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Supplemental Material

Our study is to build an aftershock catalogwith a lowmagnitude of completeness for the
2020Mw 6.5 Stanley, Idaho, earthquake. This is challenging because of the low signal-to-
noise ratios for recorded seismograms. Therefore, we apply convolutional neural net-
works (CNNs) and use 2D time–frequency featuremaps as inputs for aftershock detection.
Another trained CNN is used to automatically pick P-wave arrival times, which are then
used in both nonlinear and double-difference earthquake location algorithms. Our new
one-month-long catalog has 4644 events and a completeness magnitude (Mc) 1.9, which
has over seven times more events and 0.9 lower Mc than the current U.S. Geological
Survey National Earthquake Information Center catalog. The distribution and expansion
of these aftershocks improve the resolution of two north-northwest-trending faults with
different dip angles, providing further support for a central stepover region that changed
the earthquake rupture trajectory and induced sustained seismicity.

Introduction
The 31 March 2020 Mw 6.5 Stanley, Idaho, earthquake
occurred ∼115 km northeast of Boise and 30 km northwest
of Stanley, Custer County. The shaking lasted ∼10 s (Idaho
Geological Survey). However, no injuries and only minor dam-
age were reported because of the remote location of the earth-
quake. More details about the event are available in the Data
and Resources (Idaho Geological Survey).

The 2020 Stanley earthquake was close to the northern
extension of the late Cenozoic volcanic Basin and Range
Province (BRP; Gans and Bohrson, 1998), as well as the north
side of the Snake River plain (SRP) that covers most of the
major cities of Idaho (see the inset panel of Fig. 1a). In central
Idaho, the SRP also intersects with the Intermountain Seismic
Belt, which is an approximate north–south-trending seismic
zone that extends from northwest Montana over 1300 km long
and terminates in southeastern Nevada (Smith and Sbar, 1974;
Richins et al., 1987). Since 1960, there have been >70 earth-
quakes with magnitudes >4.0 within central Idaho (Fig. 1a).
The largest one, the 1983 Mw 6.9 Borah Peak earthquake,
occurred along the Lost River fault, which is a southwest-dip-
ping normal fault (U.S. Geological Survey). The 2020 Stanley
earthquake is the largest earthquake that has occurred in cen-
tral Idaho since the 1983 Mw 6.9 Borah Peak earthquake
located ∼100 km to the east.

The 2020 Stanley earthquake sequence extends across the
northwestern terminus of the Sawtooth fault (Fig. 1a), which
is a north-northwest–south-southeast-trending northeast-dip-
ping normal fault with a length of 55–65 km (Thackray et al.,
2013). To date, no strong evidence indicates that this earthquake
sequence is associated with the Sawtooth or any other mapped
faults within the study region. Yang et al. (2021) reconciled
observations from backprojection (BP) imaging, teleseismic
finite-fault inversion, and near-field Interferometric Synthetic
Aperture Radar (InSAR) analysis and then proposed that the
2020 Stanley earthquake ruptured a pair of opposing-dip faults
offset by a 10-km-wide step at the surface. They argued that this
event initiated north of the Sawtooth fault and ruptured
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southward, then stepped over to a southern subfault semiparallel
to the Sawtooth fault. They used this model to explain the 44%
non–double-couple components in the W-phase moment ten-
sor solution, which is estimated by the U.S. Geological Survey
National Earthquake Information Center (USGS-NEIC).

In this study, we further analyze the distribution and migra-
tion of aftershocks of this event to better characterize the
sequence occurrence and evolution. An aftershock catalog with
a low magnitude of completeness is important for studying
the ruptures of earthquakes and postseismic deformation within
rupture zones (Tajima and Kanamori, 1985; Enescu et al., 2007;
Peng et al., 2007). The USGS-NEIC (U.S. Geological Survey,
National Earthquake Information Center) one-month-long
aftershock catalog lists 662 events withmagnitudes ranging from
1.61 to 4.8 and has a completeness magnitude of 2.8 (see Text S5
and Fig. S12, available in the supplemental material to this
article). The current USGS-NEIC catalog provides limited infor-
mation about this complex rupture zone. Therefore, in this
study, we build a more complete aftershock catalog with accu-
rate location information to better study the complex rupture
process of the 2020 Stanley earthquake.

The procedure of locating aftershocks from continuous seis-
mic records consists of signal or event detection, P- and S-phase
arrival-time picking, association of picks, and event location. For
event detection, many effective approaches have been proposed.
One way is to use the short-term average/long-term average
(STA/LTA) (Allen, 1978; Withers et al., 1998; Saragiotis et al.,
2002; Nippress et al., 2010), which is a fast approach for char-
acterizing signal attributes from original waveforms, or one
can use higher order statistical characteristic functions for both
short and long windows, but this method fails to detect events in
the presence of strong background noise. Other approaches
include waveform autocorrelation (Brown et al., 2008; Gibbons
and Ringdal, 2010) and template matching (Shelly et al., 2007;
Harris and Dodge, 2011; Barrett and Beroza, 2014; Benz et al.,
2015; Ross et al., 2019; Zhou et al., 2021), which use catalog
events as templates to cross correlate with continuous waveform
records. These cross-correlation-based methods require enough
representative waveforms to thoroughly sample the overall
event population and are computationally expensive. Recently,
machine learning algorithms have been utilized to detect signals
from seismic events (Kortström et al., 2015; Li et al., 2018; Perol
et al., 2018; Mousavi et al., 2019; Tan et al., 2021). For instance,
Perol et al. (2018) demonstrated that convolutional neural net-
works (CNNs) have higher detection accuracy and lower com-
putation costs than previous methods. In this study, we use a
novel CNN with 2D time–frequency feature maps as inputs,
which have better performance than conventional 1D waveform
inputs (Mousavi et al., 2016; Dokht et al., 2019; Mousavi et al.,
2019), to automatically detect signals from aftershocks for the
2020Mw 6.5 Stanley earthquake. Then we apply another trained
CNN (Ross et al., 2018) to automatically pick P-wave arrival
times for the detected events. We then combine a global

optimization earthquake location algorithm with a double-
difference (DD) location method to improve the location of
aftershocks for the 2020 Stanley earthquake.

Data and Methods
Data selection and processing
From the latest USGS-NEIC catalog, we select 1568 events that
occurred within four months after the mainshock as the train-
ing dataset. Their magnitudes range from 1.1 to 4.8. Next, we
choose to set the length of the detection window as 20 s,
seeking no more than one event in each interval. We extract
vertical-component seismograms for these catalog events for
20 s long windows from four stations (GS.ID11, IW.PLID,
IE.DVCI, and US.HLID) that surround the mainshock as
denoted by the blue triangles in Figure 1a. We create the event
windows from the event times for station GS.ID11 and 10 s
after the event times for stations IW.PLID, IE.DVCI, and
US.HLID. In addition to the event dataset, we also build a noise
dataset that can be distinguished from events. Here, we use the
USGS Comprehensive Earthquake Catalog (ComCat) event
catalog (Benz et al., 2015) and remove catalog events to build
noise datasets. Finally, our training datasets include two classes
(events and noise) with different labels. Thus, the CNN can
convert the earthquake detection problem into a classification
problem.

Raw waveform preprocessing includes detrending, demean-
ing, resampling data to 100 samples per second, band-pass filter-
ing from 1 to 20 Hz, and normalization. We apply short-time
Fourier transform to convert all training waveforms into 2D
time–frequency feature maps to improve the training efficiency
of the CNN (Fig. S1).

CNN architecture for earthquake detection
Figure 2 shows the CNN architecture used in this study. The
input is a 2D time–frequency feature map with size of 2000 in
the time axis and 129 in the frequency axis. Between every two
layers, we use a 4D kernel w to perform convolution along both
time and frequency axes and then add a bias term b:

EQ-TARGET;temp:intralink-;df1;308;249ylc � σ

0
@XCl

c
0�1

X32
c�1

X3
t�1

X3
f�1

yl−1
c′

· wl
c′;c;t;f � blc

1
A; �1�

in which ylc denotes the output feature map in the convolution
layer l, for which l ranges from 0 to 8. c′ and c are the indexes for
input and output channels, respectively. For the 4D convolution
kernel wl

c′;c;t;f , the first two indexes denote input (c
′) and output

(c) channel numbers, and the last two indexes represent time (t)
and frequency (f). Cl is the number of input channels in layer l,
which is set as 32 for layer 1–8. Thus, w1 has the size of 1 × 32 ×
3 × 3 because there is only one channel for the initial input,
whereas w2;…;w8 have the size of 32 × 32 × 3 × 3. blc is the
bias term that has the same size as the output feature map
ylc. σ�:� is the ReLU (Rectifier Linear Unit) activation function,
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Figure 1. The seismotectonic setting of the study region and
characteristics of newly detected aftershocks. (a) Seismicity in
Central Idaho since 1960 is denoted by gray circles. The two
largest events (the 2020 Mw 6.5 Stanley earthquake and the
1983 Mw 6.9 Borah Peak earthquake) are shown as red and
yellow stars along with their U.S. Geological Survey National
Earthquake Information Center (USGS-NEIC) W-phase moment
tensor solutions, respectively. All triangles denote seismic stations
used in this study (more details about these stations are listed in
Table S1). The dominant tectonic features, Snake River plain

(SRP), Basin and Range province (BRP), and Intermountain
Seismic Belt are labeled in the top right inset map. (b) The
decaying curve of detected aftershocks with estimatedML > 2:0,
which is fit by the Omori law (Omori, 1894; Utsu, 1961). (c) The
relation between the estimated local magnitudes (ML) and
aftershock frequency for our new catalog. The black line is the fit
by the Gutenberg–Richter law (Gutenberg and Richter, 1944).
We estimate the completeness magnitude (Mc) as 1.9. Panel
(d) shows the estimated magnitudes (ML) over time for our new
catalog, the red line denotes Mc that we estimate in (c).
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which is used to avoid vanishing gradients and increase the non-
linearity of the networks (Hochreiter, 1991). We perform each
convolution computation by a stride of 2 (with zero padding);
therefore, each output channel is half the size of the input chan-
nel in both time and frequency dimensions.

After eight convolution layers, the initial input has been
downsampled into 4 × 1 with 32 channels. We have two differ-
ent classes of events (k = 0) and noise (k = −1). Then we use a
fully connected layer to flatten the final output as a 1D vector
y9 that includes 128 samples and add an additional convolu-
tion kernel w9 with the size of 128 × 2 and a bias term b9 to
compute the evaluation score for the specific class k:

EQ-TARGET;temp:intralink-;df2;41;288yk �
X128

c
0�1

X0
k�−1

y9
c′
· w9

c′k
� b9k: �2�

This score yk keeps information of the initial input feature
map learned by the CNN model. Finally, we apply the follow-
ing Softmax function to build a probability distribution P�yk�
for these two classes:

EQ-TARGET;temp:intralink-;df3;41;184P�yk� �
exp�yk�P

0
k�−1 exp�yk�

: �3�

The logistic function can project any input data into 0 to 1.
The Softmax function is a generalized probability distribution
function for multiple classes, which has been widely used for
classification problems in machine learning.

During the training process, we input a batch size 64 of train-
ing data into the CNN and compute the loss value ψ for each

iteration. We use the following cross-entropy loss function in
this study:

EQ-TARGET;temp:intralink-;df4;308;315ψ � −
1
N

XN
n

X0
k�−1

qnk log�pnk� � λ
X10
l�1

∥wl∥2; �4�

in which N is the number of training samples indexed by n, qk,
and pk are the true and predicted probabilities for class k. For
all classes, qnk � 1 when k equals the true label or qnk � 0 when
k is any other false label. For instance, if the nth sample’s
true label is −1, only the predicted probability pnk�−1 with
the true label (k = −1) can be kept because of qnk�−1 � 1, another
pnk�0 with the false label (k = 0) will be discarded. Furthermore,
we add an L2 regularization term into the loss function to mit-
igate the overfitting problem. λ is a constant used to balance the
regularization term with the cross-entropy function, which is set
as 10−3 in this study.

For the optimization method, we use the Adam algorithm
(Kingma and Ba, 2017) to update all trainable parameters
(w and b) and give a learning rate of 10−4. The learning rate
is an empirical parameter that determines the step size in each
iteration that moves the loss function toward the minimum

1

2 8

9

Figure 2. The convolutional neural network (CNN) architecture for
earthquake detection. There are eight convolution layers, and
each layer includes trainable kernels and biases (equation 1). The
final fully connected layer is used to reshape the feature map into
a 1D vector (equation 2). The Softmax function produces a
probability distribution function for two classes as events (k = 0)
and noise (k = −1) (equation 3).
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level. The training dataset contains 4121 positive samples and
261,760 negative samples. It takes >28,000 iterations to finish
the training process (Fig. S2). To validate the performance of
the trained CNN, we use validation datasets that include 527
positive samples and 16,512 negative samples, which achieve
the precision and recall of 99.6% and 91.9% for events and
noise, respectively (see Table S2).

P-phase picking
To locate the detected events, we select 19 stations in total and
pick P-wave arrival times for all available traces, which include
nine permanent stations and 10 local stations from the XP net-
work (stations are denoted as triangles in Fig. 1a; more informa-
tion about stations is listed in Table S1). For each detected event,
we use known aftershocks as templates to measure its peak sig-
nal-to-noise ratio (PSNR) for all available traces (stations) and
remove noisy traces with average PSNR values <15. (See the
method and an example in Text S6 and Fig. S4.) We only use
vertical-component seismograms for P-wave arrival-time picking
and apply the same preprocessing procedure for the training
dataset. We add additional 40 s following the detected event win-
dows to generate 60 s long picking windows for all traces.

Manually picking P-wave arrival times is a very time-consum-
ing task. Here, we utilize another trained CNNmodel (Ross et al.,
2018) to automatically pick P-wave arrival times (see the param-
eters of the CNNmodel in Table S3). This model has been trained
with 273,882 P-wave windows picked by experts from the
Southern California Earthquake Data Center. Because the trained
CNN model requires an input window that consists of 400 sam-
ples to control picking accuracy, we use the STA/LTA method to
approximately determine the middle point of each input window.
Then we extend the signal window as a 4 s long window from the
determined middle point. To evaluate the picking quality of the
trained CNN model, we consider the one-month-long USGS-
NEIC aftershock catalog for the 2020 Stanley mainshock as
the ground truth, then apply a 1D averaged velocity model
(Shen and Ritzwoller, 2016) to calculate P-wave travel times
for all 19 stations. To validate the trained CNN model, we use
another automatic phase picker tool: PhasePApy, which picks
with a dynamic threshold by processing the characteristic func-
tions of waveforms (Chen and Holland, 2016). Then we compute
travel-time residuals for these two pickers. Figure S3 shows the
trained CNN model allows us to achieve smaller bias and stan-
dard deviation compared with results from PhasePApy.

Combining P and S phases would usually allow us to better
locate earthquakes, especially for estimating focal depths and ori-
gin times (Gomberg et al., 1990). However, the S phases must be
correctly identified and measured; poor S data will lead to inac-
curate solutions even with robust location algorithms (Gomberg
et al., 1990). In addition, S phases can be better identified and
picked from horizontal components and require different
processing. In this study, we only use P phases because our detec-
tion and picking algorithms mainly handle these signals.

Relocation of aftershocks
After we use two well-trained CNNs to perform aftershock
detection and P-phase picking, we then use a global optimiza-
tion location program NonLinLoc (Lomax et al., 2000) to ini-
tially estimate locations for the detected events (see more details
in Text S1). This approach is based on the Bayes’ theorem:

EQ-TARGET;temp:intralink-;df5;320;665P�mjd� � P�m�P�djm�
P�d� ; �5�

in which m � �x; y; z; t0� represents the event’s hypocenter and
starting time, d � �t1; t2; t3;…; tn� are the observed travel times,
and n is the total number of measurements. We estimate a 1D
averaged velocity profile from a 3D crustal and uppermost man-
tle velocity model (Shen and Ritzwoller, 2016) to compute travel
times between each station and every potential source location
(see the velocity model in Table S4). Then we use the Oct-tree
searching method to sample the posteriori probability density
function (see Text S1). This procedure intrinsically provides
association of arrivals from common events and preliminary
location estimates.

We then apply a DD location technique (Waldhauser and
Ellsworth, 2000) to further improve the resolution of results
from the global search (see more details in Text S2). The
DD technique takes advantage of two events with relatively
small hypocentral separation compared with the event-station
distance and the scale of velocity heterogeneity. Thus, the
common travel paths for these two events can be eliminated.
Then the inversion will be mainly sensitive to the hypocentral
separation, which can be adjusted by fitting observed DD travel
times, that is, the travel-time difference between two earth-
quakes for the same station. This technique is very useful
for regions with a high-seismicity rate, which helps us to better
study complex geological structures and seismogenic zones
(Weller et al., 2012).

Results
Location of detected aftershocks
We select one-month-long vertical-component continuous
records after the mainshock for station XP.BANN as our test-
ing datasets. Since station XP.BANN was installed at 22:34:38,
1 April 2020 (Coordinated Universal Time, UTC), so we use
station IE.DVCI to supply records for the first day after the
mainshock (23:52:30, 31 March 2020). Here, we show four
examples of detected aftershocks that are not included in
the current USGS-NEIC catalog (Fig. 3a–d). We also provide
P-phase picking results from all available stations for these four
examples (Fig. 3e–h). For instance, Figure 3b shows a wave-
form and its 2D time–frequency feature map for a detected
event that occurs at 16:34:26, 4 April 2020, and Figure 3f
presents all traces after PSNR filtering for this newly detected
event. In addition, red bars denote the P-wave arrival times
picked by the trained CNN model, and the a priori weight
labeled at each trace works as the weighting factor in the
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following DD relocation (see details in Text S3). We can
observe the moveout trend of detected arrivals for all available
stations.

The first location method based on the Bayesian theory gives
us associations and initial location estimates for detected events.
After the first location, we remove events with semimajor uncer-
tainty axis lengths >10 km and those that are far away from our
study region. Then the DD relocation technique is utilized to
strengthen the links for pairs of events and remove weak link-
ages from the initial locations. (See the comparison between the
initial locations of detected aftershocks and ones after the DD
relocation in Figure S6 and an example of initial location uncer-
tainty in Table S5 and Fig. S7.) In the DD relocation, we assign
the a priori weights for all traces to represent the P-wave picking
quality (Fig. 3e–h). The a priori weights are set according to the
epicentral distances of stations because we find strong coherent
background noise for stations with long distances. During the
DD iterations, we use a total of 10 iterations. The first five iter-
ations for the initial weighting and next five for the reweighting,
in which the data are reweighted to significantly reduce the
residual. (See details about data weighting and reweighting in
Text S3 and the DD iterations in Fig. S8.)

The final relocated aftershocks are shown in Figure 4c. We
successfully relocate 4644 events within one month after the
mainshock. For comparison, we also present the locations of
662 aftershocks from the current USGS-NEIC catalog (Fig. 4a)
and their relocation with the DD technique (Fig. 4b). The
mainshock denoted by the red star in Figure 4 comes from
Yang et al. (2021). In addition, we use the same 1D velocity

model (Table S4) to calculate P-wave travel times for our
new catalog and use the same P-wave picking algorithm and
velocity model to process the USGS-NEIC catalog. Then we
compare travel-time residuals from these two catalogs. Here,
the travel-time fits work as another quality test for the new cata-
log, which demonstrates the self-consistency between event
origin times and locations. The travel-time residuals for our
new catalog satisfy a Gaussian distribution, with smaller mean
(0.05 s) and standard deviation (0.51 s) (Fig. S9) than the resid-
uals from the USGS-NEIC catalog (0.16 and 1.20 s) (Figure S3b).
From the new catalog, we observe a >40-km-long, north-north-
west-trending seismogenic zone (Fig. 4c). We characterize the
aftershock distribution as three main clusters: the northern lin-
ear cluster (labeled as C1 in Fig. 4c), the north-northwest-trend-
ing shorter linear cluster in the southern segment (labeled as C2
in Fig. 4c), and the central dense cluster (labeled as C3 in Fig. 4c)
that includes the relocated mainshock. Owing to our new cata-
log, we observe another branch that extends to the east, and we

(a) (b) (c) (d)

(e) (f) (g) (h)

L L L L

L L L L

Figure 3. Four examples of event windows detected from stations
IE.DVCI (event a) and XP.BANN (events b–d) that are not included
in the current USGS-NEIC catalog. (a–d) Their waveform
windows (top) and 2D time–frequency feature maps (bottom).
(e–h) P-wave arrival-time picks for all available traces. Station
codes and a priori weights for all traces are labeled at the left
side, and red bars mark the P-wave arrival times picked by the
trained CNNs (Ross et al., 2018). We also list distances between
each aftershock to stations at the right side. Estimated event
times and local magnitudes are shown in the title of each panel.
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approximate it as a possible cluster C4. We also observe a north-
northwest-trend linear distribution in the relocated USGS-NEIC
catalog (Fig. 4b), but it is difficult to delineate the central and
southern sections of the seismogenic zone because of its low
quantity and sparse distribution.

Statistical analysis of detected aftershocks
To better evaluate the relocated aftershocks, we use 19 stations to
estimate their local magnitudes (ML) (see themethod in Text S4).
We compare and evaluate our estimates using the same strategy
to recalculate ML for the USGS-NEIC catalog (see Text S4 and
Fig. S10). The Omori law and Gutenberg–Richter law are two
important empirical relations to describe the characteristics of
aftershock sequences following large earthquakes. The Omori
law (Omori, 1894; Utsu, 1961), N � C

�K�t�p, describes the decay
of aftershock activity with time after the mainshock. We fit the
Omori relation using ML > 2:0 aftershocks in our new catalog
and estimate the p-value as 1.54 (Fig. 1b), which is slightly higher
than the normal range of 0.9–1.5 in most natural cases (Utsu
et al., 1995). Furthermore, we estimate the completeness magni-
tudes (Mc) for both the one-month-long USGS-NEIC aftershock
catalog and our new catalog (see the method in Text S5). Mc is
commonly defined as the lowest magnitude for earthquakes that
can be uniformly detected in a space–time distribution (Rydelek
and Selwyn Sacks, 1989), so a lowerMc value indicates a catalog
with more complete magnitude range and reliable magnitude
estimates. Compared with the Mc � 2:8 for the USGS-NEIC
catalog (Fig. S12), our new catalog has an ML range from 0.5
to 4.5 and a lower completeness magnitude of Mc � 1:9. We
also fit the Gutenberg–Richter relation log�N� � a − b�M�
(Gutenberg and Richter, 1944) using aftershocks over Mc, as
shown in Figure 1c. From our new catalog, we estimate a b-value
of 1.18, which is less anomalous to the global average level (1.0)

compared with the 1.38 value inferred from the higher complete-
ness magnitude USGS-NEIC catalog (Fig. S12).

Spatial and temporal distributions of detected
aftershocks
To better investigate the expansion of aftershocks, we analyze
their spatiotemporal distribution. We first introduce the finite-
fault coseismic slip model from Yang et al. (2021), which
includes a northern fault plane F1 and a southern fault plane
F2 (Fig. 5a). The peak slip of ∼1 m is located near the stepover
of these two fault planes at a depth of 13 km (Yang et al., 2021).
We plot the aftershocks within the first seven days (black
circles in Fig. 5a), and the dense central cluster is consistently
located around the peak slip region. To better visualize the
aftershock distribution, we plot aftershocks in our new catalog
with estimated ML ≥ 2:0 (1217 events) in Figure 5b. There are
two main fault systems within our study region; one is the
north-northwest–south-southeast-trending northeast-dipping
Sawtooth fault (the orange curve in Fig. 5b), and the other
is the Trans-Challis fault zone (T-C faults, the gray curves
in Fig. 5b), which is a northeast-striking Eocene normal fault
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Figure 4. Aftershocks occurred within one month after the
mainshock. Panels (a) and (b) show 662 aftershocks in the USGS-
NEIC catalog before and after double-difference (DD) relocation,
respectively. Panel (c) presents 4644 detected events using the
CNN. Three well-defined aftershocks clusters are labeled as C1,
C2, and C3 in (c). The question mark in (c) represents an addi-
tional possible cluster C4, which is further discussed in the Results
and Discussion sections. The Quaternary Sawtooth fault is
denoted by an orange curve. The northeast-trending Trans-
Challis fault system (T-C faults) is mapped with gray curves. The
red star denotes the relocated mainshock from Yang et al. (2021).
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Figure 5. Spatial distributions of detected aftershocks with ML ≥
2:0 in the first month (1217 events) after the mainshock (red
star). (a) The finite-fault model from Yang et al. (2021), warm
colors represent large slips, and black circles denote aftershocks.
(b) The map view of the one-month-long aftershocks, events are
size-coded by their magnitude ranges. The gray box represents

the stepover region that is analyzed it in the Discussion section.
(c–h) Six vertical cross sections along three aftershock clusters C1,
C2, and C3, two small clusters S1 and S2. Aftershocks within the
two dashed boxes and within 3 km from four black dashed lines
are plotted on each cross section.
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system (Lewis et al., 2012). The northern terminus of the
Sawtooth fault reaches to our central dense cluster C3, whereas
the T-C faults cross the whole seismogenic zone in cluster C3
with a northeast trend.

Furthermore, we present six cross sections, which are along
the possible strike and dip directions of clusters C1 (L1,L1′) and
C2 (L2,L2′), and cross the central cluster C3 (L3, L4). Overall,
the aftershocks reach to shallower depths, especially for cluster
C1. Figure 5c,e shows the cross sections of clusters C1 and C2
along the strike directions. The aftershocks in cluster C1 have a
much denser and wider concentration than cluster C2, which is
supported by higher coseismic slip on F1 plane in Figure 5a.
Laterally, we observe a west-dipping trend consistent with the
fault orientation F1 inferred from finite-fault inversion by
Yang et al. (2021) even though there are some diffuse deep
events disturbing the dip angle (Fig. 5f). The overall west-dip-
ping trend probably indicates an unmapped fault plane. We fit
the west-dipping angle along the major linear trend as 72°,
which is in agreement with the estimates of 70°–74° for the
west-dipping fault (Liberty et al., 2020; Yang et al., 2021).
Besides the southern cluster C2, there is a small event cluster
(labeled as S2 in Fig. 5e,h), which is separated from the major
segment of cluster C2 (labeled as S1 in Fig. 5e,h) after the DD
relocation. This small cluster S2 is disconnected from S1 in the
relocated USGS-NEIC catalog and our initial global optimiza-
tion location (see Fig. 4b; Fig. S6a). It also has a possible
east-dipping trend (closer to the Sawtooth fault), which is differ-
ent from the steep dipping trend of S1 (see Fig. 5h). Therefore,
we consider S2 as a small separated cluster instead of one seg-
ment of cluster C2. Another two cross sections along L3 and L4
for the central cluster C3 cover twomajor branches of the Trans-
Challis fault system (Fig. 5b). The aftershocks along L3 (Fig. 5d),
including the relocated mainshock, have the densest concentra-
tion. The similar dipping trend with cluster C1 (Fig. 5f) indicates
that the primary north-northwest-trending and west-dipping
fault extends southward into the northern branch of the T-C
faults. In addition, we observe that all large aftershocks with
ML ≥ 4:0 are located along the T-C faults; three of them are near
the mainshock, and six are along the southern branch of the
T-C faults in cross-section L4 (see Fig. 5b,g). To further explore
the temporal evolution of detected aftershocks, we also color
code the one-month-long catalog by their occurrence times
in Figure S11. During the first month after the mainshock,
the sustained aftershocks (e.g., red circles) mostly occurred
within cluster C1 and extended southward into cross section
L3 (Fig. S11). Another concentration of sustained events extends
from cross section L4 to the east, which is approximated as clus-
ter C4 (Fig. S11). The temporal 3D evolution for the new catalog
can be found in the supplemental Video S1.

Discussion
Owing to the well-trained CNN architecture and two earth-
quake location methods, we successfully build a more complete

one-month-long aftershock catalog that has seven times more
events than the current USGS-NEIC catalog. This sequence is
decaying during the first month, with decreasing number of
larger events (Fig. 1d). In the first several hours of the sequence,
there is a clear reduction of lower magnitude events relative to
later time periods. So, any secondary events in the 20 s detection
intervals are predominantly events below the completeness mag-
nitude Mc level (Fig. 1d). We focus on the main activity in the
first month as this has the clearest relationship with the main-
shock faulting. By analyzing the spatiotemporal distributions of
our new catalog, we observe two linear aftershock clusters C1
and C2 that enable us to delineate a multifaulting system.
Cluster C1 delineates a northern north-northwest-striking and
72° west-dipping unmapped fault, which has an opposite dip-
ping trend compared with the east-dipping Sawtooth fault.
Cluster C2 probably delineates another northwest-striking and
steeply dipping unmapped fault in the southern seismogenic
zone and is close to the mapped Sawtooth fault. The central clus-
ter C3 spans the northern terminus of the Sawtooth fault, indi-
cating a complex seismicity zone in the crossover section
between clusters C1 and C2. This interpretation might be con-
sistent with the notion that recent slip and potential activity of
the Sawtooth fault are migrating northward (Thackray et al.,
2013). It is likely that the cluster C4 delineates some additional
west–east structures. The focal mechanisms in the central cross-
over section also suggest some normal faulting (Yang et al.,
2021). Thus, we conclude that cluster C4 likely delineates addi-
tional west–east faults, but it appears diffuse because of struc-
tural heterogeneity or other reasons.

Yang et al. (2021) combined BP images, InSAR ground defor-
mation, teleseismic finite-fault inversion, and one-month-long
USGS-NEIC aftershock relocation and proposed a multifault
rupture model, which includes a northern predominantly
strike-slip subfault with a strike of 162° and dipping to the south-
west, a southern predominantly normal subfault with a strike of
156° and steep northeastward dip, and a stepover (10 km wide at
the surface and narrowing with depth) that allows the rupture to
transition to the southern fault. Pollitz et al. (2020) also analyzed
the first two weeks aftershocks and geodetic data, then proposed
a faulting model. It includes a predominant south-southeast-
trending fault that accommodated most of coseismic slip and
inferred afterslip on two northeast-trending faults that may
represent reactivated fabrics of the Trans-Challis fault system.
In comparison, our new catalog further delineates the major
north-northwest-striking and west-dipping fault trend. We also
observe similar dipping trends between aftershocks in cross-sec-
tions L1′ and L3 (Fig. 5d,f), which indicate the major north-
northwest-striking fault may extend further southward and is
probably intersected by the southern branch of the Trans-
Challis fault system (cross-section L4). We note that the east dip-
ping of fault F2, defined in the finite-fault model of Yang et al.
(2021) (Fig. 5a), is different from the possible west-southwest-
steep dipping direction of our cluster C2 (Fig. 5h). One possible
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explanation is that the southern fault F2 has a shorter extension
(<10 km), compared with the northern fault F1’s ∼20 km exten-
sion, and it does not generate a wide aftershock zone within the
first month. Thus, we need more evidence to determine the accu-
rate dipping angle of the southern branch. Furthermore, we do
not resolve clear northeast-striking faults as inferred by Pollitz
et al. (2020), which correlate with the Trans-Challis fault system.

According to the earthquake rupture process determined by
the BP imaging technique (Yang et al., 2021), this event propa-
gated to the southeast ∼20 km. When it reached the vicinity of
the northwestern terminus of the Sawtooth fault at ∼4 s after the
origin, the rupture changed its trajectory to the southwest. After
a few seconds, the rupture continued propagating to the south-
east ∼25 km along a northwest–southeast-striking and steeply
dipping fault. This overall north-northwest rupture trajectory is
reinforced by our expanded aftershock catalog. From the spatial
distribution of aftershocks within the first month, we observe
there are six large aftershocks with ML ≥ 4:0 in cross section
L4, presenting a northeast–southwest-trending expansion along
the southern branch of the T-C faults (Fig. 5b,g); this has a quite
different trend from cluster C1. The absence of west-dipping
trend in cross-section L4 also indicates that the southeast earth-
quake rupture trajectory was changed at cross-section L4.
Therefore, based on the expanded aftershock analysis, we deter-
mine the stepover region covers the southern branch of the T-C
faults and northern terminus of the Sawtooth fault (represented
by the gray box in Fig. 5b), which changes the rupture of
the mainshock and induces strong seismicity. From the tempo-
ral evolution of aftershocks, besides the relocated mainshock
vicinity, the determined stepover region is steadily active during
the first month (more red circles in Fig. S11 and supplemental
Video S1). This sustained seismic activity, including the possible
cluster C4, also suggests that the stepover region contributes not
only coseismic slip but also possible afterslip during the first
month. Our analysis from the expanded aftershocks provides
additional support for the complex stepover region possibly
being related to old crustal fractures from the Trans-Challis fault
zone, which were dynamically reactivated by regional stress
changes from the mainshock (Liberty et al., 2020; Yang et al.,
2021). In addition, the peak slip rate (Fig. 5a) in cross sections
L3 and L4 indicate that the old fault reactivation accounts for the
earthquake rupture trajectory.

Conclusion
In this study, we transform event and noise datasets into 2D
time–frequency feature maps, which are used to train our neu-
ral networks. The trained CNN is used to detect potential
events within one-month-long continuous records after the
mainshock of the 2020 Mw 6.5 Stanley, Idaho, earthquake.
After detection, we apply another trained CNN to automati-
cally pick P-wave arrival times for the detected events. In
the study region, we use 19 permanent and local temporary
stations that surround the mainshock to locate the detected

events. With respect to the previous studies, our primary con-
tributions for this earthquake include (1) a more complete
(4644 events and a completeness magnitude Mc � 1:9) one-
month-long aftershock catalog; (2) a high-resolution geometry
for the north-northwest-striking, west-dipping north fault and
northwest-striking, steep-dipping south fault; and (3) further
documentation of the earthquake rupture trajectory and the
central sustained seismicity. This new aftershock catalog is
compatible with results from regional BP and coseismic slip
distribution analysis. It helps to constrain rupture details for
the 2020 Mw 6.5 Stanley, Idaho, earthquake.

Data and Resources
The supplemental material for this article includes a main supporting
material, our new detected and relocated one-month-long aftershock
catalog, and Video S1 for the spatial and temporal evolution of the
new catalog. All seismic data from the permanent networks (US,
IE, IW, and US) and temporary network (XP) are archived at
Incorporated Research Institutions for Seismology (IRIS). The con-
tinuous seismic records were downloaded and preprocessed using
ObsPy (Beyreuther et al., 2010). The USGS-NEIC earthquake catalog
was available at https://earthquake.usgs.gov/earthquakes/search (last
accessed November 2021). The original convolutional neural network
(CNN) architecture for earthquake detection was built by Perol et al.
(2018), and the library is available at https://github.com/tperol/
ConvNetQuake (last accessed April 2022). The CNN architecture
for P-wave arrival times picking was built by Ross et al. (2018).
Earthquake location programs were developed by Lomax et al.
(2000) and Waldhauser and Ellsworth (2000). The velocity model
for location was derived from Shen and Ritzwoller (2016). All figures
were plotted using Generic Mapping Tools (GMT) version 6.1.0
(Wessel et al., 2019) and Matplotlib version 3.3.0 (Hunter, 2007).
More details about the Stanley earthquake event are available at
https://www.idahogeology.org/geologic-hazards/earthquake-hazards/
stanley-earthquake (last accessed April 2022).
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