
1.  Introduction
The carbon stored by trees through growth is critical to the evaluation of carbon sequestration in forest ecosys-
tems (Eckes-Shephard et  al.,  2021; Huang et  al.,  2020). Substantial research on tree growth has focused on 
biomass variation according to tissue, for example, leaf, fine roots, and woody tissue (Schiestl-Aalto et al., 2015). 
Wood growth is the principal contributor to tree carbon consumption. Essentially, the carbon sequestration poten-
tial of a “tree” lies in its stocking of carbon as wood biomass. For example, the carbon sink due to wood typically 
represents ∼20% of annual photosynthate in temperate trees (Babst et al., 2014; Delpierre et al., 2016; Wilkinson 
et al., 2012). Nonetheless, carbon sequestration by wood growth remains one of the least constrained parts of the 
current global carbon cycle evaluation and also leads to uncertainty of future CO2 predictions (Friedlingstein 
et al., 2014; Quéré et al., 2018).

The growth of wood is a complex process, controlled by an ensemble of environmental and internal drivers 
(Delpierre et al., 2016). One approach to quantify and predict wood growth, as well as to evaluate forest carbon 
flux is through dynamic global vegetation models (DGVMs). These models predict the dynamic wood growth 
of individual tree or trees based on a “carbon source-centric” method because the carbon stored in wood comes 
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Plain Language Summary  Wood growth is critical to the evaluation of plant physiology and 
carbon sequestration in forest ecosystems. Most previous studies allocate daily photosynthesis to predict 
wood increment, which leads to the inconsistency between the predictions and measurements of wood growth 
at the annual scale. We linked daily and yearly non-structural carbohydrates (NSC) pools to wood growth 
performance by an NSC dynamics model. We evaluated the validity of this model using DBH increments, 
carbon flux (e.g., Gross Primary Production), aboveground woody growth increment, and annual NSC 
dynamics at Harvard Forest. In this work, we provided a framework to explore and explain the pattern of annual 
wood growth and carbon allocation.
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from photosynthesis or productivity directly (Delpierre et al., 2016; Fatichi et al., 2014, 2019; Friend et al., 2019; 
Merganičová et al., 2019; Xu & Trugman, 2021). However, some evidence indicates that the wood growth is 
decoupled with the carbon flux produced at the annual scale (Babst et  al.,  2014; Gea-Izquierdo et  al.,  2014; 
Richardson et al., 2013; Rocha et al., 2006). The carbon allocated to wood growth may come from the photosyn-
thates that have been acquired in the short-term and up to several years (Gaudinski et al., 2009). Discrepancies 
between wood growth and carbon flux may arise from the non-structural carbohydrates (NSC) storage (Teets 
et al., 2018).

The NSC produced by photosynthesis is the sum of soluble sugars and starch, and it provides the substrates for 
vital activities (Hartmann & Trumbore, 2016). The NSC storage supports tree metabolism and growth when 
the immediate photosynthesis is limited by canopy phenology or stress, offering resilience in times of stress 
(Richardson et al., 2013). Würth et al. (2005) estimated that the total NSC pool in a tropical forest ecosystem 
accounts for a high percentage of forest biomass, which indicates the NSC pool is an important part of the forest 
carbon budget. However, the NSC pool in the DGVMs as originally designed is as a buffer between the carbon 
source and sink (Friend et al., 2014). Recent studies have indicated that NSC may play a more active role in esti-
mating tree growth. For example, Schiestl-Aalto et al. (2015) used the carbon allocation sink source interaction 
(CASSIA) model for predicting NSC dynamics and inter-annual growth variation in Scots pine (Pinus sylvestris). 
As an adaptive strategy, the need to balance competition for resources causes a tree to invest large amounts of 
NSC in supporting wood growth (Dietze et al., 2014). Thus, integrating the NSC pool and the key processes 
of NSC allocation for wood growth at the annual scale into DGVMs is an efficient method to estimate carbon 
balance. However, the relationship between NSC and wood growth remains uncertain, which requires further 
understanding and evaluation.

Existing attempts to understand this relationship are based on hydraulics and cambium activities, which may 
make these models overly complex to apply in DGVMs (Eckes-Shephard et  al.,  2021). For example, Hölttä 
et al. (2010) used the pressure-flow hypothesis and sugar dynamics in 20 tree segments to predict the growth of 
stem diameter. On this basis, Schiestl-Aalto et al. (2015) use the CASSIA model to further increase complexity by 
modeling cell development in the cambium with the dynamics of NSC. These methods explain the wood growth 
on a micro-scale and require many parameters and input variables such as cell elasticity, cell plasticity, hydraulic 
conductance, water potential, turgor pressure, and sugar concentration. Much can be learned from these detailed 
processes or models. However, a simpler method is needed to represent the relationship between wood growth and 
NSC allocation in a DGVM (Eckes-Shephard et al., 2021). For example, these models need to consider several 
physiological parameters based on field measurements, which makes them difficult to apply in DGVMs (Fatichi 
et al., 2019). To simplify the modeling processes, a recent study used the different proportions of NSC to make 
inferences about the allocation to belowground symbionts (Schiestl-Aalto et al., 2019). In addition, DGVMs also 
need to consider the NSC allocation strategy found in different tree species. Poorter and Kitajima (2007) found 
that shade-tolerant species may allocate a larger proportion of NSC to NSC storage rather than to growth than 
shade-intolerant species. NSC reserves in shade-tolerant species are needed to endure low-light conditions in 
some cases or to recover from the non-growing season, in others.

A previous DGVM, the FORCCHN2 model, predicts the NSC dynamics at the daily scale by using a single NSC 
pool (Fang et al., 2020). Here, we intend to explore the relationship between NSC allocation and wood growth 
and quantify the carbon consumed by wood growth. To this end, we revised the FORCCHN2 model to the double 
NSC pools (i.e., NSC active pool and NSC slow pool) and hypothesized that part of the stored NSC in the previ-
ous years and the produced NSC in the current year were used for wood growth. The NSC active pool is used 
to maintain the daily vital activities of trees (Figure 1). Complementary, the NSC slow pool is considered as the 
NSC storage pool to keep their metabolism during carbon deficit periods (Richardson et al., 2013). The revised 
model allows tree growth to be decoupled from immediate Gross Primary Productivity (GPP) and Net Primary 
Productivity (NPP). The wood biomass balance (unit: kg C m −2) and the NSC for wood growth were used to 
explain the variation in the radial growth. We assumed that wood growth was related to NSC and then explored 
the different proportions of NSC consumption (5%–95%) for wood growth of shade-tolerant and shade-intolerant 
species in this forest. Using data from the Harvard Forest, we tested the model-predicted performance for wood 
growth by using the diameter at breast height increments (ΔDBH) of individual trees.
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2.  Materials and Methods
2.1.  Study Site

The measured plots (32 plots) were located within the Harvard Forest, Massachusetts, USA (42°54′N and 
72°17′W), an important part of Harvard University's Long Term Ecological Research program. These labeled 
plots circular plots had a 10 m radius (area: 314 m 2) and were located in the footprint of the Environment Meas-
urement Station (EMS) tower. These labeled plots were separated by 100 m (Figure S1 in Supporting Informa-
tion S1: plot map). The Harvard Forest had a mean annual temperature of 8.7°C, mean annual precipitation of 
1,300 mm. The annual climate of Harvard Forest during 2000–2020 had shown in Figure S2 in Supporting Infor-
mation S1. The forest type of Harvard forest was the deciduous broad-leaf forest, and the dominant tree species 
were red maple (Acer rubrum) and red oak (Quercus rubra).

2.2.  Inventory Data

The inventory data was taken from the Harvard Forest Data Archive: HF069 (W. Munger & S. Wofsy, 2020a). 
The DBH of each tree with a DBH greater than 10 cm was measured by an attached dendrometer's expansion 
(or contraction) to the nearest millimeter. The DBH data were taken with digital calipers. To match the observed 
time of carbon flux, we chose the measured inventory time from 2000 to 2020. In this data set, the trees were 
remeasured annually, but a lot of trees were not observed continuously and missed the corresponding records. 
To keep as many trees as possible and test the long-time predicted performance, we chose the DBH data with 
a time interval of 5 years (i.e., the period of ΔDBH was 2000–2005, 2000–2010, 2000–2015, and 2000–2020). 
There were 506 live trees with 2024 ΔDBH data in the 32 plots (i.e., each tree has 4 ΔDBH data). The detailed 

Figure 1.  Schematic representation of the FORCCHN2 model. The dotted lines represent the input processes; the solid lines represent the flows of carbon. NSC: 
non-structural carbohydrates.
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information of each plot includes the number of trees, DBH range, and main tree species (Table 1). According to 
the database of United States department of agriculture Forest Service Southern Research Station, we divided all 
trees into deciduous broadleaf with shade tolerance or intolerance and evergreen needleleaf with shade tolerance 
or intolerance (Table S1 in Supporting Information S1: the detailed information of each tree species).

For testing the yearly dynamics of wood, we calculated the aboveground wood increment (AGWI) during 
2000–2020. The AGWI was defined as the difference in a current year's aboveground wood biomass (AGWB) 
and the previous year's AGWB (i.e., in consecutive years):

AGW𝐼𝐼𝑘𝑘𝑘𝑘𝑘 = AGWB(DBH)𝑘𝑘𝑘𝑘𝑘+1 − AGWB(DBH)𝑘𝑘𝑘𝑘𝑘� (1)

Where k meant the kth tree; j meant the jth year; j + 1 meant the next year of the jth year. In each year, the AGWI 
was calculated by the trees with the valid DBH records and we did not calculate the AGWI of the trees that miss-
ing the record in this year. In 2020, the AGWI equaled the AGWB of October minus the AGWB of April. The 
AGWB was calculated by DBH and species-specific allometric equations (i.e., extracted from the HF069-17). All 
allometric equations had shown in Table S1 in Supporting Information S1.

2.3.  Carbon Flux and Climate Data

The carbon flux data observed by the Eddy Covariance instrument of EMS towers, and the used data sources 
were mainly coming from two parts: one was obtained from the archived FLUXNET2015 data set (The avail-
able period of carbon flux was 2000–2012) (Pastorello et al., 2020); another was from the HF004 of Harvard 
Forest Data Archive (The available period was 2013–2019) (W. Munger & S. Wofsy,  2020b). Note that the 
Net Ecosystem Productivity (NEP) value was equal to the negative value of the Net Ecosystem CO2 Exchange 
(NEE, from the data set directly). The GPP value was equal to the NEP plus Ecosystem Respiration (ER, from 
the data set directly). The NPP data was equal to the NEP plus Soil Respiration (SR), which was extracted from 
Finzi et al. (2020) (the available period was 2000–2015). Therefore, the available period of GPP and NEP was 
2000–2019 and the available period of NPP was 2000–2015.

We used the daily climate data to drive the model. These data included the daily maximum and minimum air 
temperature (°C), precipitation (mm), relative humidity (%), wind speed (m s −1), atmospheric pressure (hPa), 
total solar radiation (W m −2), and CO2 concentration (ppm). The climate data was sourced from the FLUX-
NET2015 data set (available period: 2000–2012) and HF001 of Harvard Forest Data Archive (available period: 
2013–2020) (Boose, 2022). The corresponding CO2 concentration was from the FLUXNET2015 data set (availa-
ble period: 2000–2012) and HF0197 of Harvard Forest Data Archive (available period: 2013–2020) (W. Munger 
& J. Hadley, 2022).

2.4.  Model Description

The individual-based carbon model, FORCCHN2 (Fang et al., 2020), is driven by daily climate data and predicts 
annual growth with the carbon dynamics for each tree. The model predicts the carbon budget by coupling soil 
carbon cycle models on a plot scale. Depending on the process considered, FORCCHN2 runs on daily and annual 
timesteps (Figure 1). For an individual tree, the principal daily processes are photosynthesis, maintenance respi-
ration, carbon allocation, and soil respiration. This model calculates the carbon allocation of the individual tree 
from the NSC production, demand, and storage. In this study, we divided the single NSC pool of the original 
FORCCHN2 into two pools (i.e., the NSC active pool and the NSC slow pool). NSC active pool represented the 
daily carbon dynamics of photosynthetic productivity, maintenance respiration, growth respiration, and growth 
carbon demand. NSC slow pool represented the annual NSC storage pool. These NSC pools allowed the growth 
of different parts of the tree to be decoupled from instantaneous carbon flux. For example, the slow pool provided 
the necessary carbon for the requirements of the individual tree when contemporaneous photosynthetic produc-
tion (i.e., GPP, a type of carbon flux) and the NSC fast pool were insufficient to maintain growth or respiration. 
Meanwhile, we revised the allocated parameters of the NSC storage pool at the yearly step to explore the propor-
tion of carbon consumption by wood growth.

 21698961, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007085 by H
arvard U

niversity, W
iley O

nline Library on [16/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Biogeosciences

FANG ET AL.

10.1029/2022JG007085

5 of 14

Plot's no. Trees' number DBH range in 2000 (cm) Main tree species Total

A1 12 13.67–56.48 Betula alleghaniensis, Acer rubrum

506 trees, including 193 
shade-tolerant trees and 

313 shade-intolerant trees.

B1 12 13.25–48.2 Acer rubrum, Quercus rubra

C1 14 11.55–56.87 Quercus rubra, Tsuga canadensis

D1 16 10.55–47.09 Acer rubrum, Quercus rubra, 
Quercus velutina, Pinus strobus

E1 10 10.53–47.01 Betula alleghaniensis, Acer rubrum, 
Tsuga canadensis

F1 16 10.38–56.81 Acer rubrum, Pinus resinosa

G1 17 10.12–45.02 Pinus resinosa

H1 18 13.37–48.29 Acer rubrum, Pinus strobus, Quercus 
rubra

A2 10 11.92–41.55 Acer rubrum, Quercus velutina

B2 8 12.38–62.32 Acer rubrum, Betula alleghaniensis

C2 12 10.84–53.89 Acer rubrum, Quercus rubra

D2 9 10.43–39.61 Acer rubrum

E2 21 13.12–38.53 Acer rubrum, Quercus rubra, Pinus 
resinosa

F2 17 10.01–57.08 Acer rubrum, Betula lenta

G2 20 12.37–48.59 Tsuga canadensis

H2 24 11.64–59.43 Tsuga canadensis, Acer rubrum, 
Quercus rubra

A3 12 11.35–55.36 Acer rubrum, Quercus rubra

B3 19 13.04–43.91 Acer rubrum, Quercus rubra

C3 19 13.17–39.31 Acer rubrum, Betula alleghaniensis

D3 11 12.85–59.21 Acer rubrum, Quercus rubra

E3 17 10.28–52.03 Acer rubrum, Quercus rubra

F3 13 11.12–56.91 Tsuga canadensis, Betula 
alleghaniensis, Pinus strobus

B4 18 10.39–34.13 Acer rubrum, Betula populifolia

C4 22 10.78–40.29 Acer rubrum, Quercus rubra, 
Fraxinus americana

D4 12 10.25–45.39 Acer rubrum, Prunus serotina

E4 29 11.22–42.32 Acer rubrum, Fraxinus americana, 
Pinus strobus

F4 22 12.8–66.39 Quercus rubra, Acer rubrum, 
Fraxinus americana

G4 6 17.4–32.89 Acer rubrum, Betula alleghaniensis

C5 12 10.31–31.38 Acer rubrum, Quercus rubra

D5 9 10.82–33.85 Acer rubrum

E5 27 11.22–50.12 Tsuga canadensis, Pinus strobus, 
Acer rubrum

F5 22 10.83–38.99 Acer rubrum, Quercus rubra, Pinus 
strobus

Table 1 
The Detailed Information of Each Plot
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Daily step For each individual tree, the photosynthesis (GPP), maintenance respiration (R), growth respira-
tion (R G), and carbon use to growth (G) were assumed to determine the daily changes of the NSC active pool 
(NSCactive) (Fang et al., 2020):

𝑑𝑑NSCactive

𝑑𝑑𝑑𝑑
= GPP(𝑡𝑡) −

∑

𝑅𝑅𝑚𝑚(𝑡𝑡) −
∑

𝑅𝑅𝐺𝐺
𝑖𝑖 (𝑡𝑡) −

∑

𝐺𝐺𝑖𝑖(𝑡𝑡)� (2)

Where t is the day of the year; the subscript m denotes the biomass fraction for leaves, wood, and fine roots; the 
subscript i denotes the biomass fraction for leaves and fine roots, respectively. The GPP, R G, and R were calcu-
lated by the original FORCCHN2 model (Method S1 in Supporting Information S1). The G of leaves and fine 
roots were also calculated by Method S1 in Supporting Information S1.

Yearly step To maintain sufficient efficiency and simple representation, the model assumed that NSC was allo-
cated to the growth of leaves and fine roots during the daily processes, and the NSC allocation for the growth 
of wood during the yearly processes. Thus, the model used the NSC storage pool (i.e., NSC slow pool: NSCslow) 
in a given year to support the annual wood growth (Gwood) (Figure 1). The NSC allocation for wood growth was 
determined by a critical allocation parameter (k):

NSCslow(�end) = NSCslow(�0) + NSCactive(�end)� (3)

NSCslow((𝑗𝑗 + 1)0) = NSCslow(𝑗𝑗end) − 𝐺𝐺wood(𝑗𝑗)� (4)

�wood(�) = � ⋅ NSCslow(�end)� (5)

Where j meant the jth year; j + 1 meant the next year of the jth year; jend meant the end day at jth year; j0 meant the 
first day at jth year; (j + 1)0 meant the first day at j + 1th year. Note that the value range of k was 0–1.

The wood biomass of a given year was calculated by the wood biomass of the previous year and wood growth:

𝐵𝐵wood(𝑗𝑗) = 𝐵𝐵wood(𝑗𝑗 − 1) + 𝐺𝐺wood(𝑗𝑗)� (6)

𝐵𝐵wood(𝑗𝑗) = 𝑓𝑓wood(𝐷𝐷 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑑 𝑑𝑑 + 𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 astem)� (7)

𝐵𝐵wood(𝑗𝑗 − 1) = 𝑓𝑓wood(𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 astem)� (8)

𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑐𝑐 ⋅ 𝑑𝑑𝑑𝑑� (9)

Where j meant the jth year; j – 1 meant the previous year; D was the tree's DBH; dD was the DBH increment in 
1 year; H was the tree height; dH was the height increment in 1 year; b was the height of twig; db was the height 
of twig increment in 1 year; hr was the depth of root; astem was the volume weight of wood; cp was a constant, 
which depended on the light gradient (Table S2 in Supporting Information S1). Note that we used the “binary 
search algorithm” to calculate the optimal dD (the initialized range of dD was set to 0–20 cm), which made the 
left part equal to the right part in Equation 7. The fwood was calculated by the allometric equations (Method S2 in 
Supporting Information S1), and the simulated performance of this method had shown in Figure S3 in Supporting 
Information S1.

2.5.  Model Initialization

The assumptions from the original FORCCHN2 model were used to initialize and calculate the vegetation infor-
mation by using the DBH of the individual trees (Method S2 in Supporting Information S1). The initial NSC 
active pool in each year was assumed as 0 on the first day of the year. For the initial NSC storage pool (slow pool) 
in Harvard Forest, Furze et al. (2019), Fang et al. (2020), and Barker Plotkin et al. (2021) measured and concluded 
that the NSCs relative to wood biomass was 2%–5%. We compared the ΔDBH results from the different initial 
NSC% (set as 2%–5% with a 1% interval), and we assumed the NSC% to be 3% of wood biomass in this work 
(Figure S4 in Supporting Information S1). Depending on the tree species, the plant functional types (PFTs) of 
all plots in the present work were for deciduous broadleaf trees and evergreen needle leaf trees. Every type had 
its respective physiological and ecological parameters (Table S2 in Supporting Information S1). To compute the 
light competition among the different trees, we used a standard gap-model formulation to describe the vertical 
radiation environment (Equation S29 in Supporting Information S1). To explore the proportion of NSC allocation 
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by wood growth, we set the annual allocation parameter (k) from 0.05 to 0.95 with a 0.05 interval (Equation 5). 
For calculating the k value more accurately, we then set an 0.01 interval between the two 0.05 intervals with the 
best model performance, Other processes and parameters of this model had shown in Method S1 and S2, Table 
S2, Table S3, and Table S4 in Supporting Information S1.

2.6.  Statistical Analyses

The predicted results were evaluated against measured observations, which included the daily GPP, daily NEP, 
ΔDBH, and AGWI. We used Pearson correlation coefficient (r), correlation coefficient square (r 2), model effi-
ciency (E), root mean square error (RMSE), and bias (bias):

𝐸𝐸 = 1 −

∑𝑛𝑛

𝑖𝑖=1
(𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)

2

∑𝑛𝑛

𝑖𝑖=1

(

𝑌𝑌𝑖𝑖 − 𝑌𝑌

)2� (10)

bias =
1

𝑛𝑛

∑𝑛𝑛

𝑖𝑖=1
(𝑋𝑋𝑖𝑖 − 𝑌𝑌𝑖𝑖)� (11)

Where the Xi and Yi are the predicted and measured data, respectively; 𝐴𝐴 𝑋𝑋 and 𝐴𝐴 𝑌𝑌  represent their mean values. The 
range of E was –∞ to 1, and E close to 1 means a perfect match between the predictions and measurement.

3.  Results
3.1.  Correlation of AGWI and Carbon Flux

During 2000–2020, the observed carbon fluxes were compared to the measured AGWI in the Harvard Forest. The 
annual carbon fluxes, including GPP, NPP (calculated by Equation S48 in Supporting Information S1), and NEP 
(calculated by Equation S49 in Supporting Information S1) showed no correlation with annual AGWI (Figure 2: 
r = 0.027, 0.292, 0.243 of GPP, NPP, and NEP), indicating that the wood growth was not determined by the 
amount of carbon fluxes at the annual scale.

3.2.  The Proportion of Carbon Consumption by Wood Growth

Here, we used the DBH increment in a given period (ΔDBH) to evaluate the predicted performance of wood 
growth. Trees were divided into shade-tolerant and shade-intolerant species. The measured ΔDBH was compared 
to the 22 predictions (i.e., the results of 22 different k values) in the 32 plots. Each plot produced a statistical 
outcome (i.e., predicted vs. measured ΔDBH of every tree in the given plot), and the results of all plots were 
drawn as the box plot.

For the predicted wood growth for different annual carbon allocated proportion (k, see Figures 3 and 4, and Figure 
S5 in Supporting Information S1), all results (i.e., predicted vs. measured) of shade-tolerant trees had similar and 

Figure 2.  Correlation of annual aboveground wood growth increment (aboveground wood increment) with carbon flux at 
the 32 plots of Harvard Forest. The carbon fluxes include (a) the gross primary productivity (GPP), the available period 
is 2000–2019, (b) Net Primary Productivity, the available period is 2000–2015, and (c) Net Ecosystem Productivity, the 
available period is 2000–2019.
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significant correlations (the range of r median was between 0.63 and 0.64, and the significance p was less than 
0.05). The best predicted performance occurred in the range of k = 0.25–0.35. When k = 0.32, one saw the highest 
model efficiency (the E median of k = 0.32 was larger than other values) (Figure 3). With k = 0.30, the model 
yielded the best performance of RMSE (the RMSE median was 1.25 cm) and k = 0.35 produced the minimum bias 
(the bias median was −0.04 cm). Values of k = 0.95 had the poorest performance with respect to all statistical 
results. Overall, these results indicated that shade-tolerant trees consumed 32% amount of the annual NSC storage 
pool had a better performance to support the wood growth than other k values.

Figure 3.  The statistical results of measured versus predicted ΔDBH of the shade-tolerant trees in the 32 plots of Harvard Forest. Each box has 32 data and each point 
represents 1 data. These results are based on 27 different values of the annually allocate parameter (k). The results include four time periods of ΔDBH: 2000–2005, 
2000–2010, 2000–2015, and 2000–2020. CORR: correlation coefficient (i.e., r); E: model efficiency; RMSE: root mean square error.

Figure 4.  The statistical results of measured versus predicted ΔDBH of the shade-intolerant trees in the 32 plots of Harvard Forest. These results are based on 27 
different values of the critical allocate parameter (k). The results include four time periods of ΔDBH: 2000–2005, 2000–2010, 2000–2015, and 2000–2020. CORR: 
correlation coefficient (i.e., r); E: model efficiency; RMSE: root mean square error.
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The results of shade-intolerant trees presented obvious differences from the shade-tolerant trees (Figure 4). The 
range of r median of all k values was around 0.70. Although all predicted results were positively correlated 
with measurements, the result of k = 0.90 had a higher median of model efficiency than other values of k. The 
median of model efficiency was 0.19, RMSE was 1.77 cm, and the model underestimated 0.78 cm ΔDBH when 
the allocated proportion k = 0.90. These results indicated that 90% of the annual NSC storage pool used by 
shade-intolerant trees showed better performance to support the wood growth than other k values.

Both the allocated proportion k  =  0.32 of shade-tolerant trees and the allocated proportion k  =  0.90 of 
shade-intolerant trees were applied in the model (Figure 5 and Figure S6 in Supporting Information S1). The 
FORCCHN2 model captured the 31.2%–55.1% variance (i.e., interquartile range of r 2, the correlation coefficient 
(r) square) of ΔDBH, and the model efficiency ranged from −0.02 to 0.46 (Figure 5). The predictions underes-
timated 0.20–0.88 cm of measurements, and the RMSE of the compared result was 1.36–2.09 cm. These results 
indicated that the parameters and the model could reproduce the dynamics of wood growth in these plots. In addi-
tion, we evaluated the mean predicted and measured ΔDBH of the different tree sizes (Figure S7 in Supporting 
Information S1). We divided the all trees into four sizes by classified DBH (i.e., the total number of trees was 506; 
the 10–16.5 cm DBH had 126 trees, the 16.5–23.4 cm DBH had 128 trees, the 23.4–33.0 cm DBH had 126 trees, 
the DBH larger than 33.0 cm had 126 trees). The model underestimated ΔDBH for all tree sizes and the value of 
underestimation increased with the sizes.

3.3.  AGWI and NSC Dynamics

We used the aboveground wood growth increment (AGWI) to test the overall predicted performance of wood 
growth in Harvard Forest (Figures 6 and 7a). The range of the best model efficiency of shade-tolerant trees and 
shade-intolerant trees had occurred when k equaled 0.25–0.35 and 0.85–0.95, respectively. Similarly, we found 
that k = 0.32 of shade-tolerant trees and k = 0.90 of shade-intolerant trees were more suitable for predicting 

Figure 5.  The statistical results of measured versus predicted ΔDBH of all trees in the 32 plots of Harvard Forest. 
These results are based on the value of kST equal to 0.32 (ST: shade-tolerant) and the value of kSIT equal to 0.90 (SIT: 
shade-intolerant). The results include four time periods of ΔDBH: 2000–2005, 2000–2010, 2000–2015, and 2000–2010. 
CORR: correlation coefficient (i.e., r); E: model efficiency; RMSE: root mean square error.
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AGWI than other k values. In general, the trends and magnitudes of the best predictions were generally consistent 
with measured data (Table 2: r = 0.65 and E = 0.39). However, differences existed between the simulations and 
measurements, such as the model overestimated AGWI in some years and underestimated AGWI in other years. 
The variation of NSC consumption by wood growth was similar to the variation of predicted AGWI, as well as 

Figure 6.  The model efficiency (E) of measured versus predicted aboveground wood increment of the shade-tolerant trees 
and shade-intolerant trees in all plots of Harvard Forest. These results are based on 27 different values of the critical allocate 
parameter (k).

Figure 7.  (a) Is measured versus predicted AWGI in Harvard Forest during 2000–2020, and the right is the corresponding scatter plot; (b) is the predicted 
non-structural carbohydrates storage increment at the annual scale. These results are based on the value of kST equal to 0.32 (ST: shade-tolerant) and the value of kSIT 
equal to 0.90 (SIT: shade-intolerant). AGWI: aboveground wood growth increment; NSC: non-structural carbohydrates. * means the significance is less than 0.05.
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the NSC storage increment (Figure 7b). This was in accord with our assumption that a portion of the NSC storage 
pool in the current year was allocated to the NSC storage increment (Equations 3–5 and Figure 1).

4.  Discussion
4.1.  Model Performance of Wood Growth

Numerous previous studies used the allocation strategies of wood growth based on carbon flux pools, but increas-
ing evidence explains that wood formation relies on a combination of current and previously stored NSC (Teets 
et al., 2018). To illustrate the link between NSC pools and wood growth, we revised an individual tree-based 
carbon model (FORCCHN2) to integrate the annual wood growth with carbon allocation through the NSC 
pools. The model simultaneously evaluated forest individual tree DBH increments (ΔDBH) and carbon flux in 
the Harvard Forest. This work suggested considering using NSC active and storage pool simultaneously in the 
DGVMs to predict tree growth dynamics.

The annual AGWI is not significantly correlated with the annual carbon flux in situ (Figure 2). These results 
are consistent with the observations in other forests and suggest that the wood growth does not often depend on 
annual GPP or NEP (Babst et al., 2014; Mund et al., 2010). Although wood is carbon storage in trees, its annual 
growth should be distinguished from other parts of the tree because it is perennial (Delpierre et al., 2016). The 
predicted AGWI explained 42.5% (i.e., r 2, the correlation coefficient r square) interannual variations of the 
measured AGWI, which indicates that estimates of AGWI at the yearly scale can be obtained by the reasonable 
allocation of the NSC pool (Figure 7). The NSC allocation for wood growth is difficult to measure directly, and 
we use the revised FORCCHN2 model to describe this allocation at the annual scale. The overall performance of 
the tree ΔDBH predictions in the 32 plots presents that the method of NSC allocation to simulate tree growth is 
feasible. Although wood growth was modeled using the approach of NSC allocation, the annual DBH increment 
was treated in a relatively simple manner, with the objective of providing a framework for carbon consumption 
related to wood biomass.

Usually, the trees do not use all NSC for wood growth because the growth is controlled by current environmental 
conditions or endogenous mechanisms (Mund et al., 2010). According to this hypothesis, a part of the stored 
and produced NSC in the current year is consumed by wood growth, while the remaining portion of the NSC 
entered the storage pool. Then, the annual DBH increment is calculated by wood biomass of adjacent years. This 
method is considered reasonable because a “tree” could use a lot of NSC for structural growth, which makes 
itself competitive for external resources (Guillemot et al., 2017). The annual NSC storage pool is not only as a 
buffer pool for photosynthesis and carbon consumption, and this pool also provides the necessary carbon source 
for trees when faced with unpredictable stressors (e.g., drought) (Furze et al., 2019). Although there are some 
disparities between the predicted and measured ΔDBH, given the wide variety of wood formations, the reasona-
ble success of a growth model as simple as ours is unexpected. The model merits further development focusing 
on the mechanisms responsible for the processes of wood growth. For example, the water in the soil could limit 
the wood growth, but our model assumed that the wood growth was only indirectly influenced by the soil water. 
Some evidence suggests that water stress has an effect on the DBH increment through the activity of cambial cells 
(Guillemot et al., 2017). Eckes-Shephard et al., 2021 directly used the soil water in modeling wood increment 

Statistical value

r E RMSE Bias

GPP 0.923 0.839 1.986 (g C m −2 d −1) −0.566 (g C m −2 d −1)

NEP 0.862 0.670 2.078 (g C m −2 d −1) 0.554 (g C m −2 d −1)

AGWI 0.652 0.390 15.118 (g C m −2 year −1) 2.579 (g C m −2 year −1)

ΔDBH (median) 0.687 0.301 1.559 (cm) −0.375 (cm)

Note. The Results of ΔDBH are From the First Quartile to the Third Quartile in All Plots. r: Correlation Coefficient; E: 
Model Efficiency; RMSE: Root Mean Square Error; GPP: Gross Primary Productivity; NEP: Net Ecosystem Productivity; 
AGWI: Aboveground Wood Growth Increment.

Table 2 
Comparison of Measured and Predicted Results
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in DGVMs. Besides, wood phenology has been identified to control the interannual variability of wood growth 
(Delpierre et al., 2016).

4.2.  Allocation of NSC in Different Tree Species

Multiple factors can influence the NSC allocation, including the environmental effects (e.g., the climate condi-
tions and soil water content) and tree physiology (e.g., PFT). Among these factors, the species of the tree itself 
is an important factor (Babst et al., 2014). Our results present that shade-intolerant trees spend more available 
carbon resources to support wood growth than shade-tolerant trees (90% vs. 32%). Under the conditions set by 
the model, the two trees of similar size showed the shade-intolerant species produced 1.99 kg C (i.e., GPP) with 
photosynthesis, consumed 0.42 kg C (21% of GPP) for structural growth of leaf and fine roots, and released 
1.11 kg C (56% of GPP) as maintenance and growth respiration during the year (Figure S8 in Supporting Infor-
mation  S1). Correspondingly, the shade-tolerant species produced 6.18  kg  C with photosynthesis, consumed 
0.62 kg C (10% of GPP) for structural growth of leaf and fine roots, and released 1.72 kg C (28% of GPP) as 
maintenance and growth respiration (Figure S8 in Supporting Information S1). The results indicated that the 
difference of NSC allocation between the two species mainly comes from photosynthesis. The photosynthesis 
is controlled by leaf area (Equation S2 in Supporting Information S1) and this area is determined by the coeffi-
cient of leaf area (cLAIL in Equation S47 and Table S2 in Supporting Information S1, Ma et al., 2017). Besides, 
every species has its respective strategies for resource allocation because of the growth patterns and inter-tree 
competition (Pothier, 2017). In natural environments, shade-intolerant trees consume more carbon for the wood 
growth to compete for more light in the vertical structure, while shade-tolerant trees store more carbon to grow 
more leaves in the next year, which can improve light capture ability and productivity under low light conditions 
(Portsmuth & Niinemets, 2007). The shade-tolerant species have lower physiological plasticity than the intolerant 
species. Greater physiological plasticity allows shade-intolerant species to achieve rapid wood growth rates and 
thereby rapidly colonize early successional habitats (Walters & Reich, 1999). In a carbon allocation study from 
the Abitibi-Témiscamingue region of Northwestern Quebec (Goudiaby et al., 2022), the carbon allocation of a 
shade-tolerant species—black spruce (Picea mariana) to tree stem is estimated ∼35%, and a shade-intolerant 
species—jack pine (Pinus banksiana) allocated 60% carbon for tree stem. However, these results of species 
effect are only a preliminary exploration, and each tree species has its growth rate and NSC allocation coefficient 
(Brienen et al., 2006). For example, we found the model can predict the wood growth of the red maple (Acer 
rubrum) better than the black cherry (Prunus serotina) (Figure S9 in Supporting Information S1). The plot has the 
black cherry trees (D4 plot: r = 0.168 and E > 0, 4 red maple trees, 4 black cherry trees, 3 white ash trees, and 1 
black oak tree) shows a lower correlation than the plot without black cherry trees (A1 plot: r = 0.739 and E < 0, 
6 red maple trees, 4 yellow birch trees, and 2 red oak trees).

4.3.  Uncertainties in Predicting Carbon Flux

According to the validation results, the revised model is able to reproduce the NEP of the forest (Figure S10 
in Supporting Information S1 and Table 2). There are still some errors in the NEP prediction and the previous 
studies have summarized this phenomenon as the GPP underestimation (Moffat et al., 2007; Raczka et al., 2013). 
Through Equation 2, the uncertainties of carbon flux could influence the predicted performance of NSC. One 
reason for this underestimation is the vegetation parameters in the DGVMs are constants (Table S2 in Supporting 
Information S1), but the ecological characteristics of individual trees change with the surrounding environment 
(Reich et al., 2006; Wright et al., 2004). For example, the optimal temperature of photosynthesis in the model is 
constant, but the actual optimal temperature may be higher than the optimal temperature of the model (e.g., Topt 
in Table S2 in Supporting Information S1), which leads to the underestimation of GPP (Equations S1 and S5 in 
Supporting Information S1). Huang et al. (2019) present the optimal temperature of photosynthesis had a spatial 
and time variation instead of the constant.

5.  Conclusion
In this study, we focus on the framework of NSC allocation by wood growth at the annual scale. Because the 
carbon flux shows no correlation with annual wood increments, this framework helps the DGVMs to use the NSC 
pools instead of carbon flux pools to predict wood growth. We also found that shade-tolerant trees invest 32% of 
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NSC and shade-intolerant trees invest 90% of NSC to support the wood growth in the temperate forest. Our results 
explore the carbon balance between growth and NSC storage, in order to gain a comprehensive understanding of 
the tree dynamics and the defense strategy. These findings have the potential to reduce uncertainties in predicting 
the future dynamics of forest vegetation and the carbon cycle.

Data Availability Statement
The inventory and allometric equations are available from the Harvard Forest Data Archive: HF069 (https://
harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF069). The carbon fluxes and climate 
data are extracted from the FLUXNET2015 data set (https://fluxnet.org/data/fluxnet2015-dataset/), HF004 (https://
harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF004), and HF001 (https://harvardfor-
est1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF001). The CO2 concentration is extracted from 
the HF197 (https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF197).
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