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The ability to engineer high-fidelity gates on quantum processors in the presence of systematic errors
remains the primary barrier to achieving quantum advantage. Quantum optimal control methods have
proven effective in experimentally realizing high-fidelity gates, but they require exquisite calibration to be
performant. We apply robust trajectory optimization techniques to suppress gate errors arising from system
parameter uncertainty. We propose a derivative-based approach that maintains computational efficiency
by using forward-mode differentiation. Additionally, the effect of depolarization on a gate is typically
modeled by integrating the Lindblad master equation, which is computationally expensive. We employ
a computationally efficient model and utilize time-optimal control to achieve high-fidelity gates in the
presence of depolarization. We apply these techniques to a fluxonium qubit and suppress simulated gate
errors due to parameter uncertainty below 1077 for static parameter deviations of the order of 1%.
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L. INTRODUCTION

Quantum optimal control (QOC) is a class of optimiza-
tion algorithms for accurately and efficiently manipulat-
ing quantum systems. Early techniques were proposed
for nuclear magnetic resonance experiments [1-7], and
applications now include superconducting circuits [8—25],
neutral atoms and ions [26—37], vacancy centers in dia-
mond [38—44], and Bose-Einstein condensates [45—48].
In the context of quantum computation, optimal control
is employed to achieve high-fidelity gates while adher-
ing to experimental constraints. Experimental errors such
as parameter drift, noise, and finite control resolution
cause the system to deviate from the model used in opti-
mization, hampering experimental performance [10,15,21,
34,49]. Robust control improves upon standard optimal
control by encoding model parameter uncertainties in opti-
mization objectives, yielding performance guarantees over
a range of parameter values [50-52]. We adapt robust
control techniques from the robotics community to mit-
igate parameter-uncertainty errors for a superconducting
fluxonium qubit.

Analytically derived control pulses that mitigate
parameter-uncertainty errors include composite pulses
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[53-56], pulses designed by considering dynamic and
geometric phases [57-59], and pulses obtained with
the derivative-removal-by-adiabatic-gate scheme [60]. As
compared to analytical techniques, QOC is advantageous
for designing pulses that consider all experimental con-
straints and performance trade-offs [18], and for construct-
ing operations without a known analytic solution [10,15].
Accordingly, recent work has sought to achieve robustness
in QOC frameworks using closed-loop methods [61—65]
and open-loop methods [3,21,43,66—71].

In this work, we study three open-loop robust control
techniques that make the quantum state trajectory less sen-
sitive to the uncertainties of static and time-dependent
parameters:

1. a sampling method, similar to the work in
Refs. [3,21,43,68];

2. an unscented sampling method [72—74] adapted
from the unscented transform [75,76] used in state estima-
tion;

3. aderivative method, which penalizes the sensitivity
of the quantum state trajectory to uncertain parameters.

We apply these techniques to the fluxonium qubit
presented in Ref. [77]. We also show that QOC can
solve important problems associated with fluxonium-based
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qubits: exploiting the dependence of 77 on the controls
to mitigate depolarization and synchronizing the phase of
qubits with distinct frequencies. To ameliorate depolar-
ization, we perform time-optimal control and employ an
efficient depolarization model for which the computational
cost is independent of the Hilbert space dimension. Lever-
aging recent advances in trajectory optimization within
the field of robotics, we solve these optimization prob-
lems using the augmented Lagrangian trajectory optimizer
(ALTRO) [78], which can enforce constraints on the con-
trol fields and the quantum state trajectory.

This paper is organized as follows. First, we describe
ALTRO in the context of QOC in Sec. II. We outline real-
istic constraints for operating the fluxonium and define the
associated QOC problem in Sec. III. Then, we formulate
a method for suppressing depolarization in Sec. IV. Next,
we describe three techniques for achieving robustness to
static parameter uncertainties in Sec. V. We adapt the same
techniques to mitigate 1/f flux noise in Sec. VI.

II. BACKGROUND

In this section, we review the QOC problem statement
and describe the ALTRO solver [78]. QOC concerns a
vector a(f) of time-dependent control fields that steer the
evolution of a quantum state |y (¢)). The evolution of
the state is governed by the time-dependent Schrodinger
equation (TDSE)

ihd%hb(t)) = H[a@),1]|Y (1)) O]
The Hamiltonian H[a(?), ] is determined by the quantum
system and the external control fields. The QOC prob-
lem is to find the controls that minimize a functional
Ja(?)], which we call the objective. To make the problem
numerically tractable, the quantum state and controls
are discretized into N time steps, |V (#)) — |¥x) and
a(ty) — a;, where t, =t4_1 + At and k€ {l,...,N}. In
the case of a single state-transfer problem, the objective
is the infidelity of the time-evolved final state |yy) and
the intended target state |y7), J(a) =1 — |(1/fT|wN(a))|2.
Standard QOC solvers compute derivatives of the objec-
tive VJ(a), which can easily be used to implement first-
order optimization methods [3,18,79,80].

Alternatively, the QOC problem can be formulated as a
trajectory optimization problem and solved using special-
ized solvers developed by the robotics community [78,81—
83]. The objective J(a) = ), £x(Xt, uz) is expressed in
terms of the cost function at each time step £;, where x; is
the augmented state vector and uy is the augmented control
vector. We use the term augmented because these vectors
contain all of the relevant variables in the optimization
problem, not just the quantum state and the control fields;
for an example, see Sec. I1I. The augmented control con-
tains all variables that the experimentalist may manipulate,

and the augmented state contains all variables that depend
on those in the augmented control. The variables in the
augmented states depend on those in the augmented con-
trols as defined by the differential equations governing the
physical system, which are encoded in the discrete relation
Xrr1 = f(Xg, ug). For QOC, f(xg, uy)—which we call the
discrete dynamics function—propagates the quantum state
by integrating the TDSE (1) using a Runge-Kutta method
[84] or an exponential integrator [85—88].

We incorporate constraints on the augmented controls
and states by formulating them as inequalities g; (x;, u;) <
0 or equalities h;(xz, u;) = 0. The constraint functions g
and h; may be vector valued to encode multiple con-
straints, and equalities and inequalities are understood
componentwise. To quantify constraint satisfaction, we
define each constraint’s violation as the magnitude of its
deviation: max(g(-), 0) or |A(-)|, where g and 4 are compo-
nents of constraint functions g; and hy, respectively. Stated
concisely, the trajectory optimization problem is

mmlmlze Z L (Xg, uy) (2a)

.....

subjectto X4+ = f(xg, ug) forall £, (2b)
gr(Xp,up) <0 forall &, (2¢)
h;(x;,u;) =0 forall £. (2d)

We have formulated the problem such that the cost and
constraint functions at time step £ may only depend on the
augmented control and state at time step k. Although this
structure may appear limiting, the problem can typically be
reformulated to accommodate any cost or constraint func-
tion (for an example, see Sec. I1I), and the ALTRO solver,
which we introduce in the following discussion, exploits
this structure to efficiently solve the problem.

Standard techniques for solving Egs. (2a)+2d) typically
fall into two categories: direct methods [89,90] and indi-
rect methods [91]. For indirect methods, the augmented
controls are the decision variables, i.e., the variables the
optimizer adjusts to solve the problem. The augmented
states are obtained from the augmented controls using the
discrete dynamics function, and they are used to evalu-
ate derivatives of the cost functions. Then, the derivative
information is employed to update the augmented controls.
This approach is taken by standard QOC solvers such as
GOAT [79], GRAPE [3,18], and Krotov’s method [80].
Conversely, direct methods treat both the augmented con-
trols and states as decision variables. In addition to min-
imizing the cost functions, the optimizer uses derivative
information for the discrete dynamics function to satisfy
the dynamics constraint (2b) to a specified tolerance. In
this sense, the TDSE (1) is a constraint that may be vio-
lated for intermediate steps of the optimization, where the
quantum states need not be physical. The direct approach
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lends itself to a nonlinear program formulation, for which
a variety of general-purpose solvers exist [92,93].

Recent state-of-the-art solvers, such as ALTRO, com-
bine the indirect and direct methods in a two-stage
approach. First, ALTRO employs an indirect solving
stage using the iterative linear-quadratic regulator (ILQR)
algorithm [94] as the internal solver of an augmented
Lagrangian method (ALM) [95-97]. In the second direct
stage, ALTRO uses a projected Newton method [98,99].
Next, we provide a more detailed summary of these two
stages.

ILQR is an indirect method for minimizing the objec-
tive subject to the dynamics constraint, i.e., solving Egs.
(2a) and (2b). First, ILQR uses an initial guess for the
augmented controls to obtain the augmented states with
the discrete dynamics function. ILQR then constructs
quadratic models for each cost function using their zeroth-
, first- and second-order derivatives in a Taylor expansion
about the current augmented controls and states. These
models are used with a recurrence relation between time
steps to obtain the locally optimal update for the aug-
mented controls. This recurrence relation is possible to
derive in closed form because cost function contributions
come only from the augmented control and state at a single
time step [100]. Finally, a line search [101] is performed
in the direction of the locally optimal update to ensure a
decrease in the objective. This procedure is repeated until
convergence is reached.

While indirect solvers like ILQR are computation-
ally efficient and maintain high accuracy for the discrete
dynamics throughout the optimization, they cannot han-
dle nonlinear equality and inequality constraints (2c) and
(2d). For QOC, a popular approach to handle such con-
straints is to add the constraint functions to the objective
[15,18,21,70]. However, this strategy does not guarantee
that the constraints are satisfied as the solver trades min-
imization of the cost functions and constraint functions
against each other. ALM remedies this issue by adaptively
adjusting a Lagrange multiplier estimate for each con-
straint function to ensure the constraints are satisfied. ALM
adds terms that are linear and quadratic in the constraint
functions to the objective. Then, the new objective is mini-
mized with ILQR. If the solution obtained with ILQR does
not satisfy the constraints, the prefactors for the constraint
terms in the objective are increased intelligently and the
procedure is repeated.

ALM converges superlinearly, but poor numerical con-
ditioning may lead to small decreases in the constraint
violations near the locally optimal solution [102]. To
address this shortcoming, ALTRO projects the solution
from the ALM stage onto the constraint manifold using
a (direct) projected Newton method, achieving ultralow
constraint violations on the order of 10~%. For more infor-
mation on the details of the ALTRO solver, see Refs.
[78,103].

As opposed to standard QOC solvers, ALTRO can sat-
isfy constraints on both the control fields and quantum
states to tight tolerances. This advantage is crucial for this
work, where multiple medium-priority cost functions are
minimized subject to many high-priority constraints.

I11. QOC FOR THE FLUXONIUM

In the following, we optimize quantum gates for the
superconducting fluxonium qubit—a promising building
block for quantum computers due to its high coherence
times [77,104—108]. In this section, we use the trajectory
optimization formalism (2a)+2d) to define the optimiza-
tion problem (6a)—6h) below, which we extend in sub-
sequent sections to account for experimental error chan-
nels. To high accuracy, we approximate the fluxonium
Hamiltonian near the flux-frustration point as a two-level
system:

H o o.
5 =Jag Tah7 3)
Here, f; is the qubit frequency at the flux-frustration point,
a(?) is the control governing the flux offset from the flux-
frustration point, # is Planck’s constant, and o.,0, are
Pauli matrices. Although the coherent dynamics can be
described with this two-level system model, our noise
model, experimental constraints, and system parameters
consider the full system, and they are representative of the
fluxonium presented in Ref. [77].

First, we introduce the augmented control and state for
the fluxonium gate problem. Since the ALTRO implemen-
tation we use does not currently support complex num-
bers, we represent the quantum states in the isomorphism
H(C") = H(R?") given in Ref. [18],

(i )R

We use yy—abandoning bra-ket notation—to denote the
real representation of a state given by the right-hand side
of Eq. (4). To refer to the discrete moments of the flux,
we introduce the notation | a; = fti" a(t) dt, ar = a(ty),
d}ar = d"a(t)/d!l"|,—, . The augmented control and state
are

0
k

2
Xk = /; ak . (5)
ay
dtak

w = (),

Here, the superscript on the quantum states i € {0, 1} acts
as a label. In standard QOC frameworks, the derivatives
of the control fields are obtained with finite difference
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methods, e.g., diay ~ (ary 1 — ar)/At[18]. Because ALTRO
requires that cost functions do not use information from
multiple time steps, we make d?ay a decision variable and
numerically integrate coupled ordinary differential equa-
tions (ODEs) to obtain day, ai, and flak so that we
may penalize them in cost functions. Similarly, the quan-
tum states are obtained by numerically integrating the
TDSE (1) with the fluxonium Hamiltonian (3) and the
given flux a;. These numerical integration rules are imple-
mented in the discrete dynamics function for the problem,
and they give rise to the dynamics constraint (6b).

Next, we outline the constraints for this problem. Cast-
ing this problem in terms of a multistate transfer problem,
we fix as the initial states [¢?) = [0), |¢!) = [1) (6¢).
The states at the final time step are constrained to be the
target states |yy) = [Yf) = Uly;) for all i (6e), where
U=X/2,Y/2,Z/2 denotes the target gate. Furthermore,
we impose the normalization constraint | (/] |1})|* = 1 for
all i, k (6g) to ensure the solver does not take advantage of
discretization errors in numerical integration. For the flux,
we have the initial condition ft a; = dua; = 0(6d). We also
enforce the boundary condition a@; = ay = 0 (6d), (6f) so
the gates may be concatenated arbitrarily. We impose the
zero net-flux constraint ftaN = 0 (6f) that mitigates the
inductive drift ubiquitous in flux-bias lines [77,109,110].
Additionally, the flux is constrained by |a;| < 0.5 GHz for
all k£ (6h) to ensure the two-level approximation remains
valid (3). Above 0.5 GHz, the relationship between the
energy levels and the flux becomes strongly nonlinear. All
gates presented in this work satisfy these constraints to a
maximum violation of approximately 1078,

The cost function at each time step is €4 (X, ug) = (X —
x7) Ok (Xx — X7) + u/ Ryuy, where Oy and Ry, are diagonal
matrices of hyperparameters that assign weights to cost
function contributions. The O term penalizes deviations
from the target augmented state xr = (¥, ¥1,0,0,0)7,
which is consistent with the constraints we have imposed
on |¥y), [, ay, and ay. Accordingly, this term penalizes the
squared difference of v} and ¥, and penalizes the norm
of ftak, ay, and dya;. We penalize the squared difference
of the final and target quantum states, rather than their
infidelities, because the Hessian of the squared-difference
cost function is diagonal—which makes matrix multipli-
cations fast—and we wish to optimize Z/2 gates, which
requires a metric that is sensitive to global phases for the
initial states |0) and |1). Additionally, the R; term penalizes
the norm of d?ay. Penalizing the norm of d?a; and d,ay
makes a; smooth, which mitigates high-frequency arbi-
trary waveform generator transitions. Stated succinctly, the
optimization problem takes the form

N N—-1
minimize E (Xk — XT) TQk(Xk — XT) + E llkTRkllk
X150 XN
lll,l...,llN,l k=1 k=1

(62)

subjectto X4+ = f(xg, ug) forall £, (6b)
Y1) =10),  1v) =), (6¢)

/lal =aqa, =da; =0, (6d)

Yy) = lyp) foralli, (6e)

[aN =ay =0, (6f)

[(Wilvpl? =1 foralli,k, (6g)

lax| < 0.5 GHz forall &. (6h)

Next, we remark on our problem formulation. We put a
cost function at all time steps because it benefits the ILQR
solving stage [103]; although this may incentivize early
achievement of the desired gate, as in Ref. [18], we are
primarily concerned with achieving the gate at the final
time step, which the target-state constraint (6e¢) ensures.
Additionally, the target-state constraint requires the final
state to match the target state, including its global phase,
up to our chosen maximum constraint violation of approx-
imately 1073, If we did not impose this constraint, the
optimizer would be allowed to sacrifice the closed-system
gate error to achieve better performance on the other cost
functions, which is undesirable. To enforce a constraint in
standard QOC frameworks, the prefactor for the constraint
function is manually increased between separate optimiza-
tion instances until the constraint is satisfied [15,18,21],
which becomes infeasible for more than one constraint.
ALM automates these prefactor updates to find a solution
that satisfies all of the given constraints. Hence, ALTRO’s
ability to handle multiple constraints makes it an attractive
solver for QOC problems.

In extraordinarily difficult cases of QOC, it may be
impossible to obey the physics of the system and achieve
the desired gate [8], i.e., the dynamics constraint (6b) and
the target-state constraint (6¢) may be mutually unsatisfi-
able. In this case, the prefactors for the constraint function
terms in the ALM objective will tend to infinity—leading
to numerical instability—and the optimization will not
converge. To maintain a constrained approach in this situa-
tion, the maximum constraint violation for the target-state
constraint can be raised to a level commensurate with the
minimum acceptable gate error.
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Finally, for ALTRO’s first indirect stage, the augmented
states are obtained explicitly with the discrete dynamics
function, so the dynamics constraint and initial conditions
(6b)~6d) are satisfied by construction. In this stage, the
rest of the constraint functions (6e)—(6h) are added to
the objective in their isomorphism-equivalent form (4).
Conversely, for the second direct stage, all of the con-
straints (6b)—(6h) are used to define the projection onto
the constraint manifold, and the objective is unmodified.
Hence, the quantum states become free parameters that are
adjusted to satisfy the TDSE. Although the final solution’s
deviation from the TDSE is never more than the maxi-
mum constraint violation, we explicitly integrate the TDSE
when reporting gate errors to ensure accuracy. Exploring
the benefit of direct optimization approaches for QOC is
an interesting direction for future work.

IV. DEPOLARIZATION MITIGATION

In this section, we outline a method for optimizing the
flux to mitigate depolarization. For many superconducting
circuits, the depolarization time 7 is independent of the
control parameters, so the fastest possible gate incurs the
least depolarization error [111]. For the fluxonium, how-
ever, T is strongly dependent on the flux. We enable the
optimizer to trade longer gate times for longer 77 times,
or shorter 7 times for shorter gate times, by making the
gate time a decision variable. Additionally, previous work
has modeled the gate error due to depolarization by evolv-
ing density matrices under a master equation [43,111], or
evolving a large number of states in a quantum trajectory
approach [112]. We avoid the increase in computational
complexity required for these techniques by penalizing the
integrated depolarization rate in optimization.

The integrated depolarization rate is given by

Dy (1) = / T, ' a()]dr . (N
0

For the gates we consider here, where the gate time is
small compared to T, the integrated depolarization rate is
proportional to the probability of a depolarization event.
Additionally, the integrated depolarization rate is a rea-
sonable proxy for the gate error incurred because depolar-
ization errors are incoherent—they increase monotonically
in time without interference. The integrated depolarization
rate is appended to the augmented state (5) and its norm is
penalized in the Oy term of the objective by setting the
corresponding element of the target augmented state to
zero; see Eq. (6a). The time 7} as a function of the flux
is obtained by evaluating a spline fit to experimental data;
see Fig. 1(b).

Alternatively, modeling the depolarization with a master
equation approach would require adding density matrices
of size n x n to the augmented state, and a quantum trajec-
tory approach would require adding many states of size n
to the augmented state, where n is the dimension of the
Hilbert space. By contrast, the integrated depolarization
rate is a single real number; thus, the computational com-
plexity of evaluating this depolarization model does not
scale with the dimension of the Hilbert space.

To perform time-optimal control, we make the duration
between time steps a decision variable [78]. The square
root of the duration /At is appended to the augmented
control (5) and its square |At| is used for integration in
the discrete dynamics function. Although we constrain the
bounds of the duration between reasonable positive values
to maintain numerical stability, the optimizer may assign

@) s Z/2 (b) (©) 0.0 —
_—Z[2 / e
0.0 %%%%%%’ ~ ' \ 4+ . -2 / 107 | -
e 3 1075 7
-0.5 L i = —_- X2 /
0 10 20 i / 15
0.5 Y/2 ~3F 2 / 0~ 20-"" 40
’I\T 2 ) © . P
I e O / G2
T o5 ! ; =ar = / e i
0 4, 10 20 m Z2 E / e e
0.5 A Y2 £ / g
0.0 * X2 O // e
. ‘/‘
-0.5 . \ 0 ! 0.00 l&=———1 ' L
) 25 50 0.0 0.4 0 500 1000 1500 2000
t (ns) lal (GHz) Gate Count
FIG. 1. (a) Flux pulses for the numerical gates (dark blue) and the analytic gates (light pink). (b) The T interpolation function used
p g g ghtp p

in optimization. Circle markers indicate measured 7' times. Noncircle markers are plotted at the time-averaged absolute flux and the
time-averaged 7 time for each pulse. (c) Cumulative gate errors due to depolarization as a function of the number of gates applied.
Cumulative gate errors for the numerical Z/2 and Y/2 gates are indistinguishable. Inset shows log-scaled cumulative gate errors for

small gate counts.
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negative values to the duration for intermediate opti-
mization iterations, so this squaring approach maintains
positivity.

We analyze the effect of depolarization on the X /2, Y/2,
and Z/2 gates obtained with our numerical method and the
corresponding analytic gates presented in Ref. [77]. We use
the Lindblad master equation to simulate 7' dissipation
for successive gate applications, and compute the cumu-
lative gate error after each application; see Appendix A.
The gate error reported in this text is the infidelity of
the evolved state and the target state averaged over 1000
pseudorandomly generated initial states.

The flux pulses for the numerical gates are approxi-
mately periodic with amplitudes of about 0.2 GHz; see
Fig. 1(a). They are reminiscent of the analytically deter-
mined Floquet operations for a fluxonium described in
Ref. [113] and realized in Ref. [114]. The numerical gate
times are greater than the analytic gate times, but the
numerical flux pulses spend more time at larger flux val-
ues, achieving higher 7' times on average; see Fig. 1(b).
The single-gate errors for both the analytic and numerical
gates are less than 10~#, which makes them sufficient for
quantum error correction—a prerequisite for fault-tolerant
quantum computing [115—117]. However, the numerical
gates achieve single-gate errors about 5 times less than
those for the analytic gates, which tracks closely with their
relative improvement on the integrated depolarization rate
metric; see Appendix A. This advantage in single-gate
errors corresponds to a significant reduction in error cor-
rection resources [118,119]. Furthermore, for successive
gate applications, the gate error due to depolarization is
approximately linear in the gate count, which we expect
for ¢t « Ty; see Fig. 1(c). The gate error reduction for
large gate counts is important for noisy, intermediate-scale
quantum (NISQ) applications. These improvements are
significant given the constraints we have imposed on the
gates, and do not represent a fundamental limit to the
optimization methods we have employed.

V. ROBUSTNESS TO STATIC PARAMETER
UNCERTAINTY

We have formulated the QOC problem as an open-loop
optimization problem, i.e., we do not incorporate feedback
from the experiment into the optimization. However, the
precise device parameters will deviate from the parame-
ters we use in optimization, leading to poor experimental
performance. We combat errors of this form using robust
control techniques, making the state evolution insensi-
tive to parameter uncertainty. As an example, we mitigate
errors arising from the drift and finite measurement preci-
sion of the qubit frequency, which modifies the fluxonium
Hamiltonian (3) by f;, — f; + df;. We consider three robust
control techniques to accomplish this task: a sampling

method, an unscented sampling method, and a derivative
method.

A. Sampling method

The sampling method incentivizes the optimizer to
ensure that multiple copies of a state, each evolving with
a distinct value of the uncertain parameter, achieve the
same target state. Variants of this technique have been pro-
posed in the context of QOC [3,21,43,68]. For each initial
state, we add two sample states |*) to the augmented
state (5). The discrete dynamics function is modified so
the sample states evolve under the fluxonium Hamilto-
nian (3) with f; — f, + oy, for a fixed standard deviation
oy, of the qubit frequency, acting as a hyperparameter.
We penalize the infidelities of the sample states with
respect to the target state by adding a cost function to
the objective of the form 3, . by (1 — [(¥7|y/i)|?), where
by is a constant we supply. For this method, the stan-
dard orthonormal basis states are an insufficient choice
for the initial states. As an example, a Z/2 gate achieved
by idling at the flux frustration point (a; = 0 for all
k) will be robust to qubit frequency detunings for the
initial state |0) or |1) because the infidelity metric is
insensitive to global phases, but this gate will not be
robust for any other initial states. Therefore, we choose
the four initial states {|0),|1),(|0) + i[1))/+/2, (|0) —
1))/ V/2} [120], whose outer products span the operators
on the Hilbert space, and we refer to them as the operator
basis.

B. Unscented sampling method

Whereas the sampling method penalizes the deviations
of the sample states from the target state, the unscented
sampling method penalizes the deviations of the sam-
ple states from the nominal state [72—74]. Accordingly,
the cost function we add to the objective takes the form
Z,q (¥, — ¥ (¥, — Yi), where ¢, is a constant we
supply, ¥ is the evolved initial state (nominal state),
and v is a sample state that evolves under a modified
Hamiltonian similar to that in the sampling method. The
sample states are chosen to encode a unimodal distribu-
tion over the 2n elements of the nominal state, modeling
the uncertainty in the state as a result of the uncertainty
in the parameter. We use the unscented transform [75,76]
to accurately propagate the mean and covariance of this
distribution between time steps, or, equivalently, through
the transformation of the TDSE (1). Unlike the sam-
pling method, the cost function for the unscented sampling
method is sensitive to global phases. Accordingly, we do
not observe a performance increase when using more than
one initial state. A detailed procedure for the unscented
transformation is given in Appendix B.
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C. Derivative method

The derivative method penalizes the sensitivity of the
state to the uncertain parameter, which is encoded in the
Ith-order state derivative |8}qw) = 8}(/ [v). In the mth-order
derivative method, we append all state derivatives of order
1,...,m to the augmented state (5) for each initial state.
We obtain the state derivatives at each time step by per-
forming forward-mode differentiation on the TDSE (1).
For example, the dynamics for the first-order derivative
method are

ih 1Y) = HI), ®)

d
ih— 3, ¥) = Hdg ) + @ H)1). ©)

We integrate the coupled ODEs with exponential integra-
tors; see Appendix C. While the state |y) has unit norm,
the state derivatives |8fl‘-11p) need not, as is evident from the
nonunitary dynamics (9). We penalize the norms of the
isomorphism-equivalent state derivatives in the Q; term
of the objective by setting the corresponding elements of
the target augmented state to zero; see Eq. (6a). Intuitively,
this corresponds to penalizing the sensitivity of each state
element to the uncertain parameter. As was the case for
the unscented sampling method, we do not observe a per-
formance increase when using more than one initial state
for the derivative method. We present the runtimes of our
implementations of the three robust control methods in
Appendix D.

D. Comparison

We examine the gate errors due to a static qubit fre-
quency detuning for the Z/2 gates obtained with the robust
control techniques and the analytic Z/2 gate. To com-
pute the gate error, an initial state is evolved under the
fluxonium Hamiltonian (3) two separate times with the
transformations f, — f; & &f; at the stated qubit frequency
detuning &f;. The reported gate error is the infidelity of the
evolved state and the target state averaged over the two
transformations for each of 1000 pseudorandomly gener-
ated initial states. We set oy, /f, = 1% for the sampling and
unscented sampling methods.

The analytic gate corresponds to idling at the flux frus-
tration point a; = 0 for all k; see Fig. 2(a). Its gate time
1/4f, ~ 18 ns is the shortest possible for a Z/2 gate on
the device. The gate’s erroneous rotation angle 27 §f, /41,
is linear in the qubit frequency detuning, resulting in a
gate error that is quadratic in the detuning. At a one-
percent detuning |81, /f;| = 1%, the gate error is approx-
imately 4.7 x 107>, which is sufficient for quantum error
correction.

For the sampling method, the gate error at a one-percent
qubit frequency detuning does not decrease substantially
over the range of gate times, and begins to increase above
5 x 107> for gate times greater than approximately 50 ns;
see Fig. 2(b). Optimization results for the sampling method
reveal that it is typically able to achieve a high fidelity for
one sample %), but not the other | F), indicating that
it is difficult for the optimizer to make progress on both
objectives. For the unscented sampling method, the gate
error at a one-percent detuning does not decrease substan-
tially over the gate times, but it does reach a minimum

(a) (b) 5 (c) 1073
04rA —_— A
ga4rA m%%:)ﬁo%o@ DDQ:\]EB _ ;.
-04 [ O - -
04Fs =4 209,20 o oo al sl
& A 29 10 e
0.0 IO AA 7L ty
_ 04 % 3t A 5 Vv —18 ns
No04rU = A b A
S Ll - 4
o 00 o A‘ oA o 107°F 7 == 36 ns
o —04r O ool x ’. o e --=54 ns
0.4F D1 | ‘x A o - 72
0.0 © o n§
_oal U] % A A D1 A 0’0 1076 L
0.4 FD2 lre s ¢ p2 Ao
00— o N
-0.4 1 1 1 0 1 1 I 1 1 AALL 10-7 I L
0 10 20 30 20 30 40 50 60 70 0 1 2 3
t (ns) ty (ns) |6F,/f,| (%)
FIG. 2. (a)Flux pulses for Z/2 gates robust to qubit frequency detunings constructed with the analytic (4), sampling (), unscented

sampling (U), and the first- and second-order derivative methods (D1, D2). The flux pulses shown for the sampling, unscented sam-
pling, and derivative methods are optimized for twice the gate time of the analytic gate. (b) Single-gate error at a one-percent qubit
frequency detuning as a function of the gate time. Missing data points represent gates with a gate error greater than 5 x 107>, (c)
Single-gate error as a function of the qubit frequency detuning. The gate errors for the analytic and first-order derivative methods are
shown for gate times that are multiples of 1/4f, ~ 18 ns. The gate errors for the two methods are indistinguishable at the gate time

18 ns.
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(a) Flux pulses for X /2 gates robust to flux noise constructed with the analytic (4), sampling (S), unscented sampling (U),

and the first- and second-order derivative methods (D1, D2). (b) Cumulative gate error due to 1/f flux noise for successive gate
applications. The cumulative gate errors for the sampling, unscented sampling, and the derivative methods are indistinguishable.

of approximately 3.9 x 107> near fractions of the Larmor
period: 2/4f, ~ 36 ns, 3/4f, ~ 54 ns, and 4/4f, ~ 72 ns.

The two derivative methods converge on qualitatively
similar flux pulses that idle near the flux frustration point
and use fast triangle movements at the boundaries, simi-
lar to the flux pulse produced by the unscented sampling
method. For both derivative methods, the gate error at
a one-percent qubit frequency detuning decreases super-
linearly in the gate time. For the first-order method, the
gate error at a one-percent detuning reaches 10~7 at the
Larmor period 1/f; ~ 72 ns; see Fig. 2(c). This result
mimics the ability of composite pulses to mitigate param-
eter uncertainty errors to arbitrary order with sufficiently
many pulses [56]. It is difficult to choose an appropriate
composite pulse for the problem studied here due to our
Hamiltonian and experimental constraints. A comparison
between composite pulses and numerical techniques could
be an interesting topic for future study.

Furthermore, the ability to perform Z-type gates in any
given time is critical for synchronizing phases in mul-
tiqubit experiments, where the qubits have distinct fre-
quencies. Notably, the analytic gate studied here cannot
be extended to gate times other than 1/4f,. We can find
gates using the numerical methods at all gate times at
and above 1/4f;; see Fig. 2(b). These numerical meth-
ods offer an effective scheme for synchronizing multiqubit
experiments.

VI. ROBUSTNESS TO TIME-DEPENDENT
PARAMETER UNCERTAINTY

An additional source of experimental error arises from
time-dependent parameter uncertainty. For many flux-
biased and inductively coupled superconducting circuit
elements, magnetic flux noise is the dominant source of
coherent errors, and therefore pure dephasing [121-124].

Flux noise modifies the fluxonium Hamiltonian (3) by
a(t) — a(t) + Sa(t), where Sa(f) is the flux noise. The
spectral density of flux noise is observed to follow a 1/f
distribution [77,121—126], so the noise is dominated by
low-frequency components. The analytic gate considered
here takes advantage of the low-frequency characteristic
and treats the noise as quasistatic, performing a gener-
alization of the spin-echo technique to compensate for
erroneous drift [127,128].

We modify the robust control techniques presented
in the previous section to combat 1/f flux noise. The
unscented sampling method is modified so that the sample
states are subject to 1/f flux noise. The noise is gen-
erated by filtering white noise sampled from a standard
normal distribution with a finite impulse response filter
[129]. The noise is then scaled by the flux noise ampli-
tude of our device A¢ = 5.21udy, which implies that
04 = 2.5 x 107° GHz. In principle, we could modify the
sampling method similarly; however, we choose to sub-
ject the sample states to static noise a(f) — a(t) + o, for
comparison. The derivative methods require no algorith-
mic modification from the static case, but the TDSE is now
differentiated with respect to a(?) instead of ; as in Eq. (9).

We analyze the gate errors due to 1/f flux noise for
the X /2 gates constructed with the robust control tech-
niques and the analytic X /2 gate. To compute the gate
error, we evolve an initial state under the fluxonium Hamil-
tonian (3) where the optimized flux is modified, a(¥) —
a(t) + da(f). We generate the flux noise as we described
for the unscented sampling method. The reported gate
error is the infidelity averaged over 1000 pseudorandomly
generated initial states, each of which is subject to a dis-
tinct pseudorandomly generated flux noise instance. To
observe the effect of interfering coherent errors, we simu-
late successive applications of the gate constructed by each
method; we compute the cumulative gate error after each
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application; see Fig. 3. Both the analytic and numerical
gates yield single-gate errors sufficient for quantum error
correction. Despite converging on qualitatively different
solutions, the numerical gates perform similarly in the con-
catenated gate application comparison. Their gate errors
after 200 gate applications—approximately 11 s in dura-
tion—are two orders of magnitude less than the gate error
produced by the analytic gate. The 1/f flux noise is a sig-
nificant source of coherent errors in NISQ applications,
and these numerical techniques offer effective avenues to
mitigate it.

For qubit platforms where pure dephasing is caused by
high-frequency noise, i.e., noise that has a non-negligible
spectral weight at frequencies that are greater than the sam-
pling rate of the control pulses, it is unclear that pulse
shaping alone can ameliorate pure dephasing. In such
cases, applying the time-optimal control scheme we have
developed in Sec. IV to decrease the gate duration may be
an effective strategy to mitigate pure dephasing.

VII. CONCLUSION

We have introduced state-of-the-art trajectory optimiza-
tion techniques in the context of quantum optimal control,
enabling us to achieve tight tolerances for multiple con-
straints on the control fields and quantum states. Using
these capabilities, we have mitigated decoherence and
achieved robustness to parameter uncertainty errors on
a superconducting fluxonium qubit. We have proposed a
scheme for suppressing depolarization with time-optimal
control and the integrated depolarization rate model. The
computational complexity of evaluating this model is inde-
pendent of the dimension of the Hilbert space, enabling
inexpensive optimization on high-dimensional quantum
systems. We have also proposed the derivative method for
robust control that achieves superlinear gate error reduc-
tions in the gate time for the static parameter uncertainty
problem we studied. We have shown that the derivative,
sampling, and unscented sampling methods can mitigate
1/f flux noise errors—which dominate coherent errors for
flux controlled qubits. These robust control techniques can
be applied to any Hamiltonian, allowing experimentalists
in all domains to engineer robust operations on their quan-
tum systems. Furthermore, they can be used to achieve the
low gate errors required for fault-tolerant quantum com-
puting applications. Our implementations of the techniques
described in this work are available online [130].

ACKNOWLEDGMENTS

We thank Helin Zhang for experimental assistance and
Taylor Howell, Tanay Roy, Colm Ryan, and Daniel Weiss
for useful discussions. This work was made possible by
many open-source software projects, including but not
limited to: DifferentialEquations.jl [131], Distributions.jl
[132], ForwardDiff;jl [133], Matplotlib [134], NumPy

[135], TrajectoryOptimization.jl [78], and Zygote.jl [136].
This work is funded in part by EPiQC, an NSF Expedition
in Computing, under Grant No. CCF-1730449. This work
is supported by the Army Research Office under Grant No.
WO11INF1910016.

APPENDIX A: DEPOLARIZATION

We comment on the depolarization metrics and then
give our procedure for integrating the Lindblad master
equation. The integrated depolarization rate and the gate
error due to depolarization are compared in Table I for the
numerical experiment described in Sec. IV. The ratio of the
value obtained on the metric with the analytic technique to
the value obtained with the numerical technique is similar
across the two metrics.

We employ the Lindblad master equation to compute the
gate error due to depolarization. This equation takes the
form

d i v 1t
4=ty A LoLt — —(LiL., py). (Al
—p=—7l ,p]+2i:y< pLi = L] p}) (A1)

For depolarization, y. = T;', Ly = oF = (0, £ i0})/2.
Our device operates in the regime where Af < kgT such
that 7, = T_ = 2T, where T} is obtained at each time
step from the spline shown in Fig. 1(b). We obtain the T}
values in this spline by driving the qubit at the desired
flux bias and monitoring the resultant decay. For more
details on these measurements, consult Ref. [77]. Because
T, depends on the flux, so do the decay rates y.. Integrat-
ing the master equation with time-dependent decay rates
provides a heuristic for how gates might perform in the
experiment. This procedure may not be strictly correct
when decay rates change significantly on the time scale of
the relaxation time, which is the regime we are operating
in. Standard derivations of the Lindblad master equation
do not account for time-dependent decay rates [137]. A
more thorough treatment of this regime in future work
would unlock insights for quantum computing platforms
where decoherence is strongly dependent on the control
parameters.

In order to use exponential integrators, we employ the
vector (Choi-Jamiolkowski) isomorphism [138],

d%vec(p) = L vec(p), (A2)

L=-i1®H-H'®@1)+)

1

1
x (L;* ®L— 51 ®LIL —LILI® Jl)>, (A3)

where p = sz a;ili)(j| and vec(p) = Zi,j ;i li) ® |7).
Because the flux is constant between time steps due to our
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TABLE I.  Single-gate integrated depolarization rate (D) and single-gate error (GE) due to depolarization. Values are reported for
the analytic (4) and numerical (V) gates.

Gate Dy, (1079) Dy (1079) Dy4/D1y GE,4 (1079) GEy (1079) GE,/GEy
Z/2 5.745 1.149 5.000 0.888 0.185 4.791
Y/2 5.253 1.157 4.540 0.770 0.186 4.132
X/2 16.251 2.660 6.109 2.674 0.432 6.200

numerical discretization, the Hamiltonian and decay rates
are also constant between time steps. Therefore, the exact
solution to Eq. (A2) is

vec(pory1) = exp(AtLi)vec(por). (A4)
The vector isomorphism transforms (n x n) X (n X n)
matrix-matrix multiplications to (n> x n*) x n> matrix-
vector multiplications. For small n, we find that it is faster
to use an exponential integrator on the vectorized equation
than to perform Runge-Kutta on the unvectorized equation.
The latter requires decreasing the interval A¢; to maintain
accuracy, resulting in more time steps.

APPENDIX B: UNSCENTED SAMPLING METHOD

In this section, we outline the full unscented sampling
procedure. We consider a state ¥ € R?", an uncertain
set of parameters A € RY, and discrete dynamics v, =
f (Y, Ar). The nominal initial state is given by ¥ with an
associated covariance matrix P; € Si’ﬁr that describes the
uncertainty in the initial state. We use the notation S}
to denote the set of real, symmetric, and positive-definite
m x m matrices. By the positive-definite requirement, P,
must be nonzero even if the state-preparation error is neg-
ligible. The uncertain parameter has zero mean and its
distribution is given by the covariance matrix L; € Si n
at time step k. The zero-mean assumption is convenient
for deriving the update procedure. A nonzero mean can be
encoded in the discrete dynamics function f (Y, Ag).

The initial 4n + 2d sample states and initial 4n + 2d
uncertain parameters are sampled from the initial distribu-
tions,

(=)0 2)-

Here, 8 is a hyperparameter that controls the spacing of
the covariance contour. The “+” is understood to take
“+” for j € {1,...,2n+d} and “—" for j € 2n+d +
1,...,4n + 2d}. We use the Cholesky factorization to
compute the square root of the joint covariance matrix,
though other methods such as the principal square root
may be employed. The superscript on the matrix square
root indicates the jth column (mod 2n + d) of the lower

(B

triangular Cholesky factor. Then, the sample states are
normalized,

T

Yol

The sample states are propagated to the next time step,

(B2)

Wi =1 Wl W),

The mean and covariance of the sample states are com-
puted,

(B3)

B 1 4n+2d )
V2= 4n + 2d = v2, (B4)
1 4n+2d ) ~ ) ~
Pr= 3 DW= -y’ (BY)
j=1

The sample states are then resampled and propagated to
the next time step using Eqgs. (B1)~«(B3). Our choice of
sample states (sigma points) follows Eq. (11) of Ref. [75].
Prescriptions that require fewer sigma points exist [139].

APPENDIX C: DERIVATIVE METHOD

Here, we outline how to efficiently integrate the dynam-
ics for the derivative method using exponential integrators.
General exponential integrators break the dynamics into
a linear term and a nonlinear term. For example, the
dynamics for the first state derivative are

d i i
70V = =3 HIow) — S . H)[Y). (CD)

The linear term is L = —iH /} and the nonlinear term is

N = —(i/h)(8,H)|y). With piecewise-constant controls,
the exact solution to Eq. (C1) is

[03Vk+1) = exp(AtkLi) |9, V)
Aty
+ / exp[(Aty — LN (t + £)df. (C2)
0

General exponential integrators proceed by breaking the
integral in Eq. (C2) into a discrete sum, similar to the
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TABLE II.  Average runtimes in seconds for Z/2 optimizations
using the base, depolarization, sampling (§), unscented sampling
(U), and the first- and second-order derivative methods (D1, D2).

ty (ns)

Method 18 36 72
Base 0.155 £ 0.008 7.0+04 159+0.8
Depolarization 1.69 £ 0.08 “e

S 1.77 £ 0.09 48 +£2 280+ 10
U 75+4 340 £20 400 + 20
Dl 6.1£0.3 27+1 65+3
D2 15.7+0.8 17.3+£0.9 54+3

procedure for Runge-Kutta schemes. We use a simple
approximation known as the Lawson-Euler method [86],

[0, Wiq1) = exp(AtiLy) |0, Vk) + exp(AtgLi) Ny Aty.
(C3)

This method provides a good trade-off between accuracy
and efficiency, requiring one unique matrix exponential
computation per stage. Integration accuracy for the state
derivatives is not of the utmost importance because they
are used in the robustness cost function—as opposed to
the states themselves that are experimental parameters that
must be realized with high accuracy.

APPENDIX D: COMPUTATIONAL
PERFORMANCE

In this section we provide runtimes for our optimiza-
tions. The runtimes for the base optimization in Sec. III,
the depolarization optimization in Sec. IV, and the robust
optimizations in Sec. V are presented in Table II for
a Z/2 gate at gate times that are multiples of 1/4f, ~
18 ns. We performed optimizations on a single core of
an AMD Ryzen Threadripper 3970X 32-Core Processor @
3.7 GHz. Future work will parallelize the robustness meth-
ods using GPUs [18], which will enable fast optimizations
on high-dimensional Hilbert spaces.
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