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Abstract—Duke ARTIQ Extensions (DAX) provides a frame-
work for writing modular control software for ion-trap quantum
systems. DAX allows users to interface with the system at the gate
level using an intermediate representation called DAX.program.
However, DAX does not have the tools needed to simulate these
programs to see quantum state evolutions, as DAX only allows for
simulations at the device level. We propose a modular simulation
framework, DAX.program-sim (DPS), that can simulate quantum
programs at the level of quantum operations. This addition to
DAX for classical simulation of quantum systems is vital for
testing, benchmarking, and verification of quantum hardware.
The DPS pipeline is designed to have input identical to the
one that runs on the hardware. Our architecture allows flexible
backends for simulation, enabling both gate-level simulations and
pulse-level simulations with and without noise. We demonstrate
this unified workflow, executing the same DAX.program file in
simulation as well as on hardware. As a specific example, we
run benchmarking circuits using simulators targeting ion trap
quantum computers and compare them to hardware results of
the same circuits.

Index Terms—classical simulation, modular software, quantum
circuits, software testing, benchmarking

POSTER RELEVANCE

The work described by this poster primarily falls un-

der the conference topic of quantum software engineering.

We describe a modular software architecture used to build

a framework for simulating quantum circuits. The project

demonstrates a workflow of running a program on a physical

system and then using its noise model to run a noisy simulation

of the same program on the framework. This would provide

a pipeline that runs in parallel to the compilation stack of the

physical system and can be utilized to test, validate, and verify

experiments and calibration routines before they are run on the

hardware.

I. INTRODUCTION

Real-time control of quantum systems requires nanosecond

precision and efficient execution. Advanced Real-Time Infras-

tructure for Quantum physics (ARTIQ) [1] provides such a

real-time control system. However, ARTIQ requires the users

to interface directly at the device driver level. As experimental

setups get more elaborate, the portability of control systems

is vital. Duke ARTIQ extensions (DAX) [2], [3] builds upon

ARTIQ to provide a modular software architecture for the

control of experimental setups. It achieves this modularity by

adding abstraction layers such as modules (which interface

with devices), services (which interface with modules), and

experiments (which are written using the underlying modules

and services). This modularity allows for portability of code

between systems, and ease of use for users as they can now

write code at the experiment level. Apart from the experi-

ment level, DAX also allows high-level access to the system

through clients, which control the system through standardized

interfaces and can run portable experiments. Two such clients

that are of relevance here are DAX.program and the pyGSTi

[4] client. DAX.program allows users to write explicitly-

timed gate-level programs which will be compiled through

the layers of DAX to eventually run on the physical system.

Similarly, the pyGSTi client allows users to run protocols

such as randomized benchmarking (RB) [5], [6] and gate-

set tomography (GST) [7] on the physical system. However,

DAX does not have tools to simulate these clients at the

operation level to see quantum state evolutions, as it can only

do device-level simulations. The ability to do these operation

level simulations is important for testing and iterating over

experiments before running them on the physical system.

Our work, DAX.program-sim (DPS), adds a modular sim-

ulation framework to DAX for simulating quantum programs

at the level of quantum operations. The modularity of our

simulation framework is demonstrated by the ability to have

the input as either a DAX.program file or a pyGSTi client with

the provision to add additional inputs. The modularity of the

framework is further established by allowing multiple simula-

tion backends. Currently, DPS supports noisy statevector and

density matrix simulations using Qiskit [8] and Cirq [9], but

our architecture is built to interface with any user-provided

backend. DPS aims to create a tool to simulate realistic hard-

ware by providing the simulator with noise models extracted

from the system.

II. SOFTWARE ARCHITECTURE

A. Frontend

The frontend of DPS is the user’s entry point to the

simulation pipeline. There were two primary considerations in

designing this frontend. First, a DAX.program file or pyGSTi

client written to be executed on the hardware needs to run

identically on DPS, and the output after execution on the

simulation framework should have the same format as that

from the hardware. Secondly, although DPS is closely tied

with DAX, we wanted it to be a standalone component.
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Keeping the above considerations in mind, a program can be

executed on DPS through the command-line interface (CLI).

The CLI instruction takes minimal arguments, like the file

to be run. Other more backend-dependent arguments like the

number of qubits, type of backend to use, and the noise

model are passed in through a configuration file. The DPS

frontend architecture independently constructs the required

DAX dependencies, parses the inputs and arguments, and

passes on all the appropriate information to the backend. The

frontend has been built to allow for different CLI commands

depending on the type of input.

B. Backend

The backend of the DPS architecture handles the actual

execution of the simulation. The backend has been divided into

two layers - the abstract backend and the specific backend.

The abstract backend is the piece that hides away all the

DAX and ARTIQ details that are required for execution.

It receives the backend-dependent input from the frontend

and passes it on to the specific backend. It also contains

performance optimizations on the operation and measurement

buffers which are backend-independent. A key piece that the

abstract backend hosts is the debugger. A vital use-case of

simulators is to analyze and verify code, and DPS provides

a debugging tool to this end. The debugger is built to give

the user access to intermediate outputs from the simulation

backend, and the control to flush operations and take a peek

at the buffers at any point in the program.

The specific backend is designed to be a minimal piece

that is required to handle three tasks. First, mapping the

gates exposed by DAX.program to their counterparts on the

simulation library being used. Second, handling the applica-

tion programming interface (API) calls required to execute

the circuit on the simulation library. And, lastly, exposing

the debugger object after appropriately linking it with the

simulation backend. The specific backend is designed to be

minimal to allow users to add backends based on their use

case. Currently, DPS supports noisy statevector and density

matrix simulations using Qiskit, a Qiskit backend optimized

for circuits that have no intermediate measurements and are

run over multiple shots of execution, and more recently a Cirq

simulation backend.

III. RESULTS

As mentioned earlier, we want to use DPS as a tool to

simulate realistic hardware by using the noise models extracted

from these systems in simulation. We were able to demonstrate

this functionality by comparing the results of the Direct RB

protocol between the hardware and simulator. First, the Direct

RB protocol was run on the physical system. These results

were used to extract the noise model of the system, which

was then used to run a noisy simulation of the same Direct

RB protocol on DPS. The comparative results can be seen

in Figure 1. The error rate of the hardware was found to be

6.98 × 10
−5, while that of the simulated result was found to

be 3.87× 10
−5, which is within a factor of 2 of the hardware

Fig. 1. Results from running Direct RB on hardware and in simulation.

results. The error bars used in the plot are calculated using

the 10th and 90th percentile of the data as boundaries. The

difference in the comparative results between the simulator

and hardware can be explained by the constraints of defining

a noise model at the gate-level.

IV. CONCLUSION AND FUTURE WORK

With our modular simulation architecture - DAX.program-

sim, we have created a flexible and portable pipeline for

users to simulate their programs on multiple backends before

executing them on the physical system. We demonstrated the

closed loop infrastructure of running a program on hardware,

getting its noise model, and simulating the same program with

very comparable results.

However, to make this tool more powerful, it is vital to

add support for finer levels of input and more sophisticated

error models. We plan to do this by adding support for inputs

at the pulse-level and an analog simulation backend that will

simulate Hamiltonian evolutions. Adding these will give users

finer control over the operations they want to simulate, and

will also allow for more complex noise models that are a better

representation of the hardware. The addition of these tools will

help make DPS a test-bed for simulating and iterating over

experiments and calibration routines before running them on

hardware.
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