Check for
Updates

Session 1B: Systems and Network Security #1

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

GraphTrack: A Graph-based Cross-Device Tracking Framework

Binghui Wang!, Tianchen Zhou?, Song Li®, Yinzhi Cao®, Neil Gong**
Mlinois Institute of Technology The Ohio State University *Johns Hopkins University ‘Duke University
bwang70@iit.edu, zhou.2220@osu.edu, {lsong18, yinzhi.cao}@jhu.edu, neil.gong@duke.edu

ABSTRACT

Cross-device tracking has drawn growing attention from both com-
mercial companies and the general public because of its privacy
implications and applications for user profiling, personalized ser-
vices, etc. One particular, wide-used type of cross-device tracking
is to leverage browsing histories of user devices, e.g., characterized
by a list of IP addresses used by the devices and domains visited
by the devices. However, existing browsing history based methods
have three drawbacks. First, they cannot capture latent correlations
among IPs and domains. Second, their performance degrades signif-
icantly when labeled device pairs are unavailable. Lastly, they are
not robust to uncertainties in linking browsing histories to devices.
We propose GraphTrack, a graph-based cross-device tracking
framework, to track users across different devices by correlating
their browsing histories. Specifically, we propose to model the
complex interplays among IPs, domains, and devices as graphs and
capture the latent correlations between IPs and between domains.
We construct graphs that are robust to uncertainties in linking
browsing histories to devices. Moreover, we adapt random walk
with restart to compute similarity scores between devices based on
the graphs. GraphTrack leverages the similarity scores to perform
cross-device tracking. GraphTrack does not require labeled device
pairs and can incorporate them if available. We evaluate GraphTrack
on two real-world datasets, i.e., a publicly available mobile-desktop
tracking dataset (around 100 users) and a multiple-device tracking
dataset (154K users) we collected. Our results show that GraphTrack
substantially outperforms the state-of-the-art on both datasets.

CCS CONCEPTS

« Security and privacy; - Computing methodologies — Ma-
chine learning;

KEYWORDS

graph; random walk; cross-device tracking

ACM Reference Format:

Binghui Wang, Tianchen Zhou, Song Li, Yinzhi Cao, Neil Gong. 2022. Graph-
Track: A Graph-based Cross-Device Tracking Framework. In Proceedings of
the 2022 ACM Asia Conference on Computer and Communications Security
(ASIA CCS °22), May 30-Fune 3, 2022, Nagasaki, Japan. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3488932.3517398

“Part of the work was done while B. Wang was at Duke University

This work is licensed under a Creative Commons Attribution International 4.0 License.
ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9140-5/22/05.

https://doi.org/10.1145/3488932.3517398

82

1 INTRODUCTION

Cross-device tracking—a technique used to identify whether var-
ious devices, such as mobile phones and desktops, have common
owners—has drawn much attention of both commercial companies
and the general public. For example, Drawbridge [3], an advertis-
ing company, goes beyond traditional device tracking to identify
devices belonging to the same user. Due to the increasing demand
for cross-device tracking and corresponding privacy concerns, the
U.S. Federal Trade Commission hosted a workshop [17] in 2015 and
released a staff report [18] about cross-device tracking and indus-
try regulations in early 2017. The growing interest in cross-device
tracking is highlighted by the privacy implications associated with
tracking and the applications of tracking for user profiling, per-
sonalized services, and user authentication. For example, a bank
application can adopt cross-device tracking as a part of multi-factor
authentication to increase account security.

Generally speaking, cross-device tracking mainly leverages cross-
device IDs, background environment, or browsing history of the de-
vices. For instance, cross-device IDs may include a user’s email
address or username, which are not applicable when users do not
register accounts or do not login. Background environment (e.g.,
ultrasound [38]) also cannot be applied when devices are used in
different environments such as home and workplace. Therefore, we
focus on browsing history based cross-device tracking [36, 66].

Specifically, browsing history based tracking utilizes source and
destination pairs—e.g., the client IP address and the destination
website’s domain—of users’ browsing records to correlate different
devices of the same user. Several browsing history based cross-
device tracking methods [14, 36, 66] have been proposed. For in-
stance, IPFootprint [14] uses supervised learning to analyze the IPs
commonly used by devices. Zimmeck et al. [66] proposed a super-
vised method that achieves state-of-the-art performance. In partic-
ular, their method computes a similarity score via Bhattacharyya
coefficient [60] for a pair of devices based on the common IPs
and/or domains visited by both devices. Then, they use the simi-
larity scores to track devices. We call the method BAT-SU since it
uses the Bhattacharyya coefficient, where the suffix “-SU” indicates
that the method is supervised. DeviceGraph [36] is an unsupervised
method that models devices as a graph based on their IP colocations
(an edge is created between two devices if they used the same IP)
and applies community detection for tracking, i.e., the devices in a
community of the graph belong to a user.

However, existing browsing history based methods have three
major limitations. First, they cannot capture the latent correlations
among domains and IPs in the browsing history. Let us first look
at the domain. Suppose both Facebook and Twitter are frequently
visited by a large amount of devices, and thus there exists a certain
latent correlation between them (in this example, both of them are
social media sites). Assume a user visits Facebook frequently on
one device but visits Twitter frequently on another device. The


https://doi.org/10.1145/3488932.3517398
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3488932.3517398
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488932.3517398&domain=pdf&date_stamp=2022-05-30

Session 1B: Systems and Network Security #1

two devices could have a large similarity score because they both
frequently visit sites that have latent correlations. However, state-
of-the-art method like BAT-SU [66] would compute a very low
similarity score for the two devices because BAT-SU only leverages
the common domains visited by both devices to compute similarity
scores. Likewise, IP addresses of devices could have latent corre-
lations. For example, say many users travel between a dormitory
and a campus in a daily basis. Thus, a dormitory IP on one device
and a campus IP on another should produce a large similarity score
between the two devices, but existing methods fail to do so. Sec-
ond, existing methods have limited performance when applied to
the scenarios where labeled device pairs are unavailable, such as
a third-party tracker scenario. A tracker is a third-party tracker
if the tracker tracks users who visit other parties’ web services.
For instance, the ad network Atlas is a third-party tracker which
can track users who visit the web services using Atlas. It is of-
ten challenging for a third-party tracker to obtain labeled device
pairs because users are usually unaware of and do not interact with
third-party trackers. Third, existing methods are not robust to un-
certainties that exist in device identification, or called single-device
tracking. For example, when single-device tracking adopts browser
fingerprinting, uncertainties or errors could happen when link-
ing browsing histories to devices [5, 6, 10, 20, 34, 48, 65]. Existing
cross-device tracking methods are not robust to such uncertainties.

We propose GraphTrack, a graph-based framework, to perform
cross-device tracking. GraphTrack overcomes above limitations of
existing cross-device tracking methods. First, we leverage the com-
plex interplays between devices and browsing histories of many
users to capture the latent correlations. Our intuition is that if many
devices visit two domains (or use two IPs), then there could be a
latent relationship between them. To capture such intuition, we pro-
pose to model the complex interactions between IPs, domains, and
devices as graphs; and we adapt random walk with restart (RWwR)
on the graphs to compute similarity scores between devices, which
captures the latent correlations between domains/IPs. Specifically,
we propose an IP-Device graph to model the interactions between
IPs and devices, and a Domain-Device graph to model interactions
between domains and devices. We distinguish IPs and domains
because they are different data types. In the IP-Device (or Domain-
Device) graph, a node means an IP (or domain) and an edge means
the corresponding device used the corresponding IP (or visited the
corresponding domain). We note that BAT-SU essentially uses the
number of common neighbors (with certain normalization) of two
devices in our proposed graphs to compute the similarity score
between the two devices. GraphTrack leverages RWwR, which can
better capture the graph structure, to compute similarity scores.

Second, to be robust to uncertainty in single-device tracking, we
further model the weight of an edge as the number of times that the
device used the IP (or visited the domain). For instance, suppose a
device visited a domain multiple times; once a single-device tracker
links a majority of them to the device, the associated edge still has
a large weight. However, if a device did not visit a certain domain,
but the single-device tracker occasionally links the domain with the
device, then the weight of the corresponding edge is small. Thus,
the incorrectly linked domain has a small impact on the overall
structure of the Domain-Device graph.

83

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Third, GraphTrack leverages the similarity scores computed
based on the graphs to perform cross-device tracking. Suppose a
user has K devices. Then, any pair of the K devices is likely to
have a large similarity score. Based on this intuition, GraphTrack
constructs a device similarity graph, where a node is a device and
two nodes are connected if their similarity score is large enough.
Then, GraphTrack identifies the devices in a clique in the similarity
graph belong to the same user. When no labeled device pairs are
available, GraphTrack adds an edge to two devices in the similarity
graph if and only if one device is among the top-(K —1) most similar
devices of the other device and vice versa. When labeled device
pairs are available, GraphTrack uses them to learn a threshold of
similarity score and adds an edge to two devices in the similarity
graph if their similarity score is no less than the threshold.

We compare GraphTrack with state-of-the-art methods using
two real-world datasets: one for mobile-desktop tracking [66] (~
100 users), where all users have at most one mobile/desktop de-
vice; and the other for multiple-device tracking (154K users), where
users have 2-5 devices (we don’t know the device types). First,
when labeled device pairs are available, GraphTrack consistently
outperforms compared supervised methods. For instance, when 20%
users are labeled, GraphTrack outperforms BAT-SU [66] and IPFoot-
print [14] for mobile-desktop tracking by 0.15 and 0.25 in Accuracy;
and for multiple-device tracking by 0.1 and 0.13 in Accuracy, respec-
tively. Second, when no labeled device pairs are available, Graph-
Track consistently outperforms compared unsupervised methods.
For instance, GraphTrack outperforms the unsupervised version
of BAT-SU by 0.1 and 0.08 and DeviceGraph [36] by 0.64 and 0.22
in Accuracy on the two datasets, respectively. Third, GraphTrack
is robust to uncertainty in single-device tracking. For instance,
GraphTrack’s Accuracy is still 0.72 when the single-device tracker
incorrectly links 10% of each device’s browsing history to random
devices. Fourth, GraphTrack takes less than 40ms to track each de-
vice in our multiple-device dataset, demonstrating its practicability
as a real-world tracker. Our results show that cross-device tracking
poses privacy threats to more users than previously thought. Our
key contributions are summarized as follows:

e We propose GraphTrack, a graph-based framework, for cross-
device tracking. GraphTrack is applicable with or without labeled
device pairs, robust to uncertainty in single-device tracking, and
practical as a real-world tracker.

e We propose to model complex interplays between IPs, domains,
and devices as graphs. Moreover, we adapt RWwR to analyze the
structure of the graphs and capture latent correlations among
IPs and domains.

e We evaluate GraphTrack and compare it with state-of-the-art
methods on two real-world datasets. Our results show that Graph-
Track consistently outperforms these methods.

2 RELATED WORK

Single-device tracking: It refers to techniques that are used to
identify a single device, such as a desktop, a mobile phone, or a
tablet. Prior work on single-device tracking can be roughly classi-
fied into two categories: cookie or super-cookie based and browser
fingerprinting. First, Roesner et al. [53] surveyed and measured top
Alexa websites and identified a significant number of trackers in
the wild. Lerner et al. [35] conducted an archaeological study of



Session 1B: Systems and Network Security #1

web tracking using Internet time machine to understand the evolu-
tion of tracking from 1996 to 2016. Metwalley et al. [41] measured
web tracking using an unsupervised method. Other than measuring
the significance of tracking, some research work [29-32, 39, 54]
studied the privacy implication of web tracking, such as business
model and the leak of email addresses and user names. Second,
several works [5, 6, 10, 20, 34, 48, 65] performed measurement stud-
ies on browser fingerprinting, a second-generation web tracking
technique that utilizes browser features such as number of plugins,
fonts, and user agents. Fifield et al. [21] focused on a specific fea-
ture of browser, i.e., fonts, and proposed to use a subset of fonts for
browser fingerprinting. Mowery et al. [43] proposed to use canvas,
a HTMLS feature, for fingerprinting. Mulazzani et al. [44] and Mow-
ery et al. [42] fingerprinted browsers using features of JavaScript
engine. Nakibly et al. [46] proposed several tracking techniques
using features from hardware including microphone, motion sensor,
and GPU. Cao et al. [16] extended existing browser fingerprinting
techniques to be cross-browser, e.g., among IE, Firefox, and Chrome.

Single-device tracking is the basis of cross-device tracking, which
identifies individual devices first and then links devices together.
Cross-device tracking also goes beyond single-device tracking, be-
cause it can identify a common user behind different devices.
Cross-device tracking: It is a relatively new research area and
refers to techniques used to identify devices belonging to the same
user. In 2015, Drawbridge released a challenge [1] to the research
community about IP based cross-device tracking. Then, multiple
research papers [7, 14, 19, 26, 27, 33, 55, 58] on IP based cross-
device tracking were published. Among these methods, IPFoot-
print [14] achieves state-of-the-art performance. IPFootprint lever-
ages a learning-to-rank method called RankNet [13] to analyze the
set of IPs together with the frequencies a device used these IPs.
Zimmeck et al. [66] proposed a supervised method called BAT-SU,
which leverages both IPs and domains and achieves state-of-the-
art performance. These supervised methods require the tracker to
manually label a large number of device pairs. Malloy et al. [36]
proposed an unsupervised method (we call DeviceGraph) based on
community detection. Specifically, DeviceGraph first constructs a
device graph based on IP colocations, i.e., a node is a device and
an edge is created between two devices if they used the same IP.
Then, DeviceGraph detects communities in the device graph and
predicts that devices in a community belong to the same user. These
methods suffer from three major limitations as we discussed in In-
troduction. Note that several companies [2, 3] were also reported to
use graph analysis for cross-device tracking. However, they did not
disclose their technical details. Solomos et al. [56] proposed to audit
the cross-device tracking ecosystem in an automated way. This
work aims to understand the inner workings of the cross-device
tracking mechanics and is orthogonal to our work.

Apart from browsing history based cross-device tracking, ultra-
sound was also used to link different devices [37, 38] when they are
positioned in the same environment. By contrast, browsing history
based cross-device tracking can link two devices even when they
are in different environments, such as at home and in the work-
place. Brookman et al. [12] conducted a measurement study about
cross-device tracking in the wild. They found that websites often
share a large amount of data with third parties that could allow
them to track users’ devices.

84

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Defense against single-device tracking: As tracking violates
user privacy, many methods have been proposed to defend against
device tracking. Existing defenses focus on single-device tracking
and can be classified into two categories: defense against cookie and
super-cookie based tracking and defense against browser finger-
printing. First, ShareMeNot [53], private browsing mode [62, 63],
TrackingFree [49], and Meng et al. [40] are examples of defend-
ing against cookie and super-cookie based tracking. The key idea
of such approaches is to isolate tracking entities into different
units and prevent tracking. Second, FuzzyFox [28] and PriVarica-
tor [47] proposed adding noise to browsers so that the fingerprint
will change all the time. On the contrary, DeterFox [15] and Tor
Browser [51] normalize the outputs so that the fingerprinting re-
sults remain the same across different devices. Although many
defenses have been proposed, device and cross-device tracking is
still popular in the current Internet landscape.

3 PROBLEM DEFINITION

Threat model: We consider both first-party tracker and third-
party tracker. A first-party tracker tracks the users who visit its
web services. For instance, Facebook is a first-party tracker when
tracking users who use Facebook. A third-party tracker tracks
users who visit other parties’ web services. Example third-party
trackers could be an ad network like Atlas, a social network add-on
like Facebook like button, and a third-party JavaScript library
like Google Analytics. Such third-party trackers can collect users’
browsing history via, e.g., the referer header upon the websites that
embed such trackers. According to existing surveys [53], more than
90% of Alexa Top websites include at least one third-party tracker,
and some third-party trackers even collaborate with each other.
Note that some third-party tracker like Facebook like button
also serves as the first party.

Suppose a tracker has collected a large amount of (IP, Domain)
pairs from many devices at different time, where a pair (IP, Domain)
from a device means that the device once visited Domain using the
IP address. The tracker first links the pairs (IP, Domain) to devices,
which is known as single-device tracking. Various techniques—such
as cookies or super-cookies [53], browser fingerprinting [5, 6, 10,
20, 34, 48, 65], and cross-browser fingerprinting [10, 16]—can be
used to perform single-device tracking. In this paper, we assume
that single-device tracking has been done by existing works.

After single-device tracking, we have a set of devices and a
browsing history {(IP1, Domainy), - - -, (IPx, Domainy)} for each
device. Note that the same pair (IP, Domain) could appear multiple
times in the browsing history of a device. The tracker’s goal is to
divide the devices into disjoint groups, where each group of devices
belong to the same user (a group could have just one device). After
cross-device tracking, the tracker can combine the IPs accessed and
domains visited by the devices to better profile a user, e.g., infer
the user’s demographics and interests with higher accuracies [66],
which in turn helps deliver targeted advertisements to the user.
Formally, we define the cross-device tracking problem as follows:

Definition 3.1 (Cross-device tracking). Suppose we are given a set
of n devices D = {D1, Dy, - -, Dp}, and a browsing history of each
device produced by single-device tracking. Cross-device tracking is
to divide the devices into disjoint groups {D1, Do, - - - , Dy, }, where
devices in a group are predicted to belong to the same user.



Session 1B: Systems and Network Security #1

Design goals: 1) Leveraging both IPs and domains. IPs and
domains are complementary information sources. Specifically, IPs
used by devices represent their geolocations, while visited domains
could indicate interests of the users. Therefore, when both IPs used
by devices and domains visited by devices are available, our method
should leverage both of them to enhance tracking performance.
However, our method should also be applicable when only IPs or
domains are available, e.g., a first-party tracker may only be able to
collect IPs used by devices.

2) Capturing latent correlations among IPs/domains. IPs
used by devices (or domains visited by devices) could have latent
correlations. For instance, both Facebook and Twitter are social
media websites. Our method should be able to discover such latent
correlations and leverage them to track devices.

3) Without requiring labeled device pairs. In some scenarios,
the tracker may be able to obtain some labeled device pairs. For
instance, a first-party tracker (e.g., Facebook) could use cross-device
IDs to obtain labeled device pairs from the users who log into the
tracker’s web services on multiple devices. A third-party tracker
(e.g., Facebook like button) who also serves as the first party
could also use cross-device IDs to obtain labeled device pairs from
the users who visit the web services that embed the tracker (e.g.,
Facebook 1like button). However, in some other scenarios, it
is challenging for the tracker to obtain labeled device pairs. For
instance, a pure third-party tracker (e.g., Atlas) that does not serve
as the first party can hardly obtain labeled device pairs. Hence, our
method should be applicable with or without labeled device pairs.

4) Robust to uncertainty in single-device tracking. Cross-
device tracking relies on single-device tracking to reliably link
the browsing histories to devices. However, single-device tracking
often has uncertainty, e.g., an IP used by one device or a domain
visited by one device is incorrectly linked to another device. For
instance, the same IP may be used by different users/devices due
to NAT; If cookie or super-cookie based single-device tracking is
adopted, a user may clear web cookies, or switch to private browsing
mode or another browser, so that browsing histories of the same
device may be linked to two different ones. Moreover, browser
fingerprinting, a new-generation of single-device tracking widely
adopted by top Alexa websites [20], is unreliable itself. According
to a recent large-scale study, i.e., amIUnique [34], the accuracy of
browser fingerprinting is only 89.4%. That is, two devices sharing
the same fingerprinting and browsing histories of these two actual
devices may be linked to one inferred device. Therefore, our method
should be robust to uncertainty in single-device tracking.

IPFootprint [14] does not satisfy any of the four requirements,
DeviceGraph [36] does not satisfy requirements 1), 2), and 4), and
BAT-SU [66] does not satisfy 2), 3), and 4).

4 GRAPHTRACK

4.1 Overview

The first challenge for cross-device tracking is how to leverage
heterogeneous data sources, i.e., IPs and domains, to identify the
correlations between devices. We address the challenge by mod-
eling the interplays between IPs, domains, and devices as graphs,
and leveraging graph mining techniques (in particular random walk
with restart on graphs) to capture the similarities between devices.

85

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

(15216612

m%

(15216814 Y
DS G

[ozieis)d > -

(a) IP-Device graph

coursera

Quora

(b) Domain-Device graph

Figure 1: (a) An example IP-Device graph. (b) An example
Domain-Device graph.

The second challenge is how to match different devices without
manual labels, i.e., in an unsupervised fashion. We address the chal-
lenge by leveraging the symmetry between devices. Specifically, our
GraphTrack predicts a group of devices to match only if each pair of
them has a large similarity score which we compute via analyzing
the graph structure. The third challenge is how to be robust to un-
certainty in single-device tracking that links browsing histories to
devices. We address the challenge by using the frequency a device
accessed/visited a certain IP/domain.

Next, we first discuss GraphTrack for unsupervised cross-device
tracking. Then, we discuss how to incorporate manual labels into
GraphTrack if they are available. Finally, we analyze the computa-
tional complexity of our unsupervised and supervised methods.

4.2 Unsupervised Cross-Device Tracking

First, we model the interplays between IPs (or domains) and devices
as graphs. Second, we adapt random walk with restart, a popular
graph mining technique, to our graphs to model similarities be-
tween devices. Third, we discuss cross-device tracking using only
IPs or domains based on the device similarities. Fourth, we combine
IPs and domains for cross-device tracking.

4.2.1 Modeling IPs, Domains, and Devices via Graphs. We propose
IP-Device graph and Domain-Device graph to model interplays be-
tween IPs, domains, and devices. Then, we use random walks with
restart on the graphs to compute similarity scores between devices.
Modeling interplays between IPs and devices as an IP-Device
graph: We represent each unique IP address (or IP prefix) and each
device as a node. We create an edge between an IP node and a device
node if the device used the IP at least once. Moreover, we model the
edge weight of an edge between a device and an IP as the number
of times that the device used the IP in its browsing history. We call
this weighted graph IP-Device graph. Figure 1a shows an example
IP-Device graph. Note that there are no edges between device nodes.
Our GraphTrack leverages the edge weights in the IP-Device graph
to be more robust to uncertainty of single-device tracking at linking
IPs to devices. For instance, suppose a device used an IP multiple
times in its browsing history; once a single-device tracker links a
majority of them to the device, the corresponding edge still has
a large weight. However, suppose a device did not use a certain
IP, but the single-device tracker occasionally links the IP with the
device. Then, the weight of the corresponding edge is small, and
thus the incorrectly linked IP has a small impact on the overall
structure of the IP-Device graph.



Session 1B: Systems and Network Security #1

Modeling interplays between domains and devices as a Doma
in-Device graph: We represent each unique domain and each
device as a node; we create an edge between a domain node and a
device node if the device visited the domain at least once; and we
model the weight of an edge between a device and a domain as the
number of times that the device visited the domain. We call this
weighted graph Domain-Device graph. Figure 1b shows an example.
4.2.2  Modeling Device Similarity using Random Walk with Restart
on Graphs. We leverage random walk with restart (RWwR) [57] (also
known as Personalized PageRank [11]) to analyze the structure of
the IP-Device graph and Domain-Device graph and model simi-
larity between devices, which can capture semantic correlations
among IPs and domains. A larger similarity score indicates a higher
likelihood of match. Next, we first introduce RWwR on a general
weighted graph. Then, we adapt RWwR to compute similarity scores
between devices in IP-Device and Domain-Device graphs.
Random walk with restart (RWwR) on graphs: Suppose we
have an undirected weighted graph G = (V, E, W), where V, E, and
W are the set of nodes, edges, and edge weights, respectively. For
instance, (u,0) is an edge between nodes u and v, while wy, 5 is
the weight of the edge (u,v). We perform an RWwR in the graph
from a seed node u. Specifically, in an RWwR, we have a particle
that can stay on nodes in the graph. Initially, the particle is on
node u. The particle iteratively moves along edges in the graph
or jumps back to the initial node u. Suppose in the tth step, the
particle is on node v. In the (¢ + 1)th step, the particle jumps back
to the initial node u with a certain probability « (i.e., the random
walk is restarted); and with the remaining probability 1 — «, the
particle picks a neighbor x of v with a probability proportional to
the edge weight wy , and moves to the neighbor. « is called restart
probability. Suppose py , is the frequency that the particle stays
on node v. When the RWwR repeats for a large number of steps,
Pu,o becomes the probability that the particle will stay on node v
in each step. Conventionally, py = [pu,1, pu2, - - - » Py, v|] is called
the stationary distribution of the RWwR. p,, , is a natural metric
to measure similarity between v and v. A larger p,, , indicates v is
structurally closer to u on the graph and thus v is more similar to u.
Such RWwR based similarity was applied to rank relevant webpages
in search engines [11], recommend accounts users wish to follow in
Twitter [24], detect spammers in social networks [25, 59, 64], infer
user attributes in social networks [22], and infer social links from
mobility profiles [8], etc.

Many techniques (e.g., [57, 61]) have been developed to compute
the stationary distribution p,, efficiently by theoretical computer
science and data mining communities. For instance, p, can be
iteratively computed as follows:

pu* = (1-)Ap) +aty,

where p,(f) = [pl(t? , pl(zg, s p1(4,t|)V|] is the probability distribution

of the RWwR in the tth iteration, A is the transition matrix of the
graph with |V| rows and |V| columns, and 1, is an unit vector
whose uth entry is 1 and other entries are 0. The (u, v)th entry of
the transition matrix is formally defined as:

Wi .
: ifo € Iy;
Au,l):{ dU “

1)

@)

0 otherwise,

86

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

where T}, is the set of neighbors of u and d,, is the weighted degree
of v, ie., dy = Yser, Ws,o- To compute py, we initialize a random

vector pz(lo) and then iteratively apply Equation 1 until the difference

in two consecutive iterations is smaller than a certain threshold,
eg. oy —pi I < 1072,
u u

Adapting RWwR to IP-Device and Domain-Device graphs to
compute similarity scores between devices: State-of-the-art
method [66] computes the similarity scores between devices via
Bhattacharyya coefficient, which is a simple weighted common
neighbor metric [45] and weights are the normalized frequencies of
IPs or domains. As a result, Bhattacharyya coefficient is unable to
capture latent correlations among IPs and domains. In contrast, we
adapt RWwR on graphs to model similarity between devices, which
can capture latent correlations among IPs and domains. Specifically,
we compute an [P-based similarity score between two devices D;
and D; (denoted as s;p(Dj, Dj)) using an RWwR on the IP-Device
graph; and we compute a domain-based similarity score between
two devices D; and D; (denoted as spo(D;, D)) using an RWwR
on the Domain-Device graph.

We take computing IP-based similarity scores as an example to
illustrate more details. Suppose we have an IP-Device graph and
a device D;, we aim to compute similarity scores between D; and
every device. One way is to simply apply an RWwR from D; in the
weighted IP-Device graph, compute the stationary distribution pp,
of the RWwR, and define the IP-based similarity score s;p(D;, Dj)
between D; and D; as s;p(D;, Dj) = PDy,D;s for any D; € D. How-
ever, as we will demonstrated in our experiments, such RWwR
based similarity scores achieve suboptimal performance. This is be-
cause such similarity scores are heavily influenced by the weighted
degree of a device, i.e., the total number of IP visits of a device. For
instance, suppose a device Dy belongs to a heavy Internet user and
has a dense browsing history. Thus, in the IP-Device graph, many
edges of Dy have large weights. As a result, when the particle in
the RWwR is on an IP node, the particle is more likely to move
from the IP node to Dy compared to other devices, which means Dy
will have a larger stationary probability and thus a larger similarity
score with D;. However, such similarity score is heavily biased by
the weighted degrees of devices.

To address the issue, we propose to normalize the weight of an
edge by the weighted degree of the corresponding device. Suppose
an edge (x,y) connects an IP x and a device y. We define a normal-

W,
ized edge weight w’ ., as w. |, = «——2—. Then, we define the
g gat Wy y XY T Toer, Wey

transition matrix A in Equation 2 in an RWwR using the normal-
ized edge weights. In order to compute IP-based similarity scores
between D; and every device, we perform an RWwR from D; in
the IP-Device graph using A. A larger similarity score syp(D;, Dj)
between D; and D; indicates that Dj is structurally closer to D; in
the IP-Device graph and thus D; is more likely to match D;. More-
over, we leverage RWwR to compute similarity scores syp(Dj, D;)
between D; and D;. Note that s;p(D;, D;) and s;p(Dj, D;) are very
likely to be different because the random walks restart.

Similarly, we compute spo (D;, D) and spo (Dj, D;) using RWwR
on the Domain-Device graph with the adapted transition matrix.
4.2.3 A Running Example. We use an example Domain-Device

graph to tell the difference between the similarity scores computed
by RWwR and those computed by the state-of-the-art BAT-SU [66].



Session 1B: Systems and Network Security #1

damazon

coursera

M,

M,

Dl DZ

Figure 2: An example Domain-Device graph to illustrate how
our adapted RWwR can capture latent correlations, while
the state-of-the-art method cannot.

Figure 2 shows the example graph. In the example, a user has a
mobile M; and a desktop Dy, i.e. M; matches D; as a ground truth.
The user visits Twitter on M; and Facebook on D;. Two other
devices M; and D3 do not belong to the user. M, visits Facebook,
Twitter, and Amazon, while D; visits Amazon and Coursera. We
assume that all devices visit these domains with the same frequency.

BAT-SU essentially computes the similarity score of two de-
vices using the common neighbors on a Domain-Device graph.
Specifically, on the Domain-Device graph, for each common do-
main visited by the two devices, BAT-SU computes a similarity
score as the square root of the product of the normalized edge
weights of the two corresponding edges. Then, BAT-SU adds such
similarity scores for all common domains to get the final similar-
ity score. In our example, BAT-SU computes the similarity score
between the user’s mobile device M; and desktop device D; as 0
since they do not have common neighbors. In RWwR, the similarity
score between M; and D; is non-zero. Specifically, to compute the
similarity between M; and D;, we start a random walk from M;.
The particle will move to the Twitter node in the next time step.
Then, the particle could continue moving to Mp, the Facebook node,
and Dj. Therefore, when the random walk converges, D; would
have non-zero stationary probability. Moreover, we calculate that
spo(My, D) = 0.032 > spo(My, Dy) = 0.026, which indicates that
M; correctly matches D;. The reason is that RWwR can capture the
latent relationships between Twitter and Facebook via using the
data from other users, who visit both Facebook and Twitter.

We note that such latent correlations do exist in practice. In
particular, in the dataset [66] we use in Section 5, domains are
anonymized by hashing. We found user 49 did not visit domain A
(hash value: b17e6ac8f4740bb465c6acf5cd0052b9bbe5ef49a0e58569eb00as7e
2831ac5f) but frequently visited domain B (hash value: 2da7¢187647dc68
9d1686d250b24aebb3f551b2488d90e58¢c2d49d5a3f1c617) on its mobile de-
vice. In particular, the user visited domain B 169 times on its mobile
device, which is among the top-5 most frequently visited domains
on its mobile device. However, the user frequently visited domain
A but did not visit domain B on its desktop device. In particular, the
user visited domain A 174 times, which is among the top-5 most
frequently visited domains on its desktop device. We also found
that 162 devices frequently visited both domains (363 and 862 times
on average, respectively). Overall, we found that 8 out of the 107
users are such users in the dataset. Our GraphTrack can correctly
match the mobile device and the desktop device of all the 8 users,
while BAT-SU cannot correctly match any of them.

87

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

4.24 GraphTrack using IPs or Domains Alone. Suppose we have n
devices D = {D1, Dy, - - - , D, }. For each device, we have a list of IPs
used by the device and domains visited by the device in its browsing
history. We assume each user has at most K devices. Intuitively, if
two devices belong to the same user, then one device is likely to
have a top-(K — 1) largest similarity score with the other device
among all devices and vice versa. Our GraphTrack leverages such
symmetry between similarity to match devices. Next, we use IPs to
illustrate the details of our GraphTrack. Specifically, GraphTrack
has the following three steps.

o Step I: We perform an RWwR from each device D; in the IP-
Device graph with the adapted transition matrix to compute
similarity scores between D; and every device. Then, we find the
K — 1 devices that have the largest similarity scores with D; and
we denote them as a set D; rp.

o Step II: We construct a device similarity graph, where each node
represents a device and we add an edge between two devices if
and only if they are among each other’s top-(K — 1) list of most
similar devices. Specifically, we add an edge between two devices
Dj and Dj if and only if D; € Dj;p and Dj € Dj rp.

o Step III: Finally, GraphTrack predicts the devices in a clique
in the similarity graph belong to the same user. A clique is a
subgraph where each pair of nodes are connected directly. Note
that a device may appear in multiple cliques. If this happens, we
predict the device belongs to the largest clique (to track users
that have a large number of devices) or randomly assign it to a
clique if the cliques have the same size. If a device forms a clique
by itself, GraphTrack predicts the device has no match.

Similarly, we can use domains alone to perform tracking. We
denote GraphTrack that use IPs and domains alone as GraphTrack-
IP and GraphTrack-Domain, respectively.

4.2.5 Combining IPs and Domains. We propose three methods to
combine IPs and domains.

GraphTrack-UniGraph: It integrates IPs, domains, and devices
in a single unified graph, which we call IP-Device-Domain graph.
Specifically, in the IP-Device-Domain graph, we represent each
unique IP, unique domain, and each device as a node; and we create
an edge between an IP (or domain) and a device if the device used
the IP (or visited the domain). Then, we construct a device similarity
graph based on the IP-Device-Domain graph, similar to what we
did on the IP-Device graph. Finally, we perform clique analysis in
the similarity graph to identify matched devices. We denote this
variant of GraphTrack as GraphTrack-UniGraph.
GraphTrack-OR: It combines GraphTrack-IP and GraphTrack-
Domain via the OR operator. Specifically, GraphTrack-OR com-
putes a similarity graph based on the similarity graphs computed
by GraphTrack-IP and GraphTrack-Domain. In particular, two de-
vices are connected in the similarity graph if they are connected
in the similarity graph constructed by either GraphTrack-IP or
GraphTrack-Domain. Then, we perform clique analysis in the simi-
larity graph to identify matched devices.

GraphTrack-AND: It combines GraphTrack-IP and GraphTrack-
Domain via the AND operator. Specifically, we create a similarity
graph, where two devices are connected if they are connected
in the similarity graphs constructed by both GraphTrack-IP and
GraphTrack-Domain. Then, we use clique analysis to match devices.



Session 1B: Systems and Network Security #1

4.3 Incorporating Manual Labels

We have five unsupervised variants of GraphTrack, i.e., GraphTrack-
IP, GraphTrack-Domain, GraphTrack-UniGraph, GraphTrack-OR,
and GraphTrack-AND. We discuss how to adapt them to incorporate
manual labels if they are available. We append a suffix “-SU” to a
method to indicate the supervised version, e.g., GraphTrack-IP-SU
is the supervised version of GraphTrack-IP.

GraphTrack-IP-SU, GraphTrack-Domain-SU, and GraphTrack-
UniGraph-SU: Suppose we have L manually labeled device pairs.
We denote the L labeled pairs as £ = {(D1,Mi),---,(Dr, M)},
where D;, M; € D,i=1,---,L. Note that multiple labeled device
pairs could belong to the same user. We use GraphTrack-IP-SU as
an example to illustrate how we adapt GraphTrack to incorporate
manual labels. Our key idea is to learn a threshold of similarity score
using the labeled device pairs to determine whether two devices
should be connected or not in the similarity graph. Specifically, we
connect two devices in the similarity graph if one device is among
the other device’s top-(K — 1) list of most similar devices and their
similarity score is no less than the threshold. Then, we leverage
clique analysis to match devices.

Next, we discuss how to learn the threshold. Roughly speaking,
we set the threshold as the smallest similarity score among the
labeled device pairs. Specifically, we initialize a similarity score
set S = 0. For each labeled device pairs (Dy, M), we compute their
similarity scores s;p(Dj, M) and syp(M;, Dy). If M; (or D;) is among
Dy’s (or M;’s) top-(K — 1) list of most similar devices, then we add
stp(Dy, M) (or s;p(M;, Dy)) into the set S. In the end, we set the
threshold to be the minimum similarity score in the set S.

We adapt GraphTrack-Domain and GraphTrack-UniGraph to

GraphTrack-Domain-SU and GraphTrack-UniGraph-SU in the same
way, i.e., replacing the similarity scores in GraphTrack-IP-SU as
those computed using the Domain-Device graph/IP-Device-Domain
graph, respectively.
GraphTrack-OR-SU and GraphTrack-AND-SU: GraphTrack-
OR-SU combines GraphTrack-IP-SU and GraphTrack-Domain-SU
via the OR operator, while GraphTrack-AND-SU combines them via
the AND operator. In the OR operator, two devices are connected in
the similarity graph if they are connected in the similarity graphs
constructed by either GraphTrack-IP-SU or GraphTrack-Domain-
SU. In the AND operator, two devices are connected if they are
connected in the similarity graphs constructed by both GraphTrack-
IP-SU and GraphTrack-Domain-SU.

4.4 Computational Complexity

Due to the limited space, we defer the detailed computational com-
plexity analysis to Appendix C.

5 EVALUATION
5.1 Experimental Setup

Dataset description: We use two real-world datasets to perform
cross-device tracking. One dataset is for mobile-desktop tracking,
where all users have one mobile device and one desktop device;
the other one is for multiple-device tracking, where users have 2-5
devices. In most of our experiments, we focus on the mobile-desktop
tracking dataset because it was used by previous method [66] and
has both IPs and domains.

88

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Mobile-desktop tracking dataset. It was collected at Columbia
University and is publicly available [66]. The dataset contains 126
users, where 107 users have both a mobile device and a desktop
device, and the remaining users have either a mobile device or a
desktop device. The dataset includes the IP addresses used by each
device and Internet domains visited by each device within ~3 weeks.
Like the previous study [66], we focus on the 107 users that have
both a mobile device and a desktop device. The total number of
unique IPs and domains are 7,290 and 17,140, respectively. Moreover,
each device used 85 unique IPs and visited 315 unique domains on
average. We note that the dataset also includes mobile apps used
by each mobile device. However, such information has negligible
impact on device tracking as shown by Zimmeck et al. [66]. Thus,
we will not consider such information in this work for simplicity.
For mobile-desktop tracking, our task is to identify each user’s
desktop device given his mobile device, similar to [66].

On the mobile-desktop tracking dataset, we remove the top-
50 domains that have the most visits, because these 50 domains
occupy around 70% of all visits, dominate the device similarities, and
negatively impact the tracking performance. For instance, Figure 9
in the Appendix shows the performance of GraphTrack-Domain
with and without the top-50 domains. GraphTrack-Domain achieves
much better performance when filtering the top-50 domains. We
note that Zimmeck et al. [66] filtered the top-50 domains ranked
by Alexa and all columbia.edu domains. As the released dataset
anonymized each domain by cryptographic hashing, we cannot
apply the same filtering.

Multiple-device tracking dataset. We collected this dataset
between December 2017 and July 2018, in cooperation with a real-
world website with regular users.! Each user, if included in the
dataset, made a consent on the collected information during reg-
istration and our research was approved by IRB. Particularly, the
website, acting as a first-party tracker, collects the following infor-
mation related of a user device: the device’s IP, the device’s OS, the
cookie ID for the website, and user ID (anonymized). We treat each
“device’s OS + user ID" as a device. As the number of IPs is large, we
select the IP prefix (i.e., the first 24 bits of an IP address) to represent
each IP address. In the dataset, we have 173,279 unique IP prefixes,
335,434 unique devices, and 154,508 users. 87.9% of users have 2
devices, 10.5% of users have 3 devices, 1.3% of users have 4 devices,
and 0.34% of users have 5 devices. Among the 173,279 unique IP pre-
fixes, 22% of them are accessed by devices from different users. Note
that, since the dataset was collected from a single website/domain,
we only construct the IP-Device graph and use GraphTrack-IP and
GraphTrack-IP-SU to perform cross-device tracking. Moreover, we
found that using IP prefix achieves better performance than using
the raw IP. For instance, when using 50% of users’ devices for train-
ing, GraphTrack-IP using the raw IP has an Accuracy 0.49, while
GraphTrack-IP using the IP prefix has an Accuracy 0.60, where
Accuracy is defined in the next paragraph.

Evaluation metrics: Like the previous study [66], we use Accuracy,
Precision, Recall, and F-Score to evaluate cross-device tracking meth-
ods. These metrics involve True Positives (TP), False Positives (FP),
True Negatives (TN), and False Negatives (FN). Suppose a method
predicts some matched device groups. TP is the number of groups

Due to confidentiality agreement, we cannot disclose the website name.



Session 1B: Systems and Network Security #1

Performance
Performance

Recall ~ F-Score Recall ~ F-Score

) o
Accuracy Precison
Evaluation metric

0! g
Accuracy Precison
Evaluation metric

(a) (b)

Figure 3: (a) Comparing mobile-desktop tracking methods
using IPs or domains alone. (b) Comparing different ways to
combine IPs and domains.

that truly match, and FP is the number of groups that do not match
in the groundtruth. Suppose a method predicts that some devices
have no match. TN is the number of such devices that truly have no
matches, while FN is the number of such devices that actually have

matches. Given these terms, we have Accuracy:%,

Precision:%, Recall:%, and F-Score :%‘W
Compared methods: We compare GraphTrack with supervised
and unsupervised cross-device tracking methods. Section A and
Table 4 in Appendix summarizes all compared methods.
Parameter setting: We set the restart probability o in a random
walk to be 0.15 as previous work [57]. We also explored the impact of
a, but we found that it has a very small impact on the performance
of GraphTrack. Moreover, similar to previous work [57], we set
the number of iterations to be log |V, where |V| is the number of
nodes in a graph (IP-Device, Domain-Device, or IP-Device-Domain
graph). We set K = 2 for mobile-desktop tracking, as one mobile
device has only one matched desktop device. We set K = 5 for
multiple-device tracking, as each user has at most 5 devices. For
all unsupervised methods, we perform mobile-desktop tracking for
each mobile device, i.e., for each mobile device in the dataset, we
either predict the matched desktop device or predict no match; and
we perform multiple-device tracking for all devices, i.e., for each
device in the dataset, we predict all its matched devices or predict
no match. For supervised methods, we sample some users and use
their device pairs as a training set and use the remaining users as
the testing set. We repeat the experiment 5 times and report the
mean and standard deviation. All experiments are conducted on a
Linux machine with 512GB memory and 32 cores.

5.2 Mobile-Desktop Tracking Results for
Unsupervised Methods

In this part, we evaluate unsupervised GraphTrack, which would
be used in the scenario of a pure third-party tracker, such as ads
embedded in first-party domains. As users do not interact with these
trackers, e.g., logging into the tracker’s domain, such trackers have
no access to labeled device pairs. Unless otherwise mentioned, we
use GraphTrack-OR as it outperforms other versions of GraphTrack.
IPs are more informative than domains: Since we perform
mobile-desktop tracking using IPs and domains, one natural ques-
tion is which type of data is more informative. To answer this ques-
tion, we compare the performance of our methods GraphTrack-IP
and GraphTrack-Domain. Figure 3a shows the results of GraphTrack-
IP and GraphTrack-Domain at matching the mobile devices to

89

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

GraphTrack-OR-UnNorm

S —

iy,

Accuracy

Performance

NPT [T A
"

5% 10% 15% 20% 25% 30%
Error rate

Recall  F-Score ez

) -
Accuracy Precison
Evaluation metric

() (b)

Figure 4: (a) Comparing unsupervised cross-device tracking
methods. (b) Impact of error rates in single-device tracking
on Accuracy of cross-device tracking.

desktops in the dataset. We observe that GraphTrack-IP performs
slightly better than GraphTrack-Domain, which means that IPs are
more informative than domains at tracking devices when using our
GraphTrack method. Two possible reasons are: 1) domains are more
diverse than IPs on average in a device’s browsing history; 2) IPs
somewhat indicate location information of users but different users
may visit similar domains. Thus, IPs can better distinguish between
devices of different users. We note that previous studies [14, 66] also
found that IPs are more informative than domains at cross-device
tracking, which is consistent with our observation.

Comparing different ways to combine IPs and domains: Fig-
ure 3b shows the comparison results among GraphTrack-UniGraph,
GraphTrack-OR, and GraphTrack-AND. We see that GraphTrack-
OR consistently performs better than GraphTrack-UniGraph and
GraphTrack-AND. Therefore, in the rest of this section, we will
focus on GraphTrack-OR. GraphTrack-UniGraph combines IPs and
domains using the IP-Device-Domain graph. This graph does not
well distinguish the heterogeneous data types, i.e., IPs and domains.
For instance, this graph does not distinguish between edges link-
ing to IPs and edges linking to domains. As a result, GraphTrack-
UniGraph achieves inferior performance. Intuitively, GraphTrack-
AND should have a high Precision because it has a “higher” stan-
dard to predict a match for a mobile-desktop pair. Specifically, a
mobile device and a desktop device are predicted to match only
if both GraphTrack-IP and GraphTrack-Domain predict a match.
This explains why GraphTrack-AND has a higher Precision than
GraphTrack-UniGraph, though GraphTrack-AND has a much lower
Accuracy, Recall, and F-Score. However, we found GraphTrack-
AND achieves a lower Precision than GraphTrack-OR. The rea-
son is, compared to GraphTrack-OR, GraphTrack-AND predicts a
smaller number of both TPs and FPs, but its TPs is much smaller
than FPs. Thus, in the rest of this section, we focus on GraphTrack-OR.
GraphTrack outperforms compared unsupervised methods:
Figure 4a shows the results of GraphTrack-OR, BAT, and Device-
Graph. We observe that our GraphTrack consistently outperforms
BAT and significantly outperforms DeviceGraph. We note that BAT
predicts more mobile devices to have no matches, i.e., BAT has
more FNs than GraphTrack-OR. The reason is that BAT essentially
computes the common neighbors between a mobile device and a
desktop device in the IP-Device graph and Domain-Device graph,
while GraphTrack leverages RWwR to analyze the complex graph
structure. DeviceGraph has bad performance because it predicts
that a large number of unmatched devices fall into the same com-
munity, resulting in large FPs (i.e., 80 FPs in our experiments).



Session 1B: Systems and Network Security #1

A
-\
N

0.16 0.19

Accuracy

0.72

0.0 PUa%atavavn avavataw)
1 5 10 15 20
Index of paired mobile devices

Gap between top two similarity scores

()'G[‘ 04 0.07 0.10 0.13

Threshold

(a) (b)

Figure 5: Alternatives of converting BAT-SU to be unsuper-
vised. (a) Accuracy vs. threshold. (b) Gaps between top two
similarity scores for 20 sampled mobile devices.

Robustness to uncertainty in single-device tracking: Single-
device tracking could have uncertainty, e.g., an IP or domain visited
by one device may be linked to another device that did not access
it. Thus, one natural question is how uncertainty in single-device
tracking impacts the performance of cross-device tracking. Since
our dataset does not allow us to implement a real-world single-
device tracker, we simulate an inaccurate single-device tracker and
study its impact on cross-device tracking. Specifically, for each web
visit from a device, the single-device tracker incorrectly links the
visit to a randomly selected wrong device with a certain probability
y%. We call y% the error rate of the single-device tracker. To simulate
an y% error rate, we randomly sample y% of the web visits of each
mobile (or desktop) device and randomly distribute them to other
mobile (or desktop) devices. We then use the noisy web visits of
each device to perform cross-device tracking.

Figure 4b shows Accuracy of several mobile-desktop tracking
methods as a function of error rates in single-device tracking. Re-
call that we discussed several ways to deal with edge weights in
the IP-Device graph and Domain-Device graph in Section 4. For
instance, GraphTrack-OR-UnWeighted indicates that we do not use
edge weights in GraphTrack-OR, i.e., we set all edge weights to
be 1. GraphTrack-OR-UnNorm indicates that we do not normalize
edge weights by the weighted degree of devices, i.e., the weight
of an edge between a device and an IP (or domain) is the number
of times the device visited the IP (or domain). We have several ob-
servations: First, GraphTrack-OR consistently outperforms BAT as
the error rate increases. Second, GraphTrack-OR decreases slowly
as the error rate increases, e.g., GraphTrack-OR’s Accuracy only
decreases by 0.04 when the error rate is 10%. Third, GraphTrack-
OR significantly outperforms GraphTrack-OR-UnWeighted and
GraphTrack-OR-UnNorm. Specifically, when single-device tracking
has no errors, GraphTrack-OR-UnWeighted has close performance
with GraphTrack-OR. However, GraphTrack-OR-UnWeighted’s
performance quickly decreases as the error rate increases. This
is because as the error rate increases, the IP-Device graph and
the Domain-Device graph have much more edges that are noises,
which significantly impact the graph structure based similarity
scores. GraphTrack-OR-UnNorm is worse than GraphTrack-OR.
This is because GraphTrack-OR-UnNorm is significantly influenced
by devices’ weighted degrees, e.g., devices of heavy Internet users
are biased to have large similarity scores. Our results show that nor-
malizing edge weights of the IP-Device/Domain-Device graph can
increase 1) performance when there are no errors in single-device
tracking and 2) robustness to uncertainty in single-device tracking.

90

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Accuracy
Accuracy

=4 GraphTrack-Domain
5%  10%  15%  20%  25%  30%
Fraction of unavailable domains

(b)

= GraphTrack-1P

5% 10% 15%  20%
Fraction of shared IPs

(a)

o
o

25%  30%

Figure 6: (a) Accuracy of GraphTrack-IP vs. fraction of shared
IPs. (b) Accuracy of GraphTrack-Domain vs. fraction of un-
available domains.

Alternatives of converting BAT-SU to its unsupervised ver-
sion: We propose to convert BAT-SU to be unsupervised under
our framework. Here, we explore two other alternatives to con-
vert BAT-SU to be unsupervised. One way is to randomly select
a threshold for BAT-SU without using a training dataset to learn
it. Figure 5a shows the Accuracy of this unsupervised version of
BAT-SU as we change the threshold. Our results indicate that BAT-
SU is sensitive to the threshold. For instance, when the threshold
is around 0.13, the Accuracy is the highest; when the threshold is
0.19, the Accuracy decreases by 21%.

For each mobile device, BAT-SU computes a similarity score with
each desktop device. Therefore, another way could be to compute
the gap between the largest similarity score and the second largest
similarity score. If the gap is large enough (e.g., larger than a certain
threshold), then BAT-SU predicts a match. Figure 5b shows such
gaps for 20 sampled mobile devices. For each mobile device, the
desktop device with the largest similarity score correctly matches
the mobile device. We observe that the gaps span a wide range of
values, which means that it is challenging to select a gap threshold
to achieve a good precision-recall tradeoff.

Impact of shared IPs: In practice, the same IP may be used by
different users/devices due to Network Address Port Translation
(NAPT). A natural question is how shared IPs impact the perfor-
mance of GraphTrack. To simulate shared IPs, we randomly select
x% of IPs and assign each IP to some randomly selected devices
(e.g., 5% of total devices in our experiment). This means that we
add edges between the selected IPs and selected devices in the IP-
Device graph. Then, we calculate GraphTrack-IP’s performance on
the IP-Device graph with added edges. Figure 6a shows Accuracy of
GraphTrack-IP vs. x% of shared IPs. We observe that GraphTrack-
IP’s Accuracy marginally decreases even when 30% of IPs are shared
to different devices.

Impact of unavailable web referer: In practice, a third-party
tracker may be unable to know the domain a user visits, when
the web referer field of browser request for a domain is not avail-
able. To simulate this scenario, we randomly select x% of domains
and assume these domains are not visited by any device. This
means we remove the edges between the selected x% domains
and the connected devices in the Domain-Device graph. Then,
we calculate GraphTrack-Domain’s performance on the Domain-
Device graph with removed edges. Figure 6b shows Accuracy of
GraphTrack-Domain vs. x% of domains are unavailable. We ob-
serve that GraphTrack-Domain’s Accuracy only slightly decreases
around 0.1 when 30% of domains are removed in our dataset.



Session 1B: Systems and Network Security #1

5.3 Mobile-Desktop Tracking Results for
Supervised Methods

In this part, we evaluate our supervised version of GraphTrack,
which would be used in the scenarios of a third-party tracker who
also serves as the first party or a first-party tracker. In the former
case like a Facebook like button, the tracker could have access to
labeled device pairs from multiple domains that embed the tracker.
To simulate such scenarios, we randomly sample some device pairs
as labeled device pairs. In the latter case like a bank website, a
first-party tracker will only have access to labeled device pairs from
a single domain via cross-device IDs, i.e., the tracker’s domain. To
simulate such scenarios, we treat device pairs that both visited a
certain domain as labeled device pairs.

GraphTrack outperforms compared supervised methods: From
Figure 7a, we observe that GraphTrack-OR-SU significantly outper-
forms BAT-SU and IPFootprint. For instance, when we have 20%
labeled mobile-desktop pairs, GraphTrack-OR-SU’s Accuracy (0.73)
is around 0.15 higher than BAT-SU’s (0.58) and 0.23 higher than
IPFootprint’s (0.50). Moreover, BAT-SU requires labeling 40%-50%
of mobile-desktop pairs to outperform GraphTrack-OR. Our results
indicate that modeling the interplays between IPs, domains, and de-
vices using graphs is more powerful than common neighbors based
similarity metrics used by BAT-SU. Moreover, tracking methods
using both IPs and domains outperform methods using only IPs.
Supervised methods outperform their unsupervised coun-
terparts with enough training samples: Generally, supervised
methods have better performance when more training samples
are available. Specifically, BAT-SU, IPFootprint, and GraphTrack-
OR-SU have better performance with more training samples are
available. Moreover, a supervised method requires a large fraction
of labeled pairs to outperform its unsupervised counterpart. For
instance, GraphTrack-OR-SU outperforms GraphTrack-OR with
30% of labeled mobile-desktop pairs, while BAT-SU outperforms
BAT with 30%-40% of labeled mobile-desktop pairs. The reason is
that the matched mobile-desktop pairs have diverse patterns and
supervised methods require labeling a large fraction of them as a
representative training set to achieve good performance.

Labeled device pairs are obtained via cross-device IDs on a
single domain: A first-party tracker could obtain labeled device
pairs via cross-device IDs. In particular, when a user logs in the
tracker’s web service on both its desktop and mobile devices, the
tracker can treat the user’s mobile-desktop device pair as a labeled
device pair. To simulate such a first-party tracker, we randomly
select a domain in our dataset, treat it as the tracker’s domain, take
the mobile-desktop pairs that both visited the domain as labeled
device pairs, and use the remaining devices to evaluate GraphTrack-
OR-SU and BAT-SU. Note that IPFootprint is not applicable in this
scenario. Figure 7b shows the comparison results, where we repeat
the experiments five times on five randomly selected domains and
report the average results. We observe that GraphTrack-OR-SU also
substantially outperforms BAT-SU.

5.4 Multiple-Device Tracking Results

In this part, we simulate real-world cross-device tracking using our
collected dataset. Our experiment in this scenario corresponds to a
first-party tracker and only IP prefixes are used for tracking. We

91

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Accuracy

Performance

&'B TPFootprint
&4 BATSU

{67 20% 30% 0% 0% Reca

Percentage of labeled mobile-desktop pairs
@
Figure 7: Comparing supervised cross-device tracking meth-

ods, where labeled device pairs are (a) randomly sampled and
(b) obtained via cross-device IDs on a single domain.

0.5 o
’“Accuracy Precison
Evaluation metric

(b)

adopt our GraphTrack methods to simulate the real-world tracker.
Specifically, we leverage the devices collected between December
2017 and March 2018 to construct the IP-Device graph; and we use
10 threads to run our methods in this graph in parallel. Then, we
dynamically update the IP-Device graph and perform our Graph-
Track sequentially to link each incoming device between April 2018
and July 2018 in our dataset.

GraphTrack outperforms compared methods: We compare
GraphTrack with both unsupervised and supervised methods for
multiple-device tracking. Figure 8a shows the Accuracy of the com-
pared methods. We observe that GraphTrack-IP-SU significantly
outperforms IPFootprint and BAT-IP-SU. For instance, when we use
20% users’ devices for training, GraphTrack-IP-SU’s Accuracy (0.59)
is 0.13 and 0.1 higher than IPFootprint’s (0.46) and BAT-IP-SU’s
(0.49), respectively. Likewise, when no labeled device groups are
available, GraphTrack-IP’s Accuracy (0.43) is 0.22 and 0.08 larger
than DeviceGraph’s (0.21) and BAT-IP’s (0.35), respectively.

Table 1 shows the Accuracy for tracking users who have a certain
number of devices. We observe that GraphTrack does track users
with more than 2 devices and consistently outperforms the com-
pared methods for tracking multiple devices. Moreover, GraphTrack-
IP and GraphTrack-IP-SU outperform the compared unsupervised
methods and supervised methods, respectively. For instance, Graph
Track-IP outperforms BAT-IP by 0.07, 0.14, 0.15, and 0.18 and outper-
forms DeviceGraph by 0.23, 0.22, 0.27, 0.19; and GraphTrack-IP-SU
outperforms BAT-IP-SU by 0.09, 0.08, 0.14, and 0.05, and outper-
forms IPFootprint by 0.11, 0.09, 0.17, and 0.1, for tracking users with
2, 3, 4, and 5 devices, respectively.

Impact of the number of users: We study the impact of the total
number of users on GraphTrack’s performance. In particular, we
randomly sample some users between December 2017 and March
2018, treat 50% of them as training users, and test GraphTrack-IP-
SU on the remaining sampled users. Figure 8b shows Accuracy of
GraphTrack-IP-SU vs. number of users sampled from our multiple-
device dataset. We observe that GraphTrack-IP-SU’s performance
is stable with respect to the number of users. The reason is that
GraphTrack naturally divides devices into geographically separated
clusters using RWwR and each cluster has a small number of users.
Practicability of GraphTrack as a real-world tracker: We study
how practical GraphTrack is to link different devices using our real-
world dataset collected from a real-world website from December
2017 to July 2018. Specifically, we measure the average linking time
per device as shown in Table 2: GraphTrack-IP takes around 40ms



Session 1B: Systems and Network Security #1

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

smsmamssmsEEs
PO e TR
. R

l‘"..-‘qﬂf".,.m. I

SN~——
0.4 \

Accuracy
Accuracy

0.2k

T

Accuracy

Ik DeviceGraph
gl BATIP
§'@ GraphTrack-IP

BB IPFootprint
# = BATIP-SU
B=& GraphTrack-IP-SU

(]'9% 5% 10% 20%
Percentage of training users

(a)

50%

“'%K 18K 27K 36K 45K 54K 63K 72K 81K 90K
Number of users

(b)

)
U‘&% 5% 10% 20%
Proportion of injected fake edges

(©

50%

Figure 8: (a) Accuracy of multiple-device tracking vs. percentage of randomly sampled users as training set. (b) GraphTrack-IP-
SU’s accuracy for multiple-device tracking vs. number of users sampled from our multiple-device dataset. (c) GraphTrack-IP-SU’s
accuracy for multiple-device tracking vs. proportion of injected fake edges into the IP-Device Graph.

Table 1: Accuracy for tracking users who have a particular
number of devices, where 50% of randomly selected users are
used as training dataset for the supervised methods.

Method 2 devices | 3 devices | 4 devices | 5 devices
DeviceGraph 0.21 0.13 0.19 0.06
BAT-IP 0.37 0.21 0.31 0.07
GraphTrack-IP 0.44 0.35 0.46 0.25
IPFootprint 0.50 0.36 0.48 0.31
BAT-IP-SU 0.52 0.39 0.51 0.36
GraphTrack-IP-SU 0.61 0.47 0.65 0.41

and GraphTrack-IP-SU around 30ms to link an incoming device.
This is sufficient and practical for a real-world scenario, such as real-
time bidding (RTB): For example, the deadline of RTB as required
by Google [4] is between 120ms and 300ms. Another thing worth
noting here is that BAT and BAT-SU are faster than GraphTrack-IP
and GraphTrack-IP-SU in linking, which take around 15ms and
10ms respectively. The reason is that GraphTrack is an iterative
method but BAT is not; however, we would argue that GraphTrack
is more accurate and the runtime latency is sufficient for the real-
world website used in our experiment for the linking purpose.
Robustness of GraphTrack to single-device tracking errors,
e.g., device cookie clearance: We show how a less accurate
ground-truth may affect the performance of GraphTrack. Specifi-
cally, we use cookies—which are often cleared by users manually or
even browsers automatically (like intelligent tracking prevention)—
in our multi-device tracking dataset as the ground truth and evalu-
ate the performance of GraphTrack and BAT. Here are the results.
GraphTrack-IP-SU’s accuracy decreases from 0.60 with device ID as
the ground truth to 0.56 with cookies; as a comparison, BAT-SU’s
accuracy decreases from 0.50 to 0.42.

Defense against GraphTrack: GraphTrack has shown robustness
to uncertainty in single-device tracking which incorrectly links
some IPs and domains to randomly selected wrong devices. To
defend against cross-device tracking, one possible strategy is that
a user visits domains from some random IPs (e.g., using Tor or
VPN) or visits some random domains, to decrease the similarity
between his devices. To simulate such a defense, we consider the

92

Table 2: Total time and time per device of our methods to
track users’ devices in our multiple-device tracking dataset.

Date: 2017.12— 2018.3|2018.4|2018.5|2018.6/2018.7
#Devices 165K | 208K | 251K | 293K | 335K

Total time | 1.8h | 2.2h | 2.6h | 3.0h | 3.4h

GraphTrack-IP

Time per dev.| 39ms | 38ms | 37ms | 37ms | 37ms

Total time | 1.0h | 1.4h | 1.8h | 2.2h | 2.6h

GraphTrack-IP-SU

Time per dev.| 22ms | 24ms | 26ms | 27ms | 28ms

multiple-device tracking dataset and randomly inject fake edges
between devices and IPs into the IP-Device graph. We denote y% as
the ratio between the number of injected fake edges and the number
of true edges in the original IP-Device graph. Figure 8c shows the
Accuracy of GraphTrack-IP-SU, where 50% of users are used as
the training dataset. We observe that when injecting more fake
edges (i.e., visiting domains using more random IPs), GraphTrack-
IP-SU has a lower Accuracy. However, to significantly reduce the
Accuracy, a user needs to visit a large number (e.g., 50%) of random
IPs on average.

6 CONCLUSION AND FUTURE WORK

We propose GraphTrack, a graph-based framework, to perform
cross-device tracking using browsing history. Specifically, we model
the complex interplays between IPs, domains, and devices as an IP-
Device graph and a Domain-Device graph. Furthermore, we adapt
standard RWwR to analyze the structure of the graphs, through
which we model similarity between devices and capture latent cor-
relations among IPs and domains. GraphTrack is unsupervised, but
can incorporate manual labels if available. GraphTrack can also be
easily parallelized. We compare GraphTrack with state-of-the-art
unsupervised methods and supervised methods on two real-world
datasets and demonstrate that GraphTrack substantially outper-
forms the compared methods. We conclude that graph is a more
powerful tool to model relationships between heterogeneous data
sources. Interesting future works include defending against Graph-
Track via adversarial machine learning, studying the distribution of
real-world errors for single-device trackers, and normalizing edge
weights based on duration/interval.



Session 1B: Systems and Network Security #1

Acknowledgements. We thank the anonymous reviewers for their
constructive comments. This work is supported by the National
Science Foundation under Grants No. 1937787, CNS18-54000, and
and CNS18-54001. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] 2015. ICDM 2015: Drawbridge Cross-Device Connections. https://www.kaggle.
com/c/icdm-2015-drawbridge- cross-device-connections.

[2] 2017. Criteo Labs. http://labs.criteo.com/2016/06/building-cross-device-graph-
criteo/.

[3] 2017. Drawbridge. https://www.drawbridge.com/.

[4] 2020. Real-Time Bidding. https://developers.google.com/authorized-buyers/rtb/
start.

[5] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The Web Never Forgets: Persistent Tracking
Mechanisms in the Wild. In CCS.

[6] Gunes Acar, Marc Juarez, Nick Nikiforakis, and et al. 2013. FPDetective: Dusting
the Web for Fingerprinters. In CCS.

[7] Thakur Raj Anand and Oleksii Renov. 2015. Machine learning approach to
identify users across their digital devices. In [CDMW.

[8] Michael Backes, Mathias Humbert, Jun Pang, and Yang Zhang. 2017. walk2friends:

Inferring social links from mobility profiles. In CCS.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. . Stat. Mech.: Theory

Exp (2008).

[10] Karoly Boda, Adam Maté Foldes, Gabor Gyoérgy Gulyas, and Sandor Imre. 2012.

User Tracking on the Web via Cross-browser Fingerprinting. In NordSec.

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual

Web search engine. Computer Networks and ISDN Systems (1998).

[12] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung. 2017. Cross-

Device Tracking: Measurement and Disclosures. PETS (2017).

=
X0,

(11

[13] Christopher Burges, Tal Shaked, and et al. 2005. Learning to rank using gradient
descent. In ICML.
[14] Xuezhi Cao, Weiyue Huang, and Yong Yu. 2015. Recovering Cross-Device Con-

nections via Mining IP Footprints with Ensemble Learning. In ICDMW.
[15] Yinzhi Cao, Zhanhao Chen, et al. 2017. Deterministic Browser. In CCS.

[16] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting
via OS and Hardware Level Features. In NDSS.
[17] Federal Trade Commission. 2015. Cross-Device Tracking. https://www.ftc.gov/

news-events/events-calendar/2015/11/cross-device-tracking.
[18] Federal Trade Commission. 2017. Cross-Device Tracking—An FTC Staff Re-
port. https://www.ftc.gov/news-events/press-releases/2017/01/ftc-releases-new-
report-cross-device- tracking.
Roberto Diaz-Morales. 2015. Cross-Device Tracking: Matching Devices and
Cookies. In ICDMW.
[20] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In CCS.
David Fifield and Serge Egelman. 2015. Fingerprinting web users through font
metrics. In FC.
[22] Neil Zhengiang Gong and Bin Liu. 2016. You Are Who You Know and How You
Behave: Attribute Inference Attacks via Users’ Social Friends and Behaviors.. In
USENIX Security.
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD.
[24] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and
Reza Bosagh Zadeh. 2013. WTF: The who-to-follow system at Twitter. In WWW.
Jinyuan Jia, Binghui Wang, and Neil Zhengiang Gong. 2017. Random walk based
fake account detection in online social networks. In DSN.
[26] Girma Kejela and Chunming Rong. 2015. Cross-device consumer identification.
In ICDMW.

[19

[21

[23

[25

[27] Michael Sungjun Kim, Jiwei Liu, et al. 2015. Connecting devices to cookies via
filtering, feature engineering, and boosting. In ICDMW.
[28] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for Uncertain

Times. In USENIX Security.

[29] Balachander Krishnamurthy, Konstantin Naryshkin, and Craig Wills. 2011. Pri-
vacy leakage vs. protection measures: the growing disconnect. In Web 2.0 Security
and Privacy Workshop.

[30] Balachander Krishnamurthy and Craig Wills. 2009. Privacy diffusion on the web:
a longitudinal perspective. In WWW.

[31] Balachander Krishnamurthy and Craig E Wills. 2006. Generating a privacy
footprint on the internet. In ACM SIGCOMM.
[32] Balachander Krishnamurthy and Craig E Wills. 2008. Characterizing privacy in

online social networks. In WOSN. ACM.

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Mark Landry, Robert Chong, et al. 2015. Multi-layer classification: ICDM 2015
drawbridge cross-device connections competition. In ICDMW.

Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting modern web browsers to build unique browser fingerprints. In
IEEES & P.

Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
2016. Internet Jones and the Raiders of the Lost Trackers: An Archaeological
Study of Web Tracking from 1996 to 2016. In USENIX Security.

Matthew Malloy, Paul Barford, Enis Ceyhun Alp, Jonathan Koller, and Adria
Jewell. 2017. Internet Device Graphs. In KDD.

Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico Maggi, Giovanni
Vigna, and Christopher Kruegel. 2016. Talking Behind Your Back: Attacks and
Countermeasures of Ultrasonic Cross-device Tracking. In Black Hat Europe.
Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico Maggi, Giovanni
Vigna, and Christopher Kruegel. 2017. On the Privacy and Security of the
Ultrasound Ecosystem. In PETS.

Jonathan R Mayer and John C Mitchell. 2012. Third-party web tracking: Policy
and technology. In IEEE S & P.

Wei Meng, Byoungyoung Lee, Xinyu Xing, and Wenke Lee. 2016. TrackMeOrNot:
Enabling Flexible Control on Web Tracking. In WWW.

Hassan Metwalley and Stefano Traverso. 2015. Unsupervised detection of web
trackers. In Globecom.

Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting information in JavaScript implementations. In W2SP.

Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTMLS. In W2SP.

Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. 2013. Fast and reliable browser
identification with javascript engine fingerprinting. In W2SP.

Tsuyoshi Murata and Sakiko Moriyasu. 2007. Link prediction of social networks
based on weighted proximity measures. In IEEE/WIC/ACM ICWL

Gabi Nakibly, Gilad Shelef, and Shiran Yudilevich. 2015. Hardware fingerprinting
using HTMLS. arXiv preprint arXiv:1503.01408 (2015).

Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. 2015. PriVaricator:
Deceiving Fingerprinters with Little White Lies. In WWW.

Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. 2013. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In IEEE S & P.

Xiang Pan, Yinzhi Cao, and Yan Chen. 2015. I Do Not Know What You Visited
Last Summer - Protecting users from third-party web tracking with TrackingFree
browser. In NDSS.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD.

M Perry, E Clark, and S Murdoch. 2015. The Design and Implementation of the
Tor Browser [DRAFT][online], United States.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In KDD.

Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and
Defending Against Third-party Tracking on the Web. In USENIX NSDL
Iskander Sanchez-Rola, Xabier Ugarte-Pedrero, Igor Santos, and Pablo G Bringas.
2015. Tracking Users Like There is No Tomorrow: Privacy on the Current Internet.
In International Joint Conference.

Lars Ropeid Selsaas, Bikash Agrawal, Chumming Rong, and Thomasz Wiktorski.
2015. AFFM: Auto feature engineering in field-aware factorization machines for
predictive analytics. In [CDMW.

Konstantinos Solomos, Panagiotis Ilia, et al. 2019. {TALON}: An Automated
Framework for Cross-Device Tracking Detection. In RAID.

Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk
with restart and its applications. In ICDM.

Jeremy Walthers. 2015. Learning to rank for cross-device identification. In
ICDMW.

Binghui Wang, Jinyuan Jia, Le Zhang, and Neil Zhenqiang Gong. 2018. Structure-
based sybil detection in social networks via local rule-based propagation. IEEE
TNSE (2018).

Changfeng C Wang and Hsu-Tang Pu. 2013. Uniquely identifying a network-
connected entity. US Patent 8,438,184.

Sibo Wang, Renchi Yang, Xiaokui Xiao, and et al. 2017. FORA: Simple and
Effective Approximate Single-Source Personalized PageRank. In KDD.
Wikipedia. 2017. Privacy Mode. http://en.wikipedia.org/wiki/Privacy_mode.
Meng Xu, Yeongjin Jang, Xinyu Xing, Taesoo Kim, and Wenke Lee. 2015. UCog-
nito: Private Browsing Without Tears. In CCS.

Chao Yang, Robert Harkreader, Jialong Zhang, Seungwon Shin, and Guofei Gu.
2012. Analyzing Spammer’s Social Networks for Fun and Profit. In WWW.
Ting-Fang Yen, Yinglian Xie, Fang Yu, and et al. 2012. Host fingerprinting and
tracking on the web: Privacy and security implications. In NDSS.

Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M Bellovin, and Tony Jebara.
2017. A Privacy Analysis of Cross-device Tracking. In USENIX Security.


https://www.kaggle.com/c/icdm-2015-drawbridge-cross-device-connections
https://www.kaggle.com/c/icdm-2015-drawbridge-cross-device-connections
http://labs.criteo.com/2016/06/building-cross-device-graph-criteo/
http://labs.criteo.com/2016/06/building-cross-device-graph-criteo/
https://www.drawbridge.com/
https://developers.google.com/authorized-buyers/rtb/start
https://developers.google.com/authorized-buyers/rtb/start
https://www.ftc.gov/news-events/events-calendar/2015/11/cross-device-tracking
https://www.ftc.gov/news-events/events-calendar/2015/11/cross-device-tracking
https://www.ftc.gov/news-events/press-releases/2017/01/ftc-releases-new-report-cross-device-tracking
https://www.ftc.gov/news-events/press-releases/2017/01/ftc-releases-new-report-cross-device-tracking
http://en.wikipedia.org/wiki/Privacy_mode

Session 1B: Systems and Network Security #1

1.0
0.8
[
Soe
£ 0.6
g
3
T 04f
A
0.2
Il With top-50 domains
B Without top-50 domains
0.0 n
Accuracy Precison  Recall F-Score

Evaluation metric on GraphTrack-Domain

Figure 9: Performance of GraphTrack-Domain with and with-
out the top-50 domains.

A COMPARED METHODS

We compare GraphTrack with supervised and unsupervised cross-
device tracking methods. Table 4 in Appendix summarizes all com-
pared methods.

Supervised methods. We compare our supervised GraphTrack
with two supervised methods, i.e., BAT-SU [66] and IPFootprint [14].
BAT-SU [66] is the state-of-the-art supervised method. It uses Bhat-
tacharyya coefficient [60] to compute the similarity score between
two devices. BAT-SU essentially computes the weighted common
neighbors between two devices in the IP-Device graph or the
Domain-Device graph, where the weight is the normalized fre-
quency of the corresponding IP or domain. We implement BAT-SU
by ourselves and verify that our implementation achieves very
close performance with the results reported by Zimmeck et al. [66]
under the same setting (See Table 3). Note that BAT-SU is originally
designed to handle 2 devices, i.e., predict a matched desktop de-
vice for a mobile device, while our multiple-device dataset includes
users having more than 2 devices. Thus, we adapt BAT-SU to handle
multiple devices using our GraphTrack-SU framework (Section 4.3).
The idea is to replace the similarity scores computed by RWwR as
the Bhattacharyya coefficient.

IPFootprint [14] only uses IPs to compute the similarity score
between two devices. It represents each device’s IPs as a feature
vector, where the i-th entry is the frequency the device used the
i-th IP. Each IP is also associated with an importance parameter
to be learnt. Then, the similarity score between two devices is
defined as the dot product of two devices’ feature vectors and
importance vectors. The importance vector is learnt by a learning
to rank method called RankNet [13]. Specifically, given a training
set consisting of groundtruth matched and unmatched device pairs,
the learnt ranking model outputs the likelihood that each device
matches any other device. Then, IPFootprint designs an ensemble
method to determine the devices predicted to match a given device.

Unsupervised methods. We compare our unsupervised Graph-
Track with BAT and DeviceGraph [36]. BAT is an adapted un-
supervised version of BAT-SU using our GraphTrack framework.
Specifically, BAT replaces the similarity scores in GraphTrack-OR
with the Bhattacharyya coefficients. We use the OR operator be-
cause, as we will demonstrate, it outperforms the AND operator
and the unified graph at combining IPs and domains.

94

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Table 3: Results of BAT-Raw, our implemented BAT-SU, IP-
Footprint, and our GraphTrack-OR-SU on the same training
set and testing set as in [66]. BAT-Raw has 37 TPs, 5 FPs, 0
TN, and 2 FNs; BAT-SU has 36 TPs, 6 FPs, 0 TN, and 2 FNs;
IPFootprint has 29 TPs, 6 FPs, 0 TN, and 9 FNs; GraphTrack-
OR-SU has 39 TPs, 2 FPs, 0 TN, and 3 FNs.

Accuracy | Precision | Recall |F-Score
BAT-Raw 0.84 0.88 0.95 0.91
BAR-SU 0.82 0.86 0.95 0.90
IPFootprint 0.66 0.83 0.76 0.79
GraphTrack-OR-SU| 0.89 0.95 0.93 0.94

DeviceGraph [36] constructs a device graph based on IP co-
locations and leverages community detection to track users’ devices.
Specifically, a node in the device graph is a device and an edge is
created between two devices if they used the same IP. Then, De-
viceGraph leverages Louvain method [9] to detect communities in
the device graph and predicts that devices in a community belong
to the same user. We note that DeviceGraph only leverages IPs.

B VERIFYING OUR IMPLEMENTATION

We denote the implementation of BAT-SU by its authors [66] as
BAT-Raw. We verify that our implementation of BAT-SU reproduces
BAT-Raw. Specifically, we obtained the same training set and testing
set from the authors [66]. The training set consists of 63 matched
mobile-desktop pairs and the remaining 44 matched pairs form the
testing set. Table 3 shows Accuracy, Precision, Recall, and F-Score
of BAT-Raw, BAT-SU, and GraphTrack-OR-SU. According to [66],
BAT-Raw has 37 TPs, 5 FPs, 0 TN, and 2 FNs. Our implemented
BAT-SU has 36 TPs, 6 FPs, 0 TN, and 2 FNs. Our results are not
exactly the same as BAT-Raw because BAT-Raw filtered the top-50
domains ranked by Alexa and all columbia.edu domains which
are anonymized by cryptographic hashing in the released dataset,
while we filtered the top-50 most popular domains in the dataset
instead. For comparison, our GraphTrack-OR-SU has 39 TPs, 2 FPs,
0 TN, and 3 FNs. Our GraphTrack-OR-SU outperforms BAT-SU for
supervised cross-device tracking.

C COMPUTATIONAL COMPLEXITY

Complexity of unsupervised GraphTrack methods: We de-
note the number of nodes of the IP-Device graph, Domain-Device
graph, and IP-Device-Domain graph as |V|;p, |V|po. and |V|ypi,
respectively. Moreover, we denote the number of edges of the
three graphs as |E|rp, |E|po, and |E|yni, respectively. Note that
|Eluni =
example, since other unsupervised methods share the same analysis.
Suppose we have n devices D = {D1,Dy,---,Dp}.

In Step I, GraphTrack-IP starts an RWwR from each device D; in
the IP-Device graph and computes the similarity scores between D;
and other devices using the stationary distribution of the RWwR.
Usually, it is sufficient to run RWwR log |V |;p iterations to reach the
stationary distribution [57], and each iteration traverses all edges
of the IP-Device graph. Thus, the time complexity of performing an

|E|rp +|E|po- For simplicity, we take GraphTrack-IP as an



Session 1B: Systems and Network Security #1

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

Table 4: Evaluation settings of methods used in our paper.

Methods [PDomainIP+Domain| Description
GraphTrack-IP V4 RWwR on normalized weighted IP-Device graph
GraphTrack-Domain v RWwR on normalized weighted Domain-Device graph
GraphTrack-UniGraph v RWwR on normalized weighted IP-Domain-Device graph
GraphTrack-AND v GraphTrack-IP AND GraphTrack-Domain
GraphTrack-OR v GraphTrack-IP OR GraphTrack-Domain
UnsupervisedmethodsGraphTrack-OR-UnWeighted v GraphTrack-OR with unweighted IP-Device graph/Domain-Device graph
GraphTrack-OR-UnNorm v GraphTrack-OR with unnormalized weighted IP-Device graph/Domain-Device graphj
BAT-IP v Bhattacharyya coefficient on weighted IP-Device graph
BAT-Domain v Bhattacharyya coefficient on weighted Domain-Device graph
BAT v BAT-IP OR BAT-Domain
DeviceGraph v Community detection on weighted device graph construted using IPs
GraphTrack-IP-SU V4 Supervised version of GraphTrack-IP
GraphTrack-Domain-SU v Supervised version of GraphTrack-Domain
GraphTrack-UniGraph-SU v Supervised version of GraphTrack-UniGraph
GraphTrack-AND-SU v Supervised version of GraphTrack-AND
Supervisedmethods GraphTrack-OR-SU v Supervised version of GraphTrack-OR
BAT-IP-SU v Supervised version of BAT-IP
BAT-Domain-SU v Supervised version of BAT-Domain
BAT-SU v Supervised version of BAT
IPFootprint v RankNet on pairwise devices’ IP footprints

RWwR for Dj is O(log |V|;p - |E|rp). Next, GraphTrack-IP finds the
K — 1 candidate devices having the largest similarity scores with D;.
This is implemented by first sorting the similarity scores associated
with the n devices in a descending order and then selecting the
top-(K — 1) indexes in the sorted similarity scores as the K — 1
candidate devices. Sorting the similarity scores of n devices has
a time complexity O(n - logn) and the time complexity for top-
(K —1) devices selection can be ignored. Thus, the time complexity
of finding the K—1 candidate devices for D; is O(n-log n). Repeating
above RWwR and candidate devices selection for n devices, we have
the time complexity O(n-log |V |;p-|E|[p+n?-log n). Step Il is device
similarity graph construction using the candidate devices of each
device and Step III is a simple prediction for each device. Both their
time complexity can be ignored. Therefore, we have the overall time
complexity of GraphTrack-IP as O(n - log |V|;p - |E|1p + n? - log n).

Likewise, time complexity of GraphTrack-Domain and GraphTrack-

UniGraph are O(n-log [V|po- |E|po+n?-log n) and O(n-log |V|yn;-
|E|yni+n?-log n); and GraphTrack-OR and GraphTrack-AND have
the same time complexity O(n-(log |V |po-|E|po+log |V |ip-|Elip)+
2n? -logn).

Complexity of supervised GraphTrack methods: We denote
the number of labeled devices for training as n;, and the number
of devices for testing as n — n;,. Similarly, we take GraphTrack-IP-
SU as an example, since other supervised methods share the same
analysis.

GraphTrack-IP-SU first uses n; labeled devices in the train-
ing set to learn a threshold. Specifically, for each device D; in
the training set, GraphTrack-IP-SU first starts an RWwR from D
and computes the stationary distribution of the RWwR among
the IP-Device graph in log |V|;p iterations. The time complexity
is O(log |V|tp - |E|zp). Then, GraphTrack-IP-SU uses the station-
ary distribution as the similarity scores between D; and other de-
vices and finds the (K — 1) candidate devices for D; based on the

95

similarity scores. The time complexity is O(n - log n). Repeating
above step for n;, training devices, we have the time complexity
O(ngr - (log |Vrp - |Elfp + n - logn)). Next, for each device pair
in the training set, GraphTrack-IP-SU checks whether one device
matches its paired device, i.e., whether one device is among the
(K — 1) candidate devices of its paired device. Repeating the pro-
cess for all labeled device pairs, GraphTrack-IP-SU can determine
the threshold as the minimum similarity score that the device pair
matches. The time complexity in this step can be ignored. Thus, the
time complexity of training is O(n;, - (log |V|ip - |E|rp + n - log n)).
Then, GraphTrack-IP-SU performs an RWwR from each device in
the testing set and finds its candidate devices based on the stationary
distribution of the RWwR. Repeating this step for all testing devices,
we have the time complexity O((n—ngr)-(log |V|ip-|E|[p+n-logn)).
Furthermore, GraphTrack-IP-SU constructs the device similarity
graph to match testing devices based on the learnt threshold and
the candidate devices of each testing device. The time complexity
in this step can be ignored. Thus, the overall time complexity of
GraphTrack-IP-SU is O(n-log |V|;p-|E|rp+n? log n), the same time
complexity as GraphTrack-IP. Likewise, GraphTrack-Domain-SU,
GraphTrack-UniGraph-SU, GraphTrack-OR-SU, and GraphTrack-
AND-SU also have the same time complexities as their unsupervised
versions.
Speeding up GraphTrack methods: We have a two-level parallel
implementation to speed up GraphTrack methods on large-scale
datasets. First, different target devices can be run on different ma-
chines, as these target devices are matched in sequence. Second,
each machine can parallelize GraphTrack using multithreading.
Specifically, we first divide nodes in a graph into groups. Then in
each iteration, each thread applies our adapted RWwR in Equation 1
to a group of nodes and the probability distributions obtained by
all threads are combined to form the probability distribution.



Session 1B: Systems and Network Security #1

D DISCUSSION

Advanced defense against GraphTrack A potential better strat-
egy to defend against GraphTrack is to leverage adversarial machine
learning, which may be a valuable future work. For instance, we
can convert the problem of injecting fake edges between devices
and IPs/domains into an optimization problem, where the objective
function is to minimize the GraphTrack’s performance (i.e., min-
imizes the correct matches between mobile devices and desktop
devices) and the constraint restricts the ratio of injected edges. Then,
the solution to the optimization problem is specifically crafted fake
edges that minimize the GraphTrack’s performance.

Different ways to normalize the edge weights: We normalized
the edge weight between a device and an IP/Domain based on the
frequency the device accessed/visited the IP/Domain. Considering
duration/interval that each device accessed/visited IPs/Domains to

96

ASIA CCS °22, May 30-June 3, 2022, Nagasaki, Japan

assign edge weights may further improve GraphTrack’s perfor-
mance. Our datasets do not have such information, but we believe
it would be a valuable future work to consider such information.
Graph embedding methods for cross-device tracking: Algo-
rithmically, graph embedding methods, e.g., Deepwalk [50], node
2vec [23], struc2vec [52], can be also used to perform cross-device
tracking. However, we did not choose these methods because of
two reasons. (i) Efficiency: Graph embedding methods need to first
learn feature representations for each node, which is computation-
ally intensive. (ii) Incremental Update: Graph embedding methods
cannot incrementally update the node feature representation if the
graph includes more nodes or edges. By contrast, GraphTrack can
quickly update a new probability distribution vector given a slight
change to the graph within a small number of iterations.



	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 GraphTrack
	4.1 Overview
	4.2 Unsupervised Cross-Device Tracking
	4.3 Incorporating Manual Labels
	4.4 Computational Complexity

	5 Evaluation
	5.1 Experimental Setup
	5.2 Mobile-Desktop Tracking Results for Unsupervised Methods
	5.3 Mobile-Desktop Tracking Results for Supervised Methods
	5.4 Multiple-Device Tracking Results

	6 Conclusion and Future Work
	References
	A Compared methods
	B Verifying our Implementation
	C Computational Complexity
	D Discussion



