and STABLE use
the minimizer approach (4.8) to finding the upper-level gradient, the
first challenge is ensuring the current lower-level iterate is close enough
to the minimizer to calculate a useful upper-level gradient. TTSA ad-
dresses this challenge by taking larger steps for the lower-level problem
while STABLE addresses this using a lower-level update that better
predicts the next lower-level minimizer, &(y®+1).

The second main challenge is estimating the upper-level gradient,
even given stochastic estimates of V;;® and V,,®, because the mini-
mizer equation (4.8) is nonlinear. The theoretical results about TTSA
are built on the assumption that the upper-level gradient is biased due
to this nonlinearity. In contrast, STABLE uses recursion to update
estimates of the gradients and thus reduce variance. Section 5.3.3 goes
into more detail about both algorithms.

78 Gradient-Based Bilevel Optimization Methods

Algorithm 2 Two-Timescale Stochastic Approximation (TTSA)
method from [149]. TTSA includes a possible projection of the hy-
perparameter after each gradient step onto a constraint set, not shown
here. The tildes denote stochastic approximations for the corresponding

expressions.
1: procedure TTSA (v, £, aéu), ag))
2: foru=1,...do
3. x(u-i—l) — m(u) ()v (D()
4 g =V — (vaqﬂu)) (vmcD(>) Vol
5: y(u+1) = ‘}/(u) — aéu)g
6: end for

7. end procedure

5.3 Complexity Analysis

A series of recent papers established finite-time sample complexity
bounds for stochastic bilevel optimization methods based on gradient
descent for the upper-level loss and lower-level cost. Ref.s [117], [151]
use double-loop approaches and [149], [150] use single-loop algorithms.
Unlike most of the methods discussed in Section 5.1, these papers make
additional assumptions about the upper and lower-level functions then
select the upper and lower-level step sizes to ensure convergence.

In these works, “finite-time sample complexity” refers to big-O
bounds on a number of iterations that ensures one reaches a minimizer
to within some desired tolerance. In contrast to asymptotic convergence
analysis, finite-time bounds provide information about the estimated
hyperparameters, Y%, after a finite number of upper-level iterations.
These bounds depend on problem-specific quantities, such as Lipschitz
constants, but not on the hyperparameter or signal dimensions.

To summarize the results, this section returns to the notation from
the introduction where the upper-level loss may be deterministic or

5.3. Complexity Analysis 79

Upper-level gradients Lower-level gradients

Double- BA o (log ()) o (log ())
loop stocBiO (6%) (}2)

Single- TTSA (L) (L)
loop STABLE O (2) 0(62)

Table 5.1: Finite-time sample complexities for the stochastic bilevel problem
in the common scenario where ¢ is non-convex when using BA [151], stocBiO
[117], TTSA [149], and STABLE [150]. When ¢ is strongly convex, the sample
complexity of STABLE is O(eil) (for the upper- and lower-level gradients),
which is the same as single level stochastic gradient algorithms. See cited
papers for other complexity results when ¢ is strongly convex.

stochastic, e.g., the bilevel problem is

Y = argmin /(y) with ¢(y) = (v, 2(v)) eterministic

(5.2)
Y E[l(y,&(y))] stochastic.

The expectation in (5.2) can have different meanings depending on the
setting. When one has J training images with one noise realization per
image, one often picks a random subset (“minibatch”) of those J images
for each update of y, corresponding to stochastic gradient descent of
the upper-level loss. In this setting, the randomness is a property of the
algorithm, not of the upper-level loss, and the expectation reduces to
the deterministic case. Section 7.5 discusses other possible definitions
of the stochastic bilevel formulation.

The complexity results (summarized in Tab. 5.1) are all in terms of
finding ., defined as an e-optimal solution. In the (atypical) setting
where £(y) is convex, Y, is an e-optimal solution if it satisfies either
0y.) — L(y) < e [117], [149], [151] or ||y — y€\|2 < € [150]. (These
conditions are equivalent if ¢ is strongly convex in 7y, but can differ
otherwise.) In the (common) non-convex setting, v, is typically called
an e-stationary point if it satisfies | V£(y,)||> < e [117], [150], [151]. In
the stochastic setting, vy, must satisfy these conditions in expectation.

The following sections briefly describe the BA, stocBiO, TTSA, and
STABLE algorithms. The literature in this area is quickly evolving;

80 Gradient-Based Bilevel Optimization Methods

between the writing and editing of this work, new double-loop and single-
loop methods appeared with improved complexity results. For example,
[152], [153] concurrently proposed bilevel optimization methods that
leverage momentum and variance reduction techniques to reduce the
bound on the number of iterations to (5(6%5) for both upper-level and
lower-level gradients. Ref. [152] achieved this complexity result for both
a double-loop method and a single-loop method.

Whether double-loop or single-loop methods are preferred is an
open question. Refs. [117], [152] find that double-loop methods converge
faster (in terms of wall time) than single-loop methods. The authors
hypothesize that V/(7y) is sensitive enough to changes in the estimate of
the lower-level optimizer that the increased accuracy of the double-loop
estimates of V{(y) is worth the additional lower-level optimization time.
Future work should test this hypothesis in different experimental settings
and establish guidelines on when to use a double-loop or single-loop
algorithm.

5.3.1 Assumptions

References [117], [149]-[151] all make similar assumptions about ¢ and
@ to derive theoretical results for their proposed bilevel optimization
methods. We first summarize the set of sufficient conditions from [151],
and later note any additional assumptions used by the other methods.
The conditions in [151] on the upper-level function, ¢(y;), are:

Al1. vy € FE V ((y,z) and V,{(y, z) are Lipschitz continuous
with respect to @, with corresponding Lipschitz constants
Ly v,¢and Ly v,¢. (These constants are independent of x
and y.)

A/l2. The gradient with respect to « is bounded, i.e.,
|Vl(y,x)|| < Oy, YV € FVN.

Al3. Yz € TN V,{(y,z) is Lipschitz continuous with respect to
Y, with corresponding Lipschitz constant Ly v, .

The conditions in [151] on the lower-level function, ®(x;vy), are:

A®1. @ is continuously twice differentiable in y and «.

5.3. Complexity Analysis 81

AD2. Vy € FE, V,®(x;vy) is Lipschitz continuous with respect
to & with corresponding constant Ly v, o.

A®D3. Vy € FE ®(x;7v) is strongly convex with respect to x, i.e.,
pzol X V2O(y;x), for some piz 0 > 0.

A®4. Vy € FE, V,, @ (z ;) and V,,®(x;y) are Lipschitz con-
tinuous with respect to with Lipschitz constants Ly v, o
and L:B,Vqu)'

A®5. The mixed second gradient of @ is bounded, i.e.,
HVW;(D(;L' ;’Y)” < vamq), VY, T.

A®6. Yz € FN, V,,®(x;y) and V@ (x;7y) are Lipschitz con-
tinuous with respect to y with Lipschitz constants Ly v, 0
and Ly,meCD'

In addition to the assumptions above on ¢ and @, analyses of
optimization algorithms for the stochastic bilevel problem assume that
(i) all estimated gradients are unbiased and (ii) the variance of the
estimation errors is bounded by U%y 0 U%m 0 0'2vm®, a%qu), and U%wmq).
The stochastic methods discussed here are all based on the minimizer
approach to finding the upper-level gradient. Therefore, the methods
use estimates of Vo £(y; @), Vo l(v;), Vo@(x;v), VyP(x;v), and
Vaz®@(x;v). We denote the estimates of these gradient using tildes,
e.g., Vyl(v; x). Following (4.8), an estimate of the upper-level gradient
approximation is thus

VEY) = Vyl(v,®) = (Vay@(@; 7)) (Vaa @(z ;7)) Val(y, 2).
As an example of the bounded variance assumption, [151] assumes
E[[|Vye(v; @) = Vylly;)P <o, ¥a,v.

To consider how the complexity analysis bounds may apply in prac-
tice, Appendix C.2 examines how assumptions A¢1-A¢3 and assumptions
A®D1-AD6 apply to the running filter learning example (Ex). Although
a few of the conditions are easily satisfied, most are not. Appendix C.2
shows that the conditions are met if one invokes box constraints on the
variables & and y. Although imposing box constraints requires modi-
fying the algorithms, e.g., by including a projection step, the iterates

82 Gradient-Based Bilevel Optimization Methods

remain unchanged if the constraints are sufficiently generous. However,
such generous box constraints are likely to yield large Lipschitz con-
stants and bounds, leading to overly-conservative predicted convergence
rates. Further, any differentiable upper-level loss and lower-level cost
function would met the conditions above with such box constraints.
Generalizing the following complexity analysis for looser conditions is
an important avenue for future work.

5.3.2 Double-loop

Ghadimi and Wang [151] were the first to provide a finite-time analysis
of the bilevel problem. The authors proposed and analyzed the Bilevel
Approximation (BA) method (see Alg. 3). BA uses two nested loops. The
inner loop minimizes the lower-level cost to some accuracy, determined
by the number of lower-level iterations; the more inner iterations, the
more accurate the gradient will be, but at the cost of more computation
and time. The outer loop is (inexact) projected gradient steps on £. Ref.
[151] used the minimizer result (4.8) (with the IFT perspective for the
derivation) to estimate the upper-level gradient.

To bound the complexity of BA, [151] first related the error in the
lower-level solution to the error in the upper-level gradient estimate as

)

IV 0(y, 2 ™) = V,l(y, 2())| < Caw |2 - #(v)

Estimated gradient True gradient

Error in lower-level

where C'ow is a constant that depends on many of the bounds defined
in the assumptions above [151]. Combing the above error bound with
known gradient descent bounds for the accuracy of the lower-level
problem yields bounds on the accuracy of the upper-level gradient.
The standard lower-level bounds can vary by the specific algorithm
([151] uses plain GD), but are in terms of Q¢ = L”;’m% (the “condition
number” for the strongly convex lower-level functiofl) and the distance
between the initialization and the minimizer.

Ref. [151] shows that &(y) is Lipschitz continuous in y under the
above assumptions, which intuitively states that the lower-level mini-
mizer does not change too rapidly with changes in the hyperparameters.
Further, V/(vy) is Lipschitz continuous in y with a Lipschitz constant,

5.3. Complexity Analysis 83

Algorithm 3 Bilevel Approximation (BA) Method from [151]. The
differences for the AID-BiO and ITD-BiO methods from [117] are:
(1) when u > 0, the BiO methods replace line 3 with (0 = g(Tu-1),
(2) T; does not vary with upper-level iteration, (3) the upper-level
gradient calculation in line 7 can use the minimizer approach (4.8) or
backpropagation (B.2), and (4) the hyperparameter update is standard
gradient descent, so line 8 becomes y(#+1) = y(¥) — .

1: procedure BA(y?, 0, oy, ag, T, Yu)
2 foru=1,... do > Upper-level iterations
3 z(0) = 20 > Included for comparison with [117]
4: fort=1:T, do > T lower-level iterations
5 z) = (-1 — 04V, 0(y, z(-D)
6 end for
7 g = Vyl(y®, 2T > Use minimizer result (4.8)
1

syt —angmin {51y - v +arg.v)

Y
9: end for

10: end procedure

Ly v, ¢, that depends on many of the constants given above.
The main theorems from [151] hold when the lower-level GD step size

is agp = 7 and the upper-level step size satisfies ay <

m Lyvye
Then, the distance between the uth loss function value and the minimum
loss function value, £(y™), &(y*))—¢(y, &(¥)), is bounded by a constant
that depends on the starting distance from a minimizer (dependent on
the initialization of y and x), Q¢, Caw, the number of inner iterations,
and the upper-level step size. The bound differs for strongly convex,
convex, and possibly non-convex upper-level loss functions. Tab. 5.2
summarizes the sample complexity required to reach an e-optimal point
in each of these scenarios.

Ji, Yang, and Liang [117] proposed two methods for Bilevel Optimiza-
tion that improve on the sample complexities from [151] for non-convex
loss functions under similar assumptions. The first, ITD-BiO (ITerative
Differentiation), uses the unrolled method for calculating the upper-level
gradient (see Section 4.4). The second, AID-BiO (Approximate Implicit

84 Gradient-Based Bilevel Optimization Methods

l(y) Upper-level gradients Lower-level gradients
Strongly convex O (log (%))) (10 o2 (%)
Convex O(ﬁ) (9(#)
Non-convex O <%> 0] (ﬁ)

Table 5.2: Sample complexity to reach an e-optimal solution of the determin-
istic bilevel problem using BA [151], for various assumptions on the upper-level
loss function. Usually ¢(y) is non-convex and that case has the worst-case
order results. The complexities show the total number of partial gradients of
the upper-level loss (equal to the number of lower-level Hessians needed for
estimating V4(y) using (4.8)) and the partial gradients of the lower-level. The
convex results use the accelerated BA method, which uses acceleration tech-
niques similar to Nesterov’s method [154] applied to the upper-level gradient
step in Alg. 3.

Differentiation), uses the minimizer method with the implicit function
theory perspective (see Section 4.2). Tab. 5.3 summarizes the sample
complexities [117]. Much of the computational advantage of ITD-BiO
and AID-BiO is in improving the iteration complexity with respect to
the condition number (not shown in the summary table).

One of the main computational advantages of the AID-BiO and
IFT-BiO methods in [117] over the BA algorithm Alg. 3 is a warm
restart for the lower-level optimization. Although the hyperparameters
change every outer iteration, the change is generally small enough
that the stopping point of the previous lower-level descent is a better
initialization than the noisy data (recall that [151] showed the lower-level
minimizer is Lipschitz continuous in y). One can account for this warm
restart when using automatic differentiation tools (backpropagation)
[117]. The caption for Alg. 3 summarizes the other differences between
BA and the BiO methods.

The Bilevel Stochastic Approximation (BSA) method replaces the
lower-level update in BA (see Alg. 3) with standard stochastic gradient
descent. The corresponding upper-level step in BSA is a projected gra-
dient step with stochastic estimates of all gradients. Another difference
in the stochastic versions of the BA [151] and BiO [117] methods is that
they use an inverse matrix theorem (based on the Neumann series) to

5.3. Complexity Analysis

Upper-level

Lower-level

85

Hessian-vector

gradients gradients products
BA off) ofzx) o[
AID-BiO o) o) o)

ITD-BiO

Table 5.3: A comparison of the finite-time sample complexity to reach an e-
solution of the deterministic bilevel problem when the upper-level loss function
is non-convex using BA [151], AID-BiO [117], and ITD-BiO [117]. O(-) = order

omits any log (¢) term.

estimate the Hessian inverse. Ref. [117] simplifies the inverse Hessian
calculation to replace expensive matrix-matrix multiplications with
matrix-vector multiplications. This same strategy makes backpropaga-
tion more computationally efficient than the forward mode computation
for the unrolled gradient; see Appendix B.

5.3.3 Single-Loop

Recently, [149], [150] extended the double-loop analysis of [117], [151]
to single-loop algorithms that alternate gradient steps in & and .

Alg. 2 summarizes the single-loop algorithm TTSA [149]. The anal-
ysis of TTSA uses the same lower-level cost function assumptions as
mentioned above for BSA [151] and one additional upper-level assump-
tion: that ¢ is weakly convex with parameter py, i.e.,

Uy +8) > LY)(VL(Y), 8) + e 8], Yy, 8 € RF.

TTSA assumes the lower-level gradient estimate is still unbiased and
that its variance is now bounded as

E[|Va®(@,y) — Vo (@, V)|?] < 0F,0 (1+ | Va®(@, 7)),

Further, the stochastic upper-level gradient estimate, @yf(y(“), :I:(“H)),
includes a bias that stems from the nonlinear dependence on the lower-
level Hessian. This bias decreases as the batch size increases.

The “two-timescale” part of TTSA comes from using different upper
and lower step size sequences. The lower-level step size is larger and

86 Gradient-Based Bilevel Optimization Methods

bounds the tracking error (the distance between & and the « iterate)
as the hyperparameters change (at the upper-level loss’s relatively
slower rate). Thus, [149] chose step-sizes such that ay(u)/ag(u) — 0.
Specifically, if £ is strongly convex, then ay is O(u™!) and ag is O(u‘Q/ 3).

If £ is convex, then ay is (’)(u‘3/4) and ag is O(u‘1/2).

Chen, Sun, and Yin [150] improved the sample complexity of TTSA.
By using a single timescale, their algorithm, STABLE, achieves the
“same order of sample complexity as the stochastic gradient descent
method for the single-level stochastic optimization” [150]. However, the
improved sample complexity comes at the cost of additional computation
per iteration as STABLE can no longer trade a matrix inversion (of
size R x R) for matrix-vector products, as done in the [117]. Ref. [150]
therefore recommended STABLE when sampling is more costly than
computation or when R is relatively small.

The analysis of STABLE uses the same upper-level loss and lower-
level cost function assumptions as listed above for BSA. Additionally,
STABLE assumes that, V&, V,£{(y;) is Lipschitz continuous in y.
This condition is easily satisfied as many upper-level loss functions do
not regularize y. Further, those that do often use a squared 2-norm, i.e.,
Tikhonov-style regularization, that has a Lipschitz continuous gradient.
Additionally, rather than bounding the gradient norms as in assumptions
Al2 and AD5, [149] assumes the following moments are bounded:

o the second and fourth moment of V,4(y;) and V.¢(y; x) and

o the second moment of V,,®(x;v) and Va4, O(x;7y),
ensuring that the upper-level gradient is Lipschitz continuous.

Like the previous algorithms discussed, STABLE evaluates the
minimizer result (4.8) at non-minimizer lower-level iterates, x(™) (y(®),
to estimate the hyperparameter gradient. However, it differs in how
it estimates and uses the gradients. STABLE replaces the upper-level
gradient in TTSA line 4 with

g = Vyl — (ALY (AL) 17,0, (5.3)
—— ——
Prev. Vgy®(® Prev. Vg @)
Taking inspiration from variance reduction techniques for single-level
optimization problems, e.g., [155], STABLE recursively updates the

5.4. Summary of Methods 87

newly defined matrices as follows:

u u—1 = u— = w
AL = Plajce,e | (1=) (ALY = Viry @7D) + ¥y @)
——
Recursive update New estimate

- -
A:(nqﬁc) = Parpig,ol <(1 — Tu) (Agﬁz—l) - qu)(u_l)) + vqu)(u)> .

In the Ag(nuy) update, the projection onto the set of matrices with a
maximum norm helps ensure stability by not allowing the gradient
to get too large. The projection in the A;(JQ update is an eigenvalue
truncation that ensures positive definiteness of the estimated Hessian
in this Newton-based method. After computing the gradient g (5.3),
the upper-level update is a standard descent step as in Alg. 2 line 5.
STABLE [150] also uses the recursively estimated gradient matrices
in the lower-level cost function descent. It replaces the standard gradient

descent step in Alg. 2 line 3 with one that uses second order information:

2D = 2 — 4 (1) V@ (2™ y®) — (A(u))-l(A%)'(m(uH) —).

X

Standard GD step New term

With these changes, STABLE is able to reduce the iteration complexity
relative to TTSA as summarized in Tab. 5.1.

5.4 Summary of Methods

There are many variations of gradient-based methods for optimizing
bilevel problems, especially when one considers that many of the upper-
level descent strategies can work with either the minimizer or unrolled
approach discussed in Section 4. There is no clear single “best” algorithm
for all applications; each algorithm involves trade-offs.

Building on the minimizer and unrolled methods for finding the
upper-level gradient with respect to the hyperparameters, V/(y), double-
loop algorithms are an intuitive approach. Although optimizing the
lower-level problem every time one takes a gradient step in y is com-
putationally expensive, the lower-level problem is is embarrassingly
parallelizable across samples. Specifically, one can optimize the lower-
level cost for each training sample independently before averaging the

88 Gradient-Based Bilevel Optimization Methods

resulting gradients to take an upper-level gradient step. In the typi-
cal scenario when training is performed offline, training wall-time can
therefore be dramatically reduced by using multiple processors.

Single-loop algorithms remove the need to optimize the lower-level
cost function multiple times. The single-loop algorithms that consider a
system of equations often accelerate convergence using Newton solvers
[11], [60]. However, the optimality system grows quickly when there
are multiple training images, and may become too computationally
expensive as J increases [30]. Another type of single-loop algorithm
uses alternating gradient steps in @ and y [149], [150]. Although each
method has slight variations (such as whether it uses momemtum),
these single-loop methods are generally equivalent to considering T' =1
in the double-loop methods.

This section organized algorithms based on the number of for-loops;
double-loop algorithms have two loops while single-loop algorithms have
one'. However, there are many other ways in which bilevel optimization
methods differ and not all methods fall cleanly into one group. One such
example is the Penalty method [156]. The Penalty method forms a single-
level, constrained optimization problem, with the constraint that the
gradient of the lower-level cost function should be zero, V,®(x;vy) = 0.
(This step is similar to the derivation of the minimizer approach via KKT
conditions; see Section 4.2.2.) Rather than forming the Lagrangian as in
(5.1), [156] penalizes the norm of the gradient, with increasing penalties
as the upper iterations increase. Thus, the Penalty cost function?® at
iteration u is

Py,) =Ly 2(y)) + A Vo0 (z;v)|3 -

The penalty variable sequence, M@ must be positive, non-decreasing,
and divergent (A(®) — o0).

Penalty [156] incorporates elements of both double-loop and single-
loop algorithms. Similar to the double-loop algorithms, Penalty takes
multiple gradient descent steps in the lower-level optimization vari-
able, x, before calculating and updating the hyperparameters. However,

! As noted at the start of the section, this loop counting does not include the
loop in CG or in backpropagation
2This is a simplification; [156] allows for constraints on x and 7.

5.4. Summary of Methods 89

Penalty forms a single-level optimization problem that could be opti-
mized using techniques such as those used in single-loop algorithms.

Another variant on a double-loop bilevel optimization method is to
optimize a lower-level surrogate function d~)(cc ; y(“)) instead of optimiz-
ing @ (x; y™). For example, [157] replaces @ with its first-order approx-
imation around the current solution point (Y, £(y®)). Because this
approximation is only reliable in the neighborhood of (y(*), &(y®)),
[157] adds the proximal term \||y—y||? to the upper-level loss function
at each outer iteration, where X is a positive tuning parameter.

The finite-time complexity analyses [117], [149]-[152] justify the use
of gradient-based bilevel methods for problems with many hyperparam-
eters, as none of the sample complexity bounds involved the number
of hyperparameters. This is in stark contrast with the hyperparameter
optimization strategies in Section 3. However, the per-iteration cost for
bilevel methods is still large and increasing with the hyperparameter
dimension. Further, the conditions on the lower-level cost function A®
1-A®D6 seem restrictive and may not be satisfied in practice. Complexity
analysis based on more relaxed conditions could be very valuable.

Because of the restrictive conditions in the complexity analysis,
it is generally infeasible to compute theoretically justified step-sizes
and other algorithm parameters in the single-loop and double-loop
methods [117], [149]-[152]. Thus, one must often resort to grid searches
or use heuristics, such as those discussed in Section 5.1, to select these
algorithm parameters. Ref. [152] comments on one example of how
empirical practice can differ from theory. Although their theory requires
that the number of iterates of the Neumann series used to approximate
the inverse Hessian matrix grows with the desired solution accuracy,
the authors found that using a few iterates was sufficient (and faster)
in practice.

Gradient-based and other hyperparameter optimization methods are
active research areas, and the trade-offs continue to evolve. Although
it currently seems that gradient-based bilevel methods make sense for
problems with many hyperparameters, new methods may overtake or
combine with what is presented here. For example, many bilevel meth-
ods (and convergence analyses thereof) use classical gradient descent for
the lower-level optimization algorithm, whereas [158] showed that the

90 Gradient-Based Bilevel Optimization Methods

Optimized Gradient Method (OGM) has better convergence guarantees
and is optimal among first-order methods for smooth convex problems
[159]. These advances provide opportunities for further acceleration of
bilevel methods.

6

Survey of Applications

Bilevel methods have been used in many image reconstruction applica-
tions, including 1D signal denoising [33], image denoising (see following
sections), compressed sensing [34], spectral CT image reconstruction
[143], and MRI image reconstruction [34]. Bilevel methods are also used
for classification problems. For example, [160, Sec. 6] shows how the
structured support vector machine (SSVM) is a convex surrogate for
the bilevel model when the lower-level cost is linear in y. This section
discusses trends and highlights specific applications to provide concrete
examples of bilevel methods for image reconstruction.

Many papers present or analyze bilevel optimization methods for
general upper-level loss functions and lower-level cost functions, under
some set of assumptions about each level. Sections 4 and 5 summarized
many of these methods. Although there are cases when the choice of
a loss function and/or cost impacts the optimization strategy, many
bilevel problems could use any optimization method. Thus, this section
concentrates on the specific applications, rather than methodology.

This section is split into a discussion of lower-level cost and upper-
level loss functions. (Lower-level cost functions that involve CNNs are
discussed separately; see Section 7.1.) The conclusion section discusses

91

92 Survey of Applications

examples where the loss function is tightly connected to the cost func-
tion.

6.1 Lower-level Cost Function Design

Once a bilevel problem is optimized to find v, the learned parameters
are typically deployed in the same lower-level problem as used during
training but with new, testing data. Thus, it is the lower-level cost
function that specifies the application of the bilevel problem, e.g., CT
image reconstruction or image deblurring.

Denoising applications consider the case where the forward model is
an identity operator (A = I'). This case has the simplest possible data-fit
term in the cost function and requires the least amount of computation
when computing gradients or evaluating ®. Because bilevel methods
are generally already computationally expensive, it is unsurprising that
many papers focus on denoising, even if only as a starting point towards
applying the proposed bilevel method to other applications.

More general image reconstruction problems consider non-identity
forward models. Few papers learn parameters for image reconstruction
in the fully task-based manner described in (UL), likely due to the
additional computational cost. Some papers, e.g., [29], [30], [68] consider
learning parameters for denoising, and then apply ¥ in a reconstruction
problem with the same regularizer but introducing the new A to the
data-fit term. These “crossover experiments” [68] test the generalizability
of the learned parameters, but they sacrifice the specific task-based
nature of the bilevel method.

Recall from Section 2 that the regularizer (with its learned pa-
rameters) can be related to a prior for x in a maximum a posteriori
probability perspective. If this perspective is valid, then the ¥ should
generalize to other system matrices. However, the exact connection
between the regularizer and the probability distribution is not straight-
forward [161] and previous results suggest that y varies with different
A’s [25], [68]. Further, A often is an imperfect model for the true
underlying phenomena and ¥y may end up compensating for modeling
errors that are specific to a given A, and thus may not generalize to
other imaging system models.

6.1. Lower-level Cost Function Design 93

Many bilevel methods, especially in image denoising [30], [31], [33],
[60], [146], but also in image reconstruction [32], use the same or a very
similar lower-level cost as the running example in this review. From
Section 1.2, the running example cost function is:

O(z;y)

K
1
2(y,y) = argmin _ | Az —y5 + ™ > V(e @ x5¢) . (6.1)
z k=1

R(z ;y)

The learned hyperparameters, vy, include the tuning parameters, 5
and/or the filter coefficients, ¢;. The image reconstruction example in
[32] generalized (6.1) for implicitly defined forward models by using a
different data-fit term, as given in (4.7). Their two example problems
involve learning parameters to estimate the diffusion coefficient or
forcing function in a second-order elliptic partial differential equation.

Two common variations among applications using (6.1) are (1) the
choice of which tuning parameters to learn and (2) what sparsifying
function, ¢, to use. Some methods [32], [60], [146] learn only the tuning
parameters; these methods typically use finite differencing filters or
discrete cosine transform (DCT) filters (excluding the DC filter) as the
ci’s. Other methods learn only filter coefficients [33]. Fig. 6.1 shows
filters learned from patches of the “cameraman” image when y = (3, h)
and shows filter strengths when y = 8. The corresponding bilevel prob-
lem is (Ex) with ¢ given in (CR1N). Fig. 6.2 shows the corresponding
denoised image and Appendix D.2 describes the experiment settings
and additional results.

A slight variation on learning the filters is to learn coefficients for a
linear combination of filter basis elements [30], [31], i.e., learning ay,;

where
cr =Y ajbi,
i

for some set of basis filter elements, b;. One benefit of imposing a filter
basis is the ability to ensure the filters lie in a given subspace. For
example, [30], [31] use the DCT as a basis and remove the the constant
filter so that all learned filters are guaranteed to have zero-mean.

94 Survey of Applications

DCT Fllters

Learning 8 Learning 8 and h

|
L1 COssEREE
b=

| Hﬂﬁﬁﬂﬂ IIIIHIII HHHI!I!E?EEE

Figure 6.1: The DCT filter bank and example learned filters for (Ex) with
training data from the “cameraman” image. (a) The 48 non-constant 7 x 7
DCT filters used to initialize y. The dark, top-left square represents the
removed DC filter. (b) The DCT filters multiplied by their respective tuning
parameter 3, when y = B. The range of e is 0.001-1.08. The learned
tuning parameters emphasize the higher-frequency DCT filters. (c) Learned
filters when y = (8, h) (scaled to have unit-norm for visualization).

In terms of sparsifying functions, [33], [146] used the same corner
rounded 1-norm as in (CRIN), [31] used ¢ = log (1 + 2?) to relate their
method to the Field of Experts framework [55], [32] used a quadratic
penalty, and [30], [60] both consider multiple ¢ options to examine the
impact of non-convexity in ¢. Ref [60] compared p-norms, ¢, ® x|/,
for p € { , 1,2}, where the p = 2 L and p = 1 cases are corner-rounded to
ensure ¢ is smooth. (The p = % case is non-convex.) Ref. [30] compared
the convex corner-rounded l-norm in (CRIN) with two non-convex
choices: the log-sum penalty log (1 + 22), and the Student-t function

log (106 + \/m)

Both [30], [60] found that non-convex penalty functions led to
denoised images with better (higher) PSNR. They hypothesize that
the improvement is due to the non-convex penalty functions better
matching the heavy-tailed distributions in natural images. As further
evidence of the importance of non-convexity, [30] found that untrained
7 x 7 DCT filters (excluding the constant filter) with learned tuning
parameters and a non-convex ¢ outperformed learned filter coefficients
with a convex ¢, despite the increased data adaptability when learning

6.1. Lower-level Cost Function Design 95

z(y=p)
(23.49 dB

&(y = {h,B})

) (c) (d)

(b

(a)

Figure 6.2: Example denoising results for the full “cameraman” test image
and two of the training patches. (a) Noiseless training “cameraman” test image.
(b) Noisy image and its SNR. (¢) Denoised image using the learned tuning
parameters that weight the DCT filters as shown in Fig. 6.1b. (d) Denoised
image using the learned filter coefficients and tuning parameters as shown in
Fig. 6.1c. For comparison, the denoised image using BM3D [162] has a SNR
of 26.87. See Appendix D.2 for more details.

filter coefficients. The trade-off for using non-convex penalty functions
is the possibility of local minimizers of the lower-level cost.

Chen, Ranftl, and Pock [30] also investigated how the number of
learned filters and the size of the filters impacted denoising PSNR.
They concluded that increasing the number of filters to achieve an
over-complete filter set may not be worth the increased computational
expense and that increasing the filter size past 11 x 11 is unlikely to
improve PSNR. Using 48 filters of size 7 x 7 and the log-sum penalty
function, [30] achieved denoising results on natural images comparable to
algorithms such as BM3D [162], as seen in Fig. 6.3. Although results will
vary between applications and training data sets, the results from [30]
provide motivation for filter learning and an initial guide for designing
bilevel methods.

In addition to variations on the running example for @ (6.1), a
common regularizer for the lower-level cost is Total Generalized Vari-
ation with order 2 (TGV?) [163]. Whereas TV encourages images to
be piece-wise constant, TGV? is a generalization of TV designed for

96 Survey of Applications

y (20.17) FoE (29.15)

Bilevel (29.48) BM3D (29.52)

Figure 6.3: Example denoising results from [30] comparing filters learned
using bilevel methods to other denoising methods. (a) The original image x**".
(b) The noisy image y. (c-d) Denoised images using FoE [55], BM3D [162],
and a bilevel approach using a set-up equivalent to (Ex) with a non-convex
penalty function, ¢(z) = log (1 + z2) [30]. The PSNR values in dB are given
in parenthesis. ©2014 IEEE. Reprinted, with permission, from [30].

piece-wise linear images. Another generalization of TV for piece-wise
linear images is Infimal Convolutional Total Variation (ICTV) [164].
Bilevel papers that investigate ICTV include [11], [12]; these papers
also investigate TGV?. See [165] for a comparison of the two.

TGV cost functions are typically expressed in the continuous domain,
at least initially, but then discretized for implementation, e.g., [166],
[167]. One discrete approximation of the TGV? regularizer is:

Rrgv(x) = mzineﬁ1 lerv ® ¢ — 2z, + P2 0zl ,

where ey is a filter that takes finite differences and 0 is a filter that
approximates a symmetrized gradient. In TV, one usually thinks of z
as a sparse vector; here z is a vector whose finite differences are sparse,
so z is approximately piece-wise constant. Encouraging z to be piece-
wise constant in turn makes & approximately piece-wise linear, since
cry ®x ~ z from the first term. Bilevel methods for learning 51 and S5
for the TGV? regularizer include [11], [12]. An extension to the TGV?
regularizer model is to learn a space-varying tuning parameter [142].
As an example of how the regularizer should be chosen based on
the application, [142] found that standard TV with a learned tuning
parameter performed best (in terms of SSIM) for approximately piece-

6.2. Upper-Level Loss Function Design 97

wise constant images while TGV? with learned tuning parameters
performed best for approximately piece-wise linear images.

6.2 Upper-Level Loss Function Design

From some of the earliest bilevel methods, e.g., [26], [33], to some of
the most recent bilevel methods, e.g., [29], [132], square error or mean
squared error (MSE) remains the most common upper-level loss function.
In the unsupervised setting, [93], [94] used SURE (an estimate of the
MSE, see Section 3.1) as the upper-level loss function. Unlike many
perceptually motivated image quality measures, MSE is convex in x
and it is easy to find Vo ¢(y;&(y)). However, MSE does not capture
perceptual quality nor image utility (see Section 3.1). This section
discusses a few bilevel methods that used different loss functions.

Ref. [12] compared a squared error upper-level loss function with
a Huber (corner rounded 1-norm) loss function. The corresponding
lower-level problem was a denoising problem with a standard 2-norm
data-fit term and three different options for a regularizer: TV, TGV?,
and ICTV. The authors learned tuning parameters for a natural image
dataset using both upper-level loss function options for each of the
lower-level regularizers.

Since SNR is equivalent to MSE, the MSE loss will always perform
the best according to any SNR-based metric (assuming the bilevel model
is well-trained). However, [12] found the tuning parameters learned using
the Huber loss yielded denoised images with better qualitative properties
and better SSIM, especially at low noise levels. Like MSE, the Huber
loss operates point-wise and is easy to differentiate. Thus, the authors
conclude that the Huber loss is a good trade-off between tractability
and improving on MSE as an image quality measure.

A set of loss functions in [142], [143], [146] consider the unsupervised
or “blind” bilevel setting, where one wishes to reconstruct an image
without clean samples. Therefore, rather than using an image quality
metric that compares a reconstructed image, &€, to some true image,
' these loss function consider the estimated residual,

n=n(y) = Az(y) - v,

98 Survey of Applications

where v is learned using only noisy data. Unsupervised bilevel meth-
ods may be beneficial when there is no clean data and one has more
knowledge of noise properties than of expected image content. All three
methods [142], [143], [146] assume the noise variance, o2, is known.

The earliest example [146], learned tuning parameters y such that 7o
matched the second moment of the assumed Gaussian distribution for
the noise. Their lower-level cost is comparable to (Ex), but re-written in
terms of m and with pre-defined finite differencing or 5 x 5 DCT filters,
i.e., they learn only the tuning parameters, ;. Their upper-level loss
encourages the empirical variances of the noise in different frequency
bands to match the expected variances:

(yin() =5 Y

)

pi =E[|fi @nl3] and v = Var | f; @ nll3].

(1 ®nl3 -)

Ui

where f; are predetermined filters that select specific frequency com-
ponents. By using bandpass filters that partition Fourier space, the
corresponding means and variances of the second moments of the filtered
noise are easily computed, with

pi=No? | fill> and v =No*||£]*.

Although the experimental results are promising, [146] does not claim
state-of-the-art results since their lower-level denoiser is relatively sim-
ple.

As an alternative to the Gaussian-inspired approach in [146], [142]
and [143] use loss functions that penalize noise outside a set “noise
corridor.” Both methods learn space-varying tuning parameters, and
the upper-level loss consists of a data-fit term (that measures noise
properties) and a regularizer on y. The data-fit term in the upper-level
loss function in [146] defines the noise corridor between a maximum
variance, 2, and a minimum variance, o?:
UF.(w©® (n(y) ©n(y))) for

1 o 1

F(n) = imax(n —5%,0)% + imin(n —0%,0)%, (6.2)

6.2. Upper-Level Loss Function Design 99

Figure 6.4: Noise corridor function (6.2) used as part of the upper-level loss
function for the unsupervised bilevel method in [142].

where w is a predetermined weighting vector. The noise corridor func-
tion, F'(n), penalizes any noise outside of the expected range as shown
in Fig. 6.4. Ref. [143] uses the same noise corridor function, but extends
the bilevel method for images with Poisson noise; [143] thus estimates
the noisy image using the Kullback-Leibler distance. In addition to the
noise corridor function as the data-fit component of the upper-level loss
function, [142], [143] include a smoothness-promoting regularizer on vy,
which is a spatially varying tuning parameter vector in both methods.

The task-based nature of bilevel typically makes regularizers or
constraints on y unnecessary (see Section 7.4 for common options for
other forms of learning). However, there are two general cases where
a regularizer on <y is useful in the upper-level loss function. First, a
regularizer can help avoid over-fitting when the amount of training
data is insufficient for the number of learnable hyperparameters. This
is often the case when learning space-varying parameters that have
similar dimensions as the input data, e.g., [26], [142], [143], [168]. In
such cases, the regularization often takes the form of a 2-norm on the
learned hyperparameters, |||l 3 :

Second, some problems require application-specific constraints, e.g.,
[68] incorporates constraints in the upper-level loss to ensure that the
learned parameters are valid interpolation kernels. Many other hyperpa-
rameter constraints do not require a regularization term, For example,
non-negativity constraints on tuning parameters are easily handled by
redefining the tuning parameter in terms of an exponential, as in (Ex),

100 Survey of Applications

and box constraints are common and easy to incorporate with a pro-
jection step if using a gradient-based method. Constraints that require
sparsity on the learned parameters may benefit from regularization in
the upper-level loss function.

An example of an application-specific constraint is found in [27], [28],
which consider MRI reconstruction with a data-fit term and a variational
regularizer. Both papers extend the bilevel model in (Ex) to include part
of the forward model in the learnable parameters, y. Specifically, [27],
[28] learned the sparse sampling matrix for MRI. (Ref. [28] additionally
learns tuning parameters for predetermined filters, whereas [27] sets
the tuning parameters and filters and learns only the sampling matrix.)
Here, the forward model is

A= diag(sl,SQ, .. .,SM)F,

s(v)

where F' is the DFT matrix and s; are learned binary values that specify
whether a frequency location should be sampled.

The motivation for learning a sparse sampling matrix comes from
the lower-level MRI reconstruction problem; designing more effective
sparse sampling patterns in MRI can decrease scan time and thus
improve patient experience, decrease cost, and decrease artifacts from
patient movement. This goal requires the learned parameters, s;, to be
binary, which in turn influences the upper-level loss function design.
Thus, [27], [28] include regularization in the upper-level to encourage
s to be sparse, e.g., [28] uses an upper-level loss with a squared error
term and regularizer on s:

Uy:@(v)) = [|2(v) — 2[5 + A Z (si +si(1 = s1)), (6.3)

where A is a upper-level tuning parameter that one must set manually.
(In experiments, they thresholded the learned s; values to be exactly
binary.) An alternative approach is to constrain the number of samples
[169], though that formulation requires other optimization methods.

6.3. Conclusion 101

6.3 Conclusion

This section split the discussion of lower-level cost and upper-level loss
functions to discuss trends in both areas. However, when designing a
bilevel problem, design decisions can impact both levels. For example,
the unsupervised nature of [143], [146] clearly impacted their choice of
upper-level loss function to use noise statistics rather than squared error
calculated with ground-truth data. Since it can be challenging to learn
many good parameters from noisy training data, the unsupervised nature
also likely impacted the authors’ decision to learn only tuning parameters
and set the filters manually. Another example of coupling between lower-
level and upper-level design is when one enforces application-specific
constraints on the learned parameters, e.g., using a regularizer like (6.3)
in the upper-level loss to promote sparsity of the MRI sampling matrix
[27], [28].

In addition to design decisions influencing both levels, bilevel meth-
ods may adopt common techniques for the upper-level loss function and
lower-level cost function. For example, a common theme is the tendency
to use smooth functions, such as replacing the 1-norm with a corner-
rounded 1-norm. This approach requires setting a smoothing parameter,
e.g., € in (CRIN), which in turn impacts the Lipschitz constant and
optimization speed. More accurate approximations generally lead to
larger Lipschitz constants and slower convergence. One approach to
trading-off the accuracy of the smoothing with optimization speed is to
use a graduated approach and approximate the non-smooth term more
and more closely as the optimization progresses [34].

The prevalence of smoothing is unsurprising considering that this
review focuses on gradient-based bilevel methods. Rare exceptions
include [124], [125], which used the (not corner-rounded) one-norm
to define ¢ to learn convolutional filters using the translation to a
single level approach described in Section 4.3. The impact of smoothing
and how accurately one should approximate a non-differentiable point
remains an open question.

From an image quality perspective, ideally one would independently
design the lower-level cost function and upper-level training loss. The
lower-level cost would depend on the imaging physics and would in-

102 Survey of Applications

corporate regularizers that expected to provide excellent image quality
when tuned appropriately, and the upper-level loss would use terms
that are meaningful for the imaging tasks of interest. As we have seen,
in practice one often makes compromises to facilitate optimization and
reduce computation time.

7

Connections and Future Directions

This final section connects bilevel methods with related approaches
and mentions some additional future directions beyond those already
described in previous sections.

Shlezinger et al. [170] recently proposed a framework, summarized
in Fig. 7.1, for categorizing learning-based approaches that combine in-
ferences, or prior knowledge!, and deep learning. Inferences can include
information about the structure of the forward model, A, or about the
object « being imaged. For example, any known statistical properties
of the object of interest could be used to design a regularizer that en-
courages the minimizer & to be compatible with that prior information.
At one extreme, inference-based approaches rely on a relatively small
number of handcrafted regularizers with a few, if any, tuning param-
eters learned from training data. At the other extreme, fully learned
approaches assume no information about the application or data and
learn all hyperparameters from training data.

Ref. [170] proposes two general categories for methods that mix
elements of inference-based and learning-based methods. The first cate-

'Ref. [170] uses the term “model-based”, but this review uses “inferences” to
differentiate from other definitions of model-based learning in the literature.

103

104 Connections and Future Directions

Increasing reliance on prior knowledge

< - : X — >
Increasing reliance on learning from training data
Learned Inference-aided Learning-aided Inference
Networks Networks Inference Methods Methods
Bilevel-inspired Bilevel models
unrolled networks following (UL)
Adapts to training data Uses prior knowledge
No need for forward model Does not require large
or image model training datasets
More expressive Often has theoretical
representation gaurantees

Figure 7.1: Spectrum of learning to inference-based methods from [170].

gory, inference-aided networks, includes deep neural networks (DNNs)
with architectures based on an inference-based method. For example,
in deep unrolling, one starts with a fixed number of iterations of an
optimization algorithm derived from a cost function and then learns
parameters that may vary between iterations, or “layers,” or may be
shared across such iterations. Section 7.1 further discusses unrolling,
which is a common inference-aided network design strategy, and the
connection to the bilevel unrolling method described in Section 4.4.

The second general category is DNN-aided inference methods [170].
These methods incorporate a deep learning component into traditional
inference-based techniques (typically a cost function in image recon-
struction). The learned DNN component(s) can be trained separately for
each iteration or end-to-end. Because prior knowledge takes a larger role
than in the inference-aided networks, these methods typically require
smaller training datasets, with the amount of training data required
varying with the number of hyperparameters. Section 7.3 discusses
how bilevel methods compare to Plug-and-Play, which is an example
DNN-aided inference model.

While [170] focused on DNNs due to their highly expressive nature
and the abundance of interest in them, the idea of trading off prior

7.1. Connection: Learnable Optimization Algorithms 105

knowledge and learning components applies to machine learning more
broadly. Sections 7.1 and 7.3 describe how bilevel methods fit into the
framework from [170] and relates bilevel methods to other methods in the
framework. Although not covered in the above framework, Section 7.4
also compares bilevel methods to a third general category: “single-level”
hyperparameter learning methods. Like bilevel methods, single-level
methods learn hyperparameters in a supervised manner. However, they
generally learn parameters that sparsify the training images, {a:}me},
and do not use the noisy data, {y;}. This last comparison demonstrates
the benefit of task-based approaches. Of course, there is variety among
bilevel methods; this discussion is meant to provide perspective and
general relations to increase understanding, rather than to narrow the
definition or application of any method.

7.1 Connection: Learnable Optimization Algorithms

Learning parameters in unrolled optimization algorithms to create an
inference-aided network, often called a Learnable Optimization Algo-
rithm (LOA), is a quickly growing area of research [171]. The first
such instance was a learned version of the Iterative Shrinkage and
Thresholding Algorithm (ISTA), called LISTA [172]. Similar to the
bilevel unrolling method, a LOA typically starts from a traditional,
inference-based optimization algorithm, unrolls multiple iterations, and
then learns parameters using end-to-end training.

There are many unrolled methods for image reconstruction [171].
Two examples that explicitly state the bilevel connection are [34], [173];
both set-up a bilevel problem with a DNN as a regularizer and then allow
the parameters to vary by iteration, i.e., learning c,(f) where t denotes
the lower-level iteration. Ref. [173] motivated the use of an unrolled
DNN over more inference-based methods by the lack of an accurate
forward model, specifically coil sensitivity maps, for MRI reconstruction.
Other examples of unrolled networks are [174], which unrolls the Field
of Experts model [55] (see Sections 2.3 and 6.1 for how the Field of
Experts model has inspired many bilevel methods); [175], which unrolls
the convolutional analysis operator model [61] (see (2.12)); and [141],
which discusses the connection to meta-learning.

106 Connections and Future Directions

Unlike the unrolled approach to bilevel learning described in Sec-
tion 4.4, many LOAs depart from their base cost function and “only
superficially resemble the steps of optimization algorithms” [34]. For
example, unrolled algorithms may “untie” the gradient from the original
cost function, e.g., using A’'(Ax — y), instead of A’(Ax — y) for the
gradient of the common 2-norm data-fit term, where A’ is learned or
otherwise differs from the adjoint of A. LOAs that allow the learned
parameters to vary every unrolled iteration or learn step size and mo-
mentum parameters further depart from a cost function perspective.

In addition to selecting which variables to learn, one must decide how
many iterations to unroll for both bilevel unrolled approaches and LOAs.
Most methods pick a set number of iterations in advance, perhaps based
on previous experience, initial trials, or the available computational
resources. Using a set number of iterations yields an algorithm with
predictable run times and allows the learned parameters to adapt
to the given number of iterations. Further, picking a small number
of iterations can act as implicit regularization, comparable to early
stopping in machine learning, which may be helpful when the amount
of training data is small relative to the number of hyperparameters in
the unrolled algorithm [141].

One can also use a convergence criteria to determine the number of
iterations to evaluate, rather than selecting a number in advance [132].
This convergence-based method more closely follows classic inference-
based optimization algorithms. A benefit of running the lower-level
optimization algorithm until convergence is that one could switch opti-
mization algorithms between training and testing, especially for strictly
convex lower-level cost functions, and still expect the learned parame-
ters to perform similarly. This ability to switch optimization algorithms
means one could use faster, but not differentiable, algorithms at test-
time, such as accelerated gradient descent methods with adaptive restart
[148]. We are unaware of any bilevel methods that have exploited this
possibility.

Even within the unrolling methodology, one must make several
design decisions. To remain most closely tied to the original optimization
algorithm, an unrolled method might fix a large number of iterations
or run the optimization algorithm until convergence, use the same

7.2. Connection: Equilibrium-based Networks 107

parameters every layer, and calculate the step size based on the Lipschitz
constant every upper-level iteration (see discussion in Section 4.4.1).
Like all design decisions, there are trade-offs and the literature shows
many successful methods that benefit from the increased generality of
designing LOAs that are further removed from their cost function roots
[171]. Echoing the ideas from [170], the design should be based on the
specific application and relative availability, reliability, and importance
of prior knowledge and training data.

This survey focuses on unrolled methods that are closely tied to
the original bilevel formulation; [171] reviews LOAs more broadly. A
benefit of maintaining the connection to the original cost function and
optimization algorithm is that, once trained, the lower-level problem
in an unrolled bilevel method inherits any theoretical and convergence
results from the corresponding optimization method. The corresponding
benefit for LOAs is increased flexibility in network architecture.

7.2 Connection: Equilibrium-based Networks

Equilibrium-based, or fixed point, networks are related to both LOAs
and the minimizer approach from Section 4.2. The idea was proposed
only recently in [176], but has received much attention. From the
unrolled perspective, equilibrium networks consider what happens when
the number of unrolled iterations approaches infinity. Alternatively, they
can be viewed as a single, implicit layer; as in the minimizer approach,
the output is the solution to a nonlinear equation.

We first consider the unrolled perspective. If an algorithm W is a
contraction, .e.,

1W(ar; v) = W(az; ¥l < 6@y — @2, Yo, z2 € FY

for some parameter § € [0, 1), then the sequence of iterates will even-
tually converge to a fixed-point of W. If the optimization algorithm
optimizes a cost function with a data-fit and regularization term, then
the equilibrium network approach is equivalent to a bilevel method. For
a given value of y, the contraction condition is typically easy to satisfy
by selecting an appropriate step-size in algorithms like gradient descent.
Ref. [131] provides conditions on deep equilibrium models specific to

108 Connections and Future Directions

optimization algorithms based on gradient descent, proximal gradient
descent, and ADMM that ensure convergence.

Re-using some of our bilevel notation, let &(y) denote a fixed-point
of an equilibrium network. The derivation for finding Vy&(y) € FV*£
follows similar steps to the IFT perspective on the bilevel minimizer
approach in Section 4.2.1. The key difference is that rather than using
the first-order optimally condition as in the minimizer approach (4.3),
the equilibrium method considers the lower-level minimizer to be a fixed
point of an optimization algorithm.

When the goal of the lower level problem is to find a fixed point,
the bilevel problem becomes

A

argglinﬂ(wf; 2(y)) st. 2(y) = ¥(2(v);v). (7.1)

£(y) Fixed point equation

Similar to the IFT perspective, one can differentiate both sides of the
fixed point equation using the chain rule

Vy&(y) = (V2 (2(y); 7)) Vy&(y) + V4 U (2(7);7)
and then rearrange to derive an expression for V,&(y)

Vy@(y) = (I = (V2 ¥(2(y);7) ' Vy U (2(Y) ;7). (7.2)
7

The matrix J is the Jacobian of the optimization algorithm, evaluated
at the fixed point Z(7y).

Substituting (7.2) into the expression for the upper-level gradient
(4.2) yields

Vi(y) = Vyl(y;: 2(v) + (VyU(2(y) ;7)) (I = J) ' Val(v; 2(v)).
(7.3)

If the optimization is standard gradient descent, i.e., U(x;y) = o —
apVzP(x;7y), then

Vy¥(2(y);Y) = -2oVay®(z;y) and
Val(2(Y);Y) =1 — a0V @(x;y).

fessler
Highlight
lower-level

7.2. Connection: Equilibrium-based Networks 109

Substituting these expressions into (7.2) yields the gradient as derived
using the IFT perspective in the minimizer approach (4.5), showing the
close connection between the equilibrium and minimizer approach.

Similar to the minimizer approach, one can use any algorithm to
find a fixed point &(y) of ¥. For example, [176] used a quasi-Newton
method and [131] used a standard fixed-point accelerated method. One
can use any fixed point algorithm to find &(y); the algorithm used need
correspond to ¥ in (7.1); for example, ¥ could be standard gradient
descent, even if one uses a more advanced algorithm to initially compute
&(7v). Another similarity to the minimizer approach is that the learned
parameters are optimal at convergence of the lower-level problem, rather
than after a fixed number of lower-level iterations. Therefore, the end-
user can trade-off accuracy and compute requirements at test time,
unlike in unrolled approaches where the number of iterations is pre-
decided.

Although the equilibrium model is the limit as the number of un-
rolled iterations approaches infinity, computing V£(y) does not require
backpropagation nor storing any intermediate matrices. The trade-off
is that (7.3) requires multiplying (I — J)™ by a vector. The remaining
computations in the full upper-level gradient (7.3) are straightforward.
Similar to the required Hessian inverse-vector product in the minimizer
approach, one can use an iterative algorithm to approximate the matrix
inverse. Ref. [131] notes that the inverse matrix-vector product

v=(I—-J)'Val(y;2(v)),
is a fixed point of the equation
v=Jv+ Vl(y;2(y)).

Therefore, one can use any fixed-point solver to compute the matrix-
vector product. Another way to decrease the computational cost of the
Jacobian product is to use the method from [122]: if a quasi-Newton
algorithm is used to estimate the Jacobian for the forward step of
computing &(y), then one can “re-use” this estimated Jacobian to find
V().

Fixed point networks can also be viewed from the perspective of un-
rolled methods. Although it is often infeasible to backpropagate through

110 Connections and Future Directions

the large number of iterations required to reach a fixed point, backpropa-
gating through the last few iterations yields a valid gradient estimate for
Vy&(y) [137]. Ref. [137] proves that this “truncated backpropagation”
approach converges to a stationary point of the upper-level loss when the
lower-level cost function is locally strongly convex around &(y) because
the backpropagation gradient error decays exponentially with reverse
depth. A similar approach is to use &(y) at every backpropagation
step rather than previous iterates. Ref. [177] shows this is equivalent to
approximating the matrix inverse in the minimizer approach using a
Neumann series.

Recently, [178] proposed a Jacobian-free method to find V{(y) that
takes the approach from [137] to the extreme case: it considers unrolling
a single layer. The approach in [178] is equivalent to viewing the deep
equilibrium network as a single layer network where the initialization is
the fixed-point, i.e., using #(y) = ¥(z® ; y) in the unrolled method
with 2(©) = &(y). With this new perspective, it is easy to use existing
backpropagation tools to compute the derivative through the single
layer network. Assuming that the network is Lipschitz, contractive, and
differentiable and that the upper-level loss is differentiable, [178] shows
the Jacobian-free gradient is a descent direction for estimates of &(y)
that are within some error bound of the true fixed point.

Deep equilibrium networks can be fully learned or they can incor-
porate physics-based models into their network architecture and move
into the inference-aided networks category in Fig. 7.1. For example,
[131], [179] incorporated system matrices into fixed point networks and
applied them to MRI and CT image reconstruction problems.

7.3 Connection: Plug-and-play Priors

The Plug-and-Play (PNP) framework [180] is an example of a DNN-aided
inference method. It is similar to bilevel methods in its dependence on the
forward model. However, unlike bilevel methods, the PNP framework
need not be connected to a specific lower-level cost function and it
leverages pre-trained denoisers rather than training them for a specific
task.

As a brief overview of the PNP framework, consider rewriting the

7.3. Connection: Plug-and-play Priors 111

generic data-fit plus regularizer optimization problem (2.1) with an
auxiliary variable:

Data-fit Regularizer
& =argmind(x;y)+ [R(z;y) st x=z. (7.4)
zeFN
O(z ;)

Using ADMM [181] to solve this constrained optimization problem
and rearranging variables yields the following iterative optimization
approach for (7.4):

204D = argmind(z;y) + S|z — (29 — ™) 3 = proxs ., (8)
T 2 H_/ ’
T
2" = argmin BR(z;v) + %Hz - (a:(“) + u(“)) I3 = PIOXs g, ,Y)(Z)
Z — '

z
u(u+1) _ u(u) + (w(qul) _ z(qul))7
where A is an ADMM penalty parameter that effects the convergence
rate (but not the limit, for convex problems). The first step is a proximal
update for x that uses the forward model but does not depend on the
regularizer. Conversely, the second step is proximal update for the split
variable z that depends on the regularizer, but is agnostic of the forward
model. This step acts as a denoiser. The final step is the dual variable
update and encourages () ~ z(*) as u — .

The key insight from [180] is that the above update equations
separate the forward model and denoiser. Thus, one can substitute, or

?

“plug in,” a wide range of denoisers for the z update, in place of its
proximal update, while keeping the data-fit update independent.
Whereas in the original ADMM approach, the parameter A has
no effect on the final image for convex cost functions, in the PNP
framework that parameter does affect image quality. Thus, one could
also use training data to tune the A in a bilevel manner. Although PNP
allows one to substitute a pre-trained denoiser, one could additionally
tune the parameters in the denoiser. Ref. [182] provides one such example
of starting from a PNP framework then learning denoising parameters

and A that vary by iteration.

112 Connections and Future Directions

A large motivation for the PNP framework is the abundance of
advanced denoising methods, including ones that are not associated
with an optimization problem such as BM3D [162]. However, using
existing denoisers sacrifices the ability to learn parameters to work well
with the specific forward model, as is done in task-based methods. As
simple examples of how learned parameters may differ when A changes,
[68] found that different filters worked better for image denoising versus
image inpainting and [25] found that unrolled deblurring methods
required more upper-level iterations than unrolled denoising methods. A
more complicated example is using bilevel methods to learn some aspect
of A alongside some aspect of the regularizer, e.g., [28] learned a sparse
sampling matrix and tuning parameter for MRI that are adaptive to
the regularization for the image reconstruction problem.

7.4 Connection: Single-Level Parameter Learning

Section 2.3 briefly discussed some approaches to learning analysis op-
erators. This section further motivates the task-based bilevel set-up
by discussing the filter learning constraints imposed in single-level
hyperparameter learning methods.

As summarized in Section 2.3, the earliest methods for learning
analysis regularizers had no constraints on the analysis operators. Those
approaches learned filters from training data to make a prior distri-
bution match the observed data distribution. In contrast, more recent
approaches to filter learning minimize a cost function that requires
either a penalty function or constraint on the operators to ensure filter
diversity. For reference, the cost functions mentioned in Section 2.3
were:

AOL : argmin ||QX]||; + b Y — X|? st. Qe S,
QX 2

TL: argmin [|QY — X5+ R(Q) s.t. | Xi], < a Vi,

QEFs»S, X
K
L 1 2
CAOL : argmin min Z “llek®x — 2|5+ B zklly st [c1,...,¢ck] €S,
le1,mex] =1 2

where AOL is analysis operator learning [59], TL is transform learning

7.4. Connection: Single-Level Parameter Learning 113

[51], and CAOL is convolutional analysis operator learning [61]. In the
following discussion of constraint sets, the equivalent filter matrix for
CAOL has the convolutional kernels as rows:

/
&1

Qcaor =
/

Ck
While there are many other proposed cost functions in the literature,
using different norms or including additional variables, these three
examples capture the most common structures for filter learning.

In all the above cost functions, if one removed the constraint or
regularizer, then the trivial solution would be to learn zero filters for €2.
Furthermore, a simple row norm constraint on €2 would be insufficient,
as then the minimizer would contain a single filter that is repeated
many times. (In contrast, a unit norm constraint typically suffices for
dictionary learning.) A row norm constraint plus a full rank constraint
is also insufficient because £ can have full rank while being arbitrarily
close to the rank-1 case of having a single repeated row.

The choice of constraint set S is important in single-level learning.
Many methods constrain analysis operators to satisfy a tight frame
constraint. A matrix A is a tight frame if there is a positive constant,
«, such that

|A/wH2 Z’ qi, T —04”33"37 Ve

where @; is the ith column of A. This tight frame condition is equivalent
to AA’ = oI for some positive constant «. Most analysis operators are
defined with filters in their rows, so a tight frame requirement on the
filters appears as the constraint Q'Q = olI.

Under the tight frame constraint for the filters, {2 must be square
or tall, so the filters are complete or over-complete. However, [59] found
that the frame constraint was insufficient when learning over-complete
operators, as the “excess” rows past full-rank tended to be all zeros.
Therefore, [59] imposed a uniformly-normalized tight frame constraint:
each row of the € had to have unit norm and the filters had to form a
tight frame.

114 Connections and Future Directions

Ref. [50] similarly constrained €2 to have unit-norm rows with the
filters forming a frame (though not tight). Such loosening of the tight
frame constraint to a frame constraint could lead to the problem of
learning almost identical rows, as discussed above. To prevent this issue,
[50] additionally included a penalty that encourages distinct rows:

=Y > log (1 — (w;}wkﬁ) : (7.5)
k k<k

One possible concern with a tight frame constraint is that it requires
the filters to span all of FV, so every spatial frequency can pass through
at least one filter. However, most images are not zero-mean and have
piece-wise constant regions, so the zero frequency component is not
sparse. Ref. [59] modified the tight-frame constraint to require €2 to
span some space (e.g., the space orthogonal to the zero frequency term).
Likewise, [183] extended the CAOL algorithm to include handcrafted
filters, such as a zero frequency term, that can then be used or discarded
when reconstructing images. In the bilevel literature, [30], [31] similarly
ensured that learned filters had no zero frequency component by learning
coefficients for a linear combination of filter basis vectors, rather than
learning the filters directly; see Section 6.1.

As an alternative to imposing a strict constraint on the filters,
one can penalize Q to encourage filter diversity, as in (7.5). Using a
penalty has the advantage of being able to learn any size (under- or over-
complete) © and not requiring the filters to represent all frequencies. For
example, as an alternative to the tight frame constraint, [61] proposed
a version of CAOL using the following regularizer (to within scaling
constants)

R(Q) =g — 1|

and a unit norm constraint on the filters. Ref. [53] included a similar
penalty to (7.5), but with the inner product being divided by the norm
of the filters as the filters were not constrained to unit norm. All such
variations on this penalty are to encourage filter diversity.

To ensure a square €2 is full rank, while also encouraging it to be
well-conditioned, [51] used a regularizer that includes a term of the form

R(Q) = -f1log (€2]).

7.5. Future Directions 115

The log determinant term is known as a log barrier; it forces €2 to have
full rank because of the asymptote of the log function. Ref. [53] includes
a similar log barrier regularization term in terms of the eigenvalues of
 to ensure it is left-invertible.

As another example of a filter penalty regularizer, both [51] and
[53], include the following regularization term

R() =5 |97,

rather than constraining the norm of the filters. This Frobenius norm
addresses the scale ambiguity in the analysis and transform formulations
and ensures the filter coefficients do not grow too large in magnitude.

Yet another approach to encouraging filter diversity is to consider
the frequency response of the set of filters. Pfister and Bresler [53]
discuss different constraint options for filter banks based on convolution
strides to ensure perfect reconstruction. When the stride is one and
one considers circular boundary conditions, the filters can perfectly
reconstruct any signal as long as they pass the N discrete Fourier
transform frequencies. Tight frames satisfy this constraint, but the
constraint is more relaxed than a tight frame constraint.

Section 6 discussed some (relatively rare) bilevel problems with
penalties on the learned hyperparameters, but, notably, there are no
constraints nor penalties on the filters in the bilevel method (Ex)!
Because of its task-based nature, filters learned via the bilevel method
should be those that are best for image reconstruction. Thus, one should
not have to worry about redundant filters, zero filters, or filters with
excessively large coefficients. This property is one of the key benefits of
bilevel methods.

7.5 Future Directions

Throughout this review, we mentioned a few areas for future work on
bilevel methods. This section highlights some of the avenues that we
think are particularly promising.

Advancing upper-level loss function design is identified as future
work in many bilevel papers. Despite the abundance of research on image
quality metrics (see Section 3.1), most bilevel methods use squared error

116 Connections and Future Directions

for the upper-level loss function (see Section 6.2 for exceptions). Using
loss functions that better match the end-application of the images is a
clear future direction for bilevel methods that nicely aligns with their
task-based nature. For example, in the medical imaging field there is a
large literature on objective measures of image quality [184], often based
on mathematical observers designed to emulate human performance
on signal detection tasks, e.g., in situations where a lesion’s location
is unknown [185]. To our knowledge, there has been little if any work
to date on using such mathematical observers to define loss functions
for bilevel methods or for training CNN models, though there has been
work on CNN-based observers [186]. Using task-based metrics for bilevel
methods and CNN training is a natural direction for future work that
could bridge the extensive literature on such metrics with the image
reconstruction field.

Unsupervised bilevel problems are exceptions to the trend of using
squared error for the upper-level loss function. Section 6.2 considered a
few unsupervised bilevel methods that use noise statistics to estimate
the quality of the reconstructed images, e.g., [142], [143], [146] [93],
[94]. One extension to the unsupervised setting is the semi-supervised
setting, where one might have access to a few clean training samples
and additional, noisy training samples.

A related opportunity for future work is to use bilevel methods
to learn patient-adaptive parameters. The population-based learning
approach considered in (1.5) learns hyperparameters that are best
on average over the set of training images. In contrast, a patient-
adaptive approach tunes hyperparameters for every input image. For
example, one could learn filters and initial tuning parameters offline
from a training dataset and then adjust the tuning parameters when
reconstructing a specific image, e.g., using approaches such as the
unsupervised approaches in Section 6.2. An alternative approach for
adapting hyperparameters at test time is to learn a mapping from the
input data to the set of hyperparameters [54], [187].

Just as considering more advanced image quality metrics for the
upper-level loss function is a promising area for future work, bilevel
methods can likely be improved by using more advanced lower-level
cost functions. For example, one could use bilevel methods to learn

7.5. Future Directions 117

multi-scale filters, which can increase the receptive field of a regularizer
and provide a more natural representation for data that is inherently
multiscale [188], [189]. Perhaps due to the already challenging and
non-convex nature of bilevel problems, most methods consider rela-
tively simple convex lower-level cost functions. Papers that examine
non-convex regularizers, e.g., [30], [60], conclude that non-convex reg-
ularizers lead to more accurate image reconstructions, likely due to
better matching the statistics of natural images. This observation aligns
with the simple denoising experimental results in [190], where learned
filters with (CR1IN) as the regularizer yielded noisier signals than sig-
nals denoised with a hand-crafted filter with the non-convex 0-norm
regularizer. In other words, the structure of the regularizer matters in
addition to how one learns the filters.

In addition to non-convexity, future bilevel methods could consider
non-smooth cost functions. Many bilevel methods require the lower-
level cost to be smooth. Exceptions include the translation to a single
level approach (Section 4.3), which uses the 1-norm as the lower-level
regularizer, and unrolled methods, which can be applied to non-smooth
cost functions as long as the optimization algorithm has smooth updates
(Section 4.4.2). The impact of smoothing the cost function on the
perceptual quality of the reconstructed image is largely unknown.

Another avenue for future work is based on the fact that z're
is really a continuous-space function. A few methods, e.g., [11], [12],
develop bilevel methods in continuous-space. However, the majority
of methods use discretized forward models without considering the
impact of this simplification (as done in this review paper). Future
investigations of bilevel methods should strive to avoid the “inverse
crime” [191] implicit in (1.4) where the data is synthesized using the
same discretization assumed by the reconstruction method.

Future work may also consider how to more closely tie the bilevel
method to a statistical modeling framework and leverage progress
made in that field. Many bilevel methods for filter learning use the
Field of Experts [55] as a starting point. Ref. [55] takes a maximum-
likelihood perspective and learns parameters to model the training
data distribution. In contrast, bilevel methods such as (Ex) have their
roots in a maximum a posteriori perspective. While this approach is

118 Connections and Future Directions

motivated by and aligns with the task-based nature of bilevel methods
[31], it is not clear how well the learned parameters reflect a prior or how
to use the learned parameters to generate model uncertainties. Ideas
from the Bayesian statistics literature, such as Monte Carlo methods,
may be a promising avenue for future research.

Related to connecting bilevel methods and statistical processes, an
interesting opportunity for a stochastic bilevel formulation is to add
different noise realizations in (1.4), providing an uncountable ensemble
of (x,y) training tuples, where the expectation in (1.5) is over the
distribution of noise realizations. Yet another possibility is to have a
truly random set of training images £'™¢ drawn from some distribution.
For example, [192] trained a CNN-based CT reconstruction method
using an ensemble of images consisting of randomly generated ellipses.
Other variations, such as random rotations or warps, have also been
used for data augmentation [193]. One could combine such a random
ensemble of images with a random ensemble of noise realizations, in
which case the expectation in (1.5) would be taken over both the image
and noise distributions. We are unaware of any bilevel methods for
imaging that exploit this full generality. Future literature on stochastic
methods should clearly state what expectation is used and may consider
exploiting a more general definition of randomness.

7.6 Summary of Advantages and Disadvantages

Like the methods described in [170], bilevel methods for computational
imaging involve mixing inference-based optimization approaches with
learning-based approaches to leverage benefits of both techniques.
Inference-based approaches use prior knowledge, usually in the
form of a forward model and an object model, to reconstruct images.
Typically the forward model, A, is under-determined, so some form of
regularization based on the object model is essential. Regularizers always
involve some number of adjustable parameters; traditionally inference-
based methods select such parameters empirically or using basic image
properties like resolution and noise [112], [194]. The regularization
parameters may also be learned from training to maximize SNR [195]
or detection task performance [196] in a bilevel manner (often using a

7.6. Summary of Advantages and Disadvantages 119

grid or random search due to the relatively small number of learnable
parameters). When the forward model and object model are well-known
and easy to incorporate in a cost function, inference-based methods can
yield accurate reconstructions without the need for large datasets of
clean training data.

Learning-based approaches use training datasets to learn a prior.
Recently, learning-based approaches have achieved remarkable recon-
struction accuracy in practice, largely due to the increased availability in
computational resources and larger, more accessible training datasets [4],
[5]. However, many (deep) learning methods lack theoretical guarantees
and explainability and finding sufficient training data is still challenging
in many applications. Both of these challenges may impede adoption of
learning-based methods in clinical practice for some applications, such
as medical image reconstruction [197]. Some deep learning methods for
CT image reconstruction were approved for clinical use in 2019 [198];
early studies have shown such methods can significantly reduce noise
but may also compromise low-contrast spatial resolution [199].

Combining inference-based and learning-based approaches allows the
integration of learning from training data while using smaller training
datasets by incorporating prior knowledge. Such mixed methods often
maintain interpretability from the inference-based roots while using
learning to provide adaptive regularization. Thus, the benefits of bilevel
methods in this review’s introduction are generally shared among the
methods described in [170]: theoretical guarantees, competitive perfor-
mance in terms of reconstruction accuracy, and similar performance to
learned networks with a fraction of the free parameters, e.g., [29], [34].

What distinguishes bilevel methods from the other methods in the
inference-based to learning-based spectrum in Fig. 7.17 While one can
argue that the conventional CNN and deep learning approach is always
bilevel in the sense that the hyperparameters are trained to minimize
a loss function, this review considered bilevel methods with the cost
function structure (LL). The regularization term in (LL) could be based
on a DNN [34], but we followed the bilevel literature that focuses on
priors/regularizers, such as in (Ex), maintaining a stronger connection
to traditional cost function design.

Another lens for understanding bilevel methods is extending single-

120 Connections and Future Directions

level hyperparameter optimization approaches to be task-based, bilevel
approaches. Single-level approaches to image reconstruction, such as
those using dictionary learning [80], convolutional analysis operator
learning [61], and convolutional dictionary learning [200], [201], generally
aim to learn characteristics of a training dataset, with the idea that these
characteristics can then be used in a prior for an image reconstruction
task. While such an approach may learn more general information, [124],
[190] showed that a common single-level optimization strategy resulted
in learning a regularizer that was suboptimal for the simple task of
image denoising.

As further evidence of the benefit of task-based learning, [124] found
that the lack of constraints in the bilevel filter learning problem is
important; the learned filters used the flexibility of the model and
were not orthonormal, whereas orthonormality is a constraint often
imposed in single-level models (see Section 7.4). Ref. [60] showed how
the task-based nature adapts to training data; total variation based
regularization works well for piece-wise constant images but less so
for natural images. Beyond adapting to the training dataset, bilevel
methods are task-based in terms of adapting to the level of noise; [27]
found the learned tuning parameters for image denoising go to 0 as the
noise goes to 0, since no regularization is needed in the absence of noise
for well-determined problems.

A primary disadvantage cited for most bilevel methods is the com-
putational cost compared to single-level hyperparameter optimization
methods or other methods with a smaller learning component. In turn,
the main driver behind the large computational cost of gradient descent
based bilevel optimization methods is that one typically has to optimize
the lower-level cost function many times, either to some tolerance or
for a certain number of iterations. The computational cost involves a
trade-off because how accurately one optimizes the lower-level problem
can impact the quality of the learned parameters. For example, [30], [60]
both claim better denoising accuracy than [31] because they optimize
the lower-level problem more accurately. Similarly, [124] notes that
learning will fail if the lower-level cost is not optimized to sufficient
accuracy.

There are various strategies to decrease the computational cost for

7.6. Summary of Advantages and Disadvantages 121

bilevel methods. Some are relatively intuitive and applicable to a wide
range of problems in machine learning. For example, [124] used larger
batch size as the iterations continue, [11] increased the batch size if a
gradient step in y does not sufficiently improve the loss function, and
[27] tightened the accuracy requirement for the gradient estimation
over iterations. These strategies all save computation by starting with
rougher approximations near the beginning of the optimization method,
when y® is likely far from ¥, while using a relatively accurate solution
by the end of the algorithm.

Another disadvantage of bilevel methods is that, while the opti-
mization algorithm for the lower-level problem often has theoretical
convergence guarantees, and the lower-level cost is often designed to be
strictly convex, the full bilevel problem (UL) is usually non-convex, so
the quality of the learned hyperparameters can depend on initialization.
Thus, in practice, one requires a strategy for initializing y. For example,
for (Ex), one may decide to use a single-level filter learning technique
such as the Field of Experts [55] to initialize the hyperparameters. Or,
one can use a handcrafted set of filters, such as the DCT filters (or a
subset thereof). Other hyperparameters often have similar warm start
options. Despite the non-convexity, papers that tested multiple initial-
izations generally found similarly good solutions surprisingly often, e.g.,
[27], [30], [142].

There is no one correct answer for how much a method should use
prior information or learning techniques, and it is unlikely that any
single approach can be the best for all image reconstruction applications.
Like most engineering problems, the trade-off is application-dependent.
One should (minimally) consider the amount of training data available,
how representative the training data is of the test data, how under-
determined the forward model is (i.e., how strong of regularization is
needed), how well-known the object model is, the importance of theo-
retical guarantees and explainability, and the available computational
resources at training time and at test time. Bilevel methods show par-
ticular promise for applications where training data is limited and/or
explainability is highly valued, such as in medical imaging.

Acknowledgements

This work was made possible in part due to the support of NIH grant
R0O1 EB023618, NSF grant IIS 1838179, and the Rackham Predoctoral
Fellowship. The authors would like to thank Lindon Roberts for helpful
email discussion of [27], Mike McCann for general discussion of bilevel
approaches and of [125] specifically, and Avrajit Ghosh and Saiprasad
Ravishankar for discussion of [125]. The authors would also like to thank
Qing Qu and the anonymous reviewers, whose suggestions were a great
help in strengthening and clarifying this review.

122

Appendices

A

Background: Primal-Dual Formulations

This appendix briefly reviews primal-dual analysis as it applies to (Ex).
Section 3.3 in [41] provides a more general but brief introduction to
the notion of conjugate functions and duality and [202] goes into more
depth on duality.

The conjugate of a function f : RV — R U {-00,00} is denoted
f*:RY — RU{-00,00}, and is defined as

fd)= s dz- f(a), (A1)

x € domain(f)

where d € RY is a dual variable. The derivations below use the following
two conjugate function relations.

1
1. When f(x) = 5“:'3 — y||? for y € RV, the conjugate function is

N 1
F(d) = sup da— Lz -yl
z eRN

The maximizer of the quadratic cost function f* is
T=y+d (A.2)

and the maximum value simplifies to

1 1
fild)=3ld+ yl* - Sl (A.3)

124

125

2. When ¢(z) = |z| is defined on R, the conjugate function is
¢*(d) = sup dz — |z|.

z€R

One can verify that the conjugate is
. 0 if |d| <1
¢*(d) = { (A4)
oo else
and the corresponding sets of suprema are

sign(d) -oco if |d| > 1

0 if |d| < 1
argmax dz — |z| = ifd (A.5)
z€R [O, OO) ifd=1
(-00, 0] ifd=-1.

Generalizing (A.4) to a vector, the conjugate function of the 1-
norm is a characteristic function that is infinity if any element of
the input vector is larger than 1 in absolute value.

Ref. [202, p. 50] provides a table with many more conjugate functions.
The biconjugate, denoted f**, is the conjugate of f*, i.e.,
™ (x) = sup @'d— f*(d), (A.6)
d € domain(f*)
and is the largest convex, lower semi-continuous function below f.
When f is convex and lower semi-continuous, the biconjugate is equal
to the original function, i.e., f** = f. One can use the equality of the
original function and the biconjugate to derive the saddle point and
dual problems when f is convex.
Consider the specific lower-level problem with an analysis-based
regularizer
argmin = || Az — y|? + 16, (Qa), (A7)
zeRN 2
where © € RN, When ¢ is convex, the corresponding saddle-point
problem is

1
argmin — || Az — y||> + sup (d,Qzx) — 1'¢*.(d),
zeRN 2 dcRF

Vg**(Qa)

126 Background: Primal-Dual Formulations

where (-, -,) is the standard inner product. Under very mild conditions
(satisfied for the absolute value function) [41], one can swap the minimum
and supremum operations and write the saddle-point problem as

sup min fHASB —y||? + (d, Qx) — 1'¢*.(d).
dcRF ¢ €RN
Substituting the conjugate of the 1-norm (A.4), the saddle-point problem
is thus
1
min min -||Az — y||® — (d, Q) s.t. |d;| <1 Vi. A8
min, min, oAz — y|* - (d,Qa) st. |d] < (438)
We hereafter assume A = I to derive the dual problem from the
saddle-point problem. By grouping terms and re-arranging negative
signs, the dual problem can be derived from the saddle point problem.
For a general ¢, the saddle-point problem is equivalent to

1
-1'¢*.(d (in (d, Q —|lx — 2)
Iax -1'¢".(d) + | min {d, Qx) + |z —y||

1
= 1'¢*.(d) — Q'd, x) — =||x— 2)
max -1'6".(d) - (max(2d.2) - e - yl?),

I)

where the last line follows from properties of inner products. The
expression in parenthesis is the conjugate function for the data-fit term,
given in (A.3). Therefore, the dual problem for a general, convex ¢ is
max -1'¢*.(d) — f*(-Q'd) = - min 1'¢*.(d) + f*(-Q'd).
max 1'6°.(d) — [*(Qd) = - min, 16".(d) + [*(2d)
Substituting the conjugates for the data-fit term (A.3) and the
conjugate for the 1-norm regularizer (A.4), the dual problem for (A.7)
with ¢(z) = |z| becomes

min o H Qd+y| - ||yH2 s.t. |di| < 1Vi. (A.9)
eR

When we require only the minimizer (not the minimum), an equivalent
dual problem is

d= aurgmim1 |-'d + yH2 s.t. |d;| < 1Vi. (A.10)
deRrF 2

127

This dual problem is a constrained least squares problem and can
be solved with a projected gradient descent method, optionally with
momentum [148]. From (A.2), the primal minimizer can be recovered
from the dual minimizer by

&=y—Qd. (A.11)
Finally, from (A.5), the dual variable is related to the filtered signal by

1 if [Q&]; >0
el if [Q&]; < 0 (A12)
[©22];

Ref. [126] provides a more general version of the dual function for
non-identity system matrices.

Above, we derived the saddle-point and dual problems using the
equality of the biconjugate and the original function for a convex
regularizer. The dual problem can also be derived using Lagrangian
theory, as shown in [126]. Define an auxiliary (split) variable that is
constrained to equal the filtered signal, i.e., z = Q. Considering the
specific case of the 1-norm regularizer, the Lagrangian of the constrained
version of (A.7) is

1 2
3 e —yl” + 2], + d'(Qz - 2),

where d € RY is a vector of Lagrange multipliers and we have omitted
the KKT conditions. Minimizing the Lagrangian with respect to & and
z yields the conjugate functions for the data-fit term and 1-norm and
thus the dual problem.

Using the Lagrangian perspective to derive the dual problem yields
a useful relation between the filtered signal and the dual variable [126].
Because the split variable z is constrained to equal Qz, [Qx]; > 0
implies z; > 0. From (A.5), z; is only positive and finite when d; = 1. A
similar argument holds for [Qx]; < 0. Therefore, the dual variable and
& are related by

i e {sign([nwm if [Q&]; # 0 (413

1,1] if [Q#]; = 0

>

128 Background: Primal-Dual Formulations

The second case follows from observing that d; can take any value in
its constrained range when z; = 0 as the minimum in (A.9) will be 0
regardless of d;.

The primal-dual results reviewed in this appendix are referenced in
Section 2.2.3 to relate analysis and synthesis regularizers, Section 4.3 to
re-write the lower-level minimizer as a differentiable function of itself
and vy, and in Section 4.4.2 to unroll a differentiable algorithm for a
non-smooth cost function.

B

Forward and Reverse Approaches to Unrolling

This appendix provides background on the forward and backward ap-
proaches to the unrolled gradient computation introduced in Section 4.4.
From (4.18), the gradient of interest is:

T

!/
VIy) =Vyl(y; D) + (Z -Ht+1)Jt> Vo l(y;2D) e FE.
t=1

(B.1)

If one uses a gradient descent based algorithm to optimize the lower-level
cost function @, then H; = VU (1 ;y) € FN*V is closely related
to the Hessian of @ and J; = Vy\If(a:(t_l) :y) € FNXE is proportional
to the Jacobian of the gradient.

To compare the forward and reverse approaches to gradient com-
putation for unrolled methods, we introduce notation for an ordered
product of matrices. We indicate the arrangement of the multiplications
by the set endpoints, s € [s1 <> s2] with the left endpoint, s;, corre-
sponding to the index for the left-most matrix in the product and the
right endpoint, so, corresponding to the right-most matrix. Thus, for

129

130 Forward and Reverse Approaches to Unrolling

any sequence of square matrices {A};:

/
H Agi=AA - Ap = (AT %—1“'14;)/:(H A,S)
ES

seftoT] [T5t]
The above double arrow notation does not indicate order of operations.
In the following notation the arrow direction does not affect the product
result (ignoring finite precision effects), but rather signifies the direction
(order) of calculation:

II As=Ar(Ar_1 - (A1 (AY))
SE[T+t]

I A= ((ArAr_1)) Aiy) Ay

s€[T—]

We use a similar arrow notation to denote the order that terms are com-
puted for sums; as above, the order is only important for computational
considerations and does not affect the final result.

Using this notation, the reverse gradient calculation of (B.1) is

Vylly; 2Dy + S) (11 H;) Vol(y;zM). (B.2)
se((

te[T—1] t+1)<T)]

This expression requires [c(ry1yoq Hy = I, because Hryq is not
defined. For example, for T' = 3, we have

Vylly;a®) + Ji(Dg + 5 (H3) g + Ji (HyH3) g
——

t=3 t=2 t=1

where g is shorthand for V,¢(y; w(T)) here. This version is called reverse
as all computations (arrows) begin at the end, T

The primary benefit of the reverse mode comes from the ability to
group Vo l(y;x™) with the right-most Hy, such that all products
are matrix-vector products, as seen in Fig. B.1 Further, one can save
the matrix-vector products for use during the next iteration and avoid
duplicating the computation. Continuing the example for T' = 3, we

have
A A

~ = ——
Vyl(y;2®) + J5(I)g + J5(Hsg) + Ji (H; (Hg)),
—_——r ——— —

t=1 t=2 t=3

131

20 L) e ()

Store iterates {x;}1_,

v
A=Vl (y : :z:(T)>
r=20
Fort=T-1...0
Use () to compute Jyy1 and Hyyq
r=r+J_ A
A=H;,A

Figure B.1: Reverse mode computation of the unrolled gradient from (B.1).
The first gradient computation requires (7, so all computations occur af-
ter the lower-level optimization algorithm is complete. The final gradient is
Ve(y) = Vylly;2D) +r.

where one only needs to compute A once. This ability to rearrange
the parenthesis to compute matrix-vector products greatly decreases
the computational requirement compared to matrix-matrix products.
Excluding the costs of the optimization algorithm steps and forming
the Hy and J; matrices (these costs will be the same in the forward
mode computation), reverse mode requires O(7") Hessian-vector multi-
plies and O(T'N R) additional multiplies. The trade-off is that reverse
mode requires storing all T iterates, £®, so that one can compute the
corresponding Hessians and Jacobians from them as needed, and thus
has a memory complexity O(T'N).
The forward mode calculation of (B.1), depicted in Fig. B.2, has all
computations (arrows) starting at the earlier iterate:
/
Vyl(y; D) + > II H.|J| Vally; =), (B.3)
te[1-T] \s€[T<+(t+1)]

132 Forward and Reverse Approaches to Unrolling

20 2 2 2(T)
0 R H N
A)
Zy\=H\Zy+J, >Zy=H>xZ, + J> Zr =HrZr 1+ Jr

Figure B.2: Forward mode computation of the unrolled gradient from (B.3).
The intermediate computation matrix, Z, is initialized to zero (Z; = 0)
then updated every iteration. The final gradient is VI(y) = V£(v; (™M) +
ZN by ;2™).

As before, Hyyq is not defined, so we take [[cip 41y Hs = I. For
example, for T' = 3 we have

Vylly;2™) + | (HsHy)J1) + (Hs)Jo) + (1) Js) | g.
t=1 1=2 =3

How the forward mode avoids storing x iterates is evident after rear-
ranging the parenthesis to avoid duplicate calculations, as illustrated in
Fig. B.2. Continuing the example for T' = 3, we have
/
Zy
Vyl(y;a™) + | Hy | Hy (Hy -0+ Jy) +J2 | + J5| g.
—_———
Z

Z3

where Zs = H,Z,_1 + Js € FVXE gtores the intermediate calculations.
The above formula also illustrates why H; is not needed in (4.17);
VYJB(O) = 0 is the last element from applying the chain rule.

There is no way to rearrange the terms in the forward mode formula
to achieve matrix-vector products (while preserving the computation
order). Therefore, the computation requirement is much higher at O(T'R)
Hessian-vector multiplications. The corresponding benefit of the forward
mode method is that it does not require storing iterates, thus decreasing
(in the common case when T' > R) the memory requirement to O(NR)
for storing the intermediate matrix Z, during calculation.

133

As with the minimizer approach in Section 4.2, the computational
complexity of the unrolled approach is lower than the generic bound
when we consider the specific example of learning convolutional filters
according to (Ex). Nevertheless, the general comparison that reverse
mode takes more memory but less computation holds true. See Tab. 4.1
for a comparison of the computational and memory complexities.

C

Additional Running Example Results

This appendix derives some results that are relevant to the running
example used throughout the survey.

C.1 Derivatives for Convolutional Filters

This section proves the result

ai @ ®f(aox)=f(a®z")+&e (f‘(ck ®) © w<*s>> ,
(C.1)

when considering F = R. This equation is key to finding derivatives of
the lower-level cost function in (Ex) with respect to the filter coefficients.

To simplify notation, we drop the indexing over k, so ¢ is a single
filter and ¢, denotes the sth element in the filter for s € Z”. Here, s
indexes every dimension of ¢, e.g., for a two-dimensional filter, we could
equivalently write s as (s, s2). Recall that the notation € signifies a
reversed version of ¢, as needed for the adjoint of convolution.

Define the notation (¥ as the vector @ circularly shifted according
to the index ¢. Thus, if @ is 0-indexed and we use circular indexing,

(') = ;.

C.1. Derivatives for Convolutional Filters 135

As two examples,

il xI9
T I3
xr = — i = ,
TN-1 TN
TN z1
and, in two dimensions, if X € FM*N

TMN-1 TMN TM1 --- TM3

T N1 TN Ty ... T13

X2 — | wo N1 To, N Ta1 ... T23
TM_1,N-1 TM-1N TM-11 .- TM-13]

This circular shift notation is useful in the derivation and statement of
the desired gradient.

Define z = ¢ ® x, where ¢ and x are both N-dimensional. By the
definition of convolution, z is given by

— § : E : ULy N) §)) -t
z = [P CZl,,lN:B< ’ N> — C’Ll,...,lN$<)7
i1 IN

U1, iN

where, for each sum, the indexing variable i, iterates over the size
of ¢ in the ith dimension and we simplify the index for circularly
shifting vectors, i1,...,ix, as simply (¢). This expression shows that
the derivative of ¢ ® x with respect to the sth filter coefficient is the
-sth coefficient in x, i.e.,

0
Jcs (coz)=al"?. (C2)

136 Additional Running Example Results

We can now find the partial derivative of interest:

e® f.(z) = Z [€liy,..in f.(z)<'i> by the convolution formula

115N
= Z [€liy,..in [(z<'z>> since [operates point-wise
115N

= Z Coinynin - (z<'i>> by definition of ¢
= Z Cip,in - (z“)) reverse summation order.
115N

Recall that z is a function of cs. Therefore, using the chain rule to take
the derivative,

0
Ocg

(€@ f.(2))
+Z chl, :ZNf <“7 !)chs< <>>
+Z Z it f- (20 @ 2679

where the second equality follows from (C.2) and the definition of
¢. Recognizing the convolution formula in the second summand, the
expression can be simplified to

fE) +ew (fz)0a).

This proves the claim. Note that the provided formula is for a single
element in ¢. One can concatenate the partial derivative result for each
value of s to get the full Jacobian.

C.2 Evaluating Assumptions for the Running Example

To better understand the upper-level assumptions A¢1-A¢3 and lower-
level assumptions A®1-A®6 in Section 5.3.1, this section examines
whether the filter learning example (Ex) meets each assumption.

C.2. Evaluating Assumptions for the Running Example 137

C.2.1 Upper-level Loss Assumptions

Recall the upper-level loss function in (Ex) is squared error:

1 rue
(ys @) = Sl — a3, (€3)

where / is typically evaluated at = &(y).

The loss function (C.3) satisfies A¢1. Because there is no dependence
on y in the upper-level, Ly v, ¢ = 0. The gradient with respect to x is
Vol(y;) =x — ™

The norm of the upper-level gradient with respect to «,

;80 Ly v,0=1.

)

vaé('y; a:)|| = Hm _ plrue

can grow arbitrarily large, so condition A/ 2 is not met in general.
However, in most applications, one can assume an upper bound (possibly
quite large) on the elements of "¢ and impose that bound as a box
constraint when computing &. Then the triangle inequality provides a

wtr“eH for all & within the constraint box.

bound on Hw —
Finally, A¢3 is met by any loss function, including (C.3), that lacks
cross terms between x and y. We are unaware of any bilevel method

papers using such cross terms.

C.2.2 Lower-level Cost Assumptions

One property used below in many of the bounds for the lower-level cost
function is that
o1(Cr) = lleklly (C.4)

where o;(+) is a function that returns the first singular value of its
matrix argument. This property follows from Young’s inequality and is
related to bounded-input bounded-output stability of linear and time
invariant systems [203].

As with the upper-level assumptions considered above, (Ex) meets
the lower-level assumptions A®1-AD6 if we impose additional con-
straints on the maximum norm of variables. In addition to bounding
the elements in @, as we did to ensure A2, imposing bounds on ||ck|
and |B| is sufficient to meet all the lower-level assumptions. We now
examine each condition individually.

138 Additional Running Example Results

Recall from (Ex) that the example lower-level cost function is

K
#(y) = argmin £ || Az — y|2 + ¢ 3 B 1. (e ® @),
z€FN 2 E—1
where ¢ is a corner-rounded 1-norm (CRIN).

As described in Section 4.2, the minimizer approach requires @ to
be twice differentiable. Thus, @ satisfies A®1. This condition limits the
choices of ¢ to twice differentiable functions.

Considering A®2, the gradient of ® with respect to « is Lipschitz
continuous in z if the norm of the Hessian, ||Vzz®(x;v)l|,, is bounded.

Using (4.9) and assuming the Lipschitz constant of the derivative of ¢
is L (for (CRIN), L; = 1), a Lipschitz constant for V@ is

L%qu) = U%(A) + L(ﬁeﬁo ZeﬂkUl(Cllgck)
k

=07 (A)+ Lge™ e ||| by (C4). (C.5)
k

The Lipschitz constant Lz v, depends on the values in y and therefore
does not strictly satisfy A®2. Here if 5y, S, and ¢ have upper bounds,
then one can upper bound L v, ¢. All of the bounds below have similar
considerations.

To consider the strong convexity condition in AD®3, we consider the

Hessian,
Ve ®(x;y) = A'A +e)" ePrCldiag(d.(cr ® x))C -
From data-fit term k

From regularizer

(C.6)
We assume that ¢(z) > 0Vz, as is the case for the corner rounded
I-norm. If A’A is positive-definite with on(A’A) > 0 (this is equivalent
to A having full column rank), then the Hessian is positive-definite and
Mo, @ = 0]2\, (A) suffices as a strong convexity parameter. In applications
like compressed sensing, A does not have full column rank. In such
cases, oy (A’A) = 0 and as e® — 0 the regularizer term vanishes, so
there does not exist any universal p, o > 0 for all y € FE so the

strong convexity condition A®3 is not satisfied. However, as discussed

C.2. Evaluating Assumptions for the Running Example 139

in Section 4.2.3, the condition may hold in practice for many values
of y. How to adapt the complexity theory to rigorously address these
subtleties is an open question.

The fourth condition, A®4, is that V@ (x;y) and Vy,O(x;y)
are Lipschitz continuous with respect to « for all y. For the first part
part, a Lipschitz constant results from bounding the difference in the

Hessian evaluated at two points, () and 3

|Var®(@ Vi) = Var®(2® 1v)

ePo Z ePr C,diag(¢.(cx, ® w(l)) — o ® 58(2)))Ck
k

2
Since every element of ¢ is bounded in (0, L <i>)’ the difference between
any two evaluations of ¢ is at most L b Thus
vamd)(w(l) ;Y) — Vm:(D(a:(Z) ;Y)Hz < eﬁOLé Zeﬁk |CLCx|l,
k
<ML,y e elly

k

The final simplification again uses (C.4). Thus,

L Vo0 = 660%;6&’“ lexI? -

For the second part of AD®4, we must look at the tuning parameters
and filter coefficients separately. When considering learning a tuning
parameter, [y,

Vﬁkwq)(ic ;‘Y) = 660+’8k01,€¢.5.(ck$).

To find a Lipschitz constant, consider the Jacobian:

Vi (Ve ®(z;v)) = 2P Cldiag(¢.(Crx))C.

A Lipschitz constant of Vg, ,®(x;7y) is given by the bound on the
norm of this matrix (we chose to use the matrix 2-norm, also called the
spectral norm). Using similar steps as above to simplify the expression,
Layv, 0 = P Ly e}

140 Additional Running Example Results

When considering learning the sth element of the kth filter,

Ve ,a®@(x;y) = etk (qz').((cka:)<8>) +Cj (¢.(ckm) ® ﬁc<—s>))

= P | . (RiChx) + C (6.(Chr) © Roz) | € FY,
—_——

Expression 1

Expressions 2-3

where R and Ry are rotation matrices that depends on s such that
Rix = z'* and Ryx = %), For taking the gradient, it is convenient
to note that the last term can be expressed in multiple ways:

¢.(Crz) © £t = diag(¢.(Cra)) R = diag(Rox)d.(Cra) .

Expression 2 Expression 3

Using the alternate expressions to perform the chain rule with respect
to the & term that is not in the diag(:) statement, the gradient with
respect to x is:

Vo (Ve 2 ®@(@3y)) = e C} Ridiag(6.(R: Cya))

Expression 1

+ C,’Cdiag(qb.(Ck:c))Rg

Expression 2

+ Cjdiag(¢ (Cr))diag(Rym) Cy).

Expression 3

The bound on the spectral norm of the first and second expressions are
both 01(Ck) L because, for any z € FN,

Idiag(¢-(2))ll2 < max|é(z)| = Ly,

The third expression is bounded by 3 (Cy) ||z, L 4> which requires a
bound on the norm of x, similar to A¢2. Summing the three expressions
and including the tuning parameters gives the final Lipschitz constant

Lyy., .0 =™ a1(Cy)(2L; + 01(Cr)Ly ||2|,). (C.7)

The fifth assumption, A®5 states that the mixed second gradient
of @ is bounded. For the tuning parameters, the mixed second gradient
is given in (4.9) as

Vi@ (@;y) = e é @ ¢.(cr, ® 2).

C.2. Evaluating Assumptions for the Running Example 141

The bound given in A®5 follows easily by considering that
Idiag(¢-(cx ®))|l2 < max|¢(z)| = L.

For a filter coeflicient, the mixed second gradient is more complicated:

Ve ®(@3) = e (d((cr @ 2)) 480 (d(er @) 020)).
N |
Bounded by Lg Bounded by Lj

Assuming that the bounds Ly and L § exist (they are 1 and % respectively
for (CR1IN)), a bound on the norm of the mixed gradient is

[Ver e ®(@:¥)ll2 < €% (Lo + Ly el llell,)

The sixth assumption, A®6, is that Ly v, ,0 and Ly v, exist.
Lipschitz constants for the tuning parameters are

L, vy 00 = € |leg||, Ly and Lg, w0 = ™ ||| Ly,

Using similar derivations as shown above, corresponding Lipschitz con-
stants for the filter coefficients are

Loy ey o0 = € (Lo + @l (Lg + Ly leslly 1ll,))
2
Loy, Fant = €79 (2L el + Ly llexll} |1l

This is the last lower-level condition in Section 5.3.1 for the single-loop
and double-loop bilevel optimization method analysis.

D

Implementation Details

This appendix describes the experimental settings used throughout this
review. We first present the common settings; the following sub-sections
detail any differences specifically for the results in Fig. 1.3 and for the
series of figures using the cameraman image (Fig. 5.2, Fig. 6.1, and
Fig. 6.2). The code for all experiments is available on github [204].

The experiments consider the denoising problem (A = I') and use
(CRIN) as the sparsifying function ¢ with e = 0.01. The training data
is typically on the scale [0, 1] and noisy samples are generated from the
clean training data using (1.4) with zero-mean Gaussian noise with a
standard deviation of o = 25/255, following [30].

The lower-level optimizer is the optimized gradient method (OGM)
with gradient-based restart [148]. We calculate the step-size based on the
Lipschitz constant of the lower-level gradient using (C.5) every upper-
level iteration. Each experiment sets a maximum number of lower-level
iterations, but the lower-level optimization will terminate early if it
converges, defined as if ||V,®(x;v)| < 10°.

The upper-level optimizer follows the general structure of the double-
loop procedure outlined in Alg. 3. To compute V/(y), we use the
minimizer formulation (4.8), with the conjugate gradient (CG) method

142

D.1. Vertical Bar Training Image 143

to compute the Hessian-inverse-vector product (4.10). As suggested in
[117], the initialization for the lower-level optimization is the estimated
minimizer from the previous outer loop iteration, z(Z) (y(“‘l)) and the
initialization for the CG method is the solution from the previous CG
iteration. Following [34] and other bilevel works, the experiments use
Adam with the default parameters [145] to determine the size of the
upper-level gradient descent; this choice avoids introducing the tuning
parameter ay.

The learnable parameters include the filter coefficients and the
tuning parameters Sy for k € [1, K|. The experiments either use random
or DCT filters to initialize h. An initial grid search determines the
tuning parameter fy; B for k € [1, K] are initialized as 0 such that
ePe =1.

D.1 Vertical Bar Training Image

This section describes additional details for Fig. 1.3. This simple proof
of concept used 50 lower-level iterations (7" = 50) and 4,000 upper-level
iterations (U = 4,000). The initial grid search for [y yielded -4.6.

When ¢(z) = |z|, one can absorb the kth filter’s magnitude into the

tuning parameter Sy, because ||c; ® x|, = ||ckl|, ‘ TeT Gk ® .’BH When
using (CRI1N), this equality no longer holds, but
MO ek (D.1)

still provides a reasonable approximation for the overall regularization
strength for the kth filter. From left to right, the approximate regu-
larization strengths of the filters in Fig. 1.3 are 0.77, 0.49, 0.17, and
0.05.

The learned filters reflect that the training data is constant along
the columns. Visually, the filters resemble vertical (extended) finite
differences. This matches our expectations as a filter that takes vertical
finite differences will exactly sparsify the noiseless signal. Further, the
maximum sum of the columns of the learned filters is 10°. In contrast,
the sum of the rows of the learned filters varies from -2.6 to 3.0.

144 Implementation Details

D.2 Cameraman Training Image

This section describes the experimental settings for Fig. 5.2, Fig. 6.2,
and Fig. 6.1.

To reduce computation, we selected three 50 x 50 patches from the
“cameraman” image in Fig. 6.2 to use as the training data. We hand
selected the training patches to contain structure. Fig. D.1 shows the
training image patches.

We set the lower-level initialization #(y(?)) by optimizing the lower-
level cost function until the norm of the gradient fell below a threshold
for each training patch, i.e., until \/LN HVECD (.’ﬁj (v, y(o)) H2 <107
for j € [1,J]. The lower-level optimizer consisted of 10 iterations of
OGM [148].

As shown in Fig. 6.1, the initial filters are the 48 non-constant
DCT filters of size 7 x 7. The initial grid search for £y yielded -4. In
summary, the settings are J = 3, N =50-50, S =7-7, K = 48,
R = 48(49 + 1) = 2400, 5y = -4, T = 10, and U = 10, 000.

Fig. 6.1 shows the learned filters. To visualize the filters when vy
includes h, Fig. 6.1c scales each learned filter ¢; to have unit norm.
Fig. D.2 shows the learned filters with the effective regularization
strength printed above each filter.

i

Figure D.1: Patches from the cameraman test images used as the training
dataset.

D.2. Cameraman Training Image 145

~
n

3.41

o b
© w
w [S2]
o &
=] =}
=Y o}

b e
w o
o w

o N
n 0
=) N

o
S
N
o
S
e
w

b ~
iy w
o [+]
I_o]
£ =
o] =
o o d
N A ~
w jt=] N

<
N
o
N

0.14 0.14

o
=
N

0.11

0.08 0.08 0.08 0.07

0.02 0.01 0.01 0.01 0.009 0.007 0.007

0.006 0.005 0.005 0.004 0.003 0.002 0.002

Figure D.2: Learned filers for (Ex) when vy includes h and 8, ordered by
their effective regularization strength e”* ||cy||,, which is printed above each
filter. This effective regularization does not include the influence of e, which
is uniform across all filters.

References

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of
inverse problems. Dordrecht: Kluwer, 1996.

C. H. McCollough, A. C. Bartley, R. E. Carter, B. Chen, T. A.
Drees, P. Edwards, D. R. Holmes, A. E. Huang, F. Khan, S.
Leng, K. L. McMillan, G. J. Michalak, K. M. Nunez, L. Yu, and
J. G. Fletcher, “Low-dose CT for the detection and classification
of metastatic liver lesions: Results of the 2016 Low Dose CT
Grand Challenge,” e339-52, Med. Phys., vol. 44, no. 10, Oct.
2017. por: 10.1002/mp.12345.

Y. Eldar and G. Kutyniok, Compressed sensing: Theory and
applications. Cambridge, 2012. por: 10.1017/CB0O9780511794308.
G. Wang, “A perspective on deep imaging,” 8914-24, [FEFE
Access, vol. 4, Nov. 2016. por: 10.1109/ACCESS.2016.2624938.
K. Hammernik and F. Knoll, “Machine learning for image re-
construction,” in Handbook of Medical Image Computing and
Computer Assisted Intervention, Elsevier, 2020, pp. 25—64. DOT:
10.1016/B978-0-12-816176-0.00007-7.

S. Ravishankar, J. C. Ye, and J. A. Fessler, “Image reconstruction:

9

From sparsity to data-adaptive methods and machine learning,”
86-109, Proc. IEEEFE, vol. 108, no. 1, Jan. 2020. por: 10.1109/
JPROC.2019.2936204.

146

https://doi.org/10.1002/mp.12345
https://doi.org/10.1017/CBO9780511794308
https://doi.org/10.1109/ACCESS.2016.2624938
https://doi.org/10.1016/B978-0-12-816176-0.00007-7
https://doi.org/10.1109/JPROC.2019.2936204
https://doi.org/10.1109/JPROC.2019.2936204

References 147

[7]

[12]

[14]

M. T. McCann and M. Unser, “Biomedical image reconstruction:
From the foundations to deep neural networks,” pp. 283-359,
Foundation and Trends in Signal Processing, vol. 13, no. 3, 2019.
Dor: 10.1561/2000000101.

S. Dempe, “Annotated bibliography on bilevel programming and
mathematical programs with equilibrium constraints,” pp. 333—
359, Optimization, vol. 52, no. 3, Jun. 2003. por: 10.1080 /
0233193031000149894.

S. Dempe and A. Zemkoho, Eds., Bilevel Optimization: Advances
and next Challenges, vol. 161, ser. Springer Optimization and
Its Applications. Springer International Publishing, 2020. DOT1:
10.1007/978-3-030-52119-6.

J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learn-
ing,” pp. 791-804, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 4, Apr. 2012. por: 10.1109/
TPAMI.2011.156.

L. Calatroni, C. Chung, J. C. De los Reyes, C.-B. Schonlieb,
and T. Valkonen, “Bilevel approaches for learning of variational
imaging models,” in Variational Methods in Imaging and Geo-
metric Control, ser. Radon Series on Computational and Applied
Mathematics, vol. 18, De Gruyter, 2017. [Online]. Available:
http://arxiv.org/abs/1505.02120.

J. C. De los Reyes, C.-B. Schénlieb, and T. Valkonen, “Bilevel
parameter learning for higher-order total variation regularisation
models,” pp. 1-25, Journal of Mathematical Imaging and Vision,
vol. 57, no. 1, Jan. 2017. por: 10.1007/s10851-016-0662-8.

P. Knobelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer,
and T. Pock, “Belief propagation reloaded: Learning BP-layers for
labeling problems,” presented at the The IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 7897—
7906, Jun. 2020. por: 10.1109/CVPR42600.2020.00792.

P. Ochs, R. Ranftl, T. Brox, and T. Pock, “Techniques for
gradient-based bilevel optimization with non-smooth lower level
problems,” pp. 175-194, Journal of Mathematical Imaging and
Vision, vol. 56, no. 2, Oct. 2016. DOI: 10.1007/s10851-016-0663-7.

https://doi.org/10.1561/2000000101
https://doi.org/10.1080/0233193031000149894
https://doi.org/10.1080/0233193031000149894
https://doi.org/10.1007/978-3-030-52119-6
https://doi.org/10.1109/TPAMI.2011.156
https://doi.org/10.1109/TPAMI.2011.156
http://arxiv.org/abs/1505.02120
https://doi.org/10.1007/s10851-016-0662-8
https://doi.org/10.1109/CVPR42600.2020.00792
https://doi.org/10.1007/s10851-016-0663-7

[21]

[23]

[24]

References

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia:
A fresh approach to numerical computing,” 65-98, SIAM Review,
vol. 59, no. 1, 2017. por: 10.1137/141000671.

M. Stone, “Cross-validation: A review,” 127-139, Math Oper Stat
Ser Stat., vol. 9, no. 1, 1978. po1: 10.1080/02331887808801414.
G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-
validation as a method for choosing a good ridge parameter,” 215-
23, Technometrics, vol. 21, no. 2, May 1979. [Online|. Available:
http://www.jstor.org/stable/1268518.

D. L. Phillips, “A technique for the numerical solution of certain
integral equations of the first kind,” 84-97, J. Assoc. Comput.
Mach., vol. 9, no. 1, Jan. 1962. por: 10.1145/321105.321114.

S. S. Saquib, C. A. Bouman, and K. Sauer, “ML parameter esti-
mation for Markov random fields, with applications to Bayesian
tomography,” 1029-44, IEEFE Trans. Im. Proc., vol. 7, no. 7, Jul.
1998. por: 10.1109/83.701163.

W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. W.
Tsui, “4D XCAT phantom for multimodality imaging research,”
pp. 4902-15, Medical Physics, vol. 37, no. 9, Aug. 2010. DOI:
10.1118/1.3480985.

C. Poon and G. Peyré, “Smooth Bilevel Programming for Sparse
Regularization,” in 35th Conference on Neural Information Pro-
cessing Systems, 2021. [Online|. Available: https://proceedings.
neurips.cc/paper/2021/hash/0bed45bd5774{fddc95{fe500024{628-
Abstract.html.

R. Fletcher and S. Leyffer, “Numerical experience with solving
MPECs as NLPs,” Department of Mathematics and Computer
Science, University of Dundee, Dundee, 2002. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.
6674.

B. Colson, P. Marcotte, and G. Savard, “An overview of bilevel op-
timization,” pp. 235-256, Annals of Operations Research, vol. 153,
no. 1, Jun. 2007. por: 10.1007/s10479-007-0176-2.

P. Jain and P. Kar, “Non-convex optimization for machine learn-
ing,” 142-336, Found. & Trends in Machine Learning, vol. 10,
no. 3-4, 2017. por: 10.1561/2200000058.

https://doi.org/10.1137/141000671
https://doi.org/10.1080/02331887808801414
http://www.jstor.org/stable/1268518
https://doi.org/10.1145/321105.321114
https://doi.org/10.1109/83.701163
https://doi.org/10.1118/1.3480985
https://proceedings.neurips.cc/paper/2021/hash/0bed45bd5774ffddc95ffe500024f628-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0bed45bd5774ffddc95ffe500024f628-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/0bed45bd5774ffddc95ffe500024f628-Abstract.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6674
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.6674
https://doi.org/10.1007/s10479-007-0176-2
https://doi.org/10.1561/2200000058

References 149

[25]

[29]

[30]

[32]

A. Effland, E. Kobler, K. Kunisch, and T. Pock, “Variational
networks: An optimal control approach to early stopping varia-
tional methods for image restoration,” pp. 396—416, Journal of
Mathematical Imaging and Vision, vol. 62, no. 3, Apr. 2020. DOI:
10.1007/s10851-019-00926-8.

E. Haber and L. Tenorio, “Learning regularization functionals a
supervised training approach,” pp. 611-626, Inverse Problems,
vol. 19, no. 3, Jun. 1, 2003. por: 10.1088/0266-5611/19/3/309.

M. J. Ehrhardt and L. Roberts, “Inexact derivative-free optimiza-
tion for bilevel learning,” pp. 580-600, Journal of Mathematical
Imaging and Vision, vol. 63, Feb. 6, 2021. por: 10.1007/s10851-
021-01020-8.

F. Sherry, M. Benning, J. C. De los Reyes, M. J. Graves, G.
Maierhofer, G. Williams, C.-B. Schonlieb, and M. J. Ehrhardt,
“Learning the sampling pattern for MRIL,” pp. 4310-4321, IEEFE
Transactions on Medical Imaging, vol. 39, no. 12, Dec. 2020. DOTI:
10.1109/TMI.2020.3017353.

E. Kobler, A. Effland, K. Kunisch, and T. Pock, “Total deep
variation: A stable regularization method for inverse problems,”
IEEE transactions on pattern analysis and machine intelligence,
Nov. 2021. por: 10.1109/TPAMI.2021.3124086, Advance online
publication. PMID: 34727026.

Y. Chen, R. Ranftl, and T. Pock, “Insights into analysis operator
learning: From patch-based sparse models to higher order MRFs,”
pp. 1060-1072, IEEE Transactions on Image Processing, vol. 23,
no. 3, Mar. 2014. por: 10.1109/TIP.2014.2299065.

K. G. G. Samuel and M. F. Tappen, “Learning optimized MAP es-
timates in continuously-valued MRF models,” in 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 477—
484, Jun. 2009. por: 10.1109/CVPR.2009.5206774.

G. Holler, K. Kunisch, and R. C. Barnard, “A bilevel approach
for parameter learning in inverse problems,” p. 115012, Inverse
Problems, vol. 34, no. 11, Nov. 1, 2018. po1: 10.1088 /1361-
6420/aade77.

https://doi.org/10.1007/s10851-019-00926-8
https://doi.org/10.1088/0266-5611/19/3/309
https://doi.org/10.1007/s10851-021-01020-8
https://doi.org/10.1007/s10851-021-01020-8
https://doi.org/10.1109/TMI.2020.3017353
https://doi.org/10.1109/TPAMI.2021.3124086
https://doi.org/10.1109/TIP.2014.2299065
https://doi.org/10.1109/CVPR.2009.5206774
https://doi.org/10.1088/1361-6420/aade77
https://doi.org/10.1088/1361-6420/aade77

150

33]

[34]

[35]

[39]

[40]

References

G. Peyré and J. M. Fadili, “Learning analysis sparsity priors,”
in IEEE Intl. Conf. on Sampling Theory and Appl. (SampTA),
2011. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
00542016.

Y. Chen, H. Liu, X. Ye, and Q. Zhang, “Learnable descent algo-
rithm for nonsmooth nonconvex image reconstruction,” pp. 1532—
1564, SIAM Journal on Imaging Sciences, vol. 14, no. 4, 2021.
por: 10.1137/20M1353368.

R. M. Lewitt and S. Matej, “Overview of methods for image
reconstruction from projections in emission computed tomog-
raphy,” 1588—-611, Proc. IEEFE, vol. 91, no. 10, Oct. 2003. DOTI:
10.1109/JPROC.2003.817882.

M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus syn-
thesis in signal priors,” pp. 947—68, Inverse Problems, vol. 23,
no. 3, Jun. 2007. por: 10.1088/0266-5611/23/3/007.

C. Guillemot and O. Le Meur, “Image inpainting: Overview and
recent advances,” 127-44, IEEE Sig. Proc. Mag., vol. 31, no. 1,
Jan. 2014. por: 10.1109/MSP.2013.2273004.

J. A. Fessler, “Model-based image reconstruction for MRI,” 81-9,
IEEE Sig. Proc. Mag., vol. 27, no. 4, Jul. 2010. po1: 10.1109/
MSP.2010.936726.

G. H. Golub and C. F. Van Loan, “An analysis of the total least
squares problem,” 883-93, SIAM J. Numer. Anal., vol. 17, no. 6,
Dec. 1980. por: 10.1137/0717073.

L. Ying and J. Sheng, “Joint image reconstruction and sensitivity
estimation in SENSE (JSENSE),” 1196-1202, Mag. Res. Med.,
vol. 57, no. 6, Jun. 2007. pDOI: 10.1002/mrm.21245.

A. Chambolle and T. Pock, “An introduction to continuous
optimization for imaging,” pp. 161-319, Acta Numerica, vol. 25,
May 2016. por: 10.1017/5096249291600009X.

S. Nam, M. Davies, M. Elad, and R. Gribonval, “The cosparse
analysis model and algorithms,” pp. 30-56, Applied and Com-
putational Harmonic Analysis, vol. 34, no. 1, Jan. 2013. DOTI:
10.1016/j.acha.2012.03.006.

https://hal.archives-ouvertes.fr/hal-00542016
https://hal.archives-ouvertes.fr/hal-00542016
https://doi.org/10.1137/20M1353368
https://doi.org/10.1109/JPROC.2003.817882
https://doi.org/10.1088/0266-5611/23/3/007
https://doi.org/10.1109/MSP.2013.2273004
https://doi.org/10.1109/MSP.2010.936726
https://doi.org/10.1109/MSP.2010.936726
https://doi.org/10.1137/0717073
https://doi.org/10.1002/mrm.21245
https://doi.org/10.1017/S096249291600009X
https://doi.org/10.1016/j.acha.2012.03.006

References 151

[43]

[44]

[45]

[47]

[48]

[49]

M. Elad, Sparse and redundant representations: from theory to
applications in signal and image processing. Berlin: Springer,
2010. por: 10.1007/978-1-4419-7011-4.

G. Peyre, “A review of adaptive image representations,” 896—
911, IEEFE J. Sel. Top. Sig. Proc., vol. 5, no. 5, Sep. 2011. por:
10.1109/JSTSP.2011.2120592.

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete fre-
quency information,” pp. 489-509, IEEE Transactions on Infor-
mation Theory, vol. 52, no. 2, Feb. 2006. por: 10.1109/TIT.2005.
862083.

R. Tibshirani, “Regression shrinkage and selection via the Lasso,”
pp- 267288, Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, Jan. 1996. po1: 10.1111/j.2517-
6161.1996.tb02080.x.

P. Zhou, C. Zhang, and Z. Lin, “Bilevel model-based discrimina-
tive dictionary learning for recognition,” 1173-87, IEEE Trans.
Im. Proc., vol. 26, no. 3, Mar. 2017. por: 10.1109/tip.2016.
2623487.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithm,” 259-68, Physica D, vol. 60,
no. 1-4, Nov. 1992. por: 10.1016/0167-2789(92)90242-F.

E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “Com-
pressed sensing with coherent and redundant dictionaries,” pp. 59—
73, Applied and Computational Harmonic Analysis, vol. 31, no. 1,
Jul. 2011. por: 10.1016/j.acha.2010.10.002.

S. Hawe, M. Kleinsteuber, and K. Diepold, “Analysis operator
learning and its application to image reconstruction,” pp. 2138—
2150, IEEFE Transactions on Image Processing, vol. 22, no. 6,
Jun. 2013. por: 10.1109/TIP.2013.2246175.

S. Ravishankar and Y. Bresler, “Learning sparsifying trans-
forms,” pp. 1072-1086, IEEE Transactions on Signal Processing,
vol. 61, no. 5, Mar. 2013. por: 10.1109/TSP.2012.2226449.

J. A. Fessler, “Optimization methods for MR, image reconstruc-
tion,” 33-40, IFEE Sig. Proc. Mag., vol. 37, no. 1, Jan. 2020.
DOI: 10.1109/MSP.2019.2943645.

https://doi.org/10.1007/978-1-4419-7011-4
https://doi.org/10.1109/JSTSP.2011.2120592
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/tip.2016.2623487
https://doi.org/10.1109/tip.2016.2623487
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1016/j.acha.2010.10.002
https://doi.org/10.1109/TIP.2013.2246175
https://doi.org/10.1109/TSP.2012.2226449
https://doi.org/10.1109/MSP.2019.2943645

152

[53]

[58]

[60]

References

L. Pfister and Y. Bresler, “Learning filter bank sparsifying trans-
forms,” pp. 504-519, IEEE Transactions on Signal Processing,
vol. 67, no. 2, Jan. 2019. por: 10.1109/TSP.2018.2883021.

B. M. Afkham, J. Chung, and M. Chung, “Learning regulariza-
tion parameters of inverse problems via deep neural networks,”
p- 105017, Inverse Problems, vol. 37, no. 10, Sep. 2021. DOI:
10.1088/1361-6420/ac245d.

S. Roth and M. Black, “Fields of experts: A framework for learn-
ing image priors,” in 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), vol. 2,
pp. 860-867, 2005. po1: 10.1109/CVPR.2005.160.

M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman,
“Learning gaussian conditional random fields for low-level vision,”
in 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-8, Jun. 2007. por: 10.1109 /CVPR.2007.
382979.

B. Ophir, M. Elad, N. Bertin, and M. D. Plumbley, “Sequen-
tial minimal eigenvalues - an approach to analysis dictionary
learning,” pp. 1465-1469, 19th European Signal Processing Con-
ference, 2011. [Online|. Available: https://ieeexplore.ieee.org/
document/7074010.

M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Analysis
operator learning for overcomplete cosparse representations,”
presented at the 2011 19th European Signal Processing Con-
ference, pp. 14701474, IEEE, 2011. [Online|. Available: https:
//ieeexplore.ieee.org/document /7074220.

M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, “Con-
strained overcomplete analysis operator learning for cosparse sig-
nal modelling,” pp. 2341-2355, IEEE Transactions on Signal Pro-
cessing, vol. 61, no. 9, May 2013. po1: 10.1109/TSP.2013.2250968.
K. Kunisch and T. Pock, “A bilevel optimization approach for
parameter learning in variational models,” pp. 938-983, SIAM
Journal on Imaging Sciences, vol. 6, no. 2, Jan. 2013. poI: 10.
1137/120882706.

https://doi.org/10.1109/TSP.2018.2883021
https://doi.org/10.1088/1361-6420/ac245d
https://doi.org/10.1109/CVPR.2005.160
https://doi.org/10.1109/CVPR.2007.382979
https://doi.org/10.1109/CVPR.2007.382979
https://ieeexplore.ieee.org/document/7074010
https://ieeexplore.ieee.org/document/7074010
https://ieeexplore.ieee.org/document/7074220
https://ieeexplore.ieee.org/document/7074220
https://doi.org/10.1109/TSP.2013.2250968
https://doi.org/10.1137/120882706
https://doi.org/10.1137/120882706

References 153

[61]

[62]

[63]

[64]

[67]

I. Y. Chun and J. A. Fessler, “Convolutional analysis operator
learning: Acceleration and convergence,” pp. 2108-2122, IEFE
Transactions on Image Processing, vol. 29, 2020. por: 10.1109/
TIP.2019.2937734.

S. Haykin, “Neural networks expand SP’s horizons,” 24-49, IEEE
Sig. Proc. Mag., vol. 13, no. 2, Mar. 1996. por: 10.1109/79.487040.
J.-N. Hwang, S.-Y. Kung, M. Niranjan, and J. C. Principe,
“The past, present, and future of neural networks for signal
processing,” 2848, IEEE Sig. Proc. Mag., vol. 14, no. 6, Nov.
1997. por: 10.1109/79.637299.

A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using
deep neural networks for inverse problems in imaging: Beyond
analytical methods,” 20-36, IEEFE Sig. Proc. Mag., vol. 35, no. 1,
Jan. 2018. por: 10.1109/msp.2017.2760358.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention, 234—41, 2015.
DOI: 10.1007/978-3-319-24574-4_ 28.

J. C. Ye, Y. Han, and E. Cha, “Deep convolutional framelets:
A general deep learning framework for inverse problems,” 991—
1048, SIAM J. Imaging Sci., vol. 11, no. 2, Jan. 2018. DOI:
10.1137/17m1141771.

B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler, “Transform
learning for magnetic resonance image reconstruction: From
model-based learning to building neural networks,” 41-53, IEEE
Sig. Proc. Mag., vol. 37, no. 1, Jan. 2020. por: 10.1109/MSP.
2019.2951469.

A. Chambolle and T. Pock, “Learning consistent discretizations
of the total variation,” pp. 778-813, vol. 14, no. 2, 2021. DOTI:
10.1137/20M1377199.

M. Feurer and F. Hutter, “Chapter 1: Hyperparameter optimiza-
tion,” in Automated Machine Learning: Methods, Systems, Chal-
lenges, ser. The Springer Series on Challenges in Machine Learn-
ing, F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Springer
International Publishing, 2019, pp. 3-33. por: 10.1007/978-3-
030-05318-5.

https://doi.org/10.1109/TIP.2019.2937734
https://doi.org/10.1109/TIP.2019.2937734
https://doi.org/10.1109/79.487040
https://doi.org/10.1109/79.637299
https://doi.org/10.1109/msp.2017.2760358
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1137/17m1141771
https://doi.org/10.1109/MSP.2019.2951469
https://doi.org/10.1109/MSP.2019.2951469
https://doi.org/10.1137/20M1377199
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5

154

[70]

[71]

[72]

[76]

References

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a
head section,” 21-43, IEEE Trans. Nuc. Sci., vol. 21, no. 3, Jun.
1974. por: 10.1109/TNS.1974.6499235.

J. A. Fessler, MIRT-demo: 01-recon, Jul. 25, 2020. [Online].
Available: https://github.com /JeffFessler /mirt-demo /blob /
master /isbi-19/01-recon.jl.

C. You, Q. Yang, H. Shan, L. Gjesteby, G. Li, S. Ju, Z. Zhang,
Z. Zhao, Y. Zhang, W. Cong, and G. Wang, “Structure-sensitive
multi-scale deep neural network for low-dose CT denoising,”
pp. 41839-41855, IEEE Access, vol. 6, 2018. por: 10.1109/
ACCESS.2018.2858196.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
600-12, IEEE Trans. Im. Proc., vol. 13, no. 4, Apr. 2004. DOI:
10.1109/TTP.2003.819861.

Z. Wang and A. Bovik, “Reduced- and no-reference image qual-
ity assessment,” pp. 2940, IEEE Signal Processing Magazine,
vol. 28, no. 6, Nov. 2011. por: 10.1109/MSP.2011.942471.

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “A comprehensive
evaluation of full reference image quality assessment algorithms,”
in 2012 19th IEEFE International Conference on Image Processing,
pp. 1477-1480, Sep. 2012. por: 10.1109/ICIP.2012.6467150.

W. Zhang, K. Ma, J. Yan, D. Deng, and Z. Wang, “Blind image
quality assessment using a deep bilinear convolutional neural
network,” pp. 36-47, IEEFE Transactions on Circuits and Systems
for Video Technology, vol. 30, no. 1, Jan. 2020. por: 10.1109/
TCSVT.2018.2886771.

A. Mason, J. Rioux, S. E. Clarke, A. Costa, M. Schmidt, V.
Keough, T. Huynh, and S. Beyea, “Comparison of objective
image quality metrics to expert radiologists’ scoring of diagnostic
quality of MR images,” pp. 1064-1072, IEEE Transactions on
Medical Imaging, vol. 39, no. 4, Apr. 2020. pot: 10.1109/TMI.
2019.2930338.

https://doi.org/10.1109/TNS.1974.6499235
https://github.com/JeffFessler/mirt-demo/blob/master/isbi-19/01-recon.jl
https://github.com/JeffFessler/mirt-demo/blob/master/isbi-19/01-recon.jl
https://doi.org/10.1109/ACCESS.2018.2858196
https://doi.org/10.1109/ACCESS.2018.2858196
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/MSP.2011.942471
https://doi.org/10.1109/ICIP.2012.6467150
https://doi.org/10.1109/TCSVT.2018.2886771
https://doi.org/10.1109/TCSVT.2018.2886771
https://doi.org/10.1109/TMI.2019.2930338
https://doi.org/10.1109/TMI.2019.2930338

References 155

(78]

[82]

[83]

[84]

[86]

M. Gholizadeh-Ansari, J. Alirezaie, and P. Babyn, “Deep learn-
ing for low-dose CT denoising using perceptual loss and edge
detection layer,” 504—15, J. Digital Im., vol. 33, no. 2, 2020. DOI:
10.1007/s10278-019-00274-4.

G. Seif and D. A., “Edge-based loss function for single image
super-resolution,” in Proc. IEEE Conf. Acoust. Speech Sig. Proc.,
1468-72, 2018. po1: 10.1109/ICASSP.2018.8461664.

S. Ravishankar and Y. Bresler, “MR image reconstruction from
highly undersampled k-space data by dictionary learning,” pp. 1028—
1041, IEEFE Transactions on Medical Imaging, vol. 30, no. 5, May
2011. por: 10.1109/TMI.2010.2090538.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image qual-
ity assessment: From error visibility to structural similarity,”
pp. 600612, IEEFE Transactions on Image Processing, vol. 13,
no. 4, Apr. 2004. por: 10.1109/TTP.2003.819861.

Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh
Asilomar Conference on Signals, Systems & Computers, 2003,
pp. 1398-1402, IEEE, 2003. por: 10.1109/ACSSC.2003.1292216.
G. P. Renieblas, A. T. Nogués, A. M. Gonzélez, N. G. Ledn, and
E. G. . Castillo, “Structural similarity index family for image
quality assessment in radiological images,” p. 035501, J. Med.
Im., vol. 4, no. 3, Jul. 2017. por: 10.1117/1.JMI.4.3.035501.

S. Bosse, D. Maniry, K.-R. Muller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image
quality assessment,” pp. 206-219, IEEE Transactions on Image
Processing, vol. 27, no. 1, Jan. 2018. por: 10.1109/TIP.2017.
2760518.

G. W. Lindsay, “Convolutional neural networks as a model of
the visual system: Past, present, and future,” pp. 1-15, Journal
of Cognitive Neuroscience, Feb. 6, 2020. por: 10.1162/jocn__a__
01544.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in International Confer-
ence on Learning Representations, May 2015. [Online]. Available:
http://arxiv.org/abs/1409.1556.

https://doi.org/10.1007/s10278-019-00274-4
https://doi.org/10.1109/ICASSP.2018.8461664
https://doi.org/10.1109/TMI.2010.2090538
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1117/1.JMI.4.3.035501
https://doi.org/10.1109/TIP.2017.2760518
https://doi.org/10.1109/TIP.2017.2760518
https://doi.org/10.1162/jocn_a_01544
https://doi.org/10.1162/jocn_a_01544
http://arxiv.org/abs/1409.1556

156

[87]

References

T. J. Hebert and R. Leahy, “Statistic-based MAP image recon-
struction from Poisson data using Gibbs priors,” 2290-303, IEEE
Trans. Sig. Proc., vol. 40, no. 9, Sep. 1992. por: 10.1109/78.
157228.

C. M. Stein, “Estimation of the mean of a multivariate normal
distribution,” The Annals of Statistics, vol. 9, no. 6, Nov. 1, 1981.
DOI: 10.1214/a0s/1176345632.

S. Ramani, T. Blu, and M. Unser, “Monte-carlo sure: A black-box
optimization of regularization parameters for general denoising
algorithms,” pp. 1540-1554, IEEE Transactions on Image Pro-
cessing, vol. 17, no. 9, Sep. 2008. por: 10.1109/TIP.2008.2001404.
S. Soltanayev and S. Y. Chun, “Training deep learning based
denoisers without ground truth data,” in Neural Information
Processing Systems, vol. 31, 2018. [Online|. Available: https:
/ /papers.nips.cc/paper / 7587- training- deep-learning- based -
denoisers-without-ground-truth-data.

K. Kim, S. Soltanayev, and S. Y. Chun, “Unsupervised training
of denoisers for low-dose CT reconstruction without full-dose
ground truth,” 1112-25, IFEE J. Sel. Top. Sig. Proc., vol. 14,
no. 6, Oct. 2020. por: 10.1109/JSTSP.2020.3007326.

M. Zhussip, S. Soltanayev, and S. Y. Chun, “Training deep
learning based image denoisers from undersampled measurements
without ground truth and without image prior,” in Proc. IEEFE
Conf. on Comp. Vision and Pattern Recognition, 10247-56, 2019.
poI: 10.1109/CVPR.2019.01050.

H. Zhang, X. Chen, X. Zhang, and X. Zhang, “A bi-level nested
sparse optimization for adaptive mechanical fault feature de-
tection,” pp. 19767-19782, IEEE Access, vol. 8, 2020. DOI:
10.1109/ACCESS.2020.2968726.

C.-A. Deledalle, S. Vaiter, J. Fadili, and G. Peyré, “Stein Un-
biased GrAdient estimator of the Risk (SUGAR) for multiple
parameter selection,” pp. 2448-2487, SIAM Journal on Imaging
Sciences, vol. 7, no. 4, Jan. 2014. por: 10.1137/140968045.

Y. C. Eldar, “Rethinking biased estimation: Improving maxi-
mum likelihood and the Cramer-Rao bound,” 305-449, Found. &
Trends in Sig. Pro., vol. 1, no. 4, 2008. por: 10.1561/2000000008.

https://doi.org/10.1109/78.157228
https://doi.org/10.1109/78.157228
https://doi.org/10.1214/aos/1176345632
https://doi.org/10.1109/TIP.2008.2001404
https://papers.nips.cc/paper/7587-training-deep-learning-based-denoisers-without-ground-truth-data
https://papers.nips.cc/paper/7587-training-deep-learning-based-denoisers-without-ground-truth-data
https://papers.nips.cc/paper/7587-training-deep-learning-based-denoisers-without-ground-truth-data
https://doi.org/10.1109/JSTSP.2020.3007326
https://doi.org/10.1109/CVPR.2019.01050
https://doi.org/10.1109/ACCESS.2020.2968726
https://doi.org/10.1137/140968045
https://doi.org/10.1561/2000000008

References 157

[96]

[97]

[98]

[100]

[101]

[102]

[103]

[104]

Y. Eldar, “Generalized SURE for exponential families: Appli-
cations to regularization,” pp. 471-481, IEEE Transactions on
Signal Processing, vol. 57, no. 2, Feb. 2009. por: 10.1109/TSP.
2008.2008212.

R. Giryes, M. Elad, and Y. C. Eldar, “The projected GSURE
for automatic parameter tuning in iterative shrinkage methods,”
40722, Applied and Computational Harmonic Analysis, vol. 30,
no. 3, May 2011. por: 10.1016/j.acha.2010.11.005.

A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “com-
pletely blind” image quality analyzer,” pp. 209-212, IEEE Signal
Processing Letters, vol. 20, no. 3, Mar. 2013. por: 10.1109/LSP.
2012.2227726.

L. Kang, P. Ye, Y. Li, and D. Doermann, “Convolutional neural
networks for no-reference image quality assessment,” in 201/
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1733-1740, Jun. 2014. por: 10.1109/CVPR.2014.224.

The University of Texas at Austin: Laboratory for Image and
Video Engineering. (n.d.). “Image & video quality assessment at
LIVE,” [Online]. Available: http://live.ece.utexas.edu/research/
quality/.

J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free opti-
mization methods,” pp. 287-404, Acta Numerica, vol. 28, May 1,
2019. por: 10.1017/50962492919000060.

0. Gencoglu, M. van Gils, E. Guldogan, C. Morikawa, M. Siizen,
M. Gruber, J. Leinonen, and H. Huttunen. (Apr. 16, 2019).
“HARK side of deep learning — From grad student descent to
automated machine learning.” arXiv: 1904.07633.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” pp. 281-305, Journal of Machine Learning Re-
search, vol. 13, Feb. 2012. po1: 10.5555/2188385.2188395.

G. Muniraju, B. Kailkhura, J. J. Thiagarajan, and T. Bremer,
“Controlled random search improves sample mining and hyper-
parameter optimization,” in Thirty- Third AAAI Conference on
Artificial Intelligence, 2019. [Online|. Available: https://www.
osti.gov /servlets/purl /1497973.

https://doi.org/10.1109/TSP.2008.2008212
https://doi.org/10.1109/TSP.2008.2008212
https://doi.org/10.1016/j.acha.2010.11.005
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1109/CVPR.2014.224
http://live.ece.utexas.edu/research/quality/
http://live.ece.utexas.edu/research/quality/
https://doi.org/10.1017/S0962492919000060
https://arxiv.org/abs/1904.07633
https://doi.org/10.5555/2188385.2188395
https://www.osti.gov/servlets/purl/1497973
https://www.osti.gov/servlets/purl/1497973

158

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

References

H.-G. Beyer, The Theory of Evolution Strategies, ser. Natural
Computing Series. Springer, 2001.

A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter,
“Fast Bayesian hyperparameter optimization on large datasets,”
pp. 494568, Electron. J. Statist., vol. 11, no. 2, 2017. DOI:
10.1214/17-EJS1335SI.

P. I. Frazier. (Jul. 8, 2018). “A tutorial on bayesian optimization.”
arXiv: 1807.02811.

A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region
Methods, ser. MOS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics, Jan. 1, 2000, 960 pp. DOT:
10.1137/1.9780898719857.

L. Roberts, Inexact DFO for Bilevel Learning: Dimension Ques-
tion, E-mail, Jul. 11, 2021.

C. Cartis and L. Roberts. (Feb. 23, 2021). “Scalable subspace
methods for derivative-free nonlinear least-squares optimization.”
arXiv: 2102.12016.

S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and
E. Guo. (Jul. 20, 2016). “On differentiating parameterized argmin
and argmax problems with application to bi-level optimization.”
arXiv: 1607.05447.

J. A. Fessler, “Mean and variance of implicitly defined biased
estimators (such as penalized maximum likelihood): Applications
to tomography,” pp. 493-506, IEEE Trans. Im. Proc., vol. 5,
no. 3, Mar. 1996. por: 10.1109/83.491322.

M. Hintermiiller and T. Wu, “Bilevel optimization for calibrating
point spread functions in blind deconvolution,” pp. 1139-1169,
Inverse Problems € Imaging, vol. 9, no. 4, 2015. por: 10.3934/
ipi.2015.9.1139.

S. Scholtes and M. Stéhr, “How stringent is the linear indepen-
dence assumption for mathematical programs with complemen-
tarity constraints?” Pp. 851-863, Mathematics of Operations
Research, vol. 26, no. 4, Nov. 2001. por: 10.1287/moor.26.4.851.
10007.

https://doi.org/10.1214/17-EJS1335SI
https://arxiv.org/abs/1807.02811
https://doi.org/10.1137/1.9780898719857
https://arxiv.org/abs/2102.12016
https://arxiv.org/abs/1607.05447
https://doi.org/10.1109/83.491322
https://doi.org/10.3934/ipi.2015.9.1139
https://doi.org/10.3934/ipi.2015.9.1139
https://doi.org/10.1287/moor.26.4.851.10007
https://doi.org/10.1287/moor.26.4.851.10007

References 159

[115] S. Dempe and J. Dutta, “Is bilevel programming a special case
of a mathematical program with complementarity constraints?”
Pp. 3748, Mathematical Programming, vol. 131, no. 1-2, Feb.
2012. por: 10.1007/s10107-010-0342-1.

[116] K. B. Petersen and M. S. Pedersen, The Matriz Cookbook. Tech-
nical University of Denmark, Nov. 2012. [Online]. Available:
http://www2.imm.dtu.dk/pubdb/views/publication__details.
php?id=3274.

[117] K. Ji, J. Yang, and Y. Liang, “Bilevel optimization: Convergence
analysis and enhanced design,” in Proceedings of the 38th Inter-
national Conference on Machine Learning, pp. 4882-4892, Jul.
2021. [Online]. Available: http://proceedings.mlr.press/v139/
ji21lc.html.

[118] R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo, “On the itera-
tion complexity of hypergradient computation,” in Proceedings
of the 37th International Conference on Machine Learning, p. 11,
2020. [Online]. Available: http://proceedings.mlr.press/v119/
grazzi20a.html.

[119] P. W. Holland and R. E. Welsch, “Robust regression using it-
eratively reweighted least-squares,” 813-27, Comm. in Statistics—
Theory and Methods, vol. 6,no0. 9, 1977. po1: 10.1080/03610927708827533.

[120] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” 301-20, J. Royal Stat. Soc. Ser. B, vol. 67, no. 2,
2005. por: 10.1111/;.1467-9868.2005.00503.x.

[121] C.-s. Foo, C. B., and A. Ng, “Efficient multiple hyperparameter
learning for log-linear models,” in Advances in Neural Informa-
tion Processing Systems, vol. 20, Curran Associates, Inc., 2007.
[Online]. Available: https://proceedings.neurips.cc/paper/2007/
hash/851ddf5058¢f22df63d3344ad89919cf- Abstract.html.

[122] Z. Ramzi, F. Mannel, S. Bai, J.-L. Starck, P. Ciuciu, and T.
Moreau, SHINE: SHaring the INverse Estimate from the forward
pass for bi-level optimization and implicit models, Jun. 24, 2021.
arXiv: 2106.00553.

https://doi.org/10.1007/s10107-010-0342-1
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
http://proceedings.mlr.press/v139/ji21c.html
http://proceedings.mlr.press/v139/ji21c.html
http://proceedings.mlr.press/v119/grazzi20a.html
http://proceedings.mlr.press/v119/grazzi20a.html
https://doi.org/10.1080/03610927708827533
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://proceedings.neurips.cc/paper/2007/hash/851ddf5058cf22df63d3344ad89919cf-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/851ddf5058cf22df63d3344ad89919cf-Abstract.html
https://arxiv.org/abs/2106.00553

160

[123]

[124]

[125]

[126]

[127]
[128]

[129]

[130]

[131]

References

P. Sprechmann, R. Litman, T. B. Yakar, A. M. Bronstein, and
G. Sapiro, “Supervised sparse analysis and synthesis operators,”
in Neural Information Processing Systems, pp. 908-916, 2013.
[Online]. Available: https://papers.nips.cc/paper/2013 /hash/
7380ad8a673226ae4 7fce7hff88e9¢33- Abstract.html.

M. T. McCann and S. Ravishankar, “Supervised learning of
sparsity-promoting regularizers for denoising,” arXiv Computing
Research Repository, Jun. 9, 2020. arXiv: 2006.05521.

A. Ghosh, M. T. Mccann, and S. Ravishankar, Bilevel learning
of l1-reqularizers with closed-form gradients(BLORC), Nov. 21,
2021. arXiv: 2111.10858.

R. J. Tibshirani and J. Taylor, “The solution path of the gener-
alized lasso,” The Annals of Statistics, vol. 39, no. 3, Jun. 2011.
Dor: 10.1214/11-A0OS878.

A. Ghosh, Questions about BLORC, E-mail, Feb. 21, 2022.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward
and reverse gradient-based hyperparameter optimization,” in
Proceedings of the International Conference on Machine Learning,
pp. 1165-1173, PMLR, Dec. 12, 2017. [Online]. Available: http:
//proceedings.mlr.press/v70/franceschil 7a.html.

B. Dauvergne and L. Hascoet, “The data-flow equations of check-
pointing in reverse automatic differentiation,” in International
Conference on Computational Science, pp. 566-573, 2006. DOI:
10.1007/11758549_ 78.

M. Kellman, K. Zhang, E. Markley, J. Tamir, E. Bostan, M.
Lustig, and L. Waller, “Memory-efficient learning for large-scale
computational imaging,” pp. 1403-1414, IEEE Transactions on
Computational Imaging, vol. 6, 2020. por: 10.1109 /TCI.2020.
3025735.

D. Gilton, G. Ongie, and R. Willett, “Model adaptation for
inverse problems in imaging,” pp. 661-674, IEEE Transactions
on Computational Imaging, vol. 7, 2021. por: 10.1109/TCI.2021.
3094714.

https://papers.nips.cc/paper/2013/hash/7380ad8a673226ae47fce7bff88e9c33-Abstract.html
https://papers.nips.cc/paper/2013/hash/7380ad8a673226ae47fce7bff88e9c33-Abstract.html
https://arxiv.org/abs/2006.05521
https://arxiv.org/abs/2111.10858
https://doi.org/10.1214/11-AOS878
http://proceedings.mlr.press/v70/franceschi17a.html
http://proceedings.mlr.press/v70/franceschi17a.html
https://doi.org/10.1007/11758549_78
https://doi.org/10.1109/TCI.2020.3025735
https://doi.org/10.1109/TCI.2020.3025735
https://doi.org/10.1109/TCI.2021.3094714
https://doi.org/10.1109/TCI.2021.3094714

References 161

[132]

[133]

[134]

[135]

[136]

[137]

138

[139)]

H. Antil, Z. Di, and R. Khatri, “Bilevel optimization, deep
learning and fractional laplacian regularization with applications
in tomography,” Inverse Problems, Mar. 18, 2020. por: 10.1088/
1361-6420/ab80d7.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud,
“Neural Ordinary Differential Equations,” in Advances in Neural
Information Processing Systems, vol. 31, Curran Associates, Inc.,
2018. [Online]. Available: https://papers.nips.cc/paper/2018/
hash /69386{6bb1dfed68692a24c8686939b9- Abstract.html.

M. Thies, F. Wagner, M. Gu, L. Folle, L. Felsner, and A. Maier,
Learned Cone-Beam CT Reconstruction Using Neural Ordinary
Differential Equations, Jan. 19, 2022. arXiv: 2201.07562.

A. Chambolle and T. Pock, “On the ergodic convergence rates of
a first-order primal-—dual algorithm,” pp. 253-287, Mathematical
Programming: Series A and B, vol. 159, no. 1-2, Sep. 2016. DOTI:
10.1007/s10107-015-0957-3.

C. Christof, “Gradient-based solution algorithms for a class of
bilevel optimization and optimal control problems with a nons-
mooth lower level,” pp. 290-318, SIAM Journal on Optimization,
vol. 30, no. 1, Jan. 2020. por: 10.1137/18M1225707.

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots, “Truncated
back-propagation for bilevel optimization,” in Proceedings of the
Twenty-Second International Conference on Artificial Intelligence
and Statistics, pp. 1723-1732, PMLR, Apr. 11, 2019. [Online].
Available: https://proceedings.mlr.press/v89/shabanl9a.html.
D. P. Palomar and Y. C. Eldar, Convex optimization in signal
processing and communications. Cambridge, 2011. por: 10.1017/
CB0O9780511804458.

F. Pedregosa, “Hyperparameter optimization with approximate
gradient,” in Proceedings International Conference on Machine
Learning, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48,
pp. 737-46, PMLR, Jun. 20-22, 2016. [Online]. Available: http:
/ /proceedings.mlr.press/v48 /pedregosal6.html.

https://doi.org/10.1088/1361-6420/ab80d7
https://doi.org/10.1088/1361-6420/ab80d7
https://papers.nips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://papers.nips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://arxiv.org/abs/2201.07562
https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1137/18M1225707
https://proceedings.mlr.press/v89/shaban19a.html
https://doi.org/10.1017/CBO9780511804458
https://doi.org/10.1017/CBO9780511804458
http://proceedings.mlr.press/v48/pedregosa16.html
http://proceedings.mlr.press/v48/pedregosa16.html

162 References

[140] Y. Chen, T. Pock, R. Ranftl, and H. Bischof, “Revisiting loss-
specific training of filter-based MRFs for image restoration,” in
Pattern Recognition, J. Weickert, M. Hein, and B. Schiele, Eds.,
pp- 271-281, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
DOI: 10.1007/978-3-642-40602-7__30.

[141] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil,
“Bilevel programming for hyperparameter optimization and meta-
learning,” in International Conference on Machine Learning,
pp. 1568-1577, PMLR, Jul. 3, 2018. [Online]. Available: http:
/ /proceedings.mlr.press/v80/franceschil8a.html.

[142] M. Hintermiiller, K. Papafitsoros, C. N. Rautenberg, and H.
Sun. (Feb. 13, 2020). “Dualization and automatic distributed
parameter selection of total generalized variation via bilevel
optimization.” arXiv: 2002.05614.

[143] B. Sixou, “Adaptative regularization parameter for poisson noise

)

with a bilevel approach: Application to spectral computerized
tomography,” pp. 1-18, Inverse Problems in Science and Engi-
neering, Dec. 22, 2020. por: 10.1080/17415977.2020.1864348.

[144] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory
algorithm for bound constrained optimization,” 1190-208, STAM
J. Sci. Comp., vol. 16, no. 5, 1995. por: 10.1137/0916069.

[145] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning Rep-
resentations, vol. abs/1412.6980, May 2015. arXiv: 1412.6980.

[146] J. Fehrenbach, M. Nikolova, G. Steidl, and P. Weiss, “Bilevel
image denoising using gaussianity tests,” in International Con-
ference on Scale Space and Variational Methods in Computer
Vision, vol. 9087, pp. 117-128, 2015. po1: 10.1007/978-3-319-
18461-6__10.

[147] B. Lecouat, J. Ponce, and J. Mairal, “A flexible framework for
designing trainable priors with adaptive smoothing and game
encoding,” in Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 15 664-15 675, 2020. [Online|. Available: https://
papers.nips.cc/paper/2020/hash /b4edda67{0f57¢218a8e766927e3e5ch-
Abstract.html.

https://doi.org/10.1007/978-3-642-40602-7_30
http://proceedings.mlr.press/v80/franceschi18a.html
http://proceedings.mlr.press/v80/franceschi18a.html
https://arxiv.org/abs/2002.05614
https://doi.org/10.1080/17415977.2020.1864348
https://doi.org/10.1137/0916069
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-18461-6_10
https://doi.org/10.1007/978-3-319-18461-6_10
https://papers.nips.cc/paper/2020/hash/b4edda67f0f57e218a8e766927e3e5c5-Abstract.html
https://papers.nips.cc/paper/2020/hash/b4edda67f0f57e218a8e766927e3e5c5-Abstract.html
https://papers.nips.cc/paper/2020/hash/b4edda67f0f57e218a8e766927e3e5c5-Abstract.html

References 163

[148]

[149]

[150]
[151]

[152]

[153)]

[154]

[155]

[156]

D. Kim and J. A. Fessler, “Adaptive restart of the optimized
gradient method for convex optimization,” 240-63, J. Optim.
Theory Appl., vol. 178, no. 1, Jul. 2018. por: 10.1007/s10957-
018-1287-4.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang, A two-timescale
framework for bilevel optimization: Complexity analysis and
application to actor-critic, Dec. 20, 2020. arXiv: 2007.05170.

T. Chen, Y. Sun, and W. Yin. (Feb. 22, 2021). “A single-timescale
stochastic bilevel optimization method.” arXiv: 2102.04671.

S. Ghadimi and M. Wang. (Feb. 6, 2018). “Approximation meth-
ods for bilevel programming.” arXiv: 1802.02246.

J. Yang, K. Ji, and Y. Liang, “Provably faster algorithms for
bilevel optimization,” in 35th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2021), 2021. [Online]. Avail-
able: https: / / proceedings . neurips . cc / paper / 2021 / hash /
71cc107d2e0408e60a3d3c¢44f47507bd- Abstract.html.

P. Khanduri, H.-T. Wai, S. Zeng, M. Hong, Z. Wang, and Z. Yang,
“A near-optimal algorithm for stochastic bilevel optimization
via double-momentum,” in 85th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2021), p. 13, 2021. [Online].
Available: https://proceedings.neurips.cc/paper /2021 /hash/
fe2b421b8b5f0e7c355ace66a9fe0206- Abstract.html.

Y. Nesterov, “A method of solving a convex programming prob-
lem with convergence rate O(1/k?),” 372-76, Soviet Math. Dokl.,
vol. 27, no. 2, 1983.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takéic, “SARAH:
A novel method for machine learning problems using stochastic
recursive gradient,” in 34th International Conference on Machine
Learning, p. 9, 2017. [Online|. Available: https://proceedings.
mlr.press/v70/nguyenl7b.html.

A. Mehra and J. Hamm, “Penalty method for inversion-free
deep bilevel optimization,” in Proceedings of The 13th Asian
Conference on Machine Learning, pp. 347-362, PMLR, Nov. 28,
2021. [Online]. Available: https://proceedings.mlr.press/v157/
mehra2la.html.

https://doi.org/10.1007/s10957-018-1287-4
https://doi.org/10.1007/s10957-018-1287-4
https://arxiv.org/abs/2007.05170
https://arxiv.org/abs/2102.04671
https://arxiv.org/abs/1802.02246
https://proceedings.neurips.cc/paper/2021/hash/71cc107d2e0408e60a3d3c44f47507bd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/71cc107d2e0408e60a3d3c44f47507bd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fe2b421b8b5f0e7c355ace66a9fe0206-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fe2b421b8b5f0e7c355ace66a9fe0206-Abstract.html
https://proceedings.mlr.press/v70/nguyen17b.html
https://proceedings.mlr.press/v70/nguyen17b.html
https://proceedings.mlr.press/v157/mehra21a.html
https://proceedings.mlr.press/v157/mehra21a.html

164

[157]

[158]

[159]

[160]

[161]

[162]

163

[164]

References

L. Hoeltgen, S. Setzer, and J. Weickert, “An optimal control
approach to find sparse data for Laplace interpolation,” in En-
ergy Minimization Methods in Computer Vision and Pattern
Recognition, D. Hutchison, T. Kanade, J. Kittler, J. M. Klein-
berg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C.
Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, A. Heyden, F. Kahl, C. Olsson, M.
Oskarsson, and X.-C. Tai, Eds., vol. 8081, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 151-164. pot: 10.1007/978-
3-642-40395-8 12.

D. Kim and J. A. Fessler, “On the convergence analysis of the
optimized gradient method,” pp. 187-205, Journal of Optimiza-
tion Theory and Applications, vol. 172, no. 1, Jan. 2017. DOI:
10.1007/s10957-016-1018-7.

Y. Drori, “The exact information-based complexity of smooth
convex minimization,” 1-16, J. Complexity, vol. 39, Apr. 2017.
DOI: 10.1016/j.jc0.2016.11.001.

S. Nowozin, “Structured learning and prediction in computer
vision,” pp. 185-365, Foundations and Trends® in Computer
Graphics and Vision, vol. 6, no. 3-4, 2011. po1: 10.1561/0600000033.
M. Nikolova and ,CMLA, ENS Cachan, CNRS, PRES UniverSud,
61 Av. President Wilson, F-94230 Cachan, “Model distortions in
Bayesian MAP reconstruction,” pp. 399-422, Inverse Problems
& Imaging, vol. 1, no. 2, 2007. por: 10.3934/ipi.2007.1.399.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image de-
noising by sparse 3-D transform-domain collaborative filtering,”
pp- 20802095, IEEE Transactions on Image Processing, vol. 16,
no. 8, Aug. 2007. por: 10.1109/TTP.2007.901238.

K. Bredies, K. Kunisch, and T. Pock, “Total generalized varia-
tion,” pp. 492-526, SIAM Journal on Imaging Sciences, vol. 3,
no. 3, Jan. 2010. por: 10.1137/090769521.

A. Chambolle and P.-L. Lions, “Image recovery via total vari-
ation minimization and related problems,” pp. 167-188, Nu-
merische Mathematik, vol. 76, no. 2, Apr. 1, 1997. por: 10.1007/
s002110050258.

https://doi.org/10.1007/978-3-642-40395-8_12
https://doi.org/10.1007/978-3-642-40395-8_12
https://doi.org/10.1007/s10957-016-1018-7
https://doi.org/10.1016/j.jco.2016.11.001
https://doi.org/10.1561/0600000033
https://doi.org/10.3934/ipi.2007.1.399
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1137/090769521
https://doi.org/10.1007/s002110050258
https://doi.org/10.1007/s002110050258

References 165

[165]

[166]

[167]

[168]

[169)]

[170]

[171]

[172]

[173]

M. Benning, C. Brune, M. Burger, and J. Miiller, “Higher-order
TV methods—Enhancement via Bregman iteration,” pp. 269—
310, Journal of Scientific Computing, vol. 54, no. 2-3, Feb. 2013.
DOI: 10.1007/s10915-012-9650-3.

F. Knoll, K. Bredies, T. Pock, and R. Stollberger, “Second order
total generalized variation (TGV) for MRI,” 480-91, Mag. Res.
Med., vol. 65, no. 2, 2011. por: 10.1002/mrm.22595.

S. Setzer, G. Steidl, and T. Teuber, “Infimal convolution regu-
larizations with discrete £1-type functionals,” 797-827, Comm.
Math. Sci., vol. 9, no. 3, 2011. por: 10.4310/CMS.2011.v9.n3.a7.
M. D’Elia, J. C. De los Reyes, and A. M. Trujillo, Bilevel param-
eter optimization for learning nonlocal image denoising models,
Apr. 29, 2020. arXiv: 1912.02347.

B. Gozcu, R. K. Mahabadi, Y.-H. Li, E. Ilicak, T. Cukur, J.
Scarlett, and V. Cevher, “Learning-based compressive MRI,”
1394-406, IEEE Trans. Med. Imag., vol. 37, no. 6, Jun. 2018.
pol: 10.1109/TMI.2018.2832540.

N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, Model-
based deep learning, Dec. 15, 2020. arXiv: 2012.08405.

V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Inter-
pretable, efficient deep learning for signal and image processing,”
pp- 1844, IEEFE Signal Processing Magazine, vol. 38, no. 2, Mar.
2021. por: 10.1109/MSP.2020.3016905.

K. Gregor and Y. LeCun, “Learning fast approximations of
sparse coding,” in Proc. Intl. Conf. Mach. Learn, 2010. [Online].
Available: http://yann.lecun.com/exdb/publis/pdf/gregor-icml-
10.pdf.

W. Bian, Y. Chen, and X. Ye, “Deep parallel MRI reconstruction
network without coil sensitivities,” in Machine Learning for
Medical Image Reconstruction, F. Deeba, P. Johnson, T. Wiirfl,
and J. C. Ye, Eds., ser. Lecture Notes in Computer Science,
pp. 17-26, Springer International Publishing, 2020. po1: 10.1007/
978-3-030-61598-7_ 2.

https://doi.org/10.1007/s10915-012-9650-3
https://doi.org/10.1002/mrm.22595
https://doi.org/10.4310/CMS.2011.v9.n3.a7
https://arxiv.org/abs/1912.02347
https://doi.org/10.1109/TMI.2018.2832540
https://arxiv.org/abs/2012.08405
https://doi.org/10.1109/MSP.2020.3016905
http://yann.lecun.com/exdb/publis/pdf/gregor-icml-10.pdf
http://yann.lecun.com/exdb/publis/pdf/gregor-icml-10.pdf
https://doi.org/10.1007/978-3-030-61598-7_2
https://doi.org/10.1007/978-3-030-61598-7_2

166 References

[174] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sod-
ickson, T. Pock, and F. Knoll, “Learning a variational network
for reconstruction of accelerated MRI data,” pp. 3055-3071,
Magnetic Resonance in Medicine, vol. 79, no. 6, 2018. DOI:
10.1002/mrm.26977.

[175] H. Lim, I. Y. Chun, Y. K. Dewaraja, and J. A. Fessler, “Improved
low-count quantitative PET reconstruction with an iterative
neural network,” pp. 3512-3522, IFEE Transactions on Medical
Imaging, vol. 39, no. 11, Nov. 2020. por: 10.1109/TMI.2020.
2998480.

[176] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium mod-
els,” in Advances in Neural Information Processing Systems,
vol. 32, Curran Associates, Inc., 2019. [Online]. Available: https://
proceedings.neurips.cc/paper/2019/hash /01386bd6d8e091c2ab4c7c7de644d3
Abstract.html.

[177] J. Lorraine, P. Vicol, and D. Duvenaud, “Optimizing millions of
hyperparameters by implicit differentiation,” in Proceedings of the
Twenty Third International Conference on Artificial Intelligence
and Statistics, pp. 1540-1552, PMLR, Jun. 3, 2020. [Online].
Available: https://proceedings.mlr.press/v108/lorraine20a.html.

[178] S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W.
Yin, “JFB: Jacobian-free backpropagation for implicit networks,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
2022. arXiv: 2103.12803.

[179] H. Heaton, S. Wu Fung, A. Gibali, and W. Yin, “Feasibility-
based fixed point networks,” p. 21, Fized Point Theory and
Algorithms for Sciences and Engineering, vol. 2021, no. 1, Dec.
2021. por: 10.1186/s13663-021-00706-3.

[180] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-
and-Play priors for model based reconstruction,” in 2018 IEEE
Global Conference on Signal and Information Processing, pp. 945—
948, TEEE, Dec. 2013. por1: 10.1109/GlobalSIP.2013.6737048.

[181] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford
splitting method and the proximal point algorithm for maxi-
mal monotone operators,” 293-318, Mathematical Programming,
vol. 55, no. 1-3, Apr. 1992. por: 10.1007/BF01581204.

https://doi.org/10.1002/mrm.26977
https://doi.org/10.1109/TMI.2020.2998480
https://doi.org/10.1109/TMI.2020.2998480
https://proceedings.neurips.cc/paper/2019/hash/01386bd6d8e091c2ab4c7c7de644d37b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/01386bd6d8e091c2ab4c7c7de644d37b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/01386bd6d8e091c2ab4c7c7de644d37b-Abstract.html
https://proceedings.mlr.press/v108/lorraine20a.html
https://arxiv.org/abs/2103.12803
https://doi.org/10.1186/s13663-021-00706-3
https://doi.org/10.1109/GlobalSIP.2013.6737048
https://doi.org/10.1007/BF01581204

References 167

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

J. He, Y. Yang, Y. Wang, D. Zeng, Z. Bian, H. Zhang, J. Sun,
Z. Xu, and J. Ma, “Optimizing a parameterized plug-and-play
ADMM for iterative low-dose CT reconstruction,” pp. 371-382,
IEEFE Transactions on Medical Imaging, vol. 38, no. 2, Feb. 2019.
Dor: 10.1109/TMI.2018.2865202.

C. Crockett, D. Hong, I. Y. Chun, and J. A. Fessler, “Incor-
porating handcrafted filters in convolutional analysis operator
learning for ill-posed inverse problems,” in 2019 IEEFE 8th Inter-
national Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pp. 316-320, Dec. 2019. DOTI:
10.1109/CAMSAP45676.2019.9022669.

H. H. Barrett, “Objective assessment of image quality: Effects of
quantum noise and object variability,” 1266-1278, J. Opt. Soc.
Am. A, vol. 7, no. 7, Jul. 1990. por: 10.1364/JOSAA.7.001266.
A. Yendiki and J. A. Fessler, “Analysis of observer performance in
unknown-location tasks for tomographic image reconstruction,”
B99-109, J. Opt. Soc. Am. A, vol. 24, no. 12, Dec. 2007. DOI:
10.1364/JOSAA.24.000B99.

F. K. Kopp, M. Catalano, D. Pfeiffer, A. A. Fingerle, E. J.
Rummeny, and P. B. Noel, “CNN as model observer in a liver
lesion detection task for x-ray computed tomography: A phantom
study,” 4439-47, Med. Phys., vol. 45, no. 10, Oct. 2018. DOI:
10.1002/mp.13151.

J. Xu and F. Noo, “Patient-specific hyperparameter learning for
optimization-based CT image reconstruction,” 19NTO01, Physics
in Medicine & Biology, vol. 66, no. 19, Sep. 2021. por: 10.1088/
1361-6560/ac0f9a.

J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse
representations for image and video restoration,” pp. 214-241,
Multiscale Modeling € Simulation, vol. 7, no. 1, Jan. 2008. DOI:
10.1137/070697653.

T. Liu, A. Chaman, D. Belius, and 1. Dokmanié¢, Learning multi-
scale convolutional dictionaries for image reconstruction, Aug. 19,
2021. arXiv: 2011.12815.

https://doi.org/10.1109/TMI.2018.2865202
https://doi.org/10.1109/CAMSAP45676.2019.9022669
https://doi.org/10.1364/JOSAA.7.001266
https://doi.org/10.1364/JOSAA.24.000B99
https://doi.org/10.1002/mp.13151
https://doi.org/10.1088/1361-6560/ac0f9a
https://doi.org/10.1088/1361-6560/ac0f9a
https://doi.org/10.1137/070697653
https://arxiv.org/abs/2011.12815

168

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

198

References

C. Crockett and J. A. Fessler, “Motivating bilevel approaches
to filter learning: A case study,” in 2021 IEEFE International
Conference on Image Processing (ICIP), pp. 2803-2807, IEEE,
Sep. 19, 2021. por: 10.1109/1CIP42928.2021.9506489.

J. Kaipioa and E. Somersalo, “Statistical inverse problems: Dis-
cretization, model reduction and inverse crimes,” 493-504, J.
Comp. Appl. Math., vol. 198, no. 2, Jan. 2007. po1: 10.1016/j.
cam.2005.09.027.

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep
convolutional neural network for inverse problems in imaging,”
4509-22, IEEE Trans. Im. Proc., vol. 26, no. 9, Sep. 2017. DOI:
10.1109/TTP.2017.2713099.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” p. 60, J. Big Data, vol. 6, no. 1,
Jul. 2019. por: 10.1186/s40537-019-0197-0.

J. A. Fessler and W. L. Rogers, “Spatial resolution properties
of penalized-likelihood image reconstruction methods: Space-
invariant tomographs,” 1346-58, IEEE Trans. Im. Proc., vol. 5,
no. 9, Sep. 1996. por1: 10.1109/83.535846.

J. Qi and R. H. Huesman, “Penalized maximum-likelihood image
reconstruction for lesion detection,” 4017-30, Phys. Med. Biol.,
vol. 51, no. 16, Aug. 2006. por: 10.1088/0031-9155/51/16,/009.
L. Yang, J. Zhou, A. Ferrero, R. D. Badawi, and J. Qi, “Regu-
larization design in penalized maximum-likelihood image recon-
struction for lesion detection in 3D PET,” 40320, Phys. Med.
Biol., vol. 59, no. 2, Jan. 2014. por: 10.1088,/0031-9155/59/2/403.
B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang, K. Drukker,
K. Cha, R. Summers, and M. L. Giger, “Deep learning in medical
imaging and radiation therapy,” Medical Physics, Nov. 2018. DOTI:
10.1002/mp.13264.

FDA, 510k premarket notification of Deep Learning Image Re-
construction (GE Medical Systems), 2019. [Online]. Available:
https://www.accessdata.fda.gov /scripts/cdrh/cfdocs/cfpmn/
pmn.cfm?ID=K183202.

https://doi.org/10.1109/ICIP42928.2021.9506489
https://doi.org/10.1016/j.cam.2005.09.027
https://doi.org/10.1016/j.cam.2005.09.027
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/83.535846
https://doi.org/10.1088/0031-9155/51/16/009
https://doi.org/10.1088/0031-9155/59/2/403
https://doi.org/10.1002/mp.13264
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183202
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K183202

References 169

[199] J. Solomon, P. Lyu, D. Marin, and E. Samei, “Noise and spatial
resolution properties of a commercially available deep learning-
based CT reconstruction algorithm,” 3961-71, Med. Phys., vol. 47,
no. 9, 2020. por: 10.1002/mp.14319.

[200] C. Garcia-Cardona and B. Wohlberg, “Convolutional dictionary
dearning: A comparative review and new algorithms,” pp. 366—
381, IEEE Transactions on Computational Imaging, vol. 4, no. 3,
Sep. 2018. por: 10.1109/TCI.2018.2840334.

[201] I Y. Chun and J. A. Fessler, “Convolutional dictionary learning:
Acceleration and convergence,” 1697-712, IEEFE Trans. Im. Proc.,
vol. 27, no. 4, Apr. 2018. por: 10.1109/TIP.2017.2761545.

[202] “Fenchel Duality,” in Convex Analysis and Nonlinear Optimiza-
tion: Theoryand Examples, ser. CMS Books in Mathematics, J.
Borwein and A. Lewis, Eds., New York, NY: Springer, 2006,
pp. 33-63. DOI: 10.1007/978-0-387-31256-9__ 3.

[203] M. Unser and T. Blu, “Generalized smoothing splines and the
optimal discretization of the Wiener filter,” 2146-59, IEEE Trans.
Sig. Proc., vol. 53, no. 6, Jun. 2005. por: 10.1109/TSP.2005.
847821.

[204] C. Crockett, BilevelFilterLearningForImageRecon, 2022. [Online].
Available: https://github.com/cecroc/BilevelFilterLearningForlmageRecon.

https://doi.org/10.1002/mp.14319
https://doi.org/10.1109/TCI.2018.2840334
https://doi.org/10.1109/TIP.2017.2761545
https://doi.org/10.1007/978-0-387-31256-9_3
https://doi.org/10.1109/TSP.2005.847821
https://doi.org/10.1109/TSP.2005.847821
https://github.com/cecroc/BilevelFilterLearningForImageRecon

	Introduction
	Notation
	Defining a Bilevel Problem
	Running Example
	Conclusion

	Background: Cost Functions and Image Reconstruction
	Image Reconstruction
	Sparsity-Based Regularizers
	Brief History of Analysis Regularizer Learning
	Summary

	Background: Loss Functions and Hyperparameter Optimization
	Image Quality Metrics
	Parameter Search Strategies
	Summary

	Gradient Based Bilevel Methodology: The Groundwork
	Set-up
	Minimizer Approach
	Translation to a Single Level
	Unrolled Approaches
	Summary

	Gradient-Based Bilevel Optimization Methods
	Double-Loop Algorithms
	Single-Loop Algorithms
	Complexity Analysis
	Summary of Methods

	Survey of Applications
	Lower-level Cost Function Design
	Upper-Level Loss Function Design
	Conclusion

	Connections and Future Directions
	Connection: Learnable Optimization Algorithms
	Connection: Equilibrium-based Networks
	Connection: Plug-and-play Priors
	Connection: Single-Level Parameter Learning
	Future Directions
	Summary of Advantages and Disadvantages

	Acknowledgements
	Appendices
	Background: Primal-Dual Formulations
	Forward and Reverse Approaches to Unrolling
	Additional Running Example Results
	Derivatives for Convolutional Filters
	Evaluating Assumptions for the Running Example

	Implementation Details
	Vertical Bar Training Image
	Cameraman Training Image

	References

