10

11

12

13

14

15

16

17

18

19

20

21

22

An enhancer sequence in the intrinsically disordered region of FtsZ promotes

conformation-guided substrate processing by CIpXP protease

Marissa G. Viola'#, Theodora Myrto Perdikari>#, Catherine E. Trebino', Negar Rahmani’, Kaylee L.
Mathews*, Carolina Mejia Pena*, Xien Yu Chua?3, Botai Xuan?®, Christopher J. LaBreck', Nicolas L. Fawzi®,

Jodi L. Camberg"”

'Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA

2Center for Biomedical Engineering, Brown University, Providence, Rl USA

3Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI
USA

“Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, Rl USA
#These authors are co-first authors

*Corresponding author: Jodi L. Camberg, cambergj@uri.edu

Running Title: Disordered Region of FtsZ Regulates Degradation

Manuscript Content Number of Pages: 29
Figures: 6
Supplementary Material Supplemental Figures: 2

Supplemental Tables: 2



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Abstract

The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at
midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ
amino acid sequence that links the conserved polymerization domain to a C-terminal protein
interaction site was predicted to be intrinsically disordered and has been implicated in modulating
spacing and architectural arrangements of FtsZ filaments. While the majority of cell division
proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal
interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP
proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR)
of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation
reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further,
that amino acids in the IDR of FtsZ enhance the degradation by conformationally-guided

interactions.

Keywords: proteolysis, turnover, division, cytokinesis, disorder

Significance Statement

FtsZ is a widely conserved essential cell division protein in bacteria. FtsZ forms the basis of an
intracellular structure, called the FtsZ-ring, during division and undergoes GTP-dependent
polymerization. Numerous proteins recognize FtsZ and modify polymers. We demonstrate that
FtsZ contains an intrinsically disordered region by solution structure analysis that encompasses
the major protein interaction site. The disordered region also contains an enhancer sequence that

regulates protease targeting and susceptibility by a conformation-guided mechanism.
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Introduction

The essential tubulin homolog in bacteria, FtsZ, assembles into head-to-tail protofilaments and
assembly is regulated by nucleotide binding, hydrolysis, and a network of regulator proteins that
engage the FtsZ polymerization domain or an extended C-terminal region adjacent to the
polymerization domain. This extended region has been a source of many investigations for insight
into mechanisms to describe how bacterial cell division is regulated in response to FtsZ-
interacting proteins, including an interaction with the actin homolog FtsA, which tethers the
cytokinetic FtsZ-ring to the membrane. Several studies characterizing FtsZ from Bacillus subtilis
and Caulobacter crescentus have shown that in addition to serving as a recognition site for FtsZ-
interacting proteins, the extended C-terminal region may also have positional and sequence-
specific effects on the arrangement and overall stability of FtsZ protofilaments in vitro and in vivo,

which can further lead to filament bundling (40; 8).

The length and amino acid composition of the extended C-terminal region varies across
organisms; however, it is widely predicted to be mostly an intrinsically disordered region (IDR)
(15). In Escherichia coli, the length of the C-terminal region was reported to modify overall filament
spacing in FtsZ protofilament bundles (21). Heterologous IDRs of similar length, but no sequence
conservation, support division in E. coli, leading to a model by which the IDR serves the role of
an entropic spring between the FtsZ protofilaments and the cytoplasmic membrane (15). While
the C-terminal regions of different FtsZ proteins are widely predicted to include an IDR, there is
significant variability among orthologs in the sequence identity of the region nearest the C-
terminus. For example, the C-terminal peptide (CTP) region of FtsZ from B. subtilis, which
includes the last 18 amino acids, contains positively charged residues that may autoregulate FtsZ
polymerization and hydrolysis via electrostatic interactions (8). A docking site function conferred

by the CTP region, however, is conserved across all FtsZ proteins and has species-specific

3



72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

protein interactions with C-terminal residues in FtsZ that modulate division via FtsZ binding (25;
18; 10). Moreover, several structures are available showing that in complex with other cell division
proteins, the residues nearest the C-terminus, which participate in protein-protein interactions,

likely exist as a helix or bent helix (28; 42; 37; 36).

Several proteins bind to E. coli FtsZ via direct engagement of the FtsZ C-terminus, including but
not limited to MinC, FtsA, ZipA, and ZapD; however, only one cell division modifier, CIpXP, has
been implicated in binding directly to residues in the predicted IDR, as well as to residues near
the C-terminus. ClpX from E. coli is a member of the AAA+ protein family (1; 39; 35). ClpX
coassembles with the CIpP protease to recognize and degrade specific protein substrates,
including FtsZ (3; 5; 45). During division, CIpXP degrades FtsZ from within the cytokinetic ring,
which modifies the subunit exchange time of FtsZ in the highly dynamic ring structure (45),

resulting in approximately 15% of total cellular FtsZ degraded by CIpXP per cell cycle (3; 5; 45).

Protein degradation is irreversible. To ensure high fidelity recognition, ClpX uses specific regions
of a substrate, called degrons, to promote recognition. Degrons are typically present at either the
N- or C-terminus of a substrate (14). FtsZ displays two motifs per polypeptide chain that are
thought to engage ClpX, and FtsZ degradation is enhanced while polymerized, likely due to high
local concentration and multivalency leading to higher avidity (5). One motif important for ClpXP
degradation is near the C-terminus and overlapping with the multiprotein interaction site, and the
second is in the predicted IDR linker region. Several proteins identified as ClpXP substrates have
also been reported to contain IDRs, including RseA, IscU, and UmuD (14; 29; 7; 38; 32; 34).
Therefore, IDR-containing proteins may represent a distinct subset of ClpXP-controlled proteins.
In this study, we elucidate the disordered structure of the full FtsZ C-terminal region from E. coli

by solution NMR spectroscopy and dissect the multivalent complex interactions that regulate
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ClpXP degradation of polymerized and non-polymerized FtsZ. In this example, the IDR functions
collaboratively with the C-terminal degron to precisely regulate degradation by ClpXP and

promote conformation-guided substrate processing.

Results

NMR of the monomeric FtsZ C-terminus demonstrates that it is intrinsically disordered
The FtsZ C-terminal region (FtsZ CTR) is a 67 amino acid, 7.7 kDa FtsZ fragment, and is widely
predicted to be intrinsically disordered (25). E. coli FtsZ CTR, which includes residues 317 through
383, has a flexible unstructured glutamine and proline rich linker and a highly conserved C-
terminal core, also called the ‘CTP’ (C-terminal peptide) (370 through 379) that is essential for
interactions with E. coli cell division proteins FtsA, ZipA, SImA, MinC and ZapD (46). Although
FtsZ CTR is dispensable for polymerization and is not required for the GTPase activity of FtsZ
(24; 47; 13), it is important for recognition by cell division proteins and the ATP-dependent
chaperone ClpX, which partners with CIpP to degrade FtsZ. A previous crystal structure of the C-
terminal region of ZipA (residues 185 through 328) bound to the extreme C-terminus of E. coli
FtsZ (residues 367 through 383) revealed that the 17-residue fragment of FtsZ binds ZipA as an
extended [3-strand at region 367-373 followed by an a-helix formed by residues 374-383 (28). On
the other hand, the crystal structure of the DNA-activated FtsZ-ring inhibitor SImA, in complex
with an FtsZ C-terminal peptide fragment, revealed that FtsZ adopts an extended conformation
(37). The structure of the FtsZ C-terminal peptide (336-351) from Thermotoga maritima in
complex with FtsA revealed mostly helical content, with two small helical regions juxtaposed with
a large bend in between (42). And finally, a recent NMR study on the FtsZ-ring positioning
promoter protein MapZ, isolated from Streptococcus pneumoniae, showed that MapZ interacts
with FtsZ C-terminal region regardless of its polymerization status but the structural details of this

interaction were not investigated (20). In summary, few structures of FtsZ CTP bound to
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accessory proteins are available, and some of them depict the CTP bound as a helix while others
report an extended conformation, suggesting that the FtsZ short core region adjacent to the C-
terminus samples various conformational modes depending on its binding partner. However,
currently there is no direct structural information on monomeric (unbound) FtsZ C-terminal

sequences available.

Here, we used solution NMR spectroscopy to elucidate the secondary structure of the monomeric
FtsZ CTR. The two-dimensional 'H-"°N (heteronuclear single-quantum coherence — HSQC) NMR
correlation spectra of FtsZ CTR exhibits narrow chemical shift dispersion, typical of a disordered
protein, suggesting a lack of structural order consistent with sequence-based predictions (Fig.
1A). Furthermore, we assigned the "*C, and "*Cg chemical shifts for FtsZ CTR and computed the
secondary chemical shifts (A8Cq — A8Cg), obtained by measuring the difference in the observed
3Cq and *Cy chemical shifts and those predicted for a completely disordered structure. These
secondary chemical shifts are mostly near zero for all residues, consistent with intrinsic disorder,
except A376 and F377 which have positive secondary chemical shift values of about 1.5 ppm
consistent with some population of a-helices (49; 48) as values above ~4.0 ppm are expected
with persistent helical structure. (Fig. 1B). Interestingly, this short helical region is localized in the
highly conserved C-terminal core and is adjacent to the multiprotein recognition site. A previous
alanine scanning mutagenesis study showed that mutation of Phe 377 to Ala reduced ZipA
binding affinity, which is consistent with the fact that the hydrophobic residue F377 is highly
conserved and forms helix-stabilizing contacts in a structure of FtsZ 367-383 bound to ZipA 185-
328 (28). To estimate the helical population, we used the 62D algorithm (6), which takes as input
the chemical shifts. Based on this approach, we find that although FtsZ has a region with some
helical population, even this region is primarily disordered with only a minor population of helical

structure (375-379) (Fig. 1C). Hence, the C-terminal region of FtsZ does not adopt a highly helical
6
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structure in the absence of binding partners, and 'H-'"°N HSQC spectral overlay of the CTR
indicates that it does not self-interact (Fig. S1). Taken together, our data suggest that FtsZ CTR
is monomeric and remains mostly intrinsically disordered, although we observe a short, partially
helical motif, amino acids 375 through 379, near the multiprotein interaction site that overlaps the

C-terminal ClpX recognition site (amino acids 375-383).

The intrinsically disordered C-terminal region of FtsZ is sufficient to target a model
monomeric substrate for ClpXP degradation

To determine if the IDR of FtsZ is sufficient to target Gfp for degradation, and to further elucidate
the relative contributions of both motifs implicated in ClpX recognition, which are separated by 16
amino acids, we utilized an engineered model substrate containing Gfp as a proxy for the FtsZ
polymerization domain linked to the IDR of FtsZ (full CTR residues 317 through 383), called Gfp-
IDRrisz (Fig. 2A). To measure degradation of Gfp-IDRrsz by ClpXP, we monitored the loss of
fluorescence with time during incubation with CIpXP and ATP. We observed that Gfp-IDRFsz
fluorescence decreased with time indicating that ClpXP unfolds and degrades Gfp-IDRFisz;
however, Gfp alone is not a substrate for CIpXP and maintains maximal fluorescence throughout
the incubation period (Fig. 2B). These results indicate that the IDR of FtsZ is sufficient to promote

recognition and degradation of Gfp by ClpXP.

Next, to determine the relative contributions of each motif in Gfp-IDRrisz implicated in ClpX
recognition, which correspond to residues 379-383 and 352-358 of FtsZ, we constructed two
additional chimeras, Gfp-IDRrsz mut-1, which contains an intact C-terminus but has alanine
substitution mutations in the upstream motif (352-358), and Gfp-IDRrsz mut-2, with contains a
deletion of the C-terminal motif (375-383) (Fig. 2A). We monitored Gfp fluorescence of both

substrates in the presence of ClpXP and ATP to measure substrate degradation. We observed
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that CIpXP unfolds and degrades Gfp-IDRrisz mut-1 to a similar extent as we previously observed
with Gfp-IDRrsz, but Gfp-IDRrisz mut-2 is degraded less efficiently (Fig. 2B). We calculated the
rates of degradation and found that degradation of Gfp-IDRrsz mut-2 was reduced by 77.4%
compared to Gfp-IDRrisz, however, Gfp-IDRrisz mut-1 was degraded at a rate within error of the
Gfp-IDReisz rate of degradation (Fig. 2C). These results show that deletion of the C-terminal motif
impairs degradation, but a multisite mutation in the upstream motif of Gfp-IDRrsz has no
significant effect on degradation, suggesting that ClpX primarily utilizes the FtsZ C-terminal end
motif for recognition of an engineered monomeric substrate, and the secondary motif, located

upstream in the IDR is dispensable and alone is not sufficient to robustly promote degradation.

Next, to confirm that reduced degradation correlates with reduced binding to ClpX, we used an
ultrafiltration assay to collect substrate-bound ClpXP complexes. We incubated ClpXP with ATP
at 0 °C to prevent degradation, assembled complexes containing ClpXP and Gfp-IDRrsz, and
then collected and quantified complexes by ultrafiltration and fluorescence. We observed that
ClpXP retains Gfp-IDRrisz in a concentration-dependent manner, indicating the formation of
enzyme-substrate complexes (Fig. 2D). Next, we compared all four engineered substrates in the
ClpXP retention assay and observed that Gfp-IDRrsz and Gfp-IDRrsz mut-1 are efficiently
retained by CIpXP; however, Gfp-IDRrsz mut-2 and Gfp are poorly retained (Fig. 2E). These
results suggest that the failure of ClpXP to degrade Gfp-IDRrsz mut-2, compared to Gfp-IDRFisz
and Gfp-IDRrsz mut-1, is likely due to poor recognition of the upstream motif. Moreover, the
presence of the upstream motif appears to have no influence on ClpX recognizing the C-terminal
motif, since Gfp-IDRrsz and Gfp-IDRrsz mut-1 are similarly degraded by ClpXP. Finally, to
confirm that Gfp-IDRrisz and Gfp-IDRrisz mut-1, but not Gfp and Gfp-IDRrisz mut-2, are recognized
by ClpXP, we also measured the rate of ATP hydrolysis by ClpX with each engineered substrate

to detect if substrate increases the rate of CIpXP ATP hydrolysis by allosteric activation, as has
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previously been reported with the CIpXP substrate Gfp-ssrA (2). We observed that the rate of
ClpX ATP hydrolysis increased by approximately 20-40% for Gfp-IDRrisz and Gfp-IDRFisz mut-1;
however, the rate of hydrolysis in the presence of Gfp-IDRFrisz mut-2 was not significantly different
from ClpX without substrate (Table S1). These results are consistent with poor recognition of Gfp-

IDRrisz mut-2 by ClpX, relative to Gfp-IDRrisz and Gfp-IDRFrisz mut-1.

The secondary motif in the FtsZ IDR acts as a conformation-specific enhancer for
degradation of FtsZ by CIpXP

As reported in previous studies, polymerized FtsZ is degraded by ClpXP more efficiently than
non-polymerized FtsZ (3; 5). The upstream IDR motif does not appear to be involved in
degradation of Gfp-IDRrisz, therefore, we hypothesized that it contributes to degradation of
polymerized FtsZ. To test this, we used a full length Gfp-FtsZ fusion protein containing the
complete wild type FtsZ sequence, including the polymerization domain and the full C-terminal
region IDR, to quantitatively monitor ClpXP degradation by loss of fluorescence. Gfp-FtsZ was
previously shown to assemble into protofilaments with GTP in vitro, similar to wild type FtsZ,
hydrolyze GTP, and serve as a substrate for CIpXP degradation (45). We constructed mutations
in the IDR of Gfp-FtsZ analogous to the mutations characterized with the engineered monomeric
substrate Gfp-IDRrisz, including Gfp-FtsZ mut-1 and Gfp-FtsZ mut-2, which contain alanine
substitutions in the upstream motif, corresponding to residues 352-358 of FtsZ, and deletion of
the C-terminal recognition site, corresponding to residues 375-383 of FtsZ, respectively (Fig. 3A).
We monitored degradation of Gfp-FtsZ, Gfp-FtsZ mut-1, and Gfp-FtsZ mut-2 in the presence of
GTP, which promotes polymerization of Gfp-FtsZ, by measuring loss of fluorescence with time
and calculated the rate of degradation of each substrate by ClpXP (Fig. 3B). We observed that
Gfp-FtsZ is degraded by CIpXP in the presence of GTP, but the rate of Gfp-FtsZ mut-1

degradation is reduced by 48%. In the absence of GTP to promote polymerization, Gfp-FtsZ is
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degraded similarly as Gfp-FtsZ mut-1 (Fig. 3C), and half as efficiently as Gfp-FtsZ with GTP (Fig.
3B, 3C, and 3D). Consistent with our previous result with Gfp-IDRFisz, removal of the C-terminal
motif severely impairs degradation by CIpXP (Fig. 2B, 3B, and 3C). These results show that the
amino acid sequence of the upstream motif in the FtsZ IDR enhances degradation of polymerized

Gfp-FtsZ, but does not serve as an effective ClpX targeting motif alone.

Architectural arrangement of recognition motifs in the IDR confers the conformational
specificity that regulates degradation

The upstream and C-terminal ClpX recognition motifs in the FtsZ IDR are separated by 16 amino
acids. To determine if the spacing between the two motifs in the IDR is important for degradation
by ClpXP, we deleted residues 359 through 374 to construct Gfp-FtsZ Aspace (Fig. 4A) and
monitored degradation of Gfp-FtsZ Aspace in reactions containing ClpXP and ATP. We observed
that Gfp-FtsZ Aspace is degraded by CIpXP at a similar rate as Gfp-FtsZ in both the absence and
presence of GTP (Fig. 4A and 4B). These results suggest that the spacing between the
recognition regions in the IDR is dispensable for the enhancement conferred by the presence of
the secondary upstream motif. Finally, to test if there is a preference for relative position of one
motif over another for degradation by ClpXP, we reversed the positions of both motifs to construct
Gfp-FtsZswap. We monitored degradation of Gfp-FtsZswap by CIpXP in the absence and presence
of GTP (Fig. 4A and 4B) and observed that while Gfp-FtsZswap Was degraded more efficiently than
Gfp-FtsZ when GTP was omitted, there was no further enhancement observed when GTP was
included in the reaction to promote polymerization. Together, these results suggest that residues
352 through 358 in the FtsZ IDR constitute a motif that enhances degradation of FtsZ; however,

the enhancement is dependent on relative position within polymerized FtsZ.
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Finally, if the upstream motif in the IDR acts as a sequence-specific enhancer for degradation of
polymerized FtsZ, then it could be functioning in one of two ways within the FtsZ polymer: (1)
enhancement could occur as a result of nearby ClpX-recruitment sites in adjacent FtsZ subunits,
or (2) the conformation of the IDR changes in response to polymerization through a direct
interaction with another IDR or polymerization domain. To test if trans subunit targeting occurs
within a single polymer, i.e., an interaction with one subunit increases the likelihood of an
interaction with the adjacent subunit, we pre-assembled mixed polymers containing Gfp-FtsZ (75
pmol) with either wild type FtsZ (225 pmol) or FtsZ mut-1 (225 pmol), which has Ala substitutions
in IDR upstream motif (352-358), in an assembly reaction with GTP (Fig. 4C). With this
stoichiometry, both types of mixed polymers would contain 25% Gfp-FtsZ subunits that we could
monitor by fluorescence, but the other 75% would be comprised of either wild type FtsZ or FtsZ
mut-1, neither carrying a fluorescent label. Moreover, it was important to keep the total
concentration of FtsZ wild type and mutant protein fixed (at 6 uM total), since the rate of FtsZ
degradation increases with total FtsZ concentration (3). Finally, we know that Gfp-IDRrsz and Gfp-
IDRFrisz mut-1 are recognized and degraded by CIpXP similarly (Fig. 2B and 2E), so it is unlikely
that differences would arise as a result of competition. We incubated the mixed polymers with
ClpXP and ATP and measured Gfp-FtsZ degradation by monitoring the loss of fluorescence with
time. We observed that the rate of Gfp-FtsZ degradation changed in response to whether FtsZ or
FtsZ mut-1 were present in the reaction (Fig. 4C and 4D). Gfp-FtsZ was degraded from the
polymers containing 75% wild type FtsZ subunits approximately 2-fold faster than from the
polymers containing FtsZ mut-1, which lacks the upstream IDR sequence. These results show
that degradation of Gfp-FtsZ is enhanced when non-fluorescent wild type FtsZ subunits are
present, but not when the subunits contain alanine substitution mutations at residues 352 through
358. These results are consistent with the upstream motif in the IDR acting as an enhancer for

degradation likely by improved targeting of neighboring subunits within a single polymer. Finally,
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to exclude the possibility that the IDR binds directly to another FtsZ subunit in a polymer with
GTP, which could change the conformation of the IDR and modify ClpX recognition, we tested if
Gfp-IDReisz, which does not have a polymerization domain, can bind to FtsZ polymers in a direct
recruitment assay. Therefore, we incubated FtsZ (8 uM) with GTP to promote polymerization in
the presence of Gfp-IDRris., and then collected polymers by ultracentrifugation. We did not detect
Gfp-IDRFisz (8 nM) copelleting with FtsZ polymers, suggesting there is no interaction (Fig. S2).
Additionally, we also tested if truncated FtsZ (FtsZAC67) (8 uM), which does not contain its own
IDR but polymerizes with GTP, can recruit Gfp-IDRFs. in an ultracentrifugation assay, but also did
not detect Gfp-IDRFs; copelleting with FtsZAC67 polymers (Fig. S2). These results suggest that
the IDR of E. coli FtsZ does not engage other FtsZ subunits in a polymer under the conditions

tested. Moreover, no IDR self-interaction was detected previously by solution NMR (Fig. S1).

Although the FtsZ IDR binds other cell division proteins, it does not localize to the FtsZ-
ring in the absence of the polymerization domain

In addition to CIpXP, other cell division proteins, such as FtsA, engage FtsZ via the multiprotein
interaction site at the FtsZ C-terminus. During early cell division, FtsZ polymers assemble at
midcell and form the FtsZ-ring (13; 31). When expressed in vivo, Gfp-FtsZ localizes to midcell
and is tethered to the inner face of the cytoplasmic membrane through protein interactions with
FtsA and ZipA. To determine if the IDR of FtsZ is sufficient to localize to midcell, since the
multiprotein interaction site, which includes the FtsA interacting region, near the C-terminus
remains intact, we expressed Gfp-IDRrsz from a plasmid in E. coli MG1655 and visualized live
dividing cells by fluorescence microscopy. As a control, we also expressed Gfp-FtsZ to localize
the FtsZ-rings in dividing cells. We observed that while Gfp-FtsZ robustly localizes to fluorescent
FtsZ-rings at visible septal regions, Gfp-IDRFsz localizes uniformly throughout the cytoplasm (Fig.

5A and 5B). These results suggest that the IDR of E. coli FtsZ does not localize to a FtsZ-ring in
12
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the absence of the FtsZ polymerization domain, even though it retains the multiprotein interaction

site near the C-terminus.

Discussion

Polymerization of FtsZ is a key feature of its function in vivo; however, the region of FtsZ that lies
outside of the polymerization domain also serves important roles. These roles include mediating
direct interactions with other proteins comprising the septal machinery, including regulators of
FtsZ location and polymerization, functioning as a spacer between the membrane-tethering region
and the main polymer filament, and, in several organisms, promoting lateral bundling through
electrostatic interactions. Here, we demonstrate that the uncomplexed CTR of E. coli FtsZ is
intrinsically disordered by solution NMR, as has previously been predicted (15), and that there is

a small region of modest helical propensity near the terminus (Fig. 1A, 1B, and 1C).

While overall length of the IDR is important for division in E. coli (15), one protein, ClpX, has been
implicated in engaging a central region within the IDR (5). We show that amino acids 352 through
358 of FtsZ contain sequence specific information that enhances degradation of FtsZ by ClpXP,
but only when FtsZ is polymerized with GTP. The region near the FtsZ C-terminus thus functions
as the major recognition element that promotes degradation of FtsZ by ClpXP. In our model, as
ClpXP engages an FtsZ subunit, adjacent subunits in a polymer likely make contacts between
the enhancer sequence of FtsZ, amino acids 352 through 358, and ClpX (Fig. 6). This substrate
tethering event would prevent the second FtsZ subunit from escaping while CIpXP processes the
first engaged FtsZ subunit. Processing, which includes processive unfolding and degradation, of
polymerized FtsZ subunits by CIpXP would destabilize nearby head-to-tail FtsZ interactions, thus
severing the polymer. This is consistent with the rapid and efficient FtsZ polymer destabilization

activity that was previously observed and reported for ClpXP (45). While degradation of FtsZ by
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ClpXP is not essential for division to occur in E. coli, deletion of c/pX or clpP from strains deleted
for minC leads to filamentation and impaired division, indicating that ATP-dependent proteolysis
regulates the division process (4). The minC gene encodes a component of the Min system, MinC,
which destabilizes FtsZ polymers near the cell poles and ensures that the FtsZ-ring assembles at
midcell. Thus, CIpXP has evolved a highly specialized mechanism to ensure that polymerized

FtsZ is more effectively degraded than non-polymerized FtsZ.

Among the pool of known ClpXP substrates in E. coli, several are reported to contain IDRs,
including RseA, UmuD, IscU and FtsZ. It has been reported that IDR-containing proteins may
inherently be sensitive to proteolysis in eukaryotes (44); however, protein half-lives in vivo do not
strictly correlate with the presence of an IDR, and rather, recognition by proteases is likely context
specific (41). Furthermore, length and position of IDRs could influence overall function and
underly genetic variation (44). Other putative roles for IDRs include serving as an organizing hub.
The IDR-hub model has been proposed for eukaryotic proteins, such as p53 and 14-3-3 (30; 43),
IDR-mediated phase-separated condensates (9), and also for prokaryotic organizing proteins,
such as PopZ. PopZ in C. crescentus is reported to network a highly dynamic, organized group
of polar-localizing proteins via the IDR (19). While the FtsZ-ring recruits numerous proteins to the
C-terminus of the IDR-containing region of FtsZ and forms phase-separated condensates in vitro
(27), it is unclear if the condensates are relevant in vivo. Moreover, in the absence of the
polymerization domain, the FtsZ IDR fails to self-associate or to localize to specific regions of the
cell (Fig. 5). Polymerization of FtsZ concentrates FtsZ-interaction sites, such as those at the C-
terminus, converting FtsZ to a multivalent ligand binding surface (12). However, CIpXP utilizes
additional sequence-specific contacts in the IDR to enhance degradation of polymerized FtsZ.
ClpXP is a highly conserved component of the protein quality control machinery, which functions

to remodel and degrade proteins during periods of cell stress. In addition to degrading FtsZ and
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destabilizing FtsZ polymers during cell division, CIpXP also disassembles and degrades FtsZ
aggregates after heat shock (22). It is therefore likely that CIpXP may have evolved in E. coli to
be a disassembly factor for accumulated FtsZ, ensuring turnover of densely networked FtsZ

subunits and release of FtsZ and FtsZ-interacting proteins.

Materials and Methods

Strains and plasmids.

Strains and plasmids used in this study are listed in Table S2. Gfp-IDRrisz and Gfp-FtsZ were
cloned into expression plasmids for protein purification as described (45). For NMR studies, a
TEV cleavage site was inserted into the Gfp-IDRrisz by PCR mutagenesis. Substitution mutations
in the IDR were constructed by site-directed mutagenesis using the QuikChange Il XL Site-
Directed Mutagenesis Kit (Agilent). The pBad-Gfp-IDRrisz was constructed by cloning the coding
sequence of Gfp-IDRrsz into the Nhel and Hindlll sites on the arabinose inducible vector, pBad24
(17). The pBad-Gfp-FtsZ expression plasmid was constructed as described (4). All mutations

were confirmed by direct sequencing.

Protein expression and purification.

Uniformly °N,'3C labeled His-tagged Gfp-IDRrisz was overexpressed in BL21 Star (DE3) E. coli
(Invitrogen) in M9 minimal medium in H,O with "®N ammonium chloride and *C glucose as the
sole nitrogen and carbon sources, respectively. Cell pellets were harvested from 1L cultures
induced with 1 mM IPTG at an ODego of 0.6-1 after 3 hours at 30°C. Gfp-IDRrisz pellets were
resuspended in 50 mM Tris-Cl pH 8.0, 100 mM NaCl, 10 mM Imidazole, 1 mM DTT with 1x Roche
Complete EDTA-free protease inhibitor. Resuspended pellets were lysed on an Emulsiflex C3
and the cell lysate was cleared by centrifugation (47,850 x g for 50 min at 4°C). The cleared

supernatant was filtered using a 0.2 pM filter and loaded onto a 5 ml HisTrap HP Ni-affinity column
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(GE Healthcare). Protein was eluted in a gradient of 10 to 300 mM imidazole over five column
volumes. Fractions containing Gfp-IDRrsz were pooled together on a 3000 molecular weight cut-
off (MWCO) dialysis membrane, followed by the addition of His-tagged TEV protease to a final
concentration of 30 yg/ml and dialyzed overnight at 4°C into 50 mM Tris-Cl (pH 8.0), 100 mM
NaCl, 1 mM DTT. The cleavage products were subjected to subtraction purification using a 5 ml
HisTrap HP (GE Healthcare) to yield untagged IDRF:sz in the flow through. Purified IDRrisz was
further dialyzed overnight at 4°C into 50 mM MES (pH 6.5) using a 3000 MWCO dialysis
membrane and concentrated using a 3000 MWCO spin concentrator. Concentrated IDRFisz were

flash-frozen in small aliquots for subsequent NMR experiments.

All Gfp-FtsZ, Gfp-IDRFisz, and engineered variants for biochemical assays were expressed in E.
coli BL21 (A de3) and purified as N-terminally tagged six histidine fusion proteins by immobilized
metal affinity chromatography as described (45). Wild type FtsZ, ClpX, and CIpP were expressed
and purified as described (26; 16; 3). Protein concentrations are reported as Gfp-IDRFisz
monomers, Gfp-FtsZ monomers, FtsZ monomers, ClpX hexamers, and ClpP tetradecamers. All

amino acid residue numbering refers to the E. coli FtsZ amino acid sequence position.

NMR Sample Preparation and NMR Spectroscopy.

Monomeric "°N,"*C-labeled FtsZ CTR was thawed and diluted in 50 mM MES pH 6.5, 100 mM
KCI, 10 mM MgClz, 10% D20 to a final concentration of ~163 uM. Sample concentration was
estimated using the extinction coefficient, 2560 M™ cm™, calculated by Protein Calculator v3.4
(http://protcalc.sourceforge.net/). NMR experiments were recorded at 25°C using Bruker Avance
Il HD NMR spectrometer operating at 850 MHz 'H frequency equipped with a Bruker TCI z-axis
gradient cryogenic probe. Experimental sweep widths, acquisition times, and the number of

transients were optimized for the necessary resolution, experiment time, and signal to noise ratio
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for each type of experiment. NMR spectra were processed with NMRPipe (11) and analyzed with

NMRFAM-Sparky (23).

"H-"SN HSQC spectra were acquired with 3072 and 512 total points in the 'H and "°N dimensions
with acquisition times of 172 and 135 ms, sweep widths of 10.5 and 22.0 ppm, and centered at
4.7 and 119.0 ppm, respectively. Each "H-"°N HSQC was acquired with the standard Bruker pulse

sequence hsqcetf3gpsi.

Backbone amide resonance assignments were obtained by acquiring triple resonance
assignment experiments HNCO, HN(CA)CO, CBCA(CO)NH, and HNCACB using standard
Bruker TopSpin pulse sequences hncogp3d, hncacogp3d, cbcaconhgp3d, and hncacbgp3d.
Each three-dimensional experiment was acquired with sweep widths of 10.0 ppm in the 'H
dimension, 20.0 ppm in the N dimension, and 6.5 (CO) or 56.0 (CACB) ppm in the *C
dimension, centered at 4.7, 119.0, and 173.0 or 41.0 ppm, respectively. HNCO and HN(CA)CO
experiments were acquired with 2048, 100, and 40 total points in the 'H, "°N, and "*C dimensions,
while CBCA(CO)NH and HNCACB experiments were acquired with 2048, 84, and 120 total

points, respectively.

Fluorescence-based Protein Degradation Assays.

To monitor degradation by loss of fluorescence, Gfp (8 uM), Gfp-IDRrisz (8 uM), Gfp-IDRFisz
variants (mut-1 and mut-2) (8 uM), Gfp-FtsZ (5 uM), and Gfp-FtsZ variants (mut-1 and mut-2) (5
uM), were incubated with ClpX (1 uM), ClpP (1.2 uM CIpP) and ATP (5 mM) HEPES buffer (50
mM, pH 7.0) containing 150 mM KCI, 10 mM MgCl., 0.005% Triton X-100, and, where indicated,
GTP (2 mM), acetate kinase (25 pyg ml™) and acetyl phosphate (15 mM). Gfp(uv) has been

reported to dimerize at high concentrations, therefore we used concentrations of Gfp-fusion
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proteins in all experiments well below the dimerization condition (33). In degradation assays
containing Gfp-FtsZ variants and omitting GTP, the bifunctional ATP/GTP-regenerating system
of acetate kinase and acetyl phosphate was substituted with the ATP-specific system of creatine
kinase (60 pg ml") and phosphocreatine (5 mg ml™"). Degron distance, position and subunit
targeting assays were carried out with Gfp-FtsZ Aspace (6 UM), Gfp-FtsZswap (6 UM), or @ mixture
of 1:3, Gfp-FtsZ:FtsZ, where indicated. Fluorescence was monitored in an Agilent Eclipse
Spectrofluorometer at an excitation wavelength of 395 nm and emission of 510 nm. The
background signal from buffer was subtracted from each data set and then data was normalized
to report the change in the fraction of total arbitrary fluorescence units after time zero. Curve fitting
was performed on GraphPad Prism (version 8.4.1). Rates of Gfp unfolding and degradation were

calculated using the linear portions of curve (10 min to 30 min) from at least three replicates.

Direct Binding and Sedimentation Assays.

To evaluate direct binding of Gfp-IDR and variants with ClpX, reactions (50 pl) containing ClpX (1
puM), CIpP (1 M), ATP (5 mM) and, as indicated, Gfp-IDRFsz or Gfp-IDRFrisz variants (0, 1, 2, 4 or
6 pM) in HEPES (50 mM, pH 7.0) buffer with KCI (150 mM), MgClz (10 mM), Triton X-100
(0.005%), and BSA (50 ug ml™"). After assembly for 15 minutes, all reactions were incubated on
ice for 15 minutes. Reactions were transferred to polyethersulfone filters with a molecular weight
cut off of 100 kDa (Pall) and centrifuged at 21,000 x g for 20 minutes at 23 °C to collect complexes.

Retained complexes were collected and bound Gfp variants were quantified by fluorescence.

To determine if the IDR of FtsZ interacts with FtsZ polymers, reaction mixtures (25 pl) containing
FtsZ or FtsZAC67 (8 uM), with or without Gfp-IDRFsz (8 uM) were prepared in HEPES buffer (50
mM, pH 7.0) containing KCI (150 mM), and MgCl. (10 mM). Where indicated, 2 mM GTP, acetate

kinase (25 pug ml™"), and acetyl phosphate (15 mM) were added to induce polymerization.
18



446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

Reactions were incubated for 10 minutes at 23°C and then centrifuged at 129,000 x g for 30 min

at 23°C. Supernatants and pellets were analyzed by SDS-PAGE and coomassie staining.

ATP Hydrolysis Assays.

ATP hydrolysis rates for ClpX (0.5 pyM) in HEPES buffer (50 mM, pH 7.5), with KCI (150 mM),
MgCl, (20 mM), and 5 mM ATP in the absence and presence of Gfp-IDRrisz, Gfp-IDRrsz mut-1
and Gfp-IDRrisz mut-2 (all 8 uM) were determined by measuring the amount of free phosphate
released with time (0, 5, 10 and 15 minutes) using Biomol Green (Enzo Life Sciences). Phosphate

was quantified by comparison to a phosphate standard curve.

Fluorescence Microscopy.

E. coli MG1655 strain (JC0390) was transformed with pBad-Gfp-IDRrsz or pBad-FtsZ, and
overnight cultures were diluted and grown to logarithmic conditions and induced with arabinose
(0.002% and 0.001%, respectively) as described (5; 45). Images were collected with a Zeiss LSM
700 confocal fluorescence microscope and images were captured on an AxioCam digital camera

with ZEN 2012 software.

Data availability
The NMR chemical shift assignments for FtsZ CTR (317-383) from this publication have been

deposited to the BMRB database (https://bmrb.io/) and assigned the accession number BMRB:

50314

Supplemental Material: Supplemental Figures S1 and S2

Supplemental Table S1 and S2
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FIGURE LEGENDS

Fig. 1. The monomeric FtsZ C-terminus is intrinsically disordered. (A) 'H-">N HSQC spectrum of
FtsZ CTR is consistent with intrinsic disorder. (B) Secondary chemical shifts (A8C. - ASCg) are
localized around zero except A376 and F377 that have a much higher positive value consistent
with local partial helical conformation. *>KPVAKVV?3%® sequence is highlighted in cyan and
SSPAFLRKQAD?®? sequence at the extreme C-terminus is highlighted in blue. (C) Secondary
structure populations derived from the observed chemical shifts using the 62D algorithm confirms

the dominance of random coil (i.e., disordered) conformations.

Fig. 2. Degradation of a synthetic, monomeric FtsZ substrate by ClpXP. (A) Schematic for Gfp-
IDRFisz is shown. Gfp was fused to the C-terminal 67 amino acids of E. coli FtsZ IDR (residues
317-383) of FtsZ. Two variants were constructed, induing Gfp-IDRrsz mut-1, which contains Ala
substitutions at amino positions 352 through 358, corresponding to position in E. coli FtsZ, and
Gfp-IDRrsz mut-2, which is deleted for the last 9 C-terminal residues of FtsZ. (B) Gfp-IDRFsz (8
MM) (purple), Gfp-IDRFisz mut-1 (8 uM) (blue), Gfp-IDRFisz mut-2 (8 uM) (aqua), and Gfp (8 uM)
(gray) degradation was measured by loss of fluorescence with time in the presence of ClpX (1
uM), ClpP (1.2 M), ATP (5 mM), and an acetate kinase regenerating system as described.
Curves shown are representative of at least three replicates. (C) Rates of degradation were
calculated as described in Materials and Methods. (D) Direct binding of Gfp-IDRFsz to ClpXP was
assayed by a filter retention assay. Retained Gfp-IDRrisz was measured by fluorescence. (E)

Substrate retention by ClpXP was assayed as described in (C).

Fig. 3. The motif in the IDR linker region is important for degradation of polymerized FtsZ by
ClpXP. (A) Schematic for Gfp-FtsZ chimeric fusion proteins including Gfp-FtsZ, Gfp-FtsZ mut-1,

which contains Ala substitutions at FtsZ positions 352 through 358, and Gfp-FtsZ mut-2, which is
27
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deleted for the last 9 C-terminal residues of FtsZ (B) with GTP and (C) without GTP. (D) Rates of
unfolding and degradation were calculated as described in Materials and Methods. Curves shown

are representative of at least three replicates.

Fig. 4. Relative degron position affects FtsZ degradation by CIpXP. (A) Schematic for Gfp-FtsZ
substrate is shown. Fluorescent protein Gfp is fused to the full-length FtsZ protein, which includes
the polymerization domain (residues 1-316) and the IDR (residues 317-383). The 16 amino acid
space between the two ClpX recognition motifs (‘352-358’ and ‘375-383’ as numbered in E. coli)
in Gfp-FtsZ was deleted to construct Gfp-FtsZaspace, and relative positions of the degrons were
exchanged to construct Gfp-FtsZswap. (B) Gfp-FtsZ (purple), Gfp-FtsZaspace (navy), and Gfp-
FtsZswap (Orange) (6 uM) (white triangles) were pre-incubated in the absence or presence of GTP
to induce polymerization, then CIpXP (1 uM, 1.2 uyM ClpP) with ATP (5 mM) were added to the
reactions and fluorescence was monitored with time as described. Curves shown are
representative of at least three replicates. (C) Cartoon depicting assembly of mixed polymers with
GTP and subsequent degradation by ClpXP. Two populations of mixed polymers were assembled
in the presence of GTP; one containing 25% Gfp-FtsZ in the assembly reaction with 75% wild
type FtsZ, and another containing 25% Gfp-FtsZ with 75% FtsZ mut-1, which contains Ala
substitutions at residues 352 through 358. (D) Mixtures of Gfp-FtsZ with wild type FtsZ subunits
(purple) and Gfp-FtsZ with FtsZ mut-1 subunits, as described in (C), were pre-incubated with GTP
to induce polymerization, then ClpX (1 uM), ClpP (1.2 uM) with ATP (5 mM) were added to the
reactions and fluorescence was monitored with time as described. Data shown is the average of

four independent replicates. Error is shown as standard deviation.

Fig. 5. Polymerization is important for recruitment of the FtsZ IDR to FtsZ-rings in vivo. (A)

Fluorescence (FL) and DIC microscopy images of E. coli MG1655 cells in log phase expressing
28
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Gfp-IDRrisz and Gfp-FtsZ from an arabinose inducible plasmid show FtsZ-rings in cells expressing
Gfp-FtsZ but not Gfp-IDRFisz. Size bars are 2 um. (B) Cell fluorescence was measured and plotted
as a function of cell length across the longitudinal axis of a cell expressing either Gfp-IDRFisz
(purple) or Gfp-FtsZ (black). FtsZ-rings are identified as a peak of fluorescence at 0.5 cell lengths.

Traces shown are representative of at least three replicates.

Fig. 6. Model for conformation-guided recognition of FtsZ IDR by ClpXP. The primary degron that
is responsible for recruiting ClpXP to FtsZ is present at the FtsZ C-terminus and includes residues
375 through 383, which overlaps with the broadly recognized CTP. When FtsZ is polymerized, a
region of the IDR, referred to as the enhancer motif and including FtsZ residues 352 through 358,
enhances recognition and degradation of FtsZ by CIpXP. In this model, ClpXP first engages a
protomer and initiates unfolding and degradation. Then ClpXP engages a second, nearby subunit
through direct recognition of the enhancer sequence on a neighboring protomer. This tethered
adjacent protomer is prevented from release and also subsequently degraded. Polymerization of
FtsZ leads to an accelerated rate of FtsZ protein turnover and FtsZ polymer severing catalyzed

by CIpXP, thus releasing smaller fragments.
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