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Tradeoffs in microbial functional traits have been a focus of recently described ecological frameworks and of
mathematical models of microbial community functioning. Tradeoffs in key traits such as growth rate, growth
yield, resource acquisition, and stress tolerance may have either a genetic basis or a physiological basis, and the
type of tradeoff can inform how traits are modeled and measured. Here we provide evidence that growth rate/
decomposition and growth rate/stress tolerance tradeoffs have a primarily genetic basis in a phylogenetically
diverse suite of ten leaf litter-inhabiting fungi. In contrast, growth yield tradeoffs with functional traits are more
likely to have a physiological basis. Consideration of the type of tradeoff, genetic or physiological, should help to
inform efforts to model microbial contributions to ecosystem processes, especially when considering different
scales. Consideration of physiological tradeoffs may be important for understanding short-term variability (e.g.,
pulse events) and fine spatial scales, whereas genetic tradeoffs are likely to be useful for understanding regional-

to continental-scale and medium- to long-term contributions of microbes to ecosystem processes.

Multi-trait tradeoffs in microbial functional traits have been a focus
of recently described ecological frameworks (e.g., Fierer et al., 2007;
Wallenstein and Hall, 2012; Wood et al., 2018; Anthony et al., 2020;
Malik et al., 2020a) and of mathematical models of microbial commu-
nity functioning under different environmental conditions (e.g., Moor-
head and Sinsabaugh, 2006; Allison, 2012; Wieder et al., 2015).
Tradeoffs in trait values are an attractive target for modeling efforts
because they represent a convenient way to predict emergent commu-
nity functioning under different physical conditions (Martiny et al.,
2015). However, there are different kinds of tradeoffs that microbes may
present that often appear to be conflated in the literature and which can
inform how traits are modeled and measured.

Tradeoffs can be broadly defined as genetic versus physiological
(sensu Stearns, 1989, 2000) for the purposes of microbial modeling ef-
forts. Genetic tradeoffs occur when species tend to maximize one trait at
the expense of another and arise through evolutionary processes
(Agrawal et al., 2010). For example, different plant species have been
observed to maximize either leaf photosynthetic rate or stress tolerance
(i.e., the ability to maintain photosynthesis under stressful conditions),

with gains in one strategy coming at a cost to the alternative trait (Zhang
etal., 2017). In contrast, physiological tradeoffs occur where a species is
limited in the expression of particular traits under different conditions,
primarily through energy and nutrient limitation. For example, in a
highly stressful environment a species may devote more resources to
production of stress resistance compounds at the expense of growth
yield and/or biomass production (e.g., Malik et al., 2020b). Expression
of either trait comes within the bounds encoded within the species’
genome and is determined by the environment. These terms (“genetic”
versus “physiological” tradeoffs) are imperfect given their variable use
in the literature; however, we feel these reflect both a common under-
standing of the terms in evolutionary biology (e.g., Stearns 1989, 2000;
Agrawal et al., 2010) and in microbial ecology (e.g., Martiny et al.,
2015; Bittleston et al., 2021). Here we primarily discuss tradeoffs at the
level of species as a convenient shorthand and a relevant unit for
modeling efforts though we recognize that evolutionary processes may
(primarily) give rise to genetic tradeoffs between individuals and pop-
ulations, and similarly, physiological tradeoffs occur within individuals
and populations.
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Genetic tradeoffs, therefore, define the range of trait values available
to a community, whereas physiological tradeoffs define the traits
expressed by a given community under different environmental condi-
tions. These tradeoffs likely operate at different scales. For example,
microbial community composition responds strongly to seasonal
(Voriskova et al., 2014) and decadal (DeAngelis et al., 2015) temporal
variation, as well as regional (Pellissier et al., 2014) and continental
(Fierer and Jackson, 2006) spatial gradients, whereas microbial com-
munities with similar species composition may express different traits
under short-term variation (e.g., according to diel cycles or pulse events;
Ottesen et al., 2013). These definitions also inform how we measure
potential tradeoffs. Information about genetic tradeoffs can be obtained
by measuring species identity in a community given some prior infor-
mation about functional potential (e.g., genomic content) or by directly
measuring genomic content of a species or community. In contrast, in-
formation about physiological tradeoffs can be obtained through
methods such as metatranscriptomics (i.e., measuring real-time
expression of genes) or measurements of emergent traits (e.g., growth
rate, growth yield) of individuals or communities under different con-
ditions. What is yet unclear is which microbial traits, particularly those
that are a common focus of modeling efforts, such as potential extra-
cellular decomposition enzyme activity, growth rate, and growth yield,
can be ascribed to species-level (i.e., genetic) versus physiological
tradeoffs, and similarly, what level of variation occurs in these traits
given different communities and environmental conditions.

Here we provide evidence that correlations between growth rate/
decomposition potential and growth rate/stress tolerance traits have a
primarily genetic basis in a phylogenetically diverse suite of ten leaf
litter-inhabiting fungi. In contrast, growth yield tradeoffs with other
functional traits appear to have a physiological basis. We measured
growth rate and carbon use efficiency (i.e., CUE, a measure of growth
yield sensu Malik et al., 2020a) of ten saprotrophic soil fungi under two
temperatures (15 or 25 °C) and three N availability conditions (20:1,
60:1, 123:1 C:N) in liquid media using a full-factorial experimental
design. Growth rate was measured by filtration-collection and weighing
of dried fungal biomass at multiple time-points over a growth curve with
coinciding measurements of CO5 evolution, with CUE calculated during
the exponential growth phase according to Pold et al. (2020). Sampling
of the intermediate C:N media was performed by sampling of four
replicate cultures at each time point, whereas for the lowest and highest
C:N media three replicate growth curves were measured using separate
batches of media on separate days. We therefore treat the intermediate
C:N experiments as single growth estimates, and treat the three growth
estimates for each of the lowest and highest C:N conditions as
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independent replicates in statistical analyses. Detailed methods are
available in the Supplementary Information.

Growth rate showed relatively little variation across culture condi-
tions and instead varied primarily by species identity (Fig. 1A and B),
whereas CUE displayed greater variability across the different growth
conditions (Fig. 1C and D). Specifically, species identity explained 81%
of the variation in growth rate (ANOVA; R? = 0.816, P < 0.0001)
compared to 6% for growth conditions (temperature R? = 0.003, P =
0.07; C:N R? = 0.047, P < 0.0001; interaction R* = 0.009, P = 0.01). In
contrast, species identity explained only 34% of variation in CUE (R? =
0.343, P < 0.0001) compared to 21% for growth conditions (tempera-
ture R? = 0.172, P < 0.0001; C:N R* = 0.022, P = 0.053; interaction R*
=0.012, P = 0.20; ANOVA tables are presented in Table S1).

We next used partial least squares regression (PLSR) to compare
species genome content (i.e., gene counts within Gene Ontology (GO)
categories; The Gene Ontology Consortium, 2019) to growth rate and
CUE, using leave-one-out cross-validation (LOO-CV; Schmidtlein et al.,
2012) as a measure of the predictive power of species genome content
for the different growth measures. We first performed principal
component analysis (PCA) to decompose growth rate and CUE into
major axes of variance across growth conditions (Fig. S1) after averaging
growth measures for each species within individual growth conditions to
reduce residual variation and increase interpretability (i.e., treated
replicates within levels of species x growth condition as technical rep-
licates). GO categories that were significant indicators of different PCA
axes are presented in Table S2. The first PCA axis explained 96.5% of the
variance in growth rate and was highly correlated with species mean
growth rate (R? = 0.998, P < 0.0001), confirming species identity as the
primary source of variation. For the CUE data, the first two PCA axes
explained 52.2% and 23.7% of the variance, respectively. The first axis
was highly correlated with species mean CUE (R? = 0.986, P < 0.0001),
indicating variance related to species identity. The second axis was
poorly correlated with species mean CUE (R? = 0.004, P = 0.86), sug-
gesting that growth conditions drove variation on this axis.

Genome content was highly predictive of variation in growth rate
between species (GR PC1, LOO-CV R?> = 0.795, RMSEP = 0.037), but
had poor predictive power for species differences in CUE (CUE PCl,
LOO-CV R? = 0.099, RMSEP = 0.205; Fig. 2). Interestingly, genome
content was a good predictor of variation in CUE across growth condi-
tions (CUE PC2, LOO-CV R?> =0.71 1, RMSEP = 0.078), indicating a
genetic basis for environmental variation in CUE (i.e., genome content
determines physiological response range), but minimal genetic contri-
bution to average differences in CUE between species.

Given the strong evidence of a genetic basis for species-level
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Fig. 1. Growth rate (p) and carbon use efficiency (CUE) of ten soil fungal species measured under two temperatures and three C:N ratios in liquid growth media.
Panels A and B depict growth rate averaged across species (A) or for individual species (B) under different growth conditions. Panels C and D depict CUE averages
across all species (A) or for individual species (D). Asterisks in B and D indicate significant differences in respective growth measures under different temperatures.
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Fig. 2. Leave-one-out cross-validation (LOO-
CUE PC1 CV) results from partial least squares
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differences in growth rate, we compared genomic growth rate indicators
(as PLSR species scores) to genomic potential for decomposition and
stress tolerance (sensu Treseder and Lennon, 2015; Supplementary In-
formation; Fig. 3). We found a negative correlation between growth rate
and decomposition potential (r = —0.824, P = 0.003), a positive cor-
relation between growth rate and stress tolerance (r = 0.887, P =
0.0006), and a negative correlation between decomposition potential
and stress tolerance (r = —0.661, P = 0.038).

Taken together our results provide some support for recently pub-
lished theoretical frameworks describing microbial trait tradeoffs. For
example, we find support for a genetic tradeoff between resource
acquisition and stress tolerance as proposed in the recently described Y-
A-S framework (Malik et al., 2020a), whereby species with higher
decomposition capacity have lower capacity to tolerate stress. However,
we also show that growth rate displayed a positive association with
stress tolerance, suggesting that microbes that are adapted to high-stress
conditions may also display high growth rates under favorable condi-
tions. Rather than a growth rate/stress tolerance genetic tradeoff, this
pattern is more consistent with an “exploit-and-wait” or “grow-
th-and-dormancy” strategy, wherein a species exploits available re-
sources under favorable conditions and lies dormant under suboptimal
conditions (e.g., Lennon and Jones, 2011). Importantly, we find that
growth rate is conserved at the species level, and we demonstrate evi-
dence of a genetic basis for these differences, whereas we find lesser
evidence for species-level conservation of growth yield (i.e., CUE) in the
fungi examined. Instead, growth yield is an apparently highly plastic
trait, wherein genomic content may contribute to the range of growth
yield expressed. While our analyses are restricted to soil fungi, phylo-
genetically diverse bacteria also demonstrate high plasticity in CUE and
little evidence for genomic underpinnings (Pold et al., 2020, but see
Saifuddin et al., 2019), suggesting our results are generalizable across
broad microbial groups.

We therefore suggest that consideration of the type of tradeoff, ge-
netic or physiological, can help to inform efforts to model microbial
contributions to ecosystem processes. Either type of tradeoff may be
more informative at different scales, and different metrics should be
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Fig. 3. Pairwise comparisons of growth rate (as predicted species scores from
PLSR models) to genomic measures of decomposition and stress tolerance po-
tential (sensu Treseder and Lennon, 2015; see Supplementary Information for
details). Decomposition and stress tolerance were calculated as genomic in-
vestment by summing counts in each gene family category and dividing by
genome size (i.e., the percentage of genes per genome in each family) and then
performing PCA to determine the primary major axes of variation in counts
across different gene families (e.g., lignin versus cellulose decomposition). Box
color represents the strength of the correlation with red indicating negative and
blue indicating a positive correlation, respectively, and darker values indicating
stronger correlations. Points indicate individual species. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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used as indicators of each type of tradeoff. For example, transcriptomic
metrics of CUE are under development (Hasby et al., 2021) that could
help describe physiological tradeoffs, and it is likely that yield/acqui-
sition and yield/stress tolerance tradeoffs (sensu Malik et al., 2020a)
operate on a physiological basis (e.g., Anthony et al., 2020; Malik et al.,
2020Db). Classification of microbial genetic tradeoffs should prove useful
for modeling regional- to continental-scale and medium- to long-term
contributions of microbes to ecosystem processes, particularly C
cycling, and for further development of ecological models of microbial
adaptive strategies or life-history traits.

Accession numbers

Sequence data are available in NCBI SRA under accession number
PRIJNA551418.
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