2022 1EEE International Conference on Quantum Computing and Engineering (QCE) | 978-1-6654-9113-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/QCE53715.2022.00127

2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

Modular Architecture for Classical Simulation of
Quantum Circuits

Aniket S. Dalvi*T, Filip Mazurek*, Leon Riesebos*, Jacob Whitlow*,
Swarnadeep Majumder* and Kenneth R. Brown*
*Department of Electrical and Computer Engineering, Duke University, NC 27708, USA
TEmail: aniketsudeep.dalvi@duke.edu

Abstract—Duke ARTIQ Extensions (DAX) provides a frame-
work for writing modular control software for ion-trap quantum
systems. DAX allows users to interface with the system at the gate
level using an intermediate representation called DAX.program.
However, DAX does not have the tools needed to simulate these
programs to see quantum state evolutions, as DAX only allows for
simulations at the device level. We propose a modular simulation
framework, DAX.program-sim (DPS), that can simulate quantum
programs at the level of quantum operations. This addition to
DAX for classical simulation of quantum systems is vital for
testing, benchmarking, and verification of quantum hardware.
The DPS pipeline is designed to have input identical to the
one that runs on the hardware. Our architecture allows flexible
backends for simulation, enabling both gate-level simulations and
pulse-level simulations with and without noise. We demonstrate
this unified workflow, executing the same DAX.program file in
simulation as well as on hardware. As a specific example, we
run benchmarking circuits using simulators targeting ion trap
quantum computers and compare them to hardware results of
the same circuits.

Index Terms—classical simulation, modular software, quantum
circuits, software testing, benchmarking

POSTER RELEVANCE

The work described by this poster primarily falls un-
der the conference topic of quantum software engineering.
We describe a modular software architecture used to build
a framework for simulating quantum circuits. The project
demonstrates a workflow of running a program on a physical
system and then using its noise model to run a noisy simulation
of the same program on the framework. This would provide
a pipeline that runs in parallel to the compilation stack of the
physical system and can be utilized to test, validate, and verify
experiments and calibration routines before they are run on the
hardware.

I. INTRODUCTION

Real-time control of quantum systems requires nanosecond
precision and efficient execution. Advanced Real-Time Infras-
tructure for Quantum physics (ARTIQ) [1] provides such a
real-time control system. However, ARTIQ requires the users
to interface directly at the device driver level. As experimental
setups get more elaborate, the portability of control systems
is vital. Duke ARTIQ extensions (DAX) [2], [3] builds upon
ARTIQ to provide a modular software architecture for the
control of experimental setups. It achieves this modularity by
adding abstraction layers such as modules (which interface

with devices), services (which interface with modules), and
experiments (which are written using the underlying modules
and services). This modularity allows for portability of code
between systems, and ease of use for users as they can now
write code at the experiment level. Apart from the experi-
ment level, DAX also allows high-level access to the system
through clients, which control the system through standardized
interfaces and can run portable experiments. Two such clients
that are of relevance here are DAX.program and the pyGSTi
[4] client. DAX.program allows users to write explicitly-
timed gate-level programs which will be compiled through
the layers of DAX to eventually run on the physical system.
Similarly, the pyGSTi client allows users to run protocols
such as randomized benchmarking (RB) [5], [6] and gate-
set tomography (GST) [7] on the physical system. However,
DAX does not have tools to simulate these clients at the
operation level to see quantum state evolutions, as it can only
do device-level simulations. The ability to do these operation
level simulations is important for testing and iterating over
experiments before running them on the physical system.

Our work, DAX.program-sim (DPS), adds a modular sim-
ulation framework to DAX for simulating quantum programs
at the level of quantum operations. The modularity of our
simulation framework is demonstrated by the ability to have
the input as either a DAX.program file or a pyGSTi client with
the provision to add additional inputs. The modularity of the
framework is further established by allowing multiple simula-
tion backends. Currently, DPS supports noisy statevector and
density matrix simulations using Qiskit [8] and Cirq [9], but
our architecture is built to interface with any user-provided
backend. DPS aims to create a tool to simulate realistic hard-
ware by providing the simulator with noise models extracted
from the system.

II. SOFTWARE ARCHITECTURE
A. Frontend

The frontend of DPS is the user’s entry point to the
simulation pipeline. There were two primary considerations in
designing this frontend. First, a DAX.program file or pyGSTi
client written to be executed on the hardware needs to run
identically on DPS, and the output after execution on the
simulation framework should have the same format as that
from the hardware. Secondly, although DPS is closely tied
with DAX, we wanted it to be a standalone component.

978-1-6654-9113-6/22/$31.00 ©2022 IEEE 810
DOI 10.1109/QCE53715.2022.00127

Authorized licensed use limited to: Duke University. Downloaded on February 08,2023 at 21:33:59 UTC from IEEE Xplore. Restrictions apply.

Keeping the above considerations in mind, a program can be
executed on DPS through the command-line interface (CLI).
The CLI instruction takes minimal arguments, like the file
to be run. Other more backend-dependent arguments like the
number of qubits, type of backend to use, and the noise
model are passed in through a configuration file. The DPS
frontend architecture independently constructs the required
DAX dependencies, parses the inputs and arguments, and
passes on all the appropriate information to the backend. The
frontend has been built to allow for different CLI commands
depending on the type of input.

B. Backend

The backend of the DPS architecture handles the actual
execution of the simulation. The backend has been divided into
two layers - the abstract backend and the specific backend.
The abstract backend is the piece that hides away all the
DAX and ARTIQ details that are required for execution.
It receives the backend-dependent input from the frontend
and passes it on to the specific backend. It also contains
performance optimizations on the operation and measurement
buffers which are backend-independent. A key piece that the
abstract backend hosts is the debugger. A vital use-case of
simulators is to analyze and verify code, and DPS provides
a debugging tool to this end. The debugger is built to give
the user access to intermediate outputs from the simulation
backend, and the control to flush operations and take a peek
at the buffers at any point in the program.

The specific backend is designed to be a minimal piece
that is required to handle three tasks. First, mapping the
gates exposed by DAX.program to their counterparts on the
simulation library being used. Second, handling the applica-
tion programming interface (API) calls required to execute
the circuit on the simulation library. And, lastly, exposing
the debugger object after appropriately linking it with the
simulation backend. The specific backend is designed to be
minimal to allow users to add backends based on their use
case. Currently, DPS supports noisy statevector and density
matrix simulations using Qiskit, a Qiskit backend optimized
for circuits that have no intermediate measurements and are
run over multiple shots of execution, and more recently a Cirq
simulation backend.

III. RESULTS

As mentioned earlier, we want to use DPS as a tool to
simulate realistic hardware by using the noise models extracted
from these systems in simulation. We were able to demonstrate
this functionality by comparing the results of the Direct RB
protocol between the hardware and simulator. First, the Direct
RB protocol was run on the physical system. These results
were used to extract the noise model of the system, which
was then used to run a noisy simulation of the same Direct
RB protocol on DPS. The comparative results can be seen
in Figure 1. The error rate of the hardware was found to be
6.98 x 1075, while that of the simulated result was found to
be 3.87 x 1075, which is within a factor of 2 of the hardware

811

100 L
0.98 1

0.96

094

092 { r exp = 6.98e-05 +/- 9.34e-04

pap | r_sim=3.87e-05 +/- 6.42e-04

Success Probabilities

0.88 pyGSTi fit (Exp) 3
—— pyGSTi fit (Sim)
¥ Experimental Data

¥ Simulation Data

0.86

0.84

T T
10t 107
RE sequence length

T T
10° 10°

Fig. 1. Results from running Direct RB on hardware and in simulation.

results. The error bars used in the plot are calculated using
the 10" and 90" percentile of the data as boundaries. The
difference in the comparative results between the simulator
and hardware can be explained by the constraints of defining
a noise model at the gate-level.

IV. CONCLUSION AND FUTURE WORK

With our modular simulation architecture - DAX.program-
sim, we have created a flexible and portable pipeline for
users to simulate their programs on multiple backends before
executing them on the physical system. We demonstrated the
closed loop infrastructure of running a program on hardware,
getting its noise model, and simulating the same program with
very comparable results.

However, to make this tool more powerful, it is vital to
add support for finer levels of input and more sophisticated
error models. We plan to do this by adding support for inputs
at the pulse-level and an analog simulation backend that will
simulate Hamiltonian evolutions. Adding these will give users
finer control over the operations they want to simulate, and
will also allow for more complex noise models that are a better
representation of the hardware. The addition of these tools will
help make DPS a test-bed for simulating and iterating over
experiments and calibration routines before running them on
hardware.

Authorized licensed use limited to: Duke University. Downloaded on February 08,2023 at 21:33:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1]1 S. Bourdeauducq, R. Jordens, P. Zotov, J. Britton, D. Slichter,
D. Leibrandt, D. Allcock, A. Hankin, F. Kermarrec, Y. Sionneau, R. Srini-
vas, T. R. Tan, and J. Bohnet, “Artiq 1.0,” May 2016.

L. Riesebos, B. Bondurant, J. Whitlow, J. Kim, M. Kuzyk, T. Chen,

S. Phiri, Y. Wang, C. Fang, A. V. Horn, J. Kim, and K. R. Brown,

“Modular software for real-time quantum control systems,” in 2022

IEEE International Conference on Quantum Computing and Engineering

(QOCE), 2022.

[3] L. Riesebos, B. Bondurant, and K. R. Brown, “Duke artiq extensions
(dax),” 2021. https://gitlab.com/duke-artiq/dax.

[4] Erik, L. Saldyt, Rob, J. Gross, tjproct, kmrudin, T. L. Scholten, col-
ibri coruscans, msarovar, kevincyoung, D. Nadlinger, pylonControl, and
R. Blume-Kohout, “pygstio/pygsti: Version 0.9.9.3,” Sept. 2020.

[S] E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and robust
randomized benchmarking of quantum processes,” Physical review letters,
vol. 106, no. 18, p. 180504, 2011.

[6] T. J. Proctor, A. Carignan-Dugas, K. Rudinger, E. Nielsen, R. Blume-

Kohout, and K. Young, “Direct randomized benchmarking for multiqubit

devices,” Phys. Rev. Lett., vol. 123, p. 030503, Jul 2019.

R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk, and

P. Maunz, “Robust, self-consistent, closed-form tomography of quantum

logic gates on a trapped ion qubit,” 2013.

[8] M. S. ANIS, H. Abraham, AduOffei, er al, “Qiskit: An open-source

framework for quantum computing,” 2021.

C. Developers, “Cirq,” Mar. 2021. See full list of authors on Github:

https://github .com/quantumlib/Cirq/graphs/contributors.

)
N

[7

—

9

—

812

Authorized licensed use limited to: Duke University. Downloaded on February 08,2023 at 21:33:59 UTC from IEEE Xplore. Restrictions apply.

