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Abstract— Optimizing k-space sampling trajectories is
a promising yet challenging topic for fast magnetic reso-
nance imaging (MRI). This work proposes to optimize a re-
construction method and sampling trajectories jointly con-
cerning image reconstruction quality in a supervised learn-
ing manner. We parameterize trajectories with quadratic B-
spline kernels to reduce the number of parameters and ap-
ply multi-scale optimization, which may help to avoid sub-
optimal local minima. The algorithm includes an efficient
non-Cartesian unrolled neural network-based reconstruc-
tion and an accurate approximation for backpropagation
through the non-uniform fast Fourier transform (NUFFT) op-
erator to accurately reconstruct and back-propagate multi-
coil non-Cartesian data. Penalties on slew rate and gra-
dient amplitude enforce hardware constraints. Sampling
and reconstruction are trained jointly using large public
datasets. To correct for possible eddy-current effects in-
troduced by the curved trajectory, we use a pencil-beam
trajectory mapping technique. In both simulations and in-
vivo experiments, the learned trajectory demonstrates sig-
nificantly improved image quality compared to previous
model-based and learning-based trajectory optimization
methods for 10× acceleration factors. Though trained with
neural network-based reconstruction, the proposed trajec-
tory also leads to improved image quality with compressed
sensing-based reconstruction.

Index Terms— Magnetic resonance imaging, non-
Cartesian sampling, deep learning, eddy-current effect,
image reconstruction

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) systems acquire raw
data in the frequency domain (k-space). Most scanning pro-
tocols sample data points sequentially according to a pre-
determined sampling pattern. The most common sampling
patterns are variants of Cartesian rasters and non-Cartesian
trajectories such as radial spokes [1] and spiral interleaves
[2]. The local smoothness of these patterns facilitates ensuring
that they obey hardware limits, namely the maximum gradient
and slew rate that constrain the speed and acceleration when
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traversing k-space. These patterns also make it easy to en-
sure sufficient sampling densities. In recent years, hardware
improvements, especially with the RF and gradient systems,
enable more complex gradient waveform designs and sampling
patterns. For a given readout time, optimized designs can
cover a broader and potentially more useful region in k-space,
reducing the overall scanning time and/or improving image
quality, particularly when combined with multiple receive
coils.

For fast imaging, many works focus on acceleration in the
phase-encoding (PE) direction with fully sampled frequency-
encoding (FE) lines [3]–[7]. Usually, there is enough time
for the ∆k shifts in the PE direction, so gradient and
slew rate constraints are readily satisfied. More general non-
Cartesian trajectory designs in 2D and 3D can further exploit
the flexibility in the FE direction. However, in addition to
hardware physical constraints, MRI systems are affected by
imperfections such as the eddy currents that cause the actual
trajectory to deviate from the nominal one and introduce
undesired phase fluctuations in the acquired data [8]. Some
studies optimize properties of existing trajectories such as the
density of spiral trajectories [9] or the rotation angle of radial
trajectories [10]. More complex waveforms, e.g., wave-like
patterns [11], can provide more uniform coverage of k-space
and mitigate aliasing artifacts. To accommodate the incoher-
ence requirements of compressed sensing based methods, [12],
[13] introduce slight perturbations to existing trajectories, like
radial or spiral trajectories. Some works also explore genetic
algorithms to solve this non-convex constrained problem [14].

The recent SPARKLING method [15]–[17] considers two
criteria for trajectory design: (1) the trajectory should match
a pre-determined sampling density according to a certain
measure, and (2) the sampling points should be locally uniform
to avoid clusters or gaps. The density and uniformity criteria
are transformed into “attraction” and “repulsion” forces among
the sampling points. The work uses fast multipole methods
(FMM) [18] to efficiently calculate the interactions between
points. Projection-based optimization handles the gradient and
slew rate constraints [19]. In-vivo and simulation experiments
demonstrate that this approach reduces aliasing artifacts for 2D
and 3D T2*-weighted imaging. However, in SPARKLING, the
density is determined heuristically; determining the optimal
sampling density for different protocols remains an open



2 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2022

problem. The work also does not consider some k-space signal
characteristics such as conjugate symmetry. Furthermore, the
point spread function (PSF) of the calculated trajectory for
high under-sampling rates may be suboptimal for recon-
struction algorithms like those based on convolution neural
networks, because the reconstruction algorithm is not part of
the SPARKLING design process.

With rapid advances in deep learning and auto-
differentiation software, learning-based signal sampling
strategies are being investigated in multiple fields such as
optics and ultrasound [20], [21]. In MRI, most learning-
based works have focused on sampling patterns of phase
encoding locations. Some studies formulate the on-grid
sampling pattern as i.i.d samples from multivariate Bernoulli
distribution [22], [23]. Since random sampling operations
are not differentiable, different surrogate gradients, such as
Gumbel-Softmax, are developed in these works. Rather than
gradient descent, [24] uses a greedy search method. [25]
further reduces the complexity of greedy search by Pareto
optimization, an evolutionary algorithm for sparse regression
[26]. Some works have used reinforcement learning. For
example, [27] and [28] adopted a double network setting:
one for reconstruction and the other generating a sampling
pattern, where the first work used Monte-Carlo Tree Search
(MCTS) and the second used Q-learning to optimize the 1-D
sub-sampling. Instead of using an end-to-end CNN as the
reconstruction algorithm in other works, [29] constructs a
differentiable compressed sensing reconstruction framework.
[30] used an unrolled neural network as the reconstruction
algorithm.

To our knowledge, PILOT [31] is the first work to optimize
a 2D non-Cartesian trajectory and an image reconstruction
method simultaneously. The training loss is the reconstruction
error since the ultimate goal of trajectory optimization is high
image quality. The trained parameters were the locations of
sampling points and the weights of the reconstruction neural
network. Large datasets and stochastic gradient descent were
used to optimize the parameters. To meet the hardware limits,
a penalty was applied on the gradient and slew rate. Since
the reconstruction involves non-Cartesian data, PILOT uses
a (bilinear, hence differentiable almost everywhere) gridding
reconstruction algorithm to map the k-space data into the
image domain, followed by a U-Net [32] to refine the gridded
image data. Simulation experiments report encouraging results
compared to ordinary trajectories. Nevertheless, the algorithm
often gets stuck in sub-optimal local minima where the initial
trajectory is only slightly perturbed yet the slew rate rapidly
oscillates. To reduce the effect of initialization, [31] uses
a randomized initialization algorithm based on the traveling
salesman problem (TSP). However, this initialization approach
works only with single-shot long TE sequences, limiting
its utility in many clinical applications. The implementation
in [31] relies on auto-differentiation to calculate the Jaco-
bian of the non-uniform Fourier transform; here we adopt a
new NUFFT Jacobian approximation that is faster and more
accurately approximates the non-Cartesian discrete Fourier
transform (DFT) [33].

To overcome the limitations of previous methods and fur-

ther expand their possible applications, this paper proposes
an improved supervised learning workflow called B-spline
parameterized Joint Optimization of Reconstruction and K-
space trajectory (BJORK). Our main contributions include the
following. (1) We parameterize the trajectories with quadratic
B-spline kernels. The B-spline reparameterization reduces the
number of parameters and facilitates multilevel optimization,
enabling non-local improvements to the initial trajectory.
Moreover, the local smoothness of B-spline kernels avoids
rapid waveform oscillations. (2) We adopt an unrolled neural
network reconstruction method for non-Cartesian sampling
patterns [34]. Compared to the image-domain U-Net imple-
mented in previous works, the proposed approach combines
the strength of learning-based and model-based reconstruction,
improving the effect of both reconstruction and trajectory
learning. (3) We adopt accurate and efficient NUFFT-based
approximations of the Jacobian matrices of the DFT operations
used in the reconstruction algorithm. (See [33] for detailed
derivations and validation.) (4) In addition to a simulation ex-
periment, we also conducted phantom and in-vivo experiments
with protocols that differ from the training dataset to evaluate
the generalizability and applicability of the model. (5) We
used a k-space mapping technique to correct potential eddy
current-related artifacts. (6) Compared with SPARKLING, the
proposed learning-based approach does not need to assume
signal characteristics such as spectrum energy density. Instead,
BJORK learns the required sampling trajectories from a large
data set in a supervised manner.

The remaining materials are organized as follows. Section II
details the proposed method. Section III describes experiment
settings and control methods. Sections IV and V present and
discuss the results.

II. METHODS

This section describes the proposed approach for supervised
learning of the sampling trajectory and image reconstruction
method.

A. Problem formulation
Fig. 1 shows the overall workflow of the proposed approach.

The goal is to optimize ω ∈ RNs×Nd , a trainable (possibly
multi-shot) sampling pattern, and θ ∈ RM , the M parameters
of the image reconstruction method, where Ns denotes the
total number of k-space samples, and Nd denotes the image
dimensionality. (The results are for Nd = 2, i.e., 2D images,
but the method is general.)

The training loss for jointly optimizing the trajectory pa-
rameters ω and reconstruction parameters θ is as follows:

argmin
ω∈RNs×Nd , θ∈RM

Ex∈X [ℓ(fθ(ω;A(ω)x+ ε),x)] (1)

s.t. ∥D1ω
[d]∥∞ ≤ γ∆tgmax,

∥D2ω
[d]∥∞ ≤ γ∆t2smax, d = 1, . . . , Nd,

where each x ∈ CNv is a fully sampled reference image
having Nv voxels drawn from the training data set X and
ε is simulated additive complex Gaussian noise. (In practice
the expectation is taken over mini-batches of training images.)
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Fig. 1. Diagram of the proposed approach. To optimize the sampling trajectory and the reconstruction algorithm jointly using a stochastic gradient
descent (SGD)-type method, we construct a differentiable forward MRI system matrix A(ω) that simulates k-space data w.r.t. trajectory ω from
ground truth images, and an unrolled neural network for reconstruction. The reconstruction errors compared with the ground truth are used as the
training loss to update learnable parameters (the trajectory ω and the network’s parameters θ).

The system matrix A = A(ω) ∈ CNsNc×Nv represents
the MR imaging physics (encoding), where Nc denotes the
number of receiver coils. For multi-coil non-Cartesian ac-
quisition, it is a non-Cartesian SENSE operator [35] that
applies a pointwise multiplication of the sensitivity maps
followed by a NUFFT operator (currently we do not consider
field inhomogeneity but it would be straightforward to extend
because the Jacobian approximation can cover such cases
[33]). The function fθ(ω; ·) denotes an image reconstruction
algorithm with parameters θ that is applied to simulated under-
sampled data A(ω)x+ ε. As detailed in subsection II-C, we
use an unrolled neural network. The reconstruction loss ℓ(·, ·)
quantifies the similarity between a reconstructed image and
the ground truth, and can be a combination of different terms.
Here we chose the loss ℓ to be a combined ℓ1 and square of
ℓ2 norm. The matrices D1 and D2 denote the first-order and
second-order finite difference operators. ∆t is the raster time
and γ denotes the gyromagnetic ratio. For multi-shot imaging,
the difference operator applies to each shot individually. The
optimization is constrained in gradient field strength (gmax),
and slew rate (smax). To use the stochastic gradient descent
(SGD) method, we convert the box constraint into a penalty
function ϕ, where

ϕλ(|x|) = 1T max .(|x| − λ, 0),

where max .(·) operates point-wisely. Our final joint optimiza-
tion problem has the following form:

argmin
ω∈CNs×Nd , θ∈RM

Ex∈X [ ℓ(fθ,ω(ω;A(ω)x+ ε),x)] (2)

+ µ1ϕγ∆tgmax
(|D1ω|)

+ µ2ϕγ∆t2smax
(|D2ω|).

We update θ and ω simultaneously for each mini-batch of
training data.

B. Parameterization and multi-level optimization
We parameterize the sampling pattern with 2nd-order

quadratic B-spline kernels:

ω[d] = Bc[d], d = 1, . . . , Nd, (3)

where B ∈ RNs×L denotes the interpolation matrix, and c[d]

denotes the dth column of the coefficient matrix c ∈ RL×Nd .
L denotes the length of c[d], or the number of interpolation
kernels in each dimension. The decimation rate in Fig. 5 is
defined as Decim. = Ns/L. Compared to other parameteriza-
tion kernels, B-spline kernels reduce the number of individual
inequality constraints (on maximum gradient strength and slew
rate) from 4NdNs to 4NdL where typically L≪ Ns. See [36]
for more details.

Early versions of previous work [31] and our preliminary
experiments found optimized trajectories that were often local
minima near the initialization, only slightly perturbing the
initial trajectory1. We use a multilevel training strategy to
improve the optimization process [37], [38].

We initialized the decimation rate Ns/L with a large value
(like 64). Thus, many neighboring sample points are controlled
by the same coefficient, which introduces more ‘non-local’
improvements. After both c and θ converge, we reduce the
decimation rate, typically by a factor of 2, and begin a new
round of training initialized with ω and θ of the previous
round. Fig. 5 depicts the evolution along with decimation rates.

C. Reconstruction
In the joint learning model, we adopted a model-based un-

rolled neural network (UNN) approach to image reconstruction
[34], [39]–[41]. Compared to the previous joint learning model
(PILOT) that used a single image domain network [31], an
unrolled network can lead to a more accurate reconstruction
[34], at the price of longer reconstruction time.

1The latest versions of PILOT on arXiv [31, versions 4-5] also use trajectory
parameterization, focusing on long readout time cases.
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A typical cost function for regularized MR image recon-
struction has the form:

x̂ = argmin
x

∥Ax− y∥22 +R(x). (4)

The first term is usually called the data-consistency term that
ensures the reconstructed image is consistent with the acquired
k-space data y. (In the training phase, A(ω)x + ε is the
simulated y.) The regularization term R(·) is designed to
control aliasing and noise when the data is under-sampled.
By introducing an auxiliary variable z, one often replaces (4)
with the following alternative:

x̂ = argmin
x

min
z
∥Ax− y∥22 +R(z) + µ∥x− z∥22, (5)

where µ > 0 is a penalty parameter. Using an alternating
minimization approach, the optimization updates become:

xi+1 = argmin
x

∥Ax− y∥22 + µ∥x− zi∥22, (6)

zi+1 = argmin
z

R(z) + µ∥xi+1 − z∥22. (7)

The analytical solution for the x update is

xi+1 = (A′A+ µI)−1(A′y + µzi),

which involves a matrix inverse that would be computationally
prohibitive to compute directly. Following [34], we use a
few iterations of the conjugate gradient (CG) method for the
x update. The implementation uses a Toeplitz embedding
technique to accelerate the computation of A′A [42], [43].

For a mathematically defined regularizer, the z update
would be a proximal operator. Here we follow previous work
[34], [44] and use a CNN-based denoiser zi+1 = Dθ(xi+1).
To minimize memory usage and avoid over-fitting, we used
the same θ across iterations, though iteration-specific networks
may improve the reconstruction result [41].

For the CNN-based denoiser, we used the Deep Iterative
Down-Up CNN (DIDN) [41], [45]. As a state-of-art model
for image denoising, the DIDN model requires less memory
than popular models like U-net [32] while providing improved
reconstruction results. In our experiments, it also led to faster
training convergence than previous denoising networks.

Since neural networks are sensitive to the scale of the input,
a good and consistent initial estimate of x is important. We
used the following quadratic roughness penalty approach to
compute an initial image estimate:

x0 = argmin
x

∥Ax− y∥22 + λ∥Rx∥22 (8)

= (A′A+ λR′R)−1A′y,

where R denotes the Nd-dimensional first-order finite differ-
ence (roughness) operator. We also used the CG method to
(approximately) solve this quadratic minimization problem.

D. Correction of eddy-current effect
Rapidly changing gradient waveforms may suffer from

eddy-current effects, even with shielded coils. This hardware
imperfection requires additional measurements and corrections
so that the actual sampling trajectory is used for reconstructing

real MRI data. Some previous works used a field probe and
corresponding gradient impulse-response (GIRF) model [46].
In this work, we adopted the ‘k-space mapping’ method [8],
[47] that does not require additional hardware. Rather than
mapping the kx and ky components separately as in previous
papers, we excited a pencil-beam region using one 90◦ flip and
a subsequent 180◦ spin-echo pulse [48]. We averaged multiple
repetitions to estimate the actual acquisition trajectory. We
also subtracted a zero-order eddy current phase term from the
acquired data [8].

The following pseudo-code summarizes the BJORK training
process.

Algorithm 1 Training algorithm for BJORK
Require: Training set X ; denoiser Dθ for initial CNN weights

θ0; initial trajectory ω0; levels of optimization Nlevel;
number of epoch Nepoch; step size of denoiser update ηD;
step size of trajectory update ηω; penalty parameter for
gradient/slew rate constraint µ1 and µ2.

Ensure: ω = Bc
1: θ ← θ0
2: ω ← ω0

3: Pre-train Dθ with fixed ω0.
4: for l = 1 to Nlevel do
5: Initialize new coefficient matrix Bl.
6: Initialize new coefficient c0l with ωl−1 ≈ Blc

0
l .

7: for j = 1 to Nepoch do
8: for training batches xK in X do
9: Simulate the k-space w.r.t. ωl:

10: yK = A(ωK
l )xK + ε

11: Reconstruction with UNN:
12: Reconstruct initial images using (8) with CG
13: for i = 1 to Niter do
14: xi+1: UNN reconstruction update of zi
15: using (6)
16: Apply CNN: zi+1 = Dθ(xi+1)
17: end for
18: Calculate loss function:
19: L = ℓ(x̂K ,xK) + µ1ϕγ∆tgmax

(|D1ω
K
i |)

20: + µ2ϕγ∆t2smax
(|D2ω

K
i |)

21: Update denoiser and trajectory:
22: θK = θK−1 − ηD∇θK−1L
23: ωK

l = ωK−1
l − ηω∇ωK−1

l
L

24: end for
25: end for
26: end for

III. EXPERIMENTS

A. Comparison with prior art

We compared the proposed BJORK approach with the
SPARKLING method for trajectory design in all experiments,
and have set the readout length and physical constraints to be
the same for both methods.

Both BJORK and PILOT [31] are methods for joint sam-
pling design and reconstruction optimization. We compared
three key differences between the two methods individually.
(1) The NUFFT Jacobian matrices, as discussed in [33] and
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TABLE I
PROTOCOLS FOR DATA ACQUISITION

Protocols for the prospective experiment:
Name FOV(cm) dz(mm) Gap(mm) TR(ms) TE(ms) FA Acqs dt(us) Time
Radial-like 22*22*4 2 0.5 318.4 3.56 90° 32*1280 4 0:11
Radial-full 22*22*4 2 0.5 318.4 3.56 90° 320*1280 4 1:40
dz: slice thickness; Gap: gap between slices; Acqs: number of shots * readout points; FA: flip angle

the Appendix. (2) The reconstruction method involved. Our
BJORK approach uses an unrolled neural network, while PI-
LOT uses a single reconstruction neural network in the image
domain (U-Net). We also presented the effect of trajectory
parameterization (BJORK uses quadratic B-splines following
[36], whereas versions 1-3 of PILOT used no parameterization
and more recent versions of PILOT use cubic splines [31]).

B. Image quality evaluation

To evaluate the reconstruction quality provided by different
trajectories, we used two types of reconstruction methods in
the test phase: unrolled neural network (UNN) (with learned
θ) and a compressed sensing approach (sparsity regulariza-
tion for an discrete wavelet transform). For SPARKLING-
optimzed trajectories and standard undersampled trajectories
(radial/spiral), we used the same unrolled neural networks as
in BJORK for reconstruction. Only the network parameters θ
were trained, with the trajectory ω fixed.

We also used compressed sensing-based reconstruction to
test the generalizability of BJORK-optimized trajectories. The
penalty function is the ℓ1 norm of a discrete wavelet transform
with a Daubechies 4 wavelet. The ratio between the penalty
term and the data-fidelity term is 10−7. We used the SigPy
package2 and its default primal-dual hybrid gradient (PDHG)
algorithm (with 50 iterations). This study includes two evalu-
ation metrics: the structural similarity metric (SSIM) and peak
signal-to-noise ratio (PSNR) [49].

C. Trajectories

For both simulation and real acquisition, the acquisition
sampling time and gradient raster time are both 4 µs, with
a target matrix size of 320×320. The maximum gradient
strength is 26.7 mT/m, and the maximum slew rate is 150
T/m/s, which were set to limit peripheral nerve stimulation
and conform to the Nyquist criterion.

To demonstrate the proposed model’s adaptability, we in-
vestigated two types of initialization of waveforms: an under-
sampled in-out radial trajectory with a shorter readout time
(∼5 ms) and an undersampled center-out spiral trajectory
with a longer readout time (∼16 ms). For the in-out radial
initialization, the number of spokes is 16/24/32, and each
spoke has 1280 points of acquisition (4 µs samples). The
rotation angle is equidistant between −π/2 and π/2. For
the center-out spiral initialization, the number of spokes is
8, and each leaf has ∼4000 points of acquisition. We used
the variable-density spiral design package3 from [50]. For

2https://github.com/mikgroup/sigpy
3https://mrsrl.stanford.edu/˜brian/vdspiral/

SPARKLING, we use τ = 0.5 and d = 2.5 for 16-spoke
radial, τ = 0.5 and d = 2.5 for 24-spoke radial, τ = 0.6 and
d = 2.5 for 32-spoke radial, and τ = 0.5 and d = 2 for 8-shot
spiral ( [15, Eqn. 8], which can also be learned as described
in [51].) after grid search with CS-based reconstruction.

D. Network training and hyper-parameter setting
The simulation experiments used the NYU fastMRI brain

dataset to train the trajectories and neural networks [52].
The dataset consists of multiple contrasts, including T1w
(23220 slices), T2w (42250 slices), and FLAIR (5787 slices).
FastMRI’s knee subset was also used in a separate training
run to investigate the influence of training data on learned
sampling patterns. The central 320× 320 region was cropped
(or zero-filled). Sensitivity maps were estimated using the
ESPIRiT method [53] with the central 24 phase-encoding
lines, and the corresponding conjugate phase reconstruction
was regarded as the ground truth during training.

The batchsize was 4. The number of blocks, or the number
of outer iterations for the unrolled neural network was 6. The
weight µ in (5) could also be learned, but this operation would
double the computation load with minor improvement. We set
µ = 2. The number of training epochs was set to 3 for each
level of B-spline kernel length, which is empirically enough
for the training to converge. We used Nlevel = 4 optimization
levels, and Nepoch = 3 so the total number of epochs was 12.
We set Niter = 6 of the unrolled neural network. For training
the reconstruction network with existing trajectories (radial,
spiral, and SPARKLING-optimized), we also used 12 training
epochs. We used the Adam optimizer [54], with parameter β
= [0.5, 0.999], for both trajectories ω and network parameters
θ. The learning rate linearly decayed from 1e-3 to 0 for the
trajectory update, and from 1e-5 to 0 for the network update.
We did not observe obvious over-fitting phenomena on the
validation set. The training on a Intel Xeon Gold 6138 CPU
and an Nvidia RTX2080Ti GPU took around 120-150 hours4.

E. Prospective Studies
Table I details the scanning protocols of the RF-spoiled,

gradient echo (GRE) sequences used. For in-vivo acquisitions,
a fat-saturation pulse was applied before the tip-down RF
pulse. We chose the TR and FA combination for desired
T1-weighed contrast. For radial-like sequences, we tested a
GRE sequence with 3 different readout trajectories: standard
undersampled radial, BJORK initialized with undersampled
radial, and SPARKLING initialized with undersampled radial.
Radial-full means the fully sampled radial trajectory. The

4The code will be available on Github after the paper is accepted.

https://github.com/mikgroup/sigpy
https://mrsrl.stanford.edu/~brian/vdspiral/
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Fig. 2. PSFs of different sampling patterns. Each middle plot is the av-
eraged profile of different views (angles) through the origin. The FWHM
for undersampled radial, BJORK and SPARKLING is respectively 1.5,
1.6, 2.1 pixels.

Fig. 3. The dash-dot line shows the 180◦ rotated BJORK trajectory.
The original and rotated trajectory have little overlap, suggesting that
the BJORK automatically learned a sampling pattern that exploits ap-
proximate k-space Hermitian symmetry.

Fig. 4. Learned radial-like trajectories with different acceleration ratios.

simulation experiments (evaluation) and real experiments use
the same readout trajectory.

We also acquired an additional dual-echo Cartesian GRE
image, for generating the sensitive map and (potentially) B0
map. The sensitivity maps were generated by ESPIRiT [53]
methods. The sequences were programmed with TOPPE [48],
and implemented on a GE MR750 3.0T scanner with a Nova
Medical 32 channel Rx head coil. Subjects gave informed
consent under local IRB approval. For phantom experiments,
we used a water phantom with 3 internal cylinders.

The k-space mapping was implemented on a water phantom.
The thickness of the pencil-beam was 2mm × 2mm. The tra-
jectory estimates were based on an average of 30 repetitions.

IV. RESULTS

1) Quantitative results of simulation reconstruction study:
The test set includes 1520 slices, and the validation set
includes 500 slices. Table II shows the quantitative results
(SSIM and PSNR). The proposed method has significant
improvement compared with un-optimized trajectories (P <
0.005). It also has improved reconstruction quality compared
with SPARKLING considering unrolled neural network-based
reconstruction. Compared to undersampled radial trajectory or
SPARKLING trajectory, the proposed method has a better
restoration of details and lower levels of artifacts. In the
experiment, different random seeds in training led to very
similar learned sampling trajectories.

Fig. 2 displays point spread functions of 32-spoke radial-
like trajectories. The BJORK’s PSF has a narrower central-
lobe than SPARKLING and much fewer streak artifacts than
standard radial. Fig. 3 shows the conjugate symmetry relation-
ship implicitly learned in the BJORK trajectory. Fig. 4 displays
optimization results under different acceleration ratios. Fig. 11
in the Appendix exhibits example slices. Fig. 12 in the
Appendix shows the gradient waveform of one shot on one
direction (from the optimized 32-spoke radial-like trajectory)
and the corresponding slew rate.

TABLE II
QUANTITATIVE RESULTS FOR SIMULATION EXPERIMENTS

SSIM:
Standard SPARKLING BJORK

radial-like Ns=16 UNN 0.940 0.946 0.950
CS 0.911 0.936 0.938

radial-like Ns=24 UNN 0.950 0.955 0.959
CS 0.929 0.943 0.948

radial-like Ns=32 UNN 0.957 0.963 0.968
CS 0.932 0.946 0.956

spiral-like Ns=8 UNN 0.986 0.989 0.990
CS 0.976 0.978 0.981

PSNR (in dB):
Standard SPARKLING BJORK

radial-like Ns=16 UNN 32.7 33.9 34.3
CS 31.7 33.6 34.1

radial-like Ns=24 UNN 34.1 35.0 35.6
CS 33.3 34.6 35.1

radial-like Ns=32 UNN 35.0 36.0 36.9
CS 33.9 35.7 36.3

spiral-like Ns=8 UNN 40.9 41.7 41.9
CS 39.9 40.4 40.7

Ns: the number of shots or spokes.
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2) Multi-level optimization: Fig. 5 shows the evolution of
sampling patterns using our proposed multi-level optimization.
Different widths of the B-spline kernels introduce different lev-
els of improvement as the acquisition is optimized. Also shown
are the results of multi-level optimization and a nonparametric
trajectory as used early versions of the PILOT paper [31,
versions 1-3]. Directly optimizing sampling points seems only
to introduce a small perturbation to the initialization. Fig. 13
in the Appendix shows the training losses: the reconstruction
loss ℓ(·, ·), the penalty on maximum gradient strength, and the
penalty on maximum slew rate. Transitions between different
B-spline kernel widths led to a stepped training loss descent
pattern.

3) Effect of training set: Fig. 6 shows radial-initialized tra-
jectories trained by BJORK with brain and knee datasets.
Different trajectories are learned from different datasets. We
hypothesize that the difference is related to frequency distri-
bution of energy, as well as the noise level, which requires
further study. This phenomenon was also observed in [22].

4) Effect of reconstruction methods: To test the influence of
reconstruction methods on trajectory optimization, we tried a
single image-domain refinement network as the reconstruc-
tion method in the joint learning model, similar to PILOT’s
approach. Quadratic roughness penalty reconstruction in (8)
still is the network’s input. The initialization of the sampling
pattern is an undersampled radial trajectory. Table III shows
that the proposed BJORK reconstruction method (unrolled
neural network, UNN) improves reconstruction quality com-
pared to a single end-to-end model. Such improvements are
consistent with other comparisons between UNN methods and
image-domain CNN methods using fixed sampling patterns
(reconstruction only) [34], [39], [41].

TABLE III
EFFECT OF DIFFERENT RECONSTRUCTION NETWORKS INVOLVED IN

THE JOINT LEARNING MODEL

SSIM PSNR(dB)
UNN 0.968 36.9
Single U-net 0.934 32.8

5) Prospective experiments: Fig. 7 shows the water phan-
tom results for different reconstruction algorithms. The right-
most column is the fully-sampled ground truth (Radial-full).
Note that the unrolled neural network (UNN) here was trained
with fastMRI brain dataset, and did not receive fine-tuning in
all prospective experiments. The BJORK-optimized trajectory
leads to fewer artifacts and improved contrast for the UNN-
based reconstruction.

Fig. 8 showcases one slice from the in-vivo experiment.
For CS-based reconstruction, the undersampled radial tra-
jectory exhibits stronger streak artifacts than SPARKLING-
and BJORK-optimized trajectories. For UNN-based recon-
struction, all trajectories’ results show reductions of artifacts
compared to CS-based reconstruction. The proposed method
restores most of the structures and fine details, with minimal
artifacts.

The Appendix also contains examples of reconstruction
results before/after eddy currents correction, the measurement

of actual k-space trajectories, and effectiveness of the warm
initialization (quadratic least-squares reconstruction).

V. DISCUSSION

This paper proposes an efficient learning-based framework
for the joint design of MRI sampling trajectories and re-
construction parameters. Defining an appropriate objective
function for trajectory optimization is an open question.
We circumvented this long-lasting problem by directly using
the reconstruction quality as the training loss function in
a supervised learning paradigm. The workflow includes a
differentiable reconstruction algorithm for which the learning
process obtains an intermediate gradient w.r.t. the reconstruc-
tion loss. However, solely depending on backpropagation and
stochastic gradient descent cannot guarantee optimal results
for this non-convex problem. To improve the training effect,
we adopted several techniques, including trajectory param-
eterization, multi-level training, warm initialization of the
reconstruction network, and an accurate approximation of
NUFFT’s Jacobian [33]. Results show that these approaches
can stabilize the training and provide better local minimizers
than previous methods.

We trained an unrolled neural network-based reconstruc-
tion method for non-Cartesian MRI data. The single image-
domain network used in previous work does not efficiently
remove aliasing artifacts. Additionally, the k-space “hard”
data-consistency trick for data fidelity [55], [56] is inapplicable
for non-Cartesian sampling. An unrolled algorithm can reach a
balance between data fidelity and the de-aliasing effect across
multiple iterations. For 3D trajectory design using the pro-
posed approach, the unrolled method’s memory consumption
can be huge. More memory-efficient reconstruction models,
such as the memory-efficient network [57] should be explored
in further study. We would also investigate recent calibration-
less unrolled neural networks, which do not require external
sensitivity maps, and shows improved performance relative to
MoDL [58].

For learning-based medical imaging algorithms, one main
obstacle towards clinical application is the gap between sim-
ulation and the physical world. Some factors include the
following.

First, inconsistency exists between the training datasets
and real-world acquisition, such as different vendors and
protocols, posing a challenge to reconstruction algorithms’
robustness and generalizability. Our training dataset consisted
of T1w/T2w/FLAIR Fast Spin-Echo (FSE or TSE) sequences,
acquired on Siemens 1.5T/3.0T scanners. The number of
receiver channels includes 4, 8, and 16, etc. We conducted the
in-vivo/phantom experiment on a 3.0T GE scanner equipped
with a 32-channel coil. The sequence is a GRE sequence that
has lower SNR compared to FSE sequences in the training
set. Despite the very large differences with the training set,
our work still demonstrated improved and robust results in
the in-vivo and phantom experiment, without any fine-tuning.

We hypothesize that several factors could contribute to
the generalizability: (1) the reconstruction network uses the
quadratic roughness penalized reconstruction as the initial-
ization, normalized by the median value. Previous works
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Fig. 5. The evolution of the learned trajectories. Decim means Ns/L in (3). Nonparametric means the locations of each sampling points are
independent trainable variables, rather than being parameterized by quadratic B-spline kernels. SSIM denotes the average reconstruction quality
on the evaluation set of each level. The rightmost zoomed-in set shows the very small perturbations produced by the nonparametric approach
(stuck into local-minima).

Fig. 6. Trajectories learned from different datasets.

typically use the adjoint reconstruction as the input of the
network. In comparison, our regularized initialization helps
provide consistency between different protocols, without too
much compromise of the computation time/complexity, (2) the
PSF of the learned trajectory has a compact central lobe,
without significant streak artifacts. Thus the reconstruction
is basically a de-blurring/denoising task that is a local low-
level problem and thus may require less training data than de-
aliasing problems. For de-blurring of natural images, networks
are usually adaptive to different noise levels and color spaces,
and require small cohorts of data [59], [60]. For trajectories
like radial and SPARKLING, in contrast, a reconstruction
CNN needs to remove global aliasing artifacts, such as the
streak and ringing artifacts. The dynamics behind the neural
network’s ability to resolve such artifacts is still an unsolved
question, and the training requires a large amount of diverse
data.

Secondly, it is not easy to simulate system imperfections like
eddy currents and off-resonance in the training phase. These
imperfections can greatly affect image quality in practice.
We used a trajectory measurement method to correct for
the eddy-current effect. Future work will incorporate field
inhomogeneity into the workflow.

Furthermore, even though the BJORK sampling was opti-
mized for a UNN reconstruction method, the results in Fig. 7
and Fig. 8 suggest that the learned trajectory is also useful
with a CS-based reconstruction method or other model-based
reconstruction algorithms. This approach can still noticeably
improve the image quality by simply replacing the readout
waveform in the existing workflow, promoting the applicability
of the proposed approach, similar to [22]. We plan to apply the
general framework to optimize a trajectory for (convex) CS-

based reconstruction and compare to the (non-convex) open-
loop UNN approach in future work.

Though the proposed trajectory is learned via a data-driven
approach, it can also reflect the ideas behind SPARKLING and
Poisson disk sampling: sampling patterns having large gaps or
tight clusters of points are inefficient, and the sampling points
should be somewhat evenly distributed (but not too uniform).
Furthermore, BJORK appears to have learned some latent
characteristics, like the conjugate symmetry for these spin-
echo training datasets. To combine both methods’ strengths, a
promising future direction is to use SPARKLING as a primed
initialization of BJORK.

The learning used here exploited a big public data set. As
is shown in the results, knee imaging and brain imaging led to
different learned trajectories. This demonstrates that the data
set can influence the optimization results, as was observed in
[22]. We also implemented a complementary experiment on a
smaller training set (results not shown). We found that a small
subset (3000 slices) also led to similar learned trajectories.
Therefore, for some organs where a sizeable dataset is not
publicly available, this approach may still work with small-
scale private datasets. To examine the influence of scanner
models, field strength, and sequences, follow-up studies should
investigate more diverse datasets.

The eddy-current effect poses a long-term problem for non-
Cartesian trajectories and impedes their widespread clinical
use. This work used a simple k-space mapping technique
as the correction method. The downside of this method is
its long calibration time, although it can be performed in a
scanner’s idle time. This method is waveform-specific, which
means that correction should be done for different trajectories.
Other methods relying on field probes can get a more accurate
correction with less time, albeit with dedicated hardware. In
a future study, the eddy current-related artifacts could be
simulated according to the GIRF model in the training phase,
so that the trajectory is learned to be robust against the eddy
current effect.

Aside from practical challenges with GPU memory, the
general approach described here is readily extended from
2D to 3D sampling trajectories [16]. A more challenging
future direction is to extend the work to dynamic imaging
applications like fMRI and cardiac imaging, where both the
sampling pattern and the reconstruction method should exploit
redundancies in the time dimension, e.g., using low-rank
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Fig. 7. Representative results of the prospective phantom experiment using CS-based and UNN-based reconstruction algorithms. The sequences
involved were radial-like GRE (detailed in Table I) with T1w contrast. The parameters of UNNs are trained with fastMRI dataset without fine-tuning.
The readout length was 5.12 ms. The number of shots for undersampled trajectories was 32, and for the fully-sampled radial trajectory is 320 (10×
acceleration). The FOV was 22cm. Red boxes indicate the zoomed-in regions displayed on the upper right corner.

Fig. 8. Results of the T1w prospective in-vivo experiment. The trajectories were also radial-like (detailed in Table I). The parameters of UNNs are
trained with the fastMRI dataset without fine-tuning. The readout time was 5.12 ms. The number of shots for undersampled trajectories was 32, and
for the fully-sampled radial trajectory is 320 (10× acceleration). The FOV was 22cm. Red boxes indicate the zoomed-in regions displayed on the
upper right corner.
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models [61]. To optimize sampling in higher dimensions, the
proposed approach should also have additional regularization
on the PNS effect.

APPENDIX

A. Eddy-current effect

Fig. 9. Compressed sensing-based reconstruction of a water phantom.
The left column is the reconstruction with the nominal trajectory, and
right is with the measured trajectory. Reconstruction with the mapped
trajectory introduces fewer artifacts.

Fig. 9 displays the CS-based reconstruction of real ac-
quisitions reconstructed using both the nominally designed
trajectories and the measured trajectories.

Fig. 10 shows the results of the trajectory measurements.
Using the measurement of the actual trajectory seems to miti-
gate the influence of eddy current effects in the reconstruction
results.

B. Cross contrast validation

In this experiment, we trained the model with one image
contrast from the fastMRI brain dataset (without simulated
additive noise), and tested the learned trajectory with all con-
trasts (with simulated additive Gaussian noise whose variance
is 10−3 of the mean magnitude of the signal). Each contrast
has 4500 training slices and 500 test slices. We fine-tuned
the reconstruction unrolled neural network for different test
contrasts. The initialization is a 16-spoke radial trajectory.
Table IV shows the average reconstruction quality. The learned
trajectories are insensitive to different contrasts within the
fastMRI dataset.

TABLE IV
EFFECT OF DIFFERENT CONTRASTS ON LEARNED MODELS.

❳❳❳❳❳❳❳❳test
training T1w T2w FLAIR

T1w+noise 0.981 0.980 0.981
T2w+noise 0.951 0.953 0.953
FLAIR+noise 0.974 0.974 0.975
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Fig. 10. The measurement of the influence of the eddy currents on readout waveform. The solid line is the nominal trajectory, and the dotted line
is the measurement.

Fig. 11. Examples from the simulation experiment using the UNN-based reconstruction algorithm, with three different acceleration ratios. Ns
stands for the number of shots or spokes. The first slice is FLAIR contrast. The second slice is T1w contrast. The third slice T2w contrast. Red
boxes indicate the zoom-in region, and red arrows point to reconstruction artifacts/blur. Below the zoomed-in regions are the corresponding error
maps, compared with fully sampled images.
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Fig. 12. The gradient strength and slew rate of one spoke from BJORK-optimized radial trajectory.

Fig. 13. Smoothed training training losses of a 16-spoke radial-initialized sequence. We use 4 levels and each level contains 3 epochs. The three
columns are the reconstruction loss, penalty on the maximum slew rate, and penalty on the maximum gradient strength.

Fig. 14. The learned trajectories with descent directions calculated by
different methods.

C. Accurate Jacobian of NUFFT
We compared the trajectories learned with different NUFFT

Jacobian calculation methods: our accurate DFT approxima-
tion methods [33], and using auto-differentiation of NUFFT
(the approach used in PILOT [31]). To save time, we used
only one level of parameterization (Decim. = 4) and 6
epochs. In Fig. 14, our approximation method leads to a
learned trajectory consistent with intuition: sampling points
should not be clustered or too distant from each other. The
quantitative reconstruction results also demonstrate significant
improvement (950 test slices, SSIM: 0.930 vs. 0.957.)

D. Benefit of the warm initialization
We compared two inputs of the unrolled neural network: the

adjoint of undersampling signal (A′y) and quadratic rough-
ness penalized reconstruction (A′A + λR′R)−1A′y. The
experiment optimized a 16-spoke radial trajectory and used
1520 test slices. The average reconstruction quality (SSIM
values) of the two settings are 0.944 and 0.950, respectively.
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