


Research Article Vol. 13, No. 10 / 1 Oct 2022 / Biomedical Optics Express 5448

light reĆection model to relate facial movements to the motion artifacts in the measured rPPG

signal. To the best of our knowledge, we are the Ąrst to explicitly generate motion artifacts based

on image rendering. We use the generated motion artifacts, see Fig. 1, to Ąlter the motion-induced

rPPG signals using a bi-directional long short-term memory (Bi-LSTM) network.

Fig. 1. A representative Ągure demonstrating our approach. We use a light reĆection model

to render the human face from the video. We use estimated 3D face shape and lighting

information from video frames to render the human face and use the rendered face to cancel

out motion distortions to extract a clean rPPG signal. (a) Input video frames of a subject. (b)

Rendered face based on estimated 3D shape and lighting. (c) We register consecutive frames

with respect to a reference frame. Note the intensity variation for different orientations

of the face, especially the left and right cheeks in the second and third frames here. (d)

Measured pixel intensity variation from a tracked point on the cheek from (a). (e) Motion

signal from the corresponding pixel from (c). We then use the generated motion signal to

cancel out motion distortion, resulting in a clean blood volume signal in (f). The red line in

the frequency spectrum denotes the actual heart rate.
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To generate motion distortions, we need to know the face geometry and the scene lighting. On

the one hand, one may use a depth camera to acquire the geometry of the human face during

recordings. Similarly, the knowledge of scene lighting requires a pre-calibration setup in the

same environment. However, obtaining prior knowledge of the face geometry and the scene

lighting in practical scenarios might be infeasible. In this work, we use proxy measurements to

build our prior knowledge. First, we obtain the 3D geometry of the face by using a 3D FaceMesh

model, which gives an approximate geometry of the face at each instant. Secondly, we use a

sequence of frames to estimate the scene illumination based on an approximate 3D face geometry.

Next, we use image rendering-generated motion signals to Ąlter the rPPG signals, leaving out a

clean heart rate signal. Overall, the main contributions in the development of RobustPPG are:

1. We develop a framework that uses a 3D face model and scene illumination, estimated by

inverse rendering, to explicitly model motion artifacts in camera-based rPPG signal. We

use the generated motion signal to Ąlter the motion distortions in the rPPG signals using a

bi-directional long short-term memory (Bi-LSTM) network, resulting in a clean signal.

2. We show that our approach consistently outperforms existing state-of-the-art methods

in the extracted rPPG signal quality and the estimated heart rate accuracy. Our method

RobustPPG improves over 2 dB in signal quality in complex motion scenarios over the

state-of-the-art methods. RobustPPG also improves heart rate estimation by 33% over the

second-best method for intense movement scenarios.

3. We use an extended photometric stereo setup to validate the pipeline. The FaceMesh

generated surface normals deviate on an average of 13◦ from the ground truth surface

normals generated using photometric stereo. We show that even with an approximate

face geommetry estimate, the normalized root mean squared error between the estimated

motion signal using FaceMesh and the ground truth motion signals is less than 10%. The

FaceMesh generated 3D facial geometry achieves near-optimal performance in terms of

rPPG signal extraction.

We organize the rest of the paper as follows. First, we brieĆy describe the relevant prior work in

Section 2. Next, we describe our proposed method for generating motion distortions for rPPG

signal Ąltering in Section 3. We present our experimental results on datasets and comparisons

against some state-of-the-art methods in Section 4. Finally, we discuss the limitations of our

approach and scope for future work in Section 5.

2. Background and Key Challenges

For a camera-based heart rate estimation, we Ąrst record the video of a personŠs face. The

temporal pixel intensity variations in the video capture the changing blood volume signal, also

called the remote-PPG or rPPG signal. However, the rPPG signal has a very low signal strength.

Therefore, the signal of interest is mainly dominated by camera sensor noise and large distortions

that arise from a personŠs movements. The main objective is to develop a robust algorithm to

recover the rPPG signal from the skin pixel intensity Ćuctuations in the video. The heart rate is

then estimated from the recovered rPPG signal.

In practical scenarios, natural movements like talking or face tilting introduce signiĄcant

unwanted distortions in the measured raw pixel intensity variation. Generally, a bandpass Ąlter

([0.5 − 5]Hz) is suitable to Ąlter out signals unrelated to the heart rate. However, for scenarios

where the dominant frequency of motion distortion lies close to the heart rate, it is challenging to

extract the rPPG signal and heart rate reliably from the pixel intensity variation alone. In such

cases, any information about the motion signal may allow one to extract a very clean rPPG signal

through a noise-cancellation process. However, obtaining an exact knowledge of the motion

distortion is challenging due to the following reasons:
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1. Motion distortion depends on local surface orientation. To improve motion robustness

in a camera-based system, the very Ąrst step is to use an automatic face detector and tracker

[10,11] on the recorded video. The human face is not a rigid body because different facial regions

move separately under natural movements. For example, when a person is talking or smiling, the

cheek regions move differently than the forehead region. Secondly, even if each pixel on the face

is tracked perfectly within frames, the tracked pixel intensity still contains motion distortions due

to changes in the orientation of the skin surface. In essence, the pixel intensity variation depends

on the changes in surface orientation during facial movements. Therefore, even if we track the

different regions of the face separately, the motion distortions would be different for different

facial areas, as shown in Fig. 2(a). Hence, knowledge of 3D facial geometry is important in

generating motion distortions at various points on the face. One simple way of acquiring 3D face

geometry is to use additional sensors to collect data. For example, one can use a depth sensor

like structured light [12,13] or photometric stereo [14] to acquire 3D geometry of the human face.

However, the use of any additional sensors limits the practicality of such an approach.

Fig. 2. Temporal motion signals variation due to a personŠs movements. (a) Motion signal

depends on the location of the pixel and its local surface orientation. The pixel intensity

variations for the left, right cheek, and forehead are different for facial movements. (b)

Motion signal also depends on the environment light. For a point on the face, the same

movements under different light directions cause different pixel intensity variations.

2. Motion distortion depends on the light environment. Lighting can change an objectŠs

appearance signiĄcantly. For a given point on the face, the pixel intensity variation due to

movements will depend on the environment lighting, as shown in Fig. 2(b). Lighting estimation

includes estimating the color and strength of rays of different directions at different locations

on the face. Under some circumstances, one can make assumptions to make the task simpler.

If the light source is far away from the object and the objectŠs size is relatively small, it can be

considered as distant lighting where each point on the object receives the same lighting (same

light direction, intensity, and color). If the light source is nearby, it is near lighting [15]. Light

fall-off should be considered. A scene point can receive light from many directions, but for a

point with Lambertian reĆectance, all the light rays can be linearly combined as one effective

lighting. If the scene is illuminated by one distant light source, a mirror sphere [16] and a diffuse

sphere [17] can be used to calibrate its direction and intensity, respectively. For effective lighting,

a diffuse sphere or a rotated diffuse checkerboard [18] is enough. For more complicated lighting,

one may use a mirror sphere to capture the high dynamic range whole environment lighting

[19,20]. However, the use of a diffuse sphere or checkerboard might be infeasible in practical

scenarios due to the hardware constraints. In the absence of additional hardware, human faces

can be used as a light probe where shading [21], highlights and shadows [22,23] can be exploited,

and can also be used to calibrate near lighting [15]. Even then, the rPPG signal Ćuctuations in

the pixel intensity variations may affect the accuracy of the light estimation.

To bypass the challenges of generating reference motion signals, one of the most common

approaches to achieving motion-robustness is to utilize some known properties of the unwanted

distortions, the rPPG signal of interest, or both. Typically, a color camera captures images in red,
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green, and blue channels. The raw pixel intensity Ćuctuation in each channel contains different

signal strengths of both the signal of interest and the distortions. The authors in [3,24] assume

that the rPPG signal and the distortions arising from a personŠs movements are uncorrelated

or independent of each other. Hence, blind source separation (BSS) techniques like ICA and

PCA are used to extract a clean rPPG signal from the observed RGB channels in a face video.

Methods like 2SR [25], CHROM [26], PBV [27] and POS [28] assume prior knowledge of the

strength of blood pulsation in each color channel and use this prior information to weigh the

observed raw pixel intensity Ćuctuations in the color channels. More recent approaches [29,30]

utilize explicitly generated reference signals to Ąlter out unwanted distortions in the pixel intensity

Ćuctuations, leaving out a clean rPPG signal. In [29], the authors note that the location of a facial

point changes according to the facial movements of a person, and hence the temporal change in

tracked pixel coordinates can be used as a surrogate measure of motion distortions. The approach

in [30] uses distraction regions from inverse attention mask to generate distortion signals. These

distraction regions consist of subject hair or the background that do not contain any physiological

signals. Although the recent approaches show signiĄcant robustness improvement in extracting

the rPPG signal, analysis of the origin of motion distortions remains lacking.

3. Proposed Method: RobustPPG

In this work, we use inverse rendering to explicitly generate the motion distortions from a video.

First, we estimate the geometry and albedo of human faces and the lighting. Next, we render the

human face for each frame as the reference motion distortion since the rendered faces do not

include rPPG signals. We then use the reference motion signals to cancel distortions in the pixel

intensity variation. We name this approach RobustPPG, as illustrated in Fig. 3, and introduce

our motion-signal model in this section. We then describe our rPPG extraction algorithm that

consists of two main subparts - i) generating reference motion signals by face rendering and ii)

using the reference signals to Ąlter the motion distorted rPPG signals.

For the rest of the paper, we use notations as the following, where ŞaŤ and ŞbŤ as examples,

a as a scalar, a as a vector, A as a matrix, Ab as matrix-vector product, AB as matrix-matrix

product, a · b as the inner product of the two vectors with the same length, ∗ as a product between

scalars, vectors and matrices (it can be omitted but it is sometimes used for separation; if it is with

the inner product, it has lower priority to avoid parentheses), A ⊙ B as element-wise product

between two matrices or vectors, and A
⊤ as transpose of matrix A.

Fig. 3. Flowchart of RobustPPG. We use inverse rendering to explicitly generate motion

distortions with high accuracy. First, we use FaceMesh, a 3D face tracker, to get 3D

face geometry per frame. Next, we estimate light direction using the 3D geometry of the

human face and generate accurate motion distortions at each triangle location. We then

simultaneously use the motion signals and the corrupted raw pixel intensity Ćuctuations in a

Bi-LSTM architecture to obtain clean Ąltered rPPG signals.
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3.1. Motion signal model

According to the Dichromatic ReĆection Model (DRM) [31], the RGB pixel intensity at any

3D location r on the surface and at time t can be described as a sum of diffuse and specular

components,

i(r, t) = idiffuse(r, t) + ispecular(r, t), (1)

where idiffuse(r, t) and ispecular(r, t) represent the diffuse component and the specular component,

respectively, and both ∈ R3×1. The diffuse component models subsurface light interaction with

the human skin and tissue, and can be modeled as follows,

idiffuse(r, t) = i0(t) ∗ (c + e ∗ p(t)) ∗ n(r, t) · l(r, t), (2)

idiffuse(r, t) = ccam ⊙ clight ⊙ (cskin(r) ∗ α + eppg ∗ p(t)) ∗ l ∗ n(r, t) · l(r, t), (3)

where all vectors ∈ R3×1; ccam, clight and cskin(r) are color response of the camera, color of the

light and color of the skin, respectively, and all are unit vectors; the pulsatile blood volume signal

is given by p(t), and eppg denotes the strength of the pulsation in the color channels; α is albedo of

the skin; l is light intensity; n(r, t) and l(r, t) are the time-varying unit vectors of surface normal

and light source direction at a point located at r at time t, respectively.

Here, we make the following assumptions (as illustrated in Fig. 4):

1. The light source is a point source located far away from the human face and the position

of the light source and the camera remains constant at all times. Hence, the light source

direction is parallel and independent of position and time at all locations. The intensity of

the light source l also remains constant with time.

2. A diffuse Lambertian object can entirely model the human face, and the specularities, if

present, are sparse and hence can be ignored. In addition, even if multiple point sources

are present in the scene, all the sources can be modeled as one single effective point source

under the assumption of a Lambertian surface.

Fig. 4. We assume that (1) light source is located far away from the human face and then

each point on the face receives the same lighting direction and intensity, and (2) human face

has Lambertian reĆectance.

Under these assumptions, substituting Eq. (3) in Eq. (1) and combining terms, we get,

i(r, t) = c ∗ n(r, t) · l + e ∗ p(t) ⊙ (c ∗ n(r, t) · l), (4)

where e = eppg/(α ∗ cskin(r)), c = ccam ⊙ clight ⊙ cskin(r) ∗ α ∗ l, and is skinŠs RGB intensity in the

camera without the shading term. We will refer c as skin color in short in this paper. In Eq. (4),

we note that the Ąrst term on the right side of the equation is dominant and contributes to motion

distortions in the measured rPPG signal i(r, t).
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3.2. Generating motion signal

In order to extract our signal of interest p(t) in Eq. (4), our approach is to generate the

motion distortions Ąrst. Generating the reference motion distortion requires knowledge of three

parameters: i) the surface normal direction n(r, t), ii) direction of effective light source l, and iii)

the average skin color c which remains constant for a person over time.

3.2.1. 3D face modelling

In an ideal scenario, we can get surface normal directions of the human face using a depth-enabled

camera, which might be infeasible in a practical scenario. A more practical way is to use 3D

Morphable Models (3DMM) for face Ątting, which outputs the approximate 3D facial geometry

for each frame in the video. In this work, we use FaceMesh [32,33] for face tracking and Ątting

in each frame of a video. One may use other methods like [11,34Ű36]. First, the face is detected

and tracked across each frame for a given video. Then facial landmarks are detected in each

frame. Next, 3DMM is used for face Ątting and generating 3D face geometry and texture. For

each frame, the Ątting process generates dense triangular meshes, the location of which is used to

estimate surface normal at each triangle centroid in the mesh, as shown in Fig. 5. We compute an

average of pixel intensities inside each triangle locally. Hence for each video, we have surface

normal measurements N ∈ RK×T×3, where K is the number of triangles in each frame, T is the

total number of frames in the video, the third dimension represents the x, y and z component

of the surface normals. Similarly, we have intensity measurements I ∈ RK×T×3, where the third

dimension contains the pixel intensities in red, green, and blue channels.

Fig. 5. For given frames (top row), the Ątted face mesh is shown (second row). We compute

surface normals (third row) at each triangle centroid from their 3D location.

3.2.2. Lighting estimation

Next, we need to estimate the effective light source direction l from the given video. For the

estimation process, we use measurement from all the triangular meshes on the face (excluding

highlights, lips and hair region) for a sequence of frames. Writing Eq. (4) in matrix multiplication
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form by ignoring the rPPG part, we have

I = N ∗ l ∗ c
⊤, (5)

where I ∈ RK×Tw×3 is the pixel intensity measurement, N ∈ RK×Tw×3 is the surface normal

directions, and Tw denotes the number of frames. The effective light source direction l ∈ R3×1

and average skin color (assuming skin color at different locations is similar) c ∈ R3×1 need to be

estimated. Typically, p(t) in Eq. (4) is considered to be a zero mean quasi-periodic signal. Hence

we consider a time window larger than a period of p(t), so that the parameter c in Eq. (5) is a

close approximate of the average skin color. Using Eq. (5), l ∗ c
⊤ ∈ R3×3 is obtained by solving a

least square problem in an over-determined system. Here the matrix l ∗ c
⊤ is a low-rank matrix in

simple lighting environment. Hence we compute Singular Value Decomposition (SVD) on the

estimated matrix l ∗ c
⊤ resulting in an estimated light source directionˆ︁l and average skin color

ˆ︁c. In essence, we only estimate l for calculating light estimation accuracy; we do not need to

separately estimate l and c for motion signal generation because we only need l ∗ c
⊤ for generating

motion signals.

3.2.3. Generating signal matrix

Once we estimate the effective lighting directionˆ︁l and the average skin colorˆ︁c, we generate the

motion signal m(r, t) in each triangle location r as follows (illustrated in Fig. 6),

m(r, t) =ˆ︁c ∗ n(r, t) ·ˆ︁l = (n(r, t)⊤ ∗ˆ︁l ∗ˆ︁c⊤)⊤. (6)

Fig. 6. Image rendering for motion signal generation. We estimate skin color and effective

lighting direction using a sequence of frames while lighting does not change (a), and render

face for each frame, where the rendered faces have motion-caused pixel intensity variation

but do not have rPPG signal. Here, c = (skin albedo (scalar) * skin color (unit vector)) ⊙

(light strength (scalar) * light color (unit vector)).

Therefore, for each triangle on the face, we have six signals: three measured RGB pixel

intensities (ired(t), igreen(t), iblue(t)) and three RGB motion signal that we synthetically generate

(mred(t), mgreen(t), mblue(t)). According to our proposed motion model, we rewrite Eq. (4) as a

function of temporal motion distortions m(t) as follows,

i(r, t) = m(r, t) + e ∗ p(t) ⊙ m(r, t), (7)

where i(r, t) is the motion contaminated rPPG signal, m(r, t) is the motion signal distortion, and

p(t) is the clean rPPG signal. Using the generated motion signals, we construct a signal feature

matrix Sr by composing Sr = [ired(t), igreen(t), iblue(t), mred(t), mgreen(t), mblue(t)]
⊤, where each

Sr ∈ R
6×t.
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3.3. Motion cancellation of rPPG signals

The objective of the Ąltering process is to estimate a clean PPG signal with the help of estimated

reference motion corruption signals. In other words, extract a clean PPG signal from the signal

matrix Sr. Previously, blind signal separation techniques were used to separate different signal

sources, in this case, two sources being the rPPG signal and unwanted motion signals. In [29],

the authors proposed a weighting vector based on a discriminative signature to extract the rPPG

signal. Recently, recurrent neural networks like long short-term memory (LSTM) have been

used on PPG signals as a signal denoising technique [30,37] and signal quality assessment [38].

In this work, we use a bi-directional long short-term memory (Bi-LSTM) network to Ąlter the

motion-distorted pixel intensity signal with the help of generated motion signals. The matrix Sr

containing the pixel intensities and the reference motion signals are used as input to the Bi-LSTM

network. The contact-based pulse-oximeter waveforms serve as ground truth labels for training

the network. The objective of the Bi-LSTM network is to use the generated motion signals to

Ąlter out distortions in the observed pixel intensity signals and obtain a clean rPPG signal.

For the architecture, we use a 3-layer Bi-LSTM network with 30 hidden units. We split each of

the signals into 4 seconds window with an overlap of 2 seconds, and the segments are then used

as input to the network. We train the architecture with Adam optimizer, which optimized the

mean squared error (MSE) loss between the predicted rPPG signal and the target ground-truth

waveforms. The overall Ćowchart for our proposed approach is demonstrated in Fig. 3.

3.4. Other implementation details

We have assumed that a Lambertian surface can completely model the human face. However, oil

or sweat makes the skin specular, violating the assumption. As a preprocessing step, we remove

triangle meshes that correspond to any facial hair. We remove the triangles by a thresholding

step, where we ignore meshes with extremely low pixel values that may indicate the presence of

facial hair. Secondly, we also disregard pixels from the eye and the lip regions since the eyes and

lips do not contain any heart rate information. For light estimation, we use a weighting mask to

assign less importance to triangles on non-Lambertian surfaces, such as facial hair or specular

regions. We use pixel color transformation to chromaticity space to obtain the weighting mask.

4. Experimental Evaluation of RobustPPG

We perform an extensive set of experiments with two main objectives - i) check the accuracy of

intermediate parameter estimation such as light direction and ii) quantify the quality of rPPG

signal extraction compared with other state-of-the-art methods.

4.1. FaceMesh Validation

In our proposed approach, the accuracy of the estimated face geometry obtained from the

FaceMesh face tracker determines the accuracy of the estimated lighting, both of which affect the

quality of synthetic motion signal generation. Therefore, the main goal of this section is to use a

photometric stereo setup to validate FaceMesh. We design the experiments in this section to i)

quantify the accuracy of the face geometry estimated using FaceMesh, ii) quantify the error in

estimated lighting direction using FaceMesh, iii) evaluate the quality of motion signal generated

using both mannequin and human subjects, and iv) evaluate the inĆuence of inaccuracy in motion

generation on the rPPG signal estimation.

4.1.1. Photometric stereo setup

To validate FaceMesh, we resort to photometric stereo to obtain ground truth 3D face geometry

during movements. Generally, a photometric stereo setup is used to accurately estimate an

objectŠs 3D geometry. In a typical photometric stereo setup, the object is illuminated by three or
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more lights kept at different positions. Then, the surface normal is estimated from the camera

images, given the prior knowledge of the lighting environment. It has been shown [39] that

photometric stereo can obtain a highly detailed structure of the human face.

We use the photometric stereo setup to obtain continuous face orientation changes during facial

movements. In our experimental setup, as shown in Fig. 7, we use three LEDs at three corners of

a triangular geometry with the camera at the center of the triangle. The camera, which is kept at

a distance of d = 1.8 m, records continuous movements of a subject at 60 fps. The LEDs are

synchronized with the camera, such that three consecutive frames of the camera corresponds to

the subject illuminated from three LEDs at different positions. We assume face is static during

three consecutive frames. The images corresponding to a single LED position are effectively

captured at 60/3 = 20 fps.

Fig. 7. Experimental setup for validating FaceMesh using photometric stereo. Photometric

stereo can get ground truth surface normal. Facemesh can get an approximate. We want to

know how accurate the surface normal by FaceMesh is, and what the inĆuence on the PPG

estimation based on the slight inaccuracy in the surface normal.

We capture videos of both mannequins and human subjects under various head movements.

The advantage of using a mannequin is that it is devoid of any physiological signals; hence any

pixel variation on the face is solely due to the movements of the mannequins. We capture four

videos of two different mannequins under different head rotational movements, with each video

corresponding to 30 seconds duration. However, realistic scenarios consist of complex facial

movements that are far more complicated than simple rotational and translation movements and

cannot be achieved with a mannequin alone. Therefore, we collect our dataset on human subjects

with realistic facial and intense head movements. We further elaborate on the methodology of

human experiments later in section 4.2.1.

Light calibration. We use a diffuse checkerboard to calibrate the light strength and direction

of each LED like [18]. The image formation for a diffuse object is pixel intensity = albedo * light

strength * (surface normal · light direction). In photometric stereo, we change light direction

to calculate surface normal. In our light calibration, we change surface normal to get light

information. More speciĄcally, we do the geometric calibration for the camera Ąrst. Then, we

turn on one LED. Next, we put the diffuse checkerboard at the reference location where head

will be placed and rotate it while the camera captures the images. From each image, we can

calculate the pixel values of the white grids and the surface normal of the checkerboard (because

the camera is calibrated and the dimension of the checkerboard is known). By rotating the

checkerboard at least three times, we can calibrate light strength and light direction of the LED.

We repeat this process for other LEDs. The light calibration process gives us lighting matrix

U = [u1, u2, u3] where each vector corresponds to each light.

4.2. 3D Face geometry estimation

We use the captured images in the photometric stereo setup to obtain the ground truth of 3D face

geometry. We use FaceMesh to track a subjectŠs face for each frame in a video and average the

pixel intensities within each triangle in the mesh for further analysis. For each triangle location m,
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the averaged pixel intensities from three consecutive frames (three consecutive frames correspond

to three different LED positions) are then used to obtain an estimate of surface normals Nm;t at

time instant t, for a pre-calibrated lighting matrix U. An example of the estimated face geometry

obtained from FaceMesh Nfm, as well as photometric stereo Nps, is shown in Fig. 8 for both

mannequins and human subjects. We compute the angular error between the surface normals Nfm

and Nps at each triangle and time instant. From the error map in Fig. 8, we observe that the error

is maximum in the nose region. The mean angular error computed across the triangle location

(excluding the eyes, nose and mouth region) and time is 13.8◦ for mannequin videos and 18.37◦

for the human dataset. The larger angular error for real human datasets is mainly attributed to

cases where some of our assumptions fail, such as the presence of specular regions and uneven

albedo distribution. The facial movements will result in surface normal variation over time. To

observe the effects of motion on surface normal variation, we compute the angular variation of

both Nfm,t and Nps,t at time instants t with respect to surface normals at t = 0, i.e. Nfm,0 and Nps,0,

respectively. We show the temporal angular variation from one triangle on the forehead of a

mannequin during rotational movements and a human subject during a talking scenario in Fig. 8.

There is a good agreement between the surface normal variation estimated from the two methods.

Despite the large mean angular error of FaceMesh (Fig. 8 top row), FaceMesh is able to capture

the temporal surface normal variation accurately, with the mean angular variation difference

being less than 5◦.

Fig. 8. Examples of face geometry estimated using FaceMesh vs. photometric stereo (PS)

for a mannequin (left) and a human face (right) on a single frame (top row, 2nd and 3rd

sub-Ągures in each group). The error map in degrees indicates unreliable estimates in nose,

mouth and eye regions (top row, 4th sub-Ągure in each group). One example of the temporal

angular variation of surface normal using FaceMesh and photometric stereo with respect to

the Ąrst frame of the video (bottom row) is shown. The FaceMesh estimated surface normal

during facial movements closely follows the surface normal variation using photometric

stereo.

4.3. Light environment estimation accuracy

Next, we use the estimated 3D geometry from FaceMesh to obtain an estimate of the lighting

matrix ˆ︁U. The average error on four mannequin videos is 4.56◦ between the estimated lighting

direction and the actual lighting direction for all the three LEDs used in our setup. Although we

show that we can accurately estimate the lighting in the case of point sources, our approach can

be extended to various lighting conditions. Furthermore, as demonstrated later, our approach can

be used to estimate the rPPG signal accurately in uncontrolled settings as well.
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4.4. Motion signal generation

Given the knowledge of accurate 3D geometry of the face for every frame, we should be able to

generate motion signals accurately. To validate our hypothesis, we use the generated 3D face

geometry to simulate the motion signal corresponding to the pixel intensity from a single lighting

position, as shown in Fig. 6. We show one example of a synthetic motion signal generated from

photometric stereo and FaceMesh and the actual pixel intensity signal from a single triangle in

Fig. 9. Next, we Ąlter the motion signals using a bandpass Ąlter ([0.5 − 5]Hz) since the human

heart rate belongs in this frequency range. To evaluate the quality of estimated surface normals,

we calculate two metrics - i) normalized root mean square error (NRMSE) and ii) normalized

cross-correlation (NCC) between estimated motion signals and the actual pixel intensity from

the mannequin videos, reported in Table 1. We observe that the generated motion signals using

face geometry Nps obtained from photometric stereo provided the best estimate of the actual

motion signal, with a small NRMSE error and high correlation coefficient. FaceMesh still offers

a good estimate of the reference motion signal with the NRMSE being less than 10%, although

the performance is inferior to that obtained using photometric stereo. The slightly inferior

performance of FaceMesh is expected since FaceMesh provides only an approximate estimate

of the surface geometry of the human face. If the motion signals generated are very accurate,

the rPPG signal, after a Ąltering process, ideally should not contain any motion distortions. We

discuss the detail of our rPPG Ąltering technique in the next section. As a sanity check, we use

our Ąltering technique to estimate residuals in mannequin videos using both rendered motion

signals from FaceMesh and photometric stereo. A mannequin is devoid of any physiological

signal; hence the residual signal after Ąltering should not contain any strong signals. The last

row of Fig. 9 shows the residual signal obtained after the Ąltering step. Rightly, the Ąltering

step successfully gets rid of any motion signal, as evident from the residual signal spectrogram.

Additionally, we observe that the difference in spectrogram between the two methods is negligible,

which validates that the performance of FaceMesh is good enough to generate motion signals

with comparable accuracy.

Table 1. Accuracy of generated motion distortions by using
3D face geometry obtained from photometric stereo and

FaceMesh.

Metric Photometric stereo FaceMesh

NRMSE (%) 5.6 8.03

NCC 0.9954 0.9930

4.5. rPPG signal estimation: FaceMesh vs. photometric stereo

Any error in the motion signal generated by FaceMesh may result in quality deterioration in the

extracted rPPG signal in the case of human subjects. To quantify the performance deterioration

due to slight inaccuracy in the generated motion signal, we extract the rPPG signal using surface

geometry from both photometric stereo and FaceMesh. We observe that using a motion signal

generated by photometric stereo results in an insigniĄcant improvement of 0.15 dB (p>0.05)

over FaceMesh with respect to the average signal-to-noise ratio of the estimated rPPG signal.

Hence, the motion signals generated using FaceMesh achieve near optimal performance in terms

of rPPG signal extraction.
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Fig. 9. An example of motion signal generated by photometric stereo and FaceMesh. Both

methodsŠ synthetic motion signals match the pixel intensity variations from a single triangle

on the mannequin (second row). The pixel intensity has a strong signal due to the movements

of the mannequin, as evident from the spectrogram. However, the Ąltered residual signalŠs

spectrogram is devoid of any strong component due to motion distortion in the pixel intensity

variation.

5. PPG Signal Estimation

Next, we discuss the details of our dataset to evaluate our proposed approach and compare the

performance against some existing state-of-the-art methods.

5.1. Dataset

Our approach is mainly geared toward a reliable estimate of PPG signals under complicated

motion scenarios. To validate our approach, we use a publicly available PURE dataset [40,41],

which is one of the few datasets to contain complicated motion scenarios. The PURE dataset

contains face videos of ten participants with synchronized physiological data under six motion

conditions, including rotation of the head and talking. The duration of the video is around one

minute, and the ground truth PPG waveform is provided by a contact-based pulse-oximeter.

To validate our approach on intense motion scenarios, we create a separate dataset, which

consists of videos from 12 subjects (9 male, 3 female) captured in our experimental setup,

as shown in Fig. 7. For each subject, we collected two motion scenarios, each of duration 2

minutes in the calibrated lighting environment. For each motion scenario, 3 videos are captured

corresponding to 3 lighting positions, resulting in 6 videos per subject. Our total dataset consists

of 72 videos. The Ąrst motion scenario consisted of fast head rotational movements, and the

second was a 2 minutes clip of the subjects talking in front of the camera with natural expressions

and movements. A pulse-oximeter (CMS50D+) was used on the Ąnger to record the PPG signal

synchronously which serves as the ground truth PPG signal. These dataset collections were
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approved by the Rice University Institutional Review Board (Protocol number: 14-45E, Approval

Date: 3/04/2014). We name the dataset as RICE-motion dataset [42].

We also collected several toy videos in indoor and outdoor settings to evaluate our proposed

approach in practical lighting scenarios. The videos are each one minute, captured by a hand-held

smartphone camera. In addition, we record the userŠs heart rate before and after the video

recording using a standard pulse-oximeter for ground truth heart rate.

5.2. Training and validating the motion cancellation network

We use our generated signal matrices Sr as described in Section 3.2.3 as input features to our

Bi-LSTM architecture. The trained model learns the function that relates the pixel intensity

variation with the motion distortions and the physiological signal of interest. Since the size of

the real datasets used in this work is comparatively small, we generate a synthetic dataset by

generating various motion distortions in the rPPG signals for training the network.

Synthetic motion dataset: We use Eq. (7) to generate synthetic signal matrices. The clean

PPG signal p(t) is generated using a parametric model as in [43], where heart rate is used as the

key parameter in generating a clean PPG signal waveform. The heart rate is randomly chosen

from a uniform distribution from 30 bpm to 240 bpm, and a clean PPG signal of 30 seconds

duration is generated corresponding to the heart rate. We use a random Brownian noise generator

to generate the reference motion signal m(t). Finally, we add random white noise to the pixel

intensity variation that simulates the modeling error and the camera sensor noise. The parameter

eppg = [0.18, 0.78, 0.60] is kept constant for each sample in the synthetic dataset. We generate

400 samples of motion corrupted signals, each of 30 seconds duration. The signal matrix Sr is

then generated using the synthetic RGB pixel intensities i(t) and the motion signals m(t).

We standardize the signals by subtracting the temporal mean and then dividing by the temporal

standard deviation of signals in each time window. The signals are then Ąltered using a bandpass

Ąlter ([0.5 − 5]Hz) to reject any out-of-band distortions. We then combine the real and synthetic

datasets for training our motion cancellation network. In this work, we adopt the subject-speciĄc

training and test via cross-validation approach. For a particular subject, we train the network

on combined simulated and real data from all the remaining subjects for all motion scenarios

in the dataset. We then use region-speciĄc signal matrices Sr for the corresponding subject to

extract rPPG signals from each triangle location r. We then obtain the overall rPPG signal by

spatially averaging the model-predicted rPPG signal from all the triangle locations on the face.

The cross-validation approach is repeated for all the subjects in the dataset, and the average error

across all the subjects is reported.

5.3. Performance comparison

In order to validate the effectiveness of our approach, we utilize our rendered motion signal in

both Bi-LSTM architecture (RobustPPG) and a discriminative Ąltering technique introduced in

[29] and name the variant DRPPG (Discriminative RobustPPG). Note that both RobustPPG and

DRPPG belong to the same family where motion signals are generated by inverse rendering. We

compare our two approaches with three prior state-of-the-art methods, namely, DIS-M which

uses the coordinate location of face tracker [29], POS [28] and CHROM [26]. We also implement

a convolution attention network (CAN-MTTS) [44] to extract rPPG signal from phone videos.

We keep the length and overlap of the time windows Ąxed for all methods for fair comparison.

To evaluate the quality of the estimated PPG signal, we compute the signal-to-noise ratio

(SNR) of the rPPG signal extracted using different approaches. Furthermore, we also compute

heart rate based on the extracted rPPG signal. Instead of using the entire duration of video

recording to estimate the average heart rate, we use short overlapping windows of 5 seconds and

1 second overlap to compute instantaneous heart rate. We then compute the average root mean

square error (RMSE) between the heart rate estimates and the ground truth for all subjects.
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5.4. Results and discussion

We show examples of the generated motion distortions from one triangle located on the forehead

of subjects from both PURE and RICE-Motion dataset in Fig. 10. For the PURE dataset, we

show results of a subject, but we use a different subjectŠs face to show the movements, due to the

dataset terms and rules for privacy concerns. The same applies for Fig. 11. For both datasets,

we observe that the generated motion distortion has a good correlation with the overall trend in

the pixel intensity Ćuctuations recorded by the camera, even for complicated movement of the

subjects.

The average SNR values across all subjects are reported in Table 2 for all six types of

movements for the PURE dataset. Here, we make some key observations. First, for stationary

or simple movements like slow translation and rotations, the SNR for all the methods remains

fairly consistent. However, in complex facial movements like in the talking scenario, the SNR

decreases for all the methods. Secondly, RobustPPG performs consistently better than the other

methods in all motion scenarios, with the maximum improvement in the talking scenario. The

consistently better performance of RobustPPG may be attributed to the accurate generation

of reference motion distortions for complicated movements. We show the spectrogram of the

blood volume signal estimated from some of the methods in Fig. 11 against the ground truth

spectrogram for both PURE and RICE-motion dataset. We observe that the heart rate signal in

the spectrogram estimated using RobustPPG is much cleaner than the other methods. The clinical

metrics associated with heart rate variability (HRV) can be computed from the extracted heart

rate trend. We also report the average RMSE error across different motion scenarios in Table 2.

The results show that in simple motion scenarios, almost all methods have similar accuracy in

terms of predicting the heart rate with CHROM being the best of them. However, for complicated

motions like head rotations and talking, RobustPPG clearly better predicts the heart rate than

all the other methods. The improvement in error for RobustPPG is more than 1 bpm above the

DIS-M (second-best prior method) for the talking scenario. Therefore, our approach can provide

a more reliable measure of HRV in addition to the average heart rate.

Table 2. Signal-to-noise ratio and heart rate RMSE on PURE dataset which contains
different motion scenarios. Our methods show improvement in the talking scenario.

Signal-to-noise ratio (dB) Heart Rate RMSE (bpm)

Movement RobustPPG

(Ours)

DRPPG

(Ours)

DIS-M POS CHROM RobustPPG

(Ours)

DRPPG

(Ours)

DIS-M POS CHROM

Static 6.34 5.14 5.13 7.76 7.85 1.56 1.92 1.92 1.41 1.37

Slow trans. 7.56 5.73 4.97 7.77 7.69 1.65 1.87 2.85 1.62 1.63

Fast trans. 7.64 6.92 5.99 6.26 6.75 1.82 2.01 2.15 2.13 2.04

Slow rot. 7.72 4.65 4.20 7.18 7.71 1.71 1.81 1.85 1.78 1.69

Fast rot. 7.54 6.69 5.91 5.36 6.58 1.72 1.85 1.99 2.54 1.90

Talking 3.35 1.87 1.29 0.98 1.06 2.38 2.99 3.27 5.43 3.55

We report the SNR values as well as the RMSE heart rate on our RICE-Motion dataset,

which is more challenging than PURE, in Table 3. Although in the RICE-Motion dataset, the

face occupies a larger portion of the frame as compared to the PURE dataset, the subjects

are asked to perform more vigorous head and facial movements for the RICE-Motion dataset.

Hence, the motion contamination is stronger in the RICE-Motion dataset compared to the PURE

dataset. In the case of heavy rotational movements, we observe around 3 dB improvement in

SNR of the estimated PPG signal using RobustPPG over the DIS-M approach (second-best

prior method). Our approach is successful in capturing large motion distortions and hence can

effectively cancel out the distortions in the pixel intensity Ćuctuations. We also observe an

improvement of over 1 bpm in the RMSE of the estimated heart rate, with an improvement of



Research Article Vol. 13, No. 10 / 1 Oct 2022 / Biomedical Optics Express 5462

Fig. 10. Examples of measured raw rPPG signals and generated motion signals from two

dataset: (a) PURE dataset and (b) RICE-motion dataset. We observe good agreement

between the pixel intensity variation from a single triangle (left column) vs. generated

motion distortions (right column) for different motion scenarios such as rotational movments

and talking.

over 28% using RobustPPG over DIS-M. For the talking scenario, RobustPPG obtains around

1.5 bpm improvement in estimated heart rate over DIS-M and an SNR improvement of around

2.5 dB. For small movements, the x, y coordinates of the face-tracker can serve as a decent

approximation of the motion distortions in the observed pixel intensity variations. However,

RobustPPG is signiĄcantly effective for large motions in canceling out the motion distortions,

as evident from the relatively cleaner signal spectrograms. Additionally, we observe that the

DRPPG method is the second best method for extracting the rPPG signal in both datasets. The

use of accurate reference motion signals helps in achieving improved performance over the other

state-of-the-art methods. However, the Bi-LSTM architecture shows better Ąltering capability

over the discriminative signature-based Ąltering [29], as evident from the superior performance

of RobustPPG over DRPPG.

Table 3. Signal-to-noise ratio and heart rate RMSE on RICE-motion dataset which
contains fast movements. RobustPPG performs better than the other methods.

Signal-to-noise ratio (dB) Heart Rate RMSE (bpm)

Movement RobustPPG

(Ours)

DRPPG

(Ours)

DIS-M POS CHROM RobustPPG

(Ours)

DRPPG

(Ours)

DIS-M POS CHROM

Head mov. 7.03 4.23 3.89 3.22 1.31 2.74 3.43 3.87 4.66 5.75

Talking 2.05 0.08 -0.31 -1.42 -2.29 3.11 4.63 4.81 9.26 10.91

Although we have assumed a single distant light source in our signal model, our model

also holds true for multiple distant light sources. From the principle of superposition and the

assumption that the human face is a Lambertian surface, multiple light sources can be effectively

represented by a single distant light source. Our model does not account for near-lighting
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Fig. 11. Estimated spectrograms from our method RobustPPG, DIS-M and POS compared

against the ground truth. The bright trace denotes the heart-rate signal. The heart-rate signal

estimated from RobustPPG is comparatively cleaner and contains less motion distortions as

compared to the other methods.

scenarios, and the performance of our approach may degrade. To this end, we evaluate our

approach in out-of-lab settings. To this end, we test our method on phone videos in natural

lighting such as outdoor settings (sunlight) and indoor room lighting. We observe that our method

still performs better than the state-of-the-art methods in extracting the heart-rate signal, shown in

Fig. 12. The estimated spectrogram extracted using RobustPPG has strong signal component

present in the expected heart rate bandwidth (as indicated by the dotted box) and contains less

unwanted distortion than the other methods, as evident from the relatively cleaner spectrograms.

RobustPPG achieves an average improvement of over 1.5 dB over the second-best prior method

and demonstrates good motion robustness in indoor and outdoor settings. Additionally, nearby

light sources or arbitrary illumination can also be modeled, which may obtain even better

performance, and we leave this direction for our future work.

A pre-processing step in our algorithm removes triangle meshes that correspond to facial hair.

Since cheek regions contain strong PPG signals, removing triangle meshes from the cheek due to

the presence of facial hair, say beard, may result in degradation of performance compared to

subjects with no beard. In order to quantify the degradation, we test our approach RobustPPG

on the subjects from the RICE-Motion dataset. Only three participants with olive skin tone

have facial hair (beard). To make the comparison fair, we compare the accuracy for bearded vs.

non-bearded olive skin-tone subjects. On the limited RICE-Motion dataset, RobustPPG achieves
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Fig. 12. Phone camera-based rPPG signal estimation in the wild. We show the spectrograms

of extracted rPPG signals using RobustPPG (our method), DIS-M, and Convolutional attention

network (CAN-MTTS) for three videos with different lighting scenarios - (a) room lighting,

(b) gym lighting, and (c) sunlight, and under natural movements. The dotted box represents

the frequency bandwidth of the ground truth heart rate. RobustPPG achieves the highest

quality in signal extraction even under uncontrolled lighting environments over the other

methods.

an average heart rate RMSE of 1.92 bpm and SNR of 5.16 dB for subjects with no facial hair vs.

2.31 bpm heart rate RMSE and SNR of 4.75 dB for subjects with facial hair.

Generally, skin color is a dominant factor that affects the quality of the extracted rPPG signals

from a video. Darker skin tone absorbs more light, resulting in lower intensity levels as captured

by a camera; thereby, reliable extraction of rPPG signals becomes more challenging. In the

RICE-Motion dataset, we observe an improved performance with an average heart-rate RMSE

of 2.33 bpm and SNR of 5.89 dB for fair-skin-toned subjects over olive-skin-toned subjects,

with an average heart-rate RMSE of 2.94 bpm and 4.96 dB SNR. On the other hand, compared

with the DIS-M method, the improvement in performance using our method is slightly more

for olive-skin-toned subjects. Compared to DIS-M, RobustPPG achieves a 0.75 bpm reduction

in RMSE heart rate and an increase in signal quality by 2 dB SNR for fair skin-toned subjects

vs. 1.34 bpm reduction in RMSE heart rate and an SNR improvement by 2.8 dB SNR for olive

skin-toned subjects. This demonstrates that our method outperforms the other state-of-the-art

methods in recovering weaker rPPG signals in the presence of complicated movements.

Finally, for training the Bi-LSTM network, we use the pulse-oximeter on the Ąnger as the

training label. Using Ąnger PPG signals as training labels is a common strategy in most

learning-based methods [8,45]. However, we note that the signal from a pulse-oximeter obtained

from a Ąnger is slightly different from the facial pulse wave in two ways - i) the waveform

shape (Ąnger PPG has more features and higher harmonics compared to that from the face) and

ii) a phase delay due to pulse transit time. We tackle the Ąrst point by low-pass Ąltering the

Ąnger pulse waveform so that the high-frequency harmonics are Ąltered out. The phase delay

between waveforms is a more difficult problem to tackle. In [9], the authors show that using

camera-based signals obtained from a motion-robust algorithm (POS, CHROM) as training labels
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for a CNN architecture achieves slightly higher accuracy since there is no phase delay. However,

in extreme motion scenarios, using camera-based signals as training labels is highly unreliable as

the signals are corrupted. Ear-based pulse-oximeter is another alternative to get ground truth

labels; however, facial and head movements may affect the quality of the signals. Hence, we

resort to the Ąltered Ąnger-based pulse-oximeter waveforms to obtain high-quality ground truth

labels. The performance of our approach validates the use of Ąnger PPG waveforms similar to

the approach in [8,45].

RobustPPG has four subparts - i) face-tracking, ii) surface normal, pixel intensity Ćuctuation

extraction and light estimation, iii) motion signal generation and iv) rPPG signal extraction at

each triangle mesh using Bi-LSTM network, with the main computational bottleneck being in

extracting pixel intensity from each triangle mesh from a frame. Overall, the whole running

time of our algorithm on MATLAB is approximately 3.5 minutes for extracting heart rate trace

for a 1-minute video at 30 fps on an Intel core i7 processor. There are some aspects where

we can reduce the computation time. First, an optimized code for extracting pixel intensities

for each triangle mesh may signiĄcantly reduce computation time. We can further speed up

the computation using Python or C++ and/or GPUs. Secondly, we use an individual triangle

mesh-based Ąltering approach to extract the rPPG signal for all the results reported in our

paper. In this way, the Bi-LSTM network extracts PPG signal from each individual triangle

mesh from a face. We can also have a uniĄed Ąltering approach by performing a one-shot

Ąltering process using the Bi-LSTM network instead of triangle-wise Ąltering. In a slight

modiĄcation, we can rewrite Eq. (7) by adding up both sides of the equation across all the triangle

locations r. The Ąltering process can then be done on the summed-up intensity signals. This

will further reduce the total computation time with a slight performance degradation. Third, we

hope that a version of this algorithm could Ąnd its way to practical applications by optimizing

the implementation architectures. For example, LSTM networks can be unrolled and mapped

to feedforward architectures, making computations faster and more efficient. These unrolled

algorithms [46] can also be mapped to efficient neural processors that are making their way into

many commercial products.

6. Conclusion and future work

We present a novel algorithm called RobustPPG for camera-based rPPG signal extraction and

heart rate estimation. We demonstrate that a 3D face tracker such as FaceMesh can be used

to generate accurate motion distortions in the pixel intensity variation. Furthermore, using a

Bi-LSTM network for signal Ąltering, we demonstrate better accuracy in rPPG signal extraction

over state-of-the-art methods. We hope that this work will signiĄcantly push the limits on motion

robustness for reliable heart rate estimation and can Ąnd its way into real-life applications.

In this work, we have only modeled the motion distortions arising from Lambertian modeling.

The specular components can be taken into account to make the modeling more accurate.

Secondly, we consider only distant lighting assumptions in our work. Near-lighting scenarios

[47,48] call for modeling complexities that can be explored to better estimate the motion signals.

Thirdly, we also consider the case when the camera is Ąxed. Movements of the camera will cause

additional signal distortions in the rPPG signals, which may affect the accuracy of heart rate

estimation in hand-held phone scenarios. These are all interesting avenues to explore and might

serve as exciting directions for future work.
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