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Abstract

Phase separation, in which macromolecules partition into a concentrated phase that is
immiscible with a dilute phase, is involved with fundamental cellular processes across the tree of
life. We review the principles of phase separation and highlight how it impacts diverse
processes in the fungal kingdom. These include the regulation of autophagy, cell signaling
pathways, transcriptional circuits and the establishment of asymmetry in fungal cells. We
describe examples of stable, phase-separated assemblies including membrane-less organelles
(MLOs) such as the nucleolus, as well as transient condensates that also arise through phase
separation and enable cells to rapidly and reversibly respond to important environmental cues.
We showcase how research into phase separation in model yeasts, such as Saccharomyces
cerevisiae and Schizosaccharomyces pombe, in conjunction with that in plant and human fungal
pathogens, such as Ashbya gossypii and Candida albicans, is continuing to enrich our

understanding of fundamental molecular processes.



29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

INTRODUCTION

Organelles are often bound by a lipid membrane that separates internal components from the
surrounding environment, but over the past decade multiple compartments have been identified in
which macromolecules are concentrated in the absence of a phospholipid membrane. Such membrane-
less organelles (MLOs) form by phase separation which involves de-mixing of a super-saturated
solution into a dense phase that exists together with a more dilute surrounding phase'. Many MLOs
have liquid-like behaviour consistent with liquid-liquid phase separation (LLPS), and their components

can undergo rapid exchange with the surrounding environment*?

. The physics of polymer systems
undergoing phase separation have been well studied through thermodynamic models such as the Flory-
Huggins theory*. When a polymer is mixed with a solvent, phase separation can occur above a crucial
concentration that depends on environmental factors (temperature, osmolarity, and pH) that alter the
effective favourability (free energy) of polymer-polymer interactions. MLOs that form via phase
separation take several forms, including liquid-like assemblies (via LLPS), semi-solid gels (with
viscoelastic behavior) and rigid fibrillar aggregates, and are associated with diverse cellular processes
throughout the fungal kingdom. A primer on the molecular forces underlying phase separation is
provided in BOX 1.

Here, we review the diverse roles of biomolecular condensates in model and pathogenic fungi,

including their function in autophagy, cytoskeletal organization and cell polarity, transcriptional

regulation of cell fate, and sensing and responding to the cellular environment.

Stress-induced bodies formed by phase separation

Stress granules (SGs) and processing (P) bodies are dynamic MLOs that assemble on mRNAs
stalled in translation (FIG. 1). Different SGs can form depending on the stress, which leads to the
release of mRNAs encoding heat shock and chaperone factors thereby enabling their translation and

stress adaptation®. P bodies are constitutively present in the cytoplasm and share components with
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SGs, but do not include translation initiation factors and instead sequester proteins associated with
mRNA decay®. SGs and P bodies therefore perform distinct functions, and these MLOs can also be
found docked against one another with mRNAs moving between them’. In S. cerevisiae, increased
temperature or depletion of specific nutrients triggers SG formation and is driven by high
concentrations of IDRs forming on mRNPs following stalled translation®. This causes the assembly of
condensates that then mature into a less dynamic, stable core that is surrounded by a liquid shell®.

Both yeast and mammalian SGs share a similar architecture, although a more extensive solid core in
yeast SGs makes them less dynamic overall®’.

S. cerevisiae poly(A)-binding protein Pabl is a canonical SG factor that contains four RNA
recognition motifs (RRMs) as well as a proline-rich disordered domain (P domain)>!°. Pabl phase
separates in vitro to form gels in response to physiological cues such as a reduction in pH or heat
shock®. RRMs promote Pabl phase separation through electrostatic interactions, while hydrophobic
interactions between P domains enhance this process®. A second S. cerevisiae SG protein, Pub1
(poly(U)-binding protein), is similar to Pab1 in that RRMs drive self-assembly while IDRs modify
condensate properties'!. Notably, Publ condensates show distinct material states depending on the
stress; purified Publ forms reversible, gel-like condensates in response to low pH whereas more solid-
like structures arise following heat shock, replicating observations with Pub1-containing condensates
in cells'!. Interestingly, only the more solid, thermally-induced condensates require the Hsp104
chaperone for dissolution'! (FIG. 1), indicating differences in the structural architecture of these
condensates. Heat-induced condensates formed by Pab1 are similarly dispersed by an active
disaggregation system consisting of Hsp40/Hsp70/Hsp104 chaperones which therefore helps cells
recover from heat shock'?.

P bodies function in RNA metabolism including mRNA storage/decay, and are also induced by
stress'>. These bodies are archetypal condensates with liquid-like properties both in S. cerevisiae and

in mammals, and several purified P body factors have been shown to undergo LLPS in vitro®'4',
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Multivalency in P bodies is achieved by interactions between folded protein domains, IDRs, and
RNA'™. The most highly enriched P body proteins in S. cerevisiae (Dcp2, Patl, and Edc3) partition
cooperatively into these bodies as well as promote P body assembly'® (FIG. 1). Importantly, these
studies suggest that only a few factors need to evolve LLPS capacity in order for MLOs to form'®. In
heavily stressed cells, the liquidity of P bodies is maintained by Hsp104 and loss of this activity results
in P body proteins entering into SGs, further highlighting how disaggregases determine the behavior of
stress-induced MLOs in the cell®.

A third class of stress-induced condensate in S. cerevisiae is the glycolytic (G) body, which
involves glycolytic enzymes assembling into gel-like condensates during hypoxia'”!®. G bodies enable
growth under hypoxic conditions when oxidative phosphorylation is unavailable, most likely by
concentrating glycolytic enzymes within condensates and promoting glucose consumption'®. G body
formation involves multivalent protein-protein and protein-RNA interactions and, as with other MLOs,
RNA may act as a scaffold for development of these bodies'”. Additional factors recruited to G
bodies include Hsp70 chaperones (Ssal/Ssa2) and the AMP-activated protein kinase Snflp, with the
latter necessary for G body formation'8. Analogous G-like bodies are present in human

hepatocarcinoma cells under hypoxic stress and where RNA enables the formation of these metabolic

bodies'®, suggesting conservation across eukaryotes.

Changes to the cellular environment that drive phase separation

Upon depletion of energy, S. cerevisiae and S. pombe yeast cells enter into a state of dormancy
associated with cytoplasmic acidification!>?°. The drop in intracellular pH occurs because culture
medium is acidic whereas the intracellular pH is neutral, and cells must expend energy to maintain this
pH difference?!?2. Energy depletion and intracellular acidification cause a number of cytoplasmic
proteins to assemble into microscopically visible foci or filaments'®?3. Under these conditions, the

yeast cytoplasm also transitions from its normal fluid state to a more solid-like state, which may be
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104  because much of the yeast proteome becomes less soluble and forms higher order assemblies'®-2%,

105  This response is not unique to yeast cells as bacterial cells similarly respond to glucose starvation by
106  transitioning from a glassy-liquid to a solid-like state, suggesting that these transitions are conserved
107  and promote adaptation to stress®>%,

108 The S. cerevisiae translation termination factor Sup35, long studied for its ability to form a

109  heritable prion, also forms condensates upon a drop in intracellular pH*®. Sup35 consists of an N-

110  terminal prion-like domain (PrLD; see BOX 1), a negatively charged middle (M) domain, and a C-

111  terminal GTPase domain that catalyzes translation termination. Franzmann et al. showed that the M-
112 domain acts as a pH sensor and causes Sup35 to form gel-like droplets following a stress-induced pH
113 reduction, and that droplets redissolve upon restoration of pH, both in vitro and in cells*. In contrast,
114 the Sup35 C-terminal domain forms irreversible aggregates during stress when expressed alone, as the
115  PrLD is necessary for preventing aggregate formation. Reversible gel formation appears to be the

116  ancestral role of Sup35, as the S. pombe ortholog cannot propagate as a prion but shares the ability to
117  form stress-induced condensates®®. Thus, most PrLDs (S. cerevisiae contains >200 proteins with such
118  domains) likely function to modulate phase separation or protein solubility rather than act as prions,
119  with the latter being the exception rather than the rule’’. Debate continues as to the relative importance
120 of S. cerevisiae Sup35 in forming condensates versus the prion state, with both roles being potentially
121  beneficial to this species®.

122 Related studies have demonstrated that increased macromolecular crowding can promote phase
123 separation events. Crowding agents such as polyethylene glycol have been extensively used to

124 increase effective protein concentrations and promote phase separation in vitro*. To examine how
125  macromolecular crowding influences behavior within cells, Delarue et al. performed microscopic

126  tracking of genetically encoded multimeric (GEM) nanoparticles®®. GEM:s consist of a fluorescent

127  molecule fused to a scaffold which multimerizes into particles of a defined shape and size. When

128  expressed in S. cerevisiae cells, the motility of GEMs was reduced in the relatively crowded nucleus
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compared to that in the cytoplasm?! (FIG. 2a). Using this system, increased mTORC]1 activity was
shown to increase macromolecular crowding due to an increase in ribosome number’® (FIG. 2b).
Ribosomes are a major cellular component (~200,000 ribosomes are present per yeast cell) and occupy
~20% of the cytosolic volume; an increase in the number of ribosomes therefore increased both
macromolecular crowding and phase separation of a cytosolic protein®®. These experiments establish
close links between ribosome concentrations, macromolecular crowding and phase separation in yeast,
with similar results obtained in a human cell line*®°. A recent study showed that increased
macromolecular crowding also occurs in energy-starved S. cerevisiae cells due to a reduction in cell
size, which in turn supports the formation of MLOs?**.

Taken together, these studies reveal that starvation can drive phase separation and
oligomerization of cellular factors due to both changes in intracellular pH and increased molecular
crowding. Recent experiments further show that hyperosmotic stress can also drive the formation of
intracellular protein foci (OSF; osmotic shock foci) which may represent liquid droplets formed upon
increased intracellular crowding®. Given that biocondensates arise in response to multiple stresses, it
is important to note that protein constituents can be shared between different stress-induced
condensates. For example, Sup35 and the SG protein Pabl partially colocalize in pH-stressed cells but
not in starvation-stressed cells?®. A key ongoing research question is to therefore determine what

controls the targeting of molecules to different stress-induced condensates in the cell.

The cytoskeleton, cell polarity and control of nuclear division

The cytoskeleton is a dynamic structure composed of filaments that undergo nucleation,
polymerization, and depolymerization. In both budding yeast and filamentous fungi, the polarisome
nucleates actin polymerization which involves the formin protein Bnil together with nucleation
promoting factor (NPF) and the scaffold protein Spa2****. In S. cerevisiae, polarisome proteins

concentrate at the bud tip via LLPS to nucleate actin assembly while remaining in exchange with the
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surrounding cytoplasm***. Xie et al. identified actin-interacting protein 5 (Aip5) as a factor that
synergistically promotes actin assembly with Bnil**. Intriguingly, the N-terminal domain of Aip5 is
an IDR that causes the formation of amorphous condensates in vitro, while addition of Spa2 to Aip5
assemblies turns these condensates into more dynamic, liquid-like droplets®**. It is therefore
envisaged that Spa2 prevents Aip5 aggregation during stress, which in turn enables condensate
dissolution and supports the restart of actin assembly during recovery from stress***> (FIG. 3a).
Ashbya gossypii is a filamentous fungus that is a plant pathogen and, like S. cerevisiae, belongs
to the family Saccharomycetaceae. A. gossypii has emerged as an important model organism for
studying cell polarity, filamentation and how asynchronous nuclear divisions occur within
multinucleated cells. Remarkably, the protein Whi3 has been linked to the regulation of both cell
polarity and the timing of nuclear divisions due to its ability to form RNA-dependent liquid droplets®-
38 (FIG. 3b). Whi3 establishes polarity at symmetry breaking points in the cell by forming condensates
with Puf2 that incorporate BNII and SPA2 RNA transcripts®®*’. In contrast, Whi3 droplets near nuclei
contain CLN3 mRNA (encoding for a G1 regulatory cyclin), and differences in the spatial distribution
of this transcript determine the timing of the nuclear divisions in multinucleate cells*®*®. Zhang et al.
showed that the presence of different mRNAs results in distinct types of Whi3 condensates, from more
liquid-like to more gel-like assemblies®®. These results therefore provide a striking example of how
RNA can impact the physical properties of biocondensates and can result in changes in their size,
shape, viscosity, surface tension and composition®®*° (also see BOX 2 for the central role of nucleic

acids in promoting phase separation).

Autophagy
Autophagy is the organized breakdown of components by the lysosome, and provides energy
and building blocks for cells to survive stress. This process involves formation of the Pre-

Autophagosomal Structure (PAS) on the cytoplasmic face of the vacuolar membrane, which nucleates
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assembly of a cup-shaped isolation membrane adjacent to the PAS that engulfs material in an

4041 S cerevisiae PAS formation involves five IDR-containing Atg (autophagy-

autophagosome
related) proteins that co-assemble into the ATG1 complex (FIG. 4a)***2. In starved cells, the TORC1
kinase is inactivated and Atgl3 becomes dephosphorylated (by PP2C phosphatases) and establishes
multivalent interactions with Atgl7 to form highly liquid droplets***}. Atg13 also interacts with the
Vac8 membrane protein to anchor ATG1 droplets at the vacuolar membrane where they fuse to form
one large condensate — the PAS***2, Within the PAS, Atgl is activated by autophosphorylation and
phosphorylates Atgl3, creating an equilibrium between phospho-Atgl3 in the dilute phase and its
unphosphorylated form in the condensed phase, which is important for maintenance of the PAS** (FIG.
4a). Formation of the cupped isolation membrane is not fully understood but is initiated by the
recruitment of Atg9-containing vacuoles to the PAS via interactions with Atgl3, and these vacuoles
then fuse to generate the isolation membrane**** (FIG. 4a). ATG proteins are conserved and phase
separation is likely to play related roles in autophagy in multicellular organisms and yeast, although
autophagosome formation is organized differently (both spatially and temporally) between these
species*!.

A distinct form of autophagy, selective autophagy, targets specific organelles and biomolecules
to the vacuole even under nutrient-rich conditions and also involves phase separation. S. cerevisiae
Apel is the principle cargo of a form of selective autophagy termed the cytoplasm-to-vacuole targeting
(Cvt) pathway*'*6. Apel contains an N-terminal propeptide that can form a helical structure and self-
assemble into dodecamers that then coalesce into semi-liquid droplets*®*®. Atg19 acts as a receptor for
Apel as it “floats” on the surface of Apel condensates and connects these condensates to Atg8/Atg21
(Fig. 4b)**8, Through these interactions, a shape change in the isolation membrane enables it to form
a phospholipid bilayer around Apel droplets and sequester them for degradation*’. Changing a single

amino acid in the Apel propeptide produced amorphous aggregates rather than gel-like droplets, and

these hardened structures failed to interact with Atg19/Atg8 or undergo autophagy*’. Similar results
9



204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

have been observed in the targeting of Caenorhabditis elegans P granule proteins for autophagic
degradation, where the gel-like state provides a suitable platform for engulfment by autophagosomal
membranes®. These results highlight how the material properties of condensates are critical for

determining the destination of cellular cargoes, both in fungi and higher eukaryotes.

Regulation of autophagy via sensing of reactive oxygen species

S. cerevisiae cells switched from a nutrient-rich medium to a minimal medium containing a
non-fermentable carbon source undergo autophagy even in the continued presence of nitrogen, which
can help cells maintain mitochondrial health during respiratory growth®. Tu and colleagues revealed
that reactive oxygen species (ROS) produced by high mitochondrial dysfunction under these
conditions are sensed by Pbpl, the yeast ortholog of mammalian ataxin-2°!2, Remarkably, Pbpl is
capable of undergoing phase separation in a redox-sensitive manner; this protein readily forms liquid-
or gel-like droplets in vitro but these droplets dissolve upon the addition of hydrogen peroxide®!. This
mechanism involves oxidation of methionine residues within the Pbpl LCR which therefore acts as a
reversible readout of mitochondrial respiratory status®!. Thus, Pbpl condensates form during high
respiratory growth and are poised to sense mitochondrial dysfunction and increased ROS levels, which
in turn results in activation of TORC1 and inhibition of autophagy (as a means of adaptation to
mitochondrial stress)*>**. These studies provide a striking example of how phase separation can be
tuned by key physiological signals such as ROS. It was subsequently shown that human TDP-43
(involved in the formation of neuronal granules) similarly forms redox-sensitive condensates®*,
highlighting how observations in S. cerevisiae led to the discovery of ROS sensing via phase

separation in higher organisms.

Phase separation as a mechanism for sensing carbon dioxide

Cells have evolved sensitive mechanisms to detect changes in the levels of carbon dioxide
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(CO2). In fungi, COz2 can affect multiple processes including mating, meiosis, phenotypic switching
and filamentation®®. Zhang et al. revealed that COz sensing in the opportunistic human fungal
pathogen Candida albicans involves condensates formed by Ptc2, a member of the PP2C family of
phosphatases®. Here, a serine/threonine-rich region within the IDR of Ptc2 enabled this protein to
undergo COz-induced phase separation, with CO2 envisaged as a “molecular glue” that bridges
interactions between Ptc2 molecules thereby stimulating condensate formation®. A related PP2C
phosphatase from plants showed a similar ability to undergo CO2-induced phase separation®,
indicating that this mechanism of environmental sensing (while uncovered in fungi) is likely conserved

across diverse eukaryotic species®.

Nuclear compartmentalization and heterochromatin

Phase separation plays a central role in the establishment of nuclear compartments such as the
nucleolus which houses ribosome biogenesis and ribonucleoprotein assembly. This organelle is
organized into three nested sub-compartments in higher eukaryotes; a core fibrillar center (FC) exists
inside a dense fibrillar component (DFC), which itself resides within the granular component (GC)>’.
These compartments represent coexisting, immiscible liquid phases — this layered, multiphase
architecture was reproduced in vitro as coincubation of a DFC protein with a GC protein generated
multiphase droplets®’. Here, IDRs within these proteins drive phase separation while RNA binding
domains contribute to the immiscibility of the protein phases®’. S. cerevisiae nucleoli have only two
sub-compartments>® and modeling suggests that ribosomal DNA (rDNA) is phase separated from bulk
chromatin due to crosslinks between rDNA repeats®, while nucleolar RNPs also undergo phase
separation®. Indeed, the combination of rDNA phase separation and tethering of rDNA repeats to the
nuclear envelope may explain the characteristic crescent shape of the yeast nucleolus®!.

Phase separation also controls the formation of transcriptionally repressed heterochromatin.

Pioneering work on heterochromatin protein 1 (HP1) in higher eukaryotes showed that it can undergo
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phase separation and recruit other heterochromatin-associated factors involved in transcriptional
repression®>%®. Constitutive heterochromatin is marked by trimethylation of lysine 9 on histone H3
(H3K9me3), and interactions between these marks and both HP1 chromodomains and SUV39H1
(which introduces H3K9me3 marks) are drivers of phase separation®. DNA polymers also contribute
to the properties of heterochromatin resulting in stable structures that resist mechanical forces, while
HP1 can exchange between condensate and non-condensate populations®®. Swi6, the S. pombe
homolog of HP1, similarly undergoes phase separation with reconstituted chromatin that contains
H3K9me3 marks, suggesting parallels between constitutive heterochromatin formation in yeast and
humans®. Related mechanisms may establish the formation of facultative heterochromatin in which
polycomb proteins form phase-separated condensates and are associated with chromatin that is

trimethylated on lysine 27 of histone H3 (H3K27me3)%%¢7,

Phase separation, transcriptional activation and super-enhancer-like elements

Multiple studies have observed that transcription factors (TFs) can assemble into phase-
separated complexes to activate gene expression®’2, Phase separation may occur preferentially at
mammalian super-enhancers (SEs), where high concentrations of TFs, Mediator complex and RNA
polymerase II (Pol II) span genomic regions >10 kb®-"%7? (FIG. 5a,b). Weak multivalent interactions
between TFs and coactivators together with structured interactions between TFs and DNA promote
phase separation’’. The sharply defined thresholds associated with condensate formation may underlie
unique SE properties such as their hypersensitivity to changes in TF levels®. Moreover, the de novo
assembly of a SE can be initiated by binding of a single TF to an enhancer, as exemplified by somatic
mutations that cause MYB binding and subsequent TAL1 overexpression in T-cell acute lymphoblastic
leukemia’.

Mammalian SEs have been linked to transcriptional regulatory networks (TRNs) that define

cell fate, where a core set of master TFs act in concert to control the expression of large numbers of
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target genes’*”. Intriguingly, fungal TRNs are also regulated by sets of master TFs operating at super-
sized regulatory regions (“SE-like elements”). Prominent examples of fungal TRNs include those
regulating pseudohyphal formation in S. cerevisiae, the temperature response in Histoplasma
capsulatum, biofilm formation and phenotypic switching in C. albicans, and the heat shock response
that is conserved from fungi to humans’®”®. The TRN regulating white-opaque phenotypic switching
in C. albicans has been extensively analyzed and involves eight master TFs that act together at SE-like
elements®®?! (FIG. 5c,d). The master white-opaque TFs are often recruited to SE-like regions even in
the absence of consensus DNA binding motifs, indicating they are likely recruited via protein-protein
interactions. These regulatory TFs contain PrLDs that enable them to undergo phase separation in
vitro, and mutations that block this process abolish their function, thereby linking phase separation to
the regulation of this TRN®2. Analysis of the heat shock response in S. cerevisiae similarly shows the
presence of SE-like elements at which transcriptional condensates are expected to form®-%4. Phase
separation and SE-like regions are therefore implicated in transcriptional regulation in both fungi and
mammals, as compared in TABLE 1.

Despite considerable interest in SEs it is currently unclear whether these elements are
functionally distinct from regular enhancers, and the role of phase separation in transcription is also
strongly debated®>%¢. Indeed, a recent study suggests that multivalent interactions can enable the
formation of mammalian TF “hubs” that promote gene expression, yet when hubs assemble into larger,
phase-separated condensates then gene expression is inhibited®’. These results support a “Goldilocks”
model whereby small changes in multivalent interactions can finely tune gene activation up or down,
but where formation of condensates results in transcription inhibition®”. Clearly, more work is required
in this exciting area and examination of gene context will be critical, with condensates potentially
enabling transcription at certain loci while restricting it at others. Additional technological innovations
are therefore needed to further dissect the role of phase separation in transcription, including improved

techniques to evaluate proteins by high resolution microscopy when expressed at endogenous levels in
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live cells.

Regulation of RNA polymerase II via phase separation
RNA Pol II contains a conserved, intrinsically disordered C-terminal domain (CTD) that
enables it to form condensates, as well as to co-phase separate with transcription factors and

transcriptional machinery®®!

. The longer length of the mammalian CTD relative to the S. cerevisiae
CTD (52 v. 26 heptad repeats) results in an increased propensity to undergo phase separation due to
stronger CTD-CTD interactions®®. CTD phosphorylation leads to dissociation of Pol II from Mediator
condensates (associated with transcription initiation) and recruitment into condensates containing
splicing factors’ (FIG. 5e¢). These transitions could involve direct maturation of Pol II-containing
condensates or Pol II exiting initiation condensates before recruitment to splicing condensates®?.
Related to this work, Quintero-Cadena et al. showed that Pol I CTD length correlates with
gene density in eukaryotes, and proposed that this domain serves as a molecular bridge for Pol II to be
recruited to active promoters, with longer CTD lengths enabling recruitment across greater distances®.
CTD length also modulated transcriptional bursting with longer CTDs leading to stronger and more
frequent bursts. Surprisingly, a truncated S. cerevisiae CTD was non-functional but function was

restored by fusion to phase-separating IDRs from human FUS or TAF15 proteins®

. Together, these
studies demonstrate that CTD-CTD interactions, as well as CTD interactions with TFs, coactivators,
and Mediator, assist the recruitment of Pol II for gene transcription.

RNA plays an integral role in transcriptional phase separation; low RNA levels increase the
formation of Mediator condensates whereas high RNA levels dissolve these condensates®®. This may
result in a feedback mechanism whereby transcription dissipates condensates and causes the
transcriptional bursts that are characteristic of this process’. Moreover, promoter-associated RNAs in

mammalian cells are likely bound by multiple RBPs that enable Pol II and cofactors to reach the

threshold levels necessary for phase separation®, and certain RBPs also promote Pol II release from
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initiation complexes to support transcription elongation®®.

Recent studies in S. cerevisiae have similarly shown that TBP associated factor 14 (Tafl4; a
component of TFIID and chromatin remodeling complexes) utilizes multiple interaction partners to
regulate transcription. Chen et al. demonstrated that a structured extra-terminal (ET) domain of Taf14
recruits co-factors via an ET-binding motif present on these partners’’. Moreover, Taf14 formed
condensates in vitro and binding partners could partition into these droplets, establishing that Taf14
can act as a scaffold to bring together co-factors and drive gene expression’’. While the formation of
phase-separated hubs is a recurring theme in transcription, Taf14 is, so far, an unusual example of a
transcriptional regulator that is reported to use only structured domains to scaffold multi-component,

phase-separated condensates’’.

Fungi as model species to study amyloid disease

In addition to endogenous phase separation phenomena, fungi have been used to model the
properties (and toxicities) of aggregative amyloids implicated in human disease’®"?. In many cases,
the precise role of condensate or amyloid formation in neurodegenerative diseases such as
Huntington’s, amyotropic lateral sclerosis (ALS), Alzheimer’s and Parkinson’s is uncertain, although
disease-causing mutations often increase amyloid formation in proteins associated with each
disease! %101,
Several aggregation-prone human proteins have been analyzed in S. cerevisiae, with high-
throughput screening used to identify new therapeutics that reduce amyloid toxicity!°>!%. Yeast have
also been invaluable is in studying disaggregases that can detoxify aggregation-prone proteins
associated with neurodegeneration. For example, S. cerevisiae Hsp104, or variants of this chaperone,
can not only act as disaggregases (or anti-aggregation activities) on endogenous proteins but are also

functional on human proteins associated with neurologic disorders despite metazoans lacking an

ortholog of Hsp104!9+1%5 Model fungi and yeast genetics therefore continue to be used to understand
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how aberrant phase transitions/aggregation can impact neurodegenerative diseases and to develop

therapeutic interventions.

Conclusions

Phase separation and the formation of biomolecular condensates play central roles in virtually
all aspects of biology, from ubiquitous cellular compartments to highly inducible assemblies. In fungi,
the formation of condensates is highly sensitive to cellular conditions and phase separation therefore
acts as an exquisite sensor of environmental cues, as evidenced in the responses to changes in pH, ROS
and COz levels. Outstanding questions with regards to phase separation and MLOs in fungi include a
better understanding of the molecular interactions that nucleate and stabilize phase separation; the
contribution of transient or stable secondary structures to condensate formation; understanding the
specificity by which proteins/nucleic acids are recruited to condensates; new tools to examine phase
separation of proteins at endogenous levels in fungal cells; determination of which small molecules
impact condensates; and developing therapeutic approaches including antifungal drugs based on
understanding of phase separation biology. Studies in fungi will continue to be at the forefront of this
field given the cell biological and genetic tools available in model fungi and the diversity of species

being studied both as model organisms and as plant and human pathogens.
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702

Super-enhancer
features

Mammalian super-enhancers

C. albicans super-enhancer-
like regions

Role in cell identity

Size

TF enrichment levels

Epigenetic marks

Sensitivity to TF
perturbation

703
704

705
706

707

Found to control cell identity and
differentiation in murine embryonic
stem cells (ESCs), multiple
immune cell type, and to contribute
to a broad range of cancers via
enrichment at genes with
oncogenic function.

Median size is > 8 kb, whereas
typical enhancers are ~700 bp.

Elevated TF binding at constituent
enhancers, increased cooperative
transcriptional activation, and
combined TF/coactivator
enrichment ~10-fold higher than
seen at typical enhancers.

Relatively high levels of acetylation
of histone H3 at lysine 27
(H3K27ac) are commonly used to
define super-enhancers,
sometimes in combination with
other criteria.

Highly sensitive — blocking binding
of just one coactivator, like BRD4,
can collapse entire super-
enhancer.

31

Extended regulatory regions are
required for white-opaque cell
fate determination and
additionally for control of biofilm
formation, whereby cells
transition between planktonic
growth and communal growth.
For the white-opaque TRN,
median size of upstream
intergenic regions is > 7 kb, while
average intergenic regions are ~
557 bp.

Master TFs bind together at
multiple positions across super-
enhancer-like regions (see Fig.
5), although quantitative analysis
of cofactor levels has not been
performed.

Unknown.

Highly sensitive — a small
increase or decrease in levels of
the Wor1 TF, for example, can
drastically alter white-opaque cell
fate switching rates.

Table 1. Comparison of super-enhancer features in mammalian cells with super-enhancer-like
elements in C. albicans cells. White-opaque and biofilm transcriptional regulatory networks (TRNs)

are used as examples of SE-like regulatory regions in C. albicans.
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Figure Legends

Figure 1. Stress granule and P body formation in response to environmental changes.
Extracellular stress such as heat shock or a sudden drop in pH leads to global inhibition of translation
and ribosome stalling. Stalled mRNAs are diverted to either P bodies or stress granules. Following
pH stress, stress granules dissolve spontaneously, whereas stress granules formed following
temperature stress require the assistance of Hsp40, Hsp70 and Hsp104. Subsets of mRNAs that are

concentrated in P bodies can either be degraded or exchanged with stress granules.

Figure 2. The effect of molecular crowding on phase separation.

a, Microrheology using self-assembling Genetically Encoded Multimers (GEMs) allows measurement
of intracellular crowding in the nucleus and the cytoplasm. Individual monomers consist of a
Pyrococcus furiosus encapsulin scaffold fused to a fluorescent protein and spontaneously assemble
into 40 nm spheres. The nucleus is a more crowded milieu than the cytoplasm and thus the random
thermal motion of GEMs is decreased. b, mTORC activation following starvation results in an
increased ribosome number. This increase in molecular crowding can increase phase separation of

cytoplasmic proteins. Adapted from *°.

Figure 3. Phase separation in polarized growth, cell asymmetry and nuclear divisions.
a, Spa2 localizes Aip5 to the S. cerevisiae bud tip, recruiting Bnil and nucleating actin filaments.
Stresses such as low pH or energy depletion result in Aip5 and Spa5 forming cytoplasmic condensates.
When both Aip5 and Spa2 are present, these condensates are rapidly disassembled following removal
of the stress. In the absence of Spa2, Aip5 forms more stable condensates that are not readily

4

disassembled and there is a consequent loss of viability following prolonged stress. Adapted from 3.

b, In 4. gossypii, mRNA binding protein Whi3 forms distinct protein/mRNA condensates. Whi3
32
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condensates formed with Bniland Spa2 mRNA are localized to the site of branch formation (symmetry
breaking) where they nucleate actin assembly. Whi3 droplets containing Cln3 mRNA form adjacent to

the nucleus where they regulate asynchronous nuclear division (cell cycle regulation). Adapted from >°.

Figure 4. Phase separation regulation of bulk and selective autophagy.

a, When nutrients are abundant, Atg13 is hyperphosphorylated by TORC1 kinase. Upon nutrient
starvation, Atgl3 is dephosphorylated by PP2C phosphatase enabling interactions with the Atgl7-29-
31 complex and the Atgl kinase which then coalesce into condensates. The resulting Pre-
Autophagosomal Structure (PAS) is tethered to the vacuolar membrane by interactions with Vac8. In
the newly formed PAS, Atgl auto-phosphorylates itself and hyper-phosphorylates Atgl3.
Cytoplasmic phospho-Atg13 is trafficked back to the PAS following dephosphorylation by PP2C.
Thus, Atgl and PP2C maintain an equilibrium of unphosphorylated and phosphorylated Atgl13 which
maintains the PAS. The PAS is also the site of Isolation Membrane formation, which in turn will
become the mature autophagosome. Inset, Following PAS formation, vacuoles containing ATG9 are
recruited and subsequently fuse to become the cupped isolation membrane, which grows to engulf
materials destined for destruction in the lysosome. b, Dodecamers of Apel undergo phase separation
and are degraded by selective autophagy in nutrient rich conditions. The Apel condensate is coated by
a shell of the Atg9 adapter protein which templates growth of Atg8-decorated isolation membrane.

Apel mutants which form aggregates are not engulfed. Adapted from 7.

Figure 5. Phase separation regulates transcription and fungal cell fate.

a, Coordinated binding of multiple TFs to regions upstream of their ORFs is often observed even
without consensus binding sites for these regulators, suggestive of recruitment by protein-protein
interactions. b, A phase separation model of transcription where TFs form condensates together with

the transcriptional machinery to regulate the expression of cell identity genes. ¢, C. albicans switches
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epigenetically between “white” and “opaque” phenotypic states. d, The white-to-opaque transition is
regulated by a TF network whose members bind to their own promoters as well as those of others in
the network, as indicated by the arrows. Adapted from ref 32. e, RNA polymerase II interacts with
transcriptional initiation or elongation condensates depending on the phosphorylation state of its C-

terminal domain (CTD).

Box 1. Molecular forces promoting phase separation

Multivalent interactions, in which a single component contacts multiple other components, are
critical drivers of phase separation. Multivalency can be achieved by proteins with intrinsically
disordered regions (IDRs) or can involve interactions between folded domains and short linear motifs

(SLiMs) that are sequence-specific recognition sites'1%6-109

. Prion-like domains (PrLDs) are a
particularly important class of IDRs and are defined by their sequence composition which is enriched
in uncharged polar amino acids and glycine similar to S. cerevisiae prions.

A “sticker and spacer” model has been developed to describe how phase-separating IDRs
interact. This simplified model defines “sticker" residues as those involved in electrostatic,
hydrophobic, cation—Pi or Pi—P1i interactions, while “spacer” residues do not contribute to
intermolecular interactions'®!1%, Attention has focused on aromatic residues as important “stickers”
that can form Pi-Pi interactions with other aromatic residues or cation-Pi interactions with basic

reSidueSlO7,109-lll

. The nature of the spacer residues also defines biocondensate properties with glycine
spacers promoting liquid behavior whereas glutamine/serine spacers promote solidifying of
condensates''’.

Overall, many residue types and intermolecular forces can contribute to phase separation, such

108,112,113

as hydrophobic contacts/amino acids that can drive condensation of IDRs . Formation of

transient structures (including B-sheets and intermolecular helical regions) can also increase self-
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assembly and condensation formation!'*11® In fact, one model proposes that transient structures are
intermediate events in the formation of labile B-sheet structures that drive LLPS''%11%  although this
model is contested' >,

Phase-separating molecules have further been designated as “scaffolds”, that are both necessary
and sufficient for phase separation, and “clients”, which can selectively partition into condensates but

do not phase separate by themselves!'?*!2!

. Condensation also can be coupled to the formation of a
system-spanning or “percolation” interaction network, although percolation networks can also occur

independently of phase separation'?2.

Box 1 Fig Legend. Weak protein-protein interactions and multivalency drive phase separation.
a, Phase separation occurs when protein concentration, osmolarity, temperature, and/or pH cross a
threshold where intermolecular interactions drive assembly into a dense phase that co-exists with the
surrounding dilute phase (adapted from ref !2). b, Higher valency due to a higher number of potential
interactions between two peptide chains promotes phase separation. ¢, A “sticker” and “spacer” model
for phase separation. Charged and aromatic “sticker” residues (larger balls) are distributed along a
polypeptide interspersed with stretches of polar, hydrophilic residues (smaller balls) that act as
“spacer” residues. d, “Scaffold” proteins have the capacity to undergo phase separation independent of
other factors due to their high valency. Scaffolds can recruit “client” proteins that by themselves are

not able to undergo phase separation under the same conditions.

Box 2. Protein-nucleic acid interactions drive condensate formation

Negatively charged nucleic acids can interact with positively charged proteins to drive phase
separation, a form of complex coacervation where multivalent nucleic acid-binding domains can
support condensate formation even in the absence of IDRs!?*. Single-stranded nucleic acids can also

participate in cation-pi or pi-pi interactions through exposed aromatic bases thereby supporting
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condensate formation, while recognition of nucleotide bases via hydrogen bonds is an additional
driving force for phase separation'?’.

RNA is a critical component of multiple condensates including stress granules, storage
granules, and various speckles, paraspeckles, nuclear speckles and transcriptional complexes. RNA
transcripts can directly seed the nucleation of condensates or can induce protein conformations that
promote condensation!?%12”. RNA levels can also tune phase separation of ribonucleoprotein (RNP)
condensates. For example, low RNA levels stimulate condensate formation by human FUS protein
while high RNA levels suppress condensate formation, and changes in RNA concentrations may

underlie aberrant LLPS structures and pathologic assemblies!?®

. While liquid condensates adopt a
spherical shape in the absence of external forces, certain RNP-containing condensates form highly
viscous structures, mesh-like assemblies or filamentous networks depending on the RNA substrates

involved, highlighting how various shapes and structures can arise via phase separation®*'%°,
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