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Supplemental Material

The growing amount of seismic data necessitates efficient and effective methods to
monitor earthquakes. Current methods are computationally expensive, ineffective
under noisy environments, or labor intensive. We leverage advances in machine learn-
ing to propose an improved solution, ArrayConvNet—a convolutional neural network
that uses continuous array data from a seismic network to seamlessly detect and local-
ize events, without the intermediate steps of phase detection, association, travel-time
calculation, and inversion. When testing this methodology with events at Hawai‘i, we
achieve 99.4% accuracy and predict hypocenter locations within a few kilometers of the
U.S. Geological Survey catalog. We demonstrate that training with relocated earth-
quakes reduces localization errors significantly. We outline several ways to improve
the model, including enhanced data augmentation and use of relocated offshore earth-
quakes recorded by ocean-bottom seismometers. Application to continuous records
shows that our algorithm detects 690% as many earthquakes as the published catalog,
and 125% as many events than the Hawaiian Volcano Observatory internal catalog.
Because of the enhanced detection sensitivity, localization granularity, and minimal
computation costs, our solution is valuable, particularly for real-time earthquake
monitoring.

Introduction
Recent advances in instrumentation have provided an expo-
nential increase in seismic data. Yet, detecting and localizing
earthquakes at scale remains expensive and inefficient.
Traditional earthquake detection methods used by many seis-
mic network operators (e.g., Allen, 1982; Withers et al., 1998)
do not perform well for small earthquakes in noisy environ-
ments. In addition, network operations often involve human
review of earthquake arrivals and time picks as well as iterative
tuning of hypocenter estimates. To improve detection, meth-
ods based on waveform similarity (matched filter or template
matching) have been developed and widely applied (e.g.,
Gibbons and Ringdal, 2006; Caffagni et al., 2016). Such efforts
have led to a great increase in the detection of small earth-
quakes, yielding rich details that enable the next generation of
analyses of earthquakes and faults (e.g., Ross et al., 2019).
These methods are, however, computationally expensive and
limited; detection only works for earthquakes that share similar
waveforms and thus likely have the same source regions and
mechanisms of the template events.

In the past few years, convolutional neural networks
(CNNs) have been adapted for earthquake detection and loca-
tion. One common feature shared by CNN approaches is that

once the model is trained, it is far more computationally effi-
cient than the waveform-similarity-based approach (Gibbons
and Ringdal, 2006; Yoon et al., 2015) when it is applied to
new data, an advantage important for seismic network oper-
ations, particularly during periods of intense seismic activities.
Perol et al. (2018) introduced a CNN model for earthquake
detection and localization based on waveforms at individual
stations. The localization was limited to a few subregions.
Lomax et al. (2019) and Mousavi and Beroza (2020) developed
CNN models for rapid earthquake characterization using sin-
gle-station waveforms. Dokht et al. (2019) extended the CNN
earthquake detection in the time-frequency domain. Other
studies focused on seismic event or phase detection and pick-
ing of arrival times, which were then used in traditional travel-
time-based localization (e.g., Kong et al., 2016; Ross et al., 2018;
Zhu and Beroza, 2018; Wang et al., 2019; Zhou et al., 2019; Zhu
et al., 2019; Johnson et al., 2020; Walter et al., 2020).
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Kriegerowski et al. (2019) and Zhang, Zhang, Yuan, et al.
(2020) showed it is possible to use CNNs to locate earthquakes
without the intermediate step of phase picking and association;
however, the former depended on manually chosen arrival
times at a reference station, and the latter assumed that seismic
events had already been detected. Zhang, Zhang and Tian
(2020) extended the full convolutional network model of
Zhang, Zhang, Yuan, et al. (2020) to continuous data for earth-
quake early warning, though the event origin time was not a
direct output of the deep learning model. It was determined
instead by picking the first P phase and calculating the travel
time from the source location to the station location. Taking a
different approach, van den Ende and Ampuero (2020) used
graph neural networks with multistation waveforms to locate
earthquakes and estimate magnitude, though they too applied
it only to existing catalog events. Here, we present a framework
based on recent advances in deep learning for seamless,
automatic detection and 4D localization of earthquakes for con-
tinuous data from a seismic network without the intermediate
steps of phase detection and picking, phase association, travel-
time calculation, and inversion. Our approach builds upon pre-
vious work by using a network of seismic stations to first identify
if an earthquake has occurred, and if so, estimate the latitude,
longitude, depth, and origin time of the event.

Specifically, we propose a two-stage seismic-array-based,
CNN (ArrayConvNet) model where: (1) earthquake detection
becomes a supervised classification problem, and (2) earth-
quake localization becomes a supervised regression problem.
We train and test on data from 55 seismic stations on the
Island of Hawai‘i—our solution not only detects earthquakes
in the U.S. Geological Survey (USGS) catalog, but also un-
covers six times as many earthquakes as the published catalog
and 25%–61% more events than in the Hawaiian Volcano
Observatory (HVO) internal catalog. Once an earthquake is
detected, our model can locate an earthquake’s hypocenter
to within 3–4 km of the catalog. To the best of our knowledge,
this is the first deep learning model that can automatically
provide an earthquake catalog from the continuous data of
a seismic network. The deep learning model is highly computa-
tionally efficient, without phase picking, association, travel-
time calculation, and inversion. Finally, we outline several steps
that can be taken to greatly reduce the model localization
errors, making it a viable solution to improve the efficiency
and accuracy of seismic monitoring at much lower computa-
tional and human costs.

Data
The Island of Hawai‘i, US.A. is one of the most seismically
and volcanically active regions in the world, a fact that was
heightened by the 2018 eruption of Kīlauea Volcano (Neal
et al., 2019). HVO operates a permanent seismic network (the
network code HV) on the island, providing the earthquake
information and waveform data needed for this study. We

use 55 seismic stations on the Island of Hawai‘i (Fig. 1), includ-
ing stations in the HV and PT networks. Among them, 33 have
three-component (north, east, and vertical) seismometers,
while the rest have single, vertical-component seismometers.

Both the earthquake waveforms and noise segments are
downloaded from the Incorporated Research Institutions for
Seismology Data Management Center. For each earthquake,
a 50 s window is selected, and the trace start time is set ran-
domly between 1–10 s before the event origin time. The time
difference between the trace start time and the event origin
time, along with the catalog hypocentral location (latitude, lon-
gitude, and depth) are used to train the localization part of the
model (see the Method section). The noise segments are
chosen between the USGS reported earthquakes and are 10–
60 s before the origin time of an earthquake. We visually
inspect all noise windows and discard those with the possible
presence of unreported earthquakes in the segments. Because
the Hawaiian seismic networks have a variety of short-period
and broadband sensors, we remove instrument response from
the traces and transfer them to velocity seismograms to min-
imize the effects of different instrument sensitivities to ground
motion. The earthquake waveforms and noise are filtered
between 3 and 20 Hz and downsampled to a uniform sampling
rate of 50 samples per second on all channels. The frequency
range is chosen for optimum earthquake signal-to-noise ratios
(SNRs) based on visual inspection of earthquake waveforms
over a wide range of frequencies as well as previous studies
of the Hawaiian earthquake characteristics (e.g., Matoza et al.,
2014). All traces are normalized individually before they are
used as the inputs for the CNN model. For stations with miss-
ing records or that do not have three channels, we zero-fill the
missing channels.

Our ArrayConvNet model has two stages: (1) event detec-
tion and (2) event localization (see the Method section). Each
stage is trained on distinct training and test data sets.

Detection training and test data
We use 1843 analyst-reviewed earthquakes (Fig. 1) in the 2017
USGS Combined Catalog (ComCat, hereinafter the USGS pub-
lished catalog or published catalog) and 1905 noise segments.
The number of earthquakes is comparable to that in Perol et al.
(2018). The magnitude of the selected events ranges from 0.1 to
5.28 (ml or md). We note that HVO maintains an internal
earthquake catalog (hereinafter the HVO internal catalog or
internal catalog). The unpublished events are generally smaller
and recorded by fewer stations (see more discussion in the
Application to Continuous Hawaiian Seismic Data section).
For network training and testing, we avoid automatically deter-
mined earthquakes and use only the high-quality, analyst-
reviewed events in the published catalog.

We explored several ways of arranging the input trace data
for the detection model and chose the following approach
based on the robustness of the results when the model is
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applied on unseen, continuous data. For both earthquakes and
noise segments, we sort the 55 station traces in order of
the time of the vertical component’s largest amplitude and take
the absolute of the traces so all values are between 0 and 1.
Therefore, for an earthquake, we see a clear propagation of
earthquake arrivals through the seismic network in an easily
recognizable visual pattern (Fig. S1, available in the supple-
mental material to this article). The general pattern is consis-
tent from earthquake to earthquake, regardless of location and
magnitude (and thus SNR), as the wave always propagates
from the lower left to the upper right in the maximum-ampli-
tude-sorted waveform images (Fig. S1). For each sorted station,
the cross-station features (e.g., a strong P or S arrival) are adja-
cent or local in the time-and-trace-number space in a well-
defined trend. This is easier to learn for the convolutional ker-
nels, which often have a small size for computational efficiency.
In contrast, the unsorted waveforms arranged alphabetically by

station names do not have an
easy-to-follow pattern from
event to event. Depending on
the source–receiver geometry,
a station that has an early
earthquake arrival for one
event may have a late arrival
for the next event. The cross-
station features are highly var-
iable and may span the entire
time-and-trace-number space,
thus requiring a deep and large
network to capture. Following
the general practice in machine
learning, we define precision =
true positive/(true positive +
false positive) and recall = true
positive/(true positive + false
negative). Although the sorted
and unsorted waveforms do
not show substantial differ-
ences in terms of model preci-
sion, recall, and the receiver
operating characteristic curve
(Fig. S2), they yield significantly
different numbers of detections
when the resulting model is
applied to continuous data,
indicating differences in the
robustness of detection of small
earthquakes in noisy data; the
unsorted waveforms result in
higher number of false detection
from visual inspection of the
corresponding seismic traces.
Sorting by the maximum ampli-

tude is an imperfect proxy of the source–station distance as
variations in focal mechanisms and local scattering, which are
often unknown or poorly constrained for small earthquakes and
in a monitoring setting, may affect the amplitude. However, the
effect of this imperfect sorting on event detection is likely minor
as sorting only serves the purpose of organizing the traces in an
orderly fashion. Intuitively, the sorted waveforms have simpler,
lower-order features, which require less-complicated neural net-
works and thus less training data to achieve robust models.

Each input event is labeled with a “0” or a “1” to indicate
whether it is a noise or an earthquake event, respectively. This
now transforms detection into a well-understood classification
problem.

Localization training and test data
For the localization part of the model, we use the earthquake
locations and origin times from the same 1843 earthquakes in

Figure 1. Map of the seismic stations (red triangles) and earthquakes (small circles) used in the study.
The coast of Island of Hawai‘i is outlined by the gray contour, while topography and bathymetry are
contoured in 1000 m intervals. Blue lines represent the major Quaternary faults and fault systems
(Cannon et al., 2007). The inverted triangles and ML, K and MK stand for Mauna Loa, Kīlauea, and
Mauna Kea Volcanoes, respectively. The color version of this figure is available only in the electronic
edition.
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the 2017 published USGS catalog. We augment these original
waveforms by performing seven cuts of 50 s long waveforms
for the same earthquake, with each cut starting at a random
time between 1 and 10 s before the event origin time. The seven
cuts of each earthquake have the same hypocenter (latitude,
longitude, and depth) but different offsets between the trace
start time and the origin time. The total number of earthquakes
used to train and test the localization part is thus 12,901
(7 × 1843). Such data augmentation is commonly used in deep
learning (Wang and Perez, 2017) and, in our case, helps to
train the model to better localize the event origin time (see
more in the Discussion section), which is crucial when the
model is applied to continuous data.

Given the different units and scales for the hypocenter and
origin time, we normalize the latitude, longitude, depth, and
time values so that they are all comparable in magnitude
(within −1 to 1). For the hypocenter, we subtract a reference
location (latitude 19.5°, longitude −155.5°, and depth 0 km)
from the catalog location and then divide the depth by 50; for
the time difference between the trace start time and the origin
time, we divide by 10. Therefore, we avoid the situation where
one variable (e.g., depth) dominates the loss function.

Unlike the inputs for the detection part of the model, the
input traces for localization are arranged alphabetically by sta-
tion names. This is necessary as localization requires that the
station geometry remains a constant. We now may treat locali-
zation as a supervised regression problem.

Method
Network architecture
Traces for each event are arranged as a 3D tensor Z�c; s; t�. The
depths of Z for c ∈ f1; 2; 3g correspond to three channels of
seismic records, the rows for s ∈ f1;…; 55g represent various
stations, and t ∈ f1;…; 2500g represents the time index of trace
values. Inputs are then processed in a feed-forward stack of three
convolutional layers, followed by two fully connected layers that
in the detection model, output class scores and in the localiza-
tion model, output latitude, longitude, depth, and time offset
between the trace start time and earthquake origin time (Fig. 2).

After each convolutional layer, we use a rectified linear unit
layer to apply an element-wise activation function and then a
max pooling layer to perform a downsampling operation and
decrease the number of parameters. Convolutions are also
zero-padded to maintain input shape.

The kernel of the first convolutional layer has a dimension
of width of 9 and height of 1. The kernels in the second and
third layers have the same dimension of width of 3 and height
of 5. The motivation behind the 1D filter in the first layer is to
isolate learning of temporal features among the three input
channels of each station, as in Kriegerowski et al. (2019),
whereas the 2D filters in later layers are designed to extract
cross-station information. Pooling after the first convolutional
layer has a size of (1,5) with a stride of (1,5), while pooling after
the second and third convolutional layers has a size of (1,2)
with a stride of (1,2). Thus, pooling in our model is designed
primarily to downsample in the time dimension.

We note that our number of convolutional layers (3) and
the number of channels in each layer (4, 4, and 8) are substan-
tially smaller than in previous studies (e.g., eight convolutional
layers with 32 channels each in Perol et al., 2018). To deter-
mine the optimal network architecture, we explored a range of
the number of convolutional layers (2–5), number of channels
(2–32), and number of features or neurons of the first fully
connected layer (64–1024). Our guiding principle in selecting
the optimum models is to find the smallest network that yields
better or comparable results in detection precision. Fewer than
three convolutional layers and smaller than four channels per
convolutional layer yield lower precision, as the model may be
too simple to capture the full complexity of the data. Greater
than or equal to four convolutional layers, larger than eight
channels, and larger than 128 neurons in the first fully con-
nected layer yield detection precision comparable to that of
our preferred network, with the training loss far below (in most
cases more than an order of magnitude smaller than) the test
loss, which suggests overfitting.

Training the network
The two parts of the CNN model can be trained separately and
then connected for examining continuous data. For detection,

Input Conv1 + ReLu
Conv1 + ReLu

Conv1 + ReLu
Conv1 + ReLu

Input
Input

Pool1
Pool1

Pool1
Pool1

Pool1
Pool1

Pool1
Conv2 + ReLu

Pool2
Pool2

Pool2
Pool2

Pool2
Pool2

Pool2Conv3 +
ReLU

Pool3 FC1 FC2

Dimensions (3,55,2500) (4,55,500) (4,55,250) (8,55,125) (128)

(2) For
detection

(4) For
prediction

Figure 2. Architecture of array-based convolutional neural net-
work (CNN) model. Conv and ReLu stand for the convolutional
layer and rectified linear unit layer, wheras Pool represents max
pooling. FC1 and FC2 are the two fully connected layers.
Numbers within the parenthesis represent the dimensions of the
input or output data at the various stages. The color version of
this figure is available only in the electronic edition.
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we optimize the network parameters by minimizing a cross-
entropy loss function. This measures the average discrepancy
between our predicted distribution and the true class probabil-
ity distribution in the training set and is proven for standard
classification problems (e.g., Perol et al., 2018). For localiza-
tion, we optimize the parameters by minimizing a mean-
squared error loss between our predicted and given location
and time values.

Given our training data set, we are able to minimize our loss
functions using a batch approach. We use a typical 75%–25%
split for the training and test data sets, respectively. At each
training step, we feed a batch of 32 inputs to the network,
evaluate the expected loss on the batch, and update the net-
work parameters accordingly using backpropagation. We cycle
through all training data in batches as an epoch, and after each
epoch, we calculate the loss for both the training and test data
sets. This is repeated until the loss stops decreasing signifi-
cantly (80 epochs for both detection and localization, Fig. 3).

For optimization, we used the AdamW algorithm
(Loshchilov and Hutter, 2017), which builds on the well-known
Adam algorithm (Kingma and Ba, 2014) but separates the
weight decay from the learning rate. The result of this distinction
is that the weight decay and learning rate can be optimized sep-
arately and has been proven to substantially improve generali-
zation performance. For detection, we use the default learning
rate, 2 × 10−5; for localization, given the increase in training data
due to augmentation, we use a larger learning rate of 5 × 10−5.

Computational implementation
We implemented our ArrayConvNet model in Pytorch (Paszke
et al., 2019) and performed all model training, testing, and
application to continuous data on an iMac with a 3.8 GHz
8-core Intel Core i7 central processing unit and 128 GB
memory. Model training and testing in 80 epochs took about

1.3 and 5.7 hr for the detection
and localization parts of the
model, respectively. Application
of the model to 90-day continu-
ous seismic data took about
16.5 hr (see the Application to
Continuous Hawaiian Seismic
Data section).

Results
Detection
Within 20 epochs, both the
training and test losses decrease
rapidly and the test loss remains
small and relatively stable as
the number of epochs increases
(Fig. 3). For comparison, Perol
et al. (2018) used 32,000 epochs
to train their model. In Dokht

et al. (2019), it took over 10,000 epochs for the earthquake detec-
tion learning to approach an asymptotic and stable flatline. We
attribute the rapid learning of our model to, at least partially, the
relative simplicity of the network architecture.

Our detection accuracy on the test data, defined as the
percentage of events that are correctly classified as an earth-
quake or noise, is 99.4% at 0.5 classification (probability) thresh-
old for earthquakes. Between 0.5 and 0.7 classification threshold,
the precision is 99.6% while recall is 99.2%–99.0% (Fig. 4 and
Fig. S2). Above 0.7 classification threshold, the precision is 100%
while recall is 99%–98%, suggesting that above this detection
threshold ArrayConvNet does not label any noise as earth-
quakes, at least in the test data, and rarely misclassifies earth-
quakes as noise. For comparison, the precision and recall
reported by Perol et al. (2018) are 94.8% and 100%, respec-
tively, and those by Dokht et al. (2019) are 99.6% and 99.9%,
respectively.

Localization
Similar to the detection part of the model, the training and test
losses of the localization part of the model decrease rapidly
within 20 epochs. While the training loss continues to decrease
toward zero with increasing epochs, the test loss remains flat-
lined (Fig. 3), suggesting that the network has enough neurons
or complexity to fit the training data nearly completely, but
uncertainty or random noise in the data keeps the test loss
at a certain level; more epochs or a larger network likely would
not improve the fit of the test data.

Overall, our model is able to predict the location of an
earthquake in the test data within 0:08� 4:5 km in the
north–south direction, 0:07� 4:1 km in the east–west direc-
tion, and −0:02� 3:5 km in depth (Fig. 5 and Fig. S3). The
values following the ± sign (and hereinafter) represent one
standard deviation. The difference between the predicted

Figure 3. Training (blue line) and test (red line) losses as the function of epochs for the (a) detection
and (b) localization parts of the model. It takes fewer than 20 epochs for both detection and
localization for the loss to decrease rapidly and for the test loss to approach a small and relatively
stable value. The dashed line marks zero loss. The color version of this figure is available only in the
electronic edition.
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and catalog origin times is −0:06� 0:81 s. Some of the location
and origin-time differences may be attributed to errors in the
USGS catalog. Synthetic tests by Zhang, Zhang, Yuan, et al.
(2020) show that adding a location error to the catalog location
results in their CNN model prediction error of a similar size.
Lin et al. (2014) relocated earthquakes with magnitude > 1:0
between 1992 and 2009, using a 3D velocity model and source-
specific station term corrections. Their resulting catalog thus
represents a subset of the HVO events with the best location
quality (Lin et al., 2014). Comparing the earthquake locations
in Lin et al. (2014) with the USGS catalog locations, we find a
lateral location offset of 1:1� 1:8 km and a depth offset of
1:0� 2:1 km. Hence, a significant portion of the hypocenter
location differences between our model predictions and the
USGS catalog may stem from errors in the training data
(see more in the Discussion section).

Application to Continuous Hawaiian
Seismic Data
Earthquake catalogs usually represent a subset of earthquakes
that occurred, with detection and localization limited by SNRs
in seismic records, number of detected stations, and other fac-
tors. The USGS catalog for Hawai‘i is no exception. Although
our ArrayConvNet performs well for the test data set (Fig. 4),
further tests on continuous data, combined with expert reviews
of the results, are required to evaluate its true efficacy.

For seismic network operators generating earthquake cata-
logs, one may wish to minimize false detection by using a higher
confidence threshold (Ross et al., 2018). Here, we follow this
approach using a probability threshold of 0.95 (95% confidence)
in the following discussion unless otherwise stated. Based on the
precision and recall characteristics (Fig. 4), the model should
rarely misclassify earthquakes as noise, and almost never iden-
tify noise as an earthquake at this confidence level.

We input continuous seis-
mic data from the same 55 seis-
mic stations in Hawai‘i, which
are unseen in the development
of our CNNmodel and prepro-
cessed in the same way as the
data used to train the models.
The model runs through the
data in 50 s long moving win-
dows at 3 s increments. When
the detection stage of the
model finds that the probabil-
ity of an earthquake is above a
specified confidence threshold,
we determine the exact 50 s
window for localization by
choosing the one that has the
highest detection probability
from the contiguous windows

above the threshold. We then feed the chosen window to
the localization stage and calculate the event location. To be
consistent with the localization training data, where traces start
1–10 s before the origin time, the declared event must also have
a predicted origin time within 1–10 s after the start of the
traces (Fig. 6).

Using a continuous data stream from January to March
2018, our model detects and locates 5547 earthquakes, which
is approximately 6.9 times the number reported in the published
USGS catalog (807). The HVO internal catalog lists 3440 events
with magnitude > 0:1 and 4434 events for all located events for
the same period (B. Shiro, personal comm., 2020). As a measure
of the sensitivity to the detection probability threshold, the
model detects and locates 5943 and 5042 earthquakes with
the probability thresholds of 0.68 and 0.997, respectively.

There is a weak correlation between the daily event num-
bers in the published USGS catalog and our model detection
(Fig. 7). The correlation is substantially higher (correlation
coefficient 0.68) between our model result and the HVO inter-
nal (all-event) catalog. On relatively quiet days when the daily
event counts are 20–30, the number of earthquakes in our
model is similar to that in the HVO internal catalog. On days
with more intense activities, our model detects and locates sub-
stantially more events than in both the published and internal
catalogs. For example, on 25 January 2018, our model yields
194 events versus 84 events in the internal catalog and 21
events in the published catalog. The events detected and local-
ized by our model have a similar epicentral distribution as
those of the HVO internal catalog events from January to
March 2018 (Fig. S4). The positive correlation in the daily
event numbers and similarity in the event distributions validate
the overall effectiveness of our model.

Visual inspection of the events in our model in the first
five days of 2018 verified that all 254 events are earthquakes.

Figure 4. (a) Precision (red) and recall (blue) as a function of classification threshold for the CNN
model using the maximum-amplitude-sorted waveforms. (b) Receiver operating characteristics
curve (red line) for the model. The dashed line is for a model with no predicting skill. The color
version of this figure is available only in the electronic edition.
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In addition, we found that most but not all of the catalog events
are recovered by our model, consistent with the precision and
recall characteristics at the 0.95 threshold (Fig. 4), where the
model may rarely misclassify earthquakes as noise, but almost
never identify noise as an earthquake. On 10 out of 90 days,
our model contains fewer events than the HVO internal
(all-event) catalog. The missing ones are mostly low magni-
tudes (<0:7) and have low numbers of reporting stations
(<10) in the catalog. For example, on 22 March 2018 the
majority of the events listed in the HVO internal catalog
(78 out of 83) have magnitudes lower than 1.7, the nominal
magnitude cutoff for events included in the published USGS
catalog (B. Shiro, personal comm., 2020). Statistically, earth-
quakes with magnitude greater than or equal to 2.8 in the
published and internal catalogs are 100% recovered by our
ArrayConvNet model (Fig. S6). At the minimum magnitude
of 1.7, the event recovery rate is 90% and 88% for the published
and internal catalogs, respectively. At the minimum magnitude
of 0.7, the event recovery rate is 88% for the published catalog
and 75% for the internal catalog.

Discussions
As with any supervised machine learning, the more accurate
and greater the training data, the better the resulting model.
In our case, the training data can be improved in several ways.

The first way is to include the catalog earthquakes from the
many years of monitoring by HVO. We trained our model
using only the earthquakes from the published USGS catalog
in 2017. The HVO internal catalog contains several times more
earthquakes, most of them are smaller earthquakes with mag-
nitudes lower than 1.7. A greater number and a wider magni-
tude range of earthquakes plus a correspondingly large number
of noise (visually inspected or automatically screened to min-
imize the presence of earthquakes in the noise segments and
ensure the quality of earthquakes in the catalog) should further
improve the accuracy and robustness of the model.

The second way is to use relocated earthquakes with more
accurate locations (e.g., Got and Okubo, 2003; Wolfe et al.,

Figure 5. (a) Hypocenter locations of earthquakes from the U.S.
Geological Survey (USGS) catalog (black circles) and
ArrayConvNet model predictions (red crosses) in a 3D view
looking from the southwest direction. Clusters of earthquakes in
the catalog and model predictions are clearly visible. The
topography and bathymetry of the island are shown as a semi-
transparent surface. The coastline is marked by the white line. (b–
e) The histograms of the origin time, latitude, longitude, and
depth differences between the USGS catalog and our model
predictions, respectively. The color version of this figure is
available only in the electronic edition.
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2004; Matoza et al., 2013; Lin et al., 2014; Shelly and Thelen,
2019). Lin and Okubo (2020) relocated over 48,000 earth-
quakes between July 2015 and August 2018. With the caveat
that all the relocated events in Lin and Okubo (2020) are
onshore (Fig. S5), we found that using 1806 earthquakes in

the year 2017 relocated by Lin and Okubo (2020) to train
localization in the same way as we discussed earlier in this
article for the USGS catalog reduces the location difference
between the model prediction and the Lin and Okubo catalog
by 25%–45% (from�4:5 to�2:4 km in the north–south direc-
tion, from �4:1 to �2:5 km in the east–west direction, and
from �3:5 to �2:6 km in depth) and the origin-time differ-
ence by 13% (from �0:8 to �0:7 s), demonstrating the effects
of relocated catalogs with lower location errors (Fig. S5). For
offshore earthquakes, those located with additional ocean-bot-
tom seismometer records (Anchieta et al., 2011; Merz et al.,
2019) may see large improvements as the USGS catalog, which
is based on the onshore HVO networks, may contain higher
errors. Relocation of earthquakes recorded by the ocean-bot-
tom seismic array deployed shortly after the 2018 Kīlauea
eruption is currently underway (Wei et al., 2020). The results,
together with relocated earthquakes onshore (Shelly and
Thelen, 2019; Lin and Okubo, 2020), will be used to update
our ArrayConvNet model.

The third way is to use enhanced data augmentation.
Because of limited computing resources, we have not explored
the asymptotic limit of the number of cuts per earthquake in
improving localization. Our tests show that using seven cuts of
the same earthquake with random offsets between the trace
start time and event origin time improves the hypocenter
depth from the case with no data augmentation by more than
a factor of 2 (from �7:8 km to �3:5 km), and from the case
with three cuts per earthquake (�4:7 km) by 26%. This form
of data augmentation is clearly effective in improving localiza-
tion of (origin) time and reducing its tradeoff with the location
and the event depth in particular. Another computationally
more expensive form of data augmentation is to generate real-
istic synthetic earthquake waveforms that may account for
topography, 3D velocity heterogeneities, and attenuation (e.g.,
Wang et al., 2018). Such synthetic waveforms are Earth-model
dependent but have the advantage that the sources can be
placed anywhere, filling the gaps of the catalog earthquake
distribution.

Our model focuses on typical catalog earthquakes with
short-period and high-frequency energy. However, there are
volcanic and magmatic activities that generate long-period
(LP) and very-long-period (VLP) seismicity with frequencies
below the frequencies used in this study (e.g., Battaglia et al.,
2003; Dawson and Chouet, 2014; Matoza et al., 2014; Wech
et al., 2020). Because the frequencies of LP and VLP events
overlap with microseism, broadening the frequency range to
the LP and VLP frequencies may cause an overall decrease
of trace SNRs. We thus suggest that LP and VLP events should
be processed differently and modeled separately from the typ-
ical catalog earthquakes.

Our model assumes detection of a single event in a selected
50 s moving window (Fig. 2). After an event is detected and
located, the model moves the window forward by two intervals

Figure 6. Two examples of earthquakes detected using the
ArrayConvNet model in the first hours of 2018, which are not in
the published or internal catalogs. The (a) maximum-amplitude-
sorted and (b) unsorted vertical-component waveforms for
an event occurred a few seconds after 2018-01-01T02:46:41
(1 January 2018) (the trace start time). The sorted traces are
arranged from the top to bottom and are taken as absolute
values. The total window length is 50 s. Panels (c) and (d) are the
same as (a) and (b) for an event shortly after 2018-01-
01T02:51:18. The color version of this figure is available only in
the electronic edition.
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(6 s) and starts detection for the next event. In real earthquake
monitoring, multiple earthquakes may occur within a short
time frame. Such complexity is not considered in the current
model. One way to deal with overlapping earthquakes is to
expand the output of the neural network (Fig. 2) to include
cases with two or more events. For example, in the detection
stage, the output can have three or more elements with element
0 for noise, element 1 for a single event, element 2 for double
events, and so on. In the localization stage, the output can then
include the source location(s) and origin time(s) for one or
more events. The training data for overlapping earthquakes
can be synthesized from the addition of variably weighted
waveforms of catalog earthquakes.

Beyond these improvements to the model, we suggest that
this approach can be generalized for other areas. Although the
limitation of this methodology is the size of the training set and
number of stations, transfer learning may be applicable in this
context. Starting from an existing, well-performing model, it
is common to only retrain the last layers of the model and
apply it to a different application. Utilizing transfer learning
decreases the requirement of having thousands to millions
of labeled earthquake events to orders of magnitude less, mak-
ing our suggested methodology much more accessible. On the
other hand, as we demonstrated with the Hawaiian data, train-
ing of ArrayConvNet with different number of stations and
events requires only moderate computational resources that
are accessible to nearly everyone and it is straightforward to
re-train the network for different regions with different station
distributions. Thus, ArrayConvNet may be useful in other seis-
mically active locations where earthquake catalogs already exist.

The unique potential values of ArrayConvNet are: (1) its
computational efficiency, which facilitates real-time seismic

monitoring and makes it com-
putationally accessible to
nearly every seismologist;
(2) its sensitivity and robust-
ness in detecting and localizing
small earthquakes under noisy
conditions, which may enable
next generation of analyses of
earthquakes and faults (Ross
et al., 2019); and (3) its
independence from template
earthquakes (as opposed to
waveform-similarity-based
methods), which allows it to
uncover events with source
locations and mechanisms that
have not been cataloged before.

Data and Resources
The U.S. Geologial Survey (USGS)
earthquake catalog is obtained

from (https://earthquake.usgs.gov/earthquakes/search/, last accessed
March 2020). The Hawaiian Volcano Observatory (HVO) internal
catalog is provided by Brian Shiro. The waveform data are available
from the Incorporated Research Institutions for Seismology Data
Management Center (IRIS DMC; https://ds.iris.edu/ds/nodes/dmc/,
last accessed May 2020). Python codes and the trained models
are available at https://github.com/seismolab/ArrayConvNet (last
accessed November 2020). The supplemental material for this article
include six supporting figures mentioned in the main text.
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