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Abstract—Near-term quantum computers are primarily lim-
ited by errors in quantum operations (or gates) between
two quantum bits (or qubits). A physical machine typically
provides a set of basis gates that include primitive 2-qubit
(2Q) and 1-qubit (1Q) gates that can be implemented in a given
technology. 2Q entangling gates, coupled with some 1Q gates,
allow for universal quantum computation. In superconducting
technologies, the current state of the art is to implement the
same 2Q gate between every pair of qubits (typically an XX-
or XY-type gate). This strict hardware uniformity requirement
for 2Q gates in a large quantum computer has made scaling
up a time and resource-intensive endeavor in the lab.

We propose a radical idea – allow the 2Q basis gate(s)
to differ between every pair of qubits, selecting the best
entangling gates that can be calibrated between given pairs of
qubits. This work aims to give quantum scientists the ability
to run meaningful algorithms with qubit systems that are not
perfectly uniform. Scientists will also be able to use a much
broader variety of novel 2Q gates for quantum computing. We
develop a theoretical framework for identifying good 2Q basis
gates on “nonstandard” Cartan trajectories that deviate from
“standard” trajectories like XX. We then introduce practical
methods for calibration and compilation with nonstandard 2Q
gates, and discuss possible ways to improve the compilation.
To demonstrate our methods in a case study, we simulated
both standard XY-type trajectories and faster, nonstandard
trajectories using an entangling gate architecture with far-
detuned transmon qubits. We identify efficient 2Q basis gates
on these nonstandard trajectories and use them to compile
a number of standard benchmark circuits such as QFT and
QAOA. Our results demonstrate an 8x improvement over the
baseline 2Q gates with respect to speed and coherence-limited
gate fidelity.
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I. INTRODUCTION

Quantum computers have the potential to solve problems

currently intractable for conventional computers [1], but cur-

rent computations are limited by errors [2], particularly when

interacting two qubits to perform a quantum gate operation.

This is not surprising, as qubits are engineered to preserve

quantum state and be isolated from the environment, but

a quantum operation is a moment in time where external

control is applied from the environment to deliberately alter
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Figure 1. The Weyl chamber of 2Q quantum gates, explained in Sec
II-B. The non-local part of a 2Q gate is fully described by its position in
the Weyl chamber. As the duration of an entangling gate pulse increases,
the 2Q gate evolves, traversing a Cartan trajectory in the Weyl chamber.
CNOT and CZ are both represented by ( 1

2
, 0, 0). The SWAP gate is at the

top vertex ( 1
2
, 1

2
, 1

2
). On the bottom surface, (tx, ty , 0) and (1−tx, ty , 0)

represent the same equivalent class of gates. For example, the two points
I0 = (0, 0, 0) and I1 = (1, 0, 0) both represent the 2Q identity gate I .

a qubit’s state. To accomplish low-error gates, the control

mechanisms are carefully designed and the control signals

are calibrated for each qubit or pair of qubits.

Similar to how classical computers use a small set of

classical logic gates (AND, OR, NOT, XOR...) as building

blocks for larger circuits, current superconducting quantum

devices typically only directly support a universal gate set

consisting of a few two-qubit (2Q) gates and a continuous set

of single-qubit (1Q) gates. This paper will refer to the set of

directly supported quantum gates as basis gates. In the space

of 2Q gates (see Fig.1), any point that does not coincide with

SWAP or Identity has nonzero entangling power. Any of

these 2Q entangling gates can achieve universal computation

when added to a continuous set of 1Q gates [3].

Using the minimal set of gates needed for universal com-

puting is rarely a desirable thing to do. For example, while
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the NAND is universal in classical computing, building

circuits from it alone is less efficient than using a larger set

of logic gates. However, the intensive calibrations necessary

for high fidelity 2Q gates between qubits in a large quantum

computer make it impractical to support a large set of 2Q

basis gates. All logical 2Q gates scheduled to run on a

quantum computer have to be decomposed by its compiler

into alternating layers of pre-calibrated 1Q and 2Q basis

gates. Thus, the choice of which 2Q gates to directly support

is critical to enabling high-performance quantum computing.

On the hardware side, the 2Q basis gates must have high-

fidelity hardware implementations. On the software side,

they must enable the low-depth decomposition of other 2Q

gates.

Superconducting qubits support XX- and XY-type 2Q in-

teractions [4], [5]. The strength of each of these interactions

depends on the type of coupling, the coupling strength, and

the frequency detuning between the qubits [5]. The Weyl

chamber space of 2Q gates (Fig. 1) is a useful way to visu-

alize these interactions: the coordinates of a gate correspond

to its non-local part in Cartan’s KAK decomposition (see

Section II-B). In the Weyl chamber, gates in the XX family

form a straight trajectory from Identity to CNOT/CZ, while

gates in the XY family form a trajectory from Identity to

iSWAP. Cartan trajectories are generated by increasing the

duration of an entangling gate pulse, which evolves the 2Q

gate.

Section IV describes the various difficulties associated

with reliably performing standard 2Q gates like CZ and

iSWAP on today’s superconducting quantum computers.

Whether a deviation from a standard Cartan trajectory is a

2Q error depends on what the target 2Q gate is. If the target

2Q gate has to be a certain standard gate (e.g. iSWAP),

even a small amount of coherent crosstalk between the two

qubits will cause the gate to have a small CZ component,

and so the gate will not be identically iSWAP. However, if

that coherent crosstalk is a stable systematic that does not

add noise or cause decoherence, the gate could still be an

effective, high fidelity entangler that is useful for computing;

the target 2Q gate would just have to be a nonstandard

unitary rather than the standard iSWAP. In Section IV

we also show an example of an experimentally measured

Cartan trajectory of 2Q gates on a superconducting qubit

device. The measured Cartan trajectory includes very fast

nonstandard 2Q gates with high entangling power, but it does

not pass through traditional basis gates like iSWAP and CZ.

This example motivates us to develop methods that enable

the use of nonstandard 2Q gates for quantum computing. If

we allow for deviations from standard 2Q gates, we can use

high fidelity, non-standard quantum hardware for practical

quantum computing.

Using nonstandard 2Q basis gates requires methods for

identifying good basis gates on a general 2Q gate trajectory,

calibrating a nonstandard gate, and compiling with non-

standard basis gates. The primary focus of our work is to

construct and demonstrate a framework for efficiently iden-

tifying a “good” set of 2Q basis gates from a nonstandard

trajectory. But we also propose solutions for calibration and

compilation.

What are our standards for a good set of 2Q basis gates?

Following the principle of Amdahl’s Law, we pay most

attention to the SWAP gate as a target for synthesis because

of its importance for communication within programs exe-

cuting on superconducting devices. To mitigate crosstalk and

satisfy other hardware constraints, superconducting devices

usually have the sparse connectivity of a grid lattice or a

hexagonal lattice. Therefore, the compiler has to schedule

a series of SWAP gates before it can interact two qubits

that are not adjacent to each other. Although clever mapping

from logical to physical qubits can result in a smaller number

of inserted SWAP gates, we still observe a high proportion

of SWAP gates in post-mapping quantum circuits. Besides

efficient synthesis of the SWAP gate, our framework also

allows one to prioritize other target gates, including but not

limited to CNOT, iSWAP, and the B gate. It also enables the

simultaneous prioritisation of multiple target gates.

The calibration of a non-standard 2Q basis gate requires

identifying a gate duration that gives an ideal basis gate

and then accurately characterizing the corresponding gate so

that we use the right unitary for compiling. Our proposed

calibration protocol address both without causing a long

downtime on a quantum device. However, we point out that

in order to precisely characterize a non-standard gate, one

should consider using gate set tomography (GST) as opposed

to quantum process tomography (QPT). The data collected

from GST experiments may require several hours of classical

processing. Before that finishes, one would have to use the

calibration results from the previous cycle. The speedup

of GST’s classical processing, which is an active field of

research [6], would help reduce the cost of calibrating non-

standard gates. In addition, we observed that the systematic

deviations are stable over days (Fig. 5). If the change in

deviation is negligible, one may not need to apply GST in

every calibration cycle.

Compiling with non-standard 2Q basis gates requires a

conversion from arbitrary 2Q gates into the basis gates.

There isn’t a general analytical formula that works for

arbitrary target and basis gate, so a numerical search is

needed. However, we can analytically obtain information on

the minimum circuit depth needed for a perfect synthesis

and use it to facilitate the numerical search. Besides, the

circuits that synthesise common gates from the basis gates

can be pre-computed after each calibration cycle, so that one

wouldn’t need to re-compute them for every program.

Our contributions are summarized below.

• Our work is the first to consider using 2Q basis gates

from general non-standard gate trajectories that are not

parametrized by a simple function.
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• We provide a theoretical framework for identifying and

visualizing the set of good 2Q basis gates, given a set

of target 2Q gates to prioritize. With an emphasis on

SWAP, we characterize the sets of gates that enable the

synthesis of SWAP in 1, 2, and 3 layers, respectively.

As another example, we visualize the gates that are

able to both synthesize SWAP in 3 layers and CNOT

in 2 layers. After identifying the volume of desirable

basis gates in the Weyl chamber, one can select the first

intersection of the trajectory with the volume as the 2Q

basis gate. (Section V)

• We propose a practical calibration protocol that is

agnostic as to whether a 2Q gate is standard or non-

standard. (Section VI)

• We discuss a practical approach to compiling with non-

standard 2Q basis gates. (Section VII)

• We apply our methods to a case study entangling gate

architecture with far-detuned transmon qubits [7]. First,

we use our theoretical framework to select 2Q basis

gates from simulated nonstandard Cartan trajectories

that are realistic for this case study architecture. By

increasing the entangling pulse drive amplitude we get

a significant 2Q basis gate speedup but introduce a

deviation into the Cartan trajectory. Then we use these

2Q basis gates to run a variety of benchmark circuits

including BV[8], QAOA[9], the QFT adder[10], and

the Cuccaro Adder[11], and compare to the results

from using the
√
iSWAP gate on the standard XY-

type trajectory. (Section VIII)

II. BACKGROUND

A. Qubits and gates

Unlike a classical bit that is either 0 or 1, a quantum bit

(qubit) can exist in a linear superposition of |0〉 and |1〉; A

general quantum state can be expressed as α|0〉+β|1〉 where

α, β are complex amplitudes that satisfy |α|2 + |β|2 = 1.

Thus, the state of one qubit can be represented by a 2-vector

of the amplitudes α and β. A system of n qubits can exist

in a superposition of up to 2n basis states, and its state can

be represented by a 2n-vector of complex amplitudes. A

quantum gate that acts on n qubits can be represented by a

2n × 2n unitary matrix.

B. Geometric characterization of 2Q gates

Two 2Q quantum gates U1, U2 ∈ SU(4) are locally equiv-

alent if it is possible to obtain one from the other by adding

1Q operations. In other words, 2Q operations U1 and U2

are locally equivalent if there exist k1, k2 ∈ SU(2)⊗SU(2)
such that U1 = k1U2k2. For example, CNOT and CZ are

locally equivalent via Hadamard gates.

Any 2Q quantum gate U ∈ SU(4) can be written in the

form of

U = k1 exp(−i
π

2
(txX ⊗X + tyY ⊗Y + tzZ⊗Z))k2 (1)

where X,Y, Z are the Pauli gates. This is called the Cartan

decomposition.

The space of two-qubit quantum gates can be represented

geometrically in a Weyl chamber (Fig. 1), where each point

stands for a set of gates that are locally equivalent to each

other [12]. The Cartan coordinates (tx, ty, tz) in Eq. (1)

are the coordinates of U in the Weyl chamber. They fully

characterize the non-local part of a 2Q gate. On the bottom

surface, (tx, ty, 0) and (1 − tx, ty, 0) represent the same

equivalent class of gates. The other points in the Weyl

chamber each represent a different equivalence class of 2Q

gates. We refer the interested readers to [13] for a more

thorough introduction to the Weyl chamber. Note that other

conventions of the Cartan coordinates are also common.

They usually differ from ours by a constant factor of π or

2π.

In this paper, when we talk about some gate G in the

Weyl chamber, we usually mean the local equivalence class

of 2Q gates that includes G.

C. Entangling power of 2Q gates

The entangling power [14] is a widely accepted quan-

titative measure of the capacity of a 2Q gate to entangle

the qubits that it acts on. It is typically a good indicator

of the ability of a specific 2Q gate to synthesize arbitrary

2Q gates. For a unitary operator U , the entangling power

ep(U) ∈ [0, 2
9 ] is defined as the average linear entropy of the

states produced by U acting on the manifold of all separable

states [14]. It is solely based on the non-local part of U ,

which is characterized by the position of U in the Weyl

chamber.

A 2Q gate has 0 entangling power if and only if it

is locally equivalent to the Identity or the SWAP gate.

Conversely, 2Q gate U is called a perfect entangler if it can

produce a maximally entangled state from an unentangled

one[12]. Perfect entanglers (PE) have entangling power no

less than 1
6 . They constitute a polyhedron in the Weyl

chamber that is exactly half of the total volume. The 6

vertices of the PE polyhedron are CZ(CNOT), iSWAP,√
SWAP ,

√
SWAP

†
, and the 2 points that both represent√

iSWAP . The perfect entanglers with maximal entangling

power of 2
9 are also called special perfect entanglers[15]. In

the Weyl chamber, they are on the line segment from CNOT

to iSWAP. The B gate, which is at the midpoint of this line

segment, has the property that it can synthesize any arbitrary

2Q gates within 2 layers[16]. However, there has been no

proposal to directly implement the B gate in hardware.

III. RELATED WORK

To the best of our knowledge, no prior work involves

using 2Q basis gates from arbitrary nonstandard gate tra-

jectories. In parallel with this work, Lao et al. [17] pro-

pose to mitigate coherent parasitic errors in 2Q gates by

software and present methods of compilation. Our work
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is more general then [17], although we share the insight

that coherent errors in 2Q gates can be treated as part of

the gate for compilation. While our framework works for

general irregular trajectories and select basis gates on them

using the approach detailed in Section V, they focus on

iSWAP-like (XY) gates with an unwanted CPHASE (XX)

component (which belongs to the FSim gate set so is not

truly non-standard) and always use CPHASE(ψ)iSWAP(π/4)

because it has similar expressivity as iSWAP(π/4) for small

deviation ψ. They do not discuss calibration. Their baseline

for evaluation is similar to the baseline in our case study,

which is to make the trajectory more standard by lengthening

the gate duration.

Recent research from both the experimental [18], [19],

[20], [21] and theory sides has utilized 2Q (and 3Q) basis

gates from a continuous set of standard gates, as opposed to

only building and compiling with the best-known gates like

CNOT and iSWAP. The works that are most relevant to this

project are those that look for a small set of 2Q basis gates

(from a continuous standard gate set) that are the most valu-

able to calibrate. Lao et al. [22] use a numerical approach

to test the performance of different gates from the fSim and

XY gate sets on a range of application circuits, with the

overall circuit success rate as the objective. Peterson el al.

[23] from IBM use analytic techniques to find that the gate

set {CX,CX1/2, CX1/3} is almost as good as the entire

continuous set of XX gates in implementing random 2Q

gates. They try to minimize the expected (average) infidelity

in implementing random 2Q gates under an experimentally

motivated error model. Huang et al. [24] proposes using the√
iSWAP as 2Q basis gate, instead of using iSWAP or

CNOT, and implement it using a 2-fluxonium qubit device.

Recent proposals for novel nonstandard 2Q gates in the

superconducting qubit literature that are informed by the

current experimental challenges in scaling up with standard

2Q gates include [25], [26].

IV. SYSTEMATIC DEVIATIONS IN 2Q

GATES

The 2Q gate is a critical building block that must be well-

engineered before it is used to construct a quantum computer

with many qubits. In practice, engineering 2Q gates in the

lab involves iterating prototypes of the devices to minimize

any and all systematic errors that result from imperfect

device design or control along with nonuniformities in

device fabrication. Even if unwanted crosstalk between the

qubits is successfully reduced and the 2Q gate is shown

to be an effective entangler with a consistent identity, if the

gate’s identity is somehow nonstandard, one would normally

assume it is not useful. The constraint of requiring 2Q gates

to be standard is most burdensome for the superconducting

qubit platform, where device Hamiltonians are engineered

from scratch and there is no 2Q gate that is truly native to

the platform - unlike, for instance, the SWAP gates that are

native to atomic qubits [27].

Today’s multi-qubit superconducting devices are not able

to perform perfectly identical 2Q gates between every pair

of qubits because of device-level imperfections, tradeoffs

and uncertainties. Experimentalists model the expected rate

of information leakage between on-chip elements using

microwave circuit design software [28], [29], but it is in-

evitable that irregularities arise during device fabrication and

packaging. The devices are at least partially handmade and

every fabrication tool has a finite precision. Also, the various

materials that make up the layers of the superconducting de-

vice can host physical two-level systems that act as sources

of noise and even can coherently interact with qubits [30],

[31]; reducing the effect of these two-level systems is an

active field of research [32]. Another active field of research

is reducing irregularities in the fabrication of Josephson

junctions, which are critical on-chip elements [33], [34]. For

a given device, it can be difficult for the experimentalist to

determine whether a systematic 2Q gate deviation is caused

by an imperfection in the device design or in its control. For

example, a common source of systematic 2Q gate deviation

is the imperfect mitigation of the static ZZ crosstalk which

is a dominant source of 2Q gate error for transmon qubits

[35], [36], [37], [38], [39], [40]. Devices can be designed

to suppress the static ZZ crosstalk but unless the device is

properly fabricated, packaged, biased and controlled there

will be nonzero static ZZ crosstalk which will cause the 2Q

gate to deviate from the target unitary.

Superconducting devices can also have higher order

Hamiltonian terms that result in the experimentally measured

Cartan trajectory of 2Q gates deviating from the expected

Cartan trajectory. This deviation is particularly significant for

fast gates enabled by large coupling or large drive strength

[7], [41], [42]. Experimentalists have historically tried to

suppress these deviations by reducing the 2Q gate drive

strength, which has the negative consequence of slowing the

2Q gate down. It is in general difficult to accurately model

the effect of the strong drives that perform fast 2Q gates on

the Hamiltonian level, and this is an active field of research

[7].

Plotting measured 2Q gates in Cartan coordinates is a

valuable tool experimentalists can use to easily visualize and

study any deviations their gates may have from the expected

Cartan trajectory. For example, Figure 2 shows a measured

Cartan trajectory that is nonstandard. This experimental

data was collected from one of the first iterations of a

superconducting device [43] that was designed to implement

a recently proposed entangling gate architecture [7]. The

data includes a very fast (13 ns) perfect entangler. Since

the measured trajectory was systematically offset from the

predicted one (XY), the experimentalists investigated po-

tential sources of that systematic offset. Since this source

of deviation could be eliminated with better device and
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Figure 2. Experimental data showing a nonstandard Cartan coordinate
trajectory. An experimental implementation [43] of the iSWAP gate with
the entangler architecture proposed in [7] yielded a nonstandard Cartan
coordinate trajectory close to the plane of I0, SWAP, and iSWAP. The
first instance of a perfect entangler was at an entangler duration of 13
ns. In this nonstandard trajectory, the 13 ns entangler is offset from the
Cartan coordinate for the square root of iSWAP and the 26 ns entangler
is likewise offset from the Cartan coordinate for iSWAP. Note that due to
an experimental hardware constraint the shortest possible entangling pulse
duration was 4 ns, so the measured Cartan trajectory begins there.

control engineering, the experimentalists began to optimize

their next device iteration accordingly. But in this work

we suggest that there is nothing inherently unusable about

measured Cartan trajectories that are nonstandard due to

this kind of coherent systematic offset, and that the 13 ns

nonstandard perfect entangler identified in Figure 2 could

be treated as a native 2Q basis gate by the compiler.

Our work seeks to enable the use of the nonstandard

2Q gates that can be native to superconducting devices.

If 2Q gate calibration and compiling protocols became

more flexible, usable superconducting 2Q gate yield would

increase considerably, enabling more rapid and effective

prototyping of 2Q gates which could be scaled to a computer.

Furthermore, any number of novel superconducting devices

with very fast 2Q gates that happen to be nonstandard could

be effectively utilized for computing.

V. IDENTIFYING GOOD 2Q BASIS GATES

A. Fidelity of a synthesized gate

If a 2Q quantum gate is not directly supported on a

device, it needs to be implemented by alternating layers

of 1Q and 2Q gates from the set of basis gates that are

directly supported. See Figure 3 for examples. We say that

a decomposition is n-layer if it contains n layers of 2Q

gates. Besides the errors that come from noises in the

quantum hardware, a synthesized gate also suffers from the

approximation error in gate decomposition. Thus the total

fidelity of a gate should be the product of the hardware-

limited fidelity and the decomposition fidelity. In this work,

the decomposition errors are negligible compared to the

hardware errors.

In our error model, decoherence is the dominant source of

hardware error. So two factors determine whether a 2Q gate

set is ideal for synthesizing a target gate: the duration of the

basis gates, and the depth of the decomposition circuit. We

need to take both into account when deciding on a strategy

for selecting basis gates.

B. An analytic method for determining 2Q circuit depth

When deciding whether a potential basis gate is ideal

for synthesizing a target gate, we consider the depth of the

decomposition circuit as one of the factors. Given a 2Q target

gate A, and a 2Q gate B (or a gate set S), how to determine

the minimum circuit depth required for a decomposition of

A into B (or S) and 1Q gates? One can take a practical,

numerical approach to finding this decomposition. For a

given number of layers, one can fix the 2Q gates and then

numerically search for the 1Q gates that can minimize the

discrepancy between the target unitary and the synthesized

gate. One can start the numerical search from 1 layer, and

increment the number of layers until the decomposition error

gets below a threshold. But a more efficient and accurate

way to determine the circuit depth is to apply the analytic

method developed by Peterson et al. [44].

Without going into the technical details, here we sum-

marize a key result from [44] that we adapt and apply in

Section V-C and V-D.

Theorem 5.1: There exists a 2-layer decomposition of 2Q

gate A into B, C, and 1Q gates as in Figure 3(a), if and only

if any of the 1 to 8 sets of 72 inequalities that depend on

the non-local parts of A, B, C is all satisfied.

For details of the theorem, the readers can look at Theo-

rem 23 of [44] or the implementation of the function in our

code 1. Note that Reference [44] characterizes the space of

2Q gates with LogSpec instead of the Cartan coordinates.

Both are valid ways to represent the non-local part of a

2Q gate, but care must be taken when converting between

the two. A gate U usually maps to 1 point in the Weyl

chamber, but it usually maps to 2 points in the LogSpec

space: LogSpec(U) = (a, b, c, d) and ρ(LogSpec(U)) =
(c+ 1

2 , d+
1
2 , a− 1

2 , b− 1
2 ). If LogSpec(U) = ρ(LogSpec(U))

for all A, B, and C, we only need to check one set of

inequalities. If LogSpec(U) �= LogSpec(U) for 1, 2, or

all 3 of A, B, and C, we need to plug in different versions

of the LogSpec and check 2, 4, or 8 versions of the 72

inequalities, respectively.

1Our code can be found at https://github.com/SophLin/nonstandard
2qbasis gates
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Figure 3. (a) Gate A, decomposed into 2 layers with 2Q gates B, C and 1Q gates Ua,Ub,Uc,Ud,Ue,Uf . (b) A general 2-layer decomposition of the
SWAP gate. Here ∗, ∗mirror can be replaced by any pair of 2Q gates capable of synthesizing a SWAP in 2 layers. (c) The SWAP gate, decomposed into
3 CNOT gates. (d) A general 3-layer decomposition of the SWAP gate. Here the ∗ can be replaced by any 2Q gate capable of synthesizing a SWAP in 3
layers.

Figure 4. (a) Gates that are able to synthesize SWAP in 2 layers form 2 line segments in the Weyl chamber. The red one is from the B gate to√
SWAP , and the green one is from the B gate to

√
SWAP

†
. (b) Pairs of gates that are able to synthesize a SWAP in 2 layers. In blue is an

example trajectory that deviates from the standard XY interaction, in orange are the points that would complement the blue ones in synthesizing a
SWAP in 2 layers. (c) Gates that are NOT able to synthesize a SWAP in 3 layers. (d) Gates that are NOT able to synthesize a SWAP in 3 layers.
The 4 tetrahedra are defined by vertices {I0, CZ, ( 1

4
, 1

4
, 0), ( 1

6
, 1

6
, 1

6
)}, {CZ, I1, (

3

4
, 1

4
, 0), ( 5

6
, 1

6
, 1

6
)}, {SWAP, ( 1

2
, 1

6
, 1

6
), ( 1

6
, 1

6
, 1

6
), ( 1

3
, 1

3
, 1

6
)}, and

{SWAP, ( 1
2
, 1

6
, 1

6
), ( 5

6
, 1

6
, 1

6
), ( 2

3
, 1

3
, 1

6
)}. (e) Gates that are NOT able to synthesize CNOT in 2 layers. The 3 tetrahedra in the plot are defined by

vertices {I0, ( 14 , 0, 0), (
1

4
, 1

4
, 1

4
),
√
SWAP}, {I1, ( 34 , 0, 0), (

3

4
, 1

4
, 0),

√
SWAP

†}, and {SWAP,
√
SWAP,

√
SWAP

†
, ( 1

2
, 1

2
, 1

4
)}. (f) Gates that

are able to decompose SWAP in 3 layers and CNOT in 2 layers.
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C. Synthesis of the SWAP gate

On bounded connectivity architectures, SWAPs make up

a significant portion of all two-qubit gates. A SWAP gate

exchanges the quantum states of two neighboring qubits. A

2Q gate in a quantum program can be directly scheduled

if it acts on two physical qubits that are connected to each

other, but this is not the case in general. Superconducting

devices are usually designed to have sparse connectivity,

because otherwise crosstalk errors would be difficult to

suppress. As a result, quantum programs usually contain a

large proportion of SWAP gates after they are compiled to

run on a superconducting device.

When we select the 2Q basis gate set for each pair

of qubits, a top priority is to optimize the fidelity of the

SWAP gate that is built from the gate set. We discuss three

approaches towards synthesizing a SWAP gate: decompose

it into 1, 2, or 3 layers of hardware 2Q gates.

SWAP in 1 layer: This requires a basis gate that is locally

equivalent to SWAP. In other words, the trajectory of the

available native gates needs to pass through the top vertex

of the Weyl chamber.

SWAP in 2 layers: We consider 2 cases: 2-layer decom-

position of SWAP using a single 2Q basis gate, and using

two different 2Q basis gates.

In the first case, the set of 2Q gates that are capable of

synthesizing SWAP in 2 layers are represented by 2 line

segments in the Weyl chamber as shown in Figure 3(b). One

is from the B gate to
√
SWAP and the other is from B to√

SWAP
†
. We denote them by L0 and L1, respectively.

In the second case, for each point ∗ in the Weyl chamber,

(as derived in Appendix B) there is exactly one point ∗mirror

such that they together enable a 2-layer decomposition of

SWAP (see Figure 3(b)). The line segment from ∗ to ∗mirror

always has one of L0, L1 as its perpendicular bisector. Thus,

given ∗, we can locate ∗mirror by rotating ∗ by π around

the closer one of L0, L1. One example pair of such points

is CNOT and iSWAP. For a trajectory that deviates from the

standard XY trajectory (goes from Identity to a point near

iSWAP), its “mirror” is a trajectory from SWAP to a point

near CNOT (Figure 4(b)). Since there’s no overlap between

the example trajectory and the “mirror”, we conclude that

the trajectory does not contain any pair of points that is able

to synthesize SWAP together in 2 layers.

SWAP in 3 layers: It is a well-known result that 3

invocations of CNOT are required to implement a SWAP

[45]. We show the circuit in Figure 3(c). In fact, CNOT

and iSWAP share the property that they can synthesize any

arbitrary 2Q gate in 3 layers but only a 0-volume set of gates

(in the Weyl chamber) in 2 layers [44].

For our purpose, we need to know what other gates are

capable of decomposing SWAP in 3 layers. We only consider

3-layer decomposition of SWAP using a single 2Q basis gate

as in Figure 3(d). Let SSWAP,3 denote the set of gates that

satisfy our requirement. To determine whether a 2Q basis

gate G is in SSWAP,3, we first locate the corresponding

Gmirror such that G and Gmirror together can provide a

2-layer decomposition of SWAP. Then we apply Theorem

5.1 with Gmirror as target and G as basis gate to check if

there exists a 2-layer decomposition of Gmirror into G.

We apply the method above to a sample of points in the

Weyl chamber, and obtain the distribution of gates that are

able to synthesize SWAP in 3 layers. Since the complement

of the set has a simpler shape, here we show a plot of

SSWAP,3, the points that are not able to synthesize SWAP in

3 layers, in Figure 4(c). A visual inspection tells us SSWAP,3

consists of 4 tetrahedra in the Weyl chamber. After locating

the vertices of the tetrahedra, we obtain Figure 4(d). We also

learn that the volume of SSWAP,3 is 68.5% the volume of

the Weyl chamber.

A 2Q gate trajectory starts from either I0 (or I1) and

goes out of the bottom left (or the bottom right) tetrahedron

in Figure 4(d). If the trajectory does not go directly to

SWAP, it will enter SSWAP,3 after leaving the bottom

tetrahedron that it starts from. Thus, the fastest gate on the

trajectory that synthesizes SWAP in 3 layers can be found

by locating the intersection of the trajectory with the face

{CZ, ( 14 ,
1
4 , 0), (

1
6 ,

1
6 ,

1
6 )} or {CZ, ( 34 ,

1
4 , 0), (

5
6 ,

1
6 ,

1
6 )}.

Summary: Given a 2Q gate trajectory that deviates from

XY or XX, the most suitable 2Q gate for SWAP synthesis

is the fastest one on the trajectory that is capable of

synthesizing SWAP in 3 layers. Although some gates in the

Weyl chamber are able to synthesize SWAP in 1 or 2 layers,

it is unlikely that the early part of the trajectory overlaps any

of them.

D. Synthesis of other gates

The techniques that we use to study the synthesis of

SWAP also applies to other 2Q gates. For example, by

applying Theorem 5.1 to a sample of points in the Weyl

chamber, with CNOT as target, we learn that the gates

that are able to synthesize CNOT in 2 layers (denoted

SCNOT,2 here) takes up 75% of the volume in the Weyl

chamber. The complement SCNOT,2 consists of 3 tetra-

hedra, as shown in Figure 4(e). Therefore, on a 2Q gate

trajectory, we can locate the fastest gate that synthesizes

CNOT in 2 layers by taking the intersection of the tra-

jectory with the face {( 14 , 0, 0), ( 14 , 1
4 ,

1
4 ),

√
SWAP} or

{( 34 , 0, 0), ( 34 , 1
4 , 0),

√
SWAP

†}. We can also locate the

fastest gate from the trajectory that can both synthesize

CNOT in 2 layers and synthesize SWAP in 3 layers, by

taking the first intersection of the trajectory with SCNOT,2∩
SSWAP,3 (See Figure 4(f)).

E. A strategy for locating good 2Q basis gates

Our framework allows one to prioritize different com-

binations of target 2Q gates. In Section VIII, we test the
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following two criteria for selecting 2Q basis gates from

native 2Q trajectories.

1) Select the fastest gate on the trajectory that can syn-

thesize SWAP in 3 layers.

2) Select the fastest gate on the trajectory that can both

synthesize SWAP in 3 layers and synthesize CNOT in

2 layers.

As explained in Section V-C, the gate that meets Crite-

rion 1 can be found at the intersection of the 2Q trajec-

tory and one of the 2 faces {CZ, ( 14 ,
1
4 , 0), (

1
6 ,

1
6 ,

1
6 )} and

{CZ, ( 34 ,
1
4 , 0), (

5
6 ,

1
6 ,

1
6 )}. And as explained in Section V-D,

the gate that meets Criterion 2 can be found similarly. With

this insight, we can locate a desired 2Q basis gate in an

experimental setting using the methods in Section VI.

Our framework can be easily adapted to other criteria for

selecting basis gates. For instance, we can select the fastest

gate that can decompose another set of target gates within

a certain number of layers. We can also incorporate other

metrics like the entangling power into a criterion, e.g. we

can locate the fastest gate on the trajectory that is both a PE

and can synthesize SWAP in 3 layers.

VI. CALIBRATION OF NONSTANDARD 2Q GATES

We propose two stages for calibrating a 2Q basis gate

on an unknown trajectory of 2Q gates: first, a more costly

“initial tuneup” stage that does not assume any knowledge

of the trajectory and then a less costly “retuning” stage

that utilizes information from the last initial tuneup and

the retunings after it. In a well-controlled industry setup we

would imagine the initial tuneup being done once a month

and retuning being done daily. In a less well-controlled

environment (e.g. one prone to low frequency drift), the

initial tuneup could be done more frequently, as needed.

Our proposed calibration approach uses two techniques

for experimentally characterizing the unitary of a potentially

non-standard 2Q gate: quantum process tomography (QPT)

[46], [47] and gate set tomography (GST) [48], [49], [50],

[51]. QPT is a simple way to estimate a unitary but it cannot

separate state preparation and measurement (SPAM) errors

from gate errors [52]. GST is a highly general and accurate

tomography technique that characterizes all the operations

in a gate set (including SPAM) simultaneously and self-

consistently. GST is simple to run, taking minutes to acquire

on a superconducting device. GST acquisition is followed by

classical processing of the data that can be computed on a

cluster in about two hours. Note that during the classical

processing, the quantum device can still be used with gates

from the previous calibration cycle. The speedup of GST’s

classical processing is an active field of research and may

be obtained by allowing physics to inform the dominant

errors that are expected [6]. The most relevant returns for

fine tuning the unitary are the error generators [53] for

the gate set. The error generators are a basis for writing

the transformation between the measured unitary and the

unitary that GST expects. It measures coherent differences

and estimates stochastic noise levels. GST is thus a valuable

tool for directly characterizing 2Q gates.

Here we list the steps in the initial tuneup stage.

1) Do preliminary coarse tuning experiments such as

amplitude and frequency calibration of the entangling

pulse drive to estimate the entangling pulse duration

of interest. For example, a resonant iSWAP -like

interaction may have an amplitude and a frequency

to tune for optimal population swapping. (5 minutes

per pulse)

2) Perform QPT for each 2Q gate in the Cartan trajectory

leading up to the approximate 2Q gate of interest.

The qubit controller resolution (typically ∼1 ns) will

determine the spacing between the trajectory points.

Based on the findings in Step 1 the trajectory can

be cropped around the entangling pulse duration of

interest. The unitaries found will be the full list of

candidate gates. (30-60 minutes per trajectory)

3) From the candidate gates in the previous steps, use

Section V to identify which of them might be the

fastest ones that also are good 2Q basis gates. In this

step the list of candidate basis gates is narrowed down.

We are not able to narrow down to one basis gate due

to the imprecision of QPT.

4) Perform GST to obtain full information about each

candidate 2Q gate, including an accurate gate unitary

and a breakdown of error sources. Then the set of 2Q

basis gates can be chosen. (∼10 minutes for each 2Q

gate, followed by classical processing)

The second calibration stage is the quick “retuning” of the

2Q basis gates that relies on the results of the initial tuneup.

Once the precise unitary for each 2Q basis gate is found,

the gates can be simply retuned using the coarse tuning

procedures in Step 1 of the initial tuneup. The information

gained in the initial tuneup would allow experimentalists to

prescribe a different retuning protocol to each 2Q basis gate

according to what it needs. In practice, retuning would most

likely be a simple combination of amplitude calibration and

frequency calibration of the elements involved in each 2Q

basis gate, and it would take approximately 1-5 minutes per

2Q basis gate.

The extent to which previously gathered information can

help reduce the cost of retuning depends on the stability

of the gate trajectories over time. Figure 5 shows the

nonstandard Cartan trajectories measured on two days, over

two entangling pulse drive amplitudes. Over the five day

period that Cartan trajectories were measured for this device,

the trajectories were all found to look qualitatively similar,

as in Figure 5. While limited, this experimental data suggests

that the measured Cartan trajectories obtained in the initial

tuneup stage could potentially be used for several days

afterward to provide an initial guess for the duration of the
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Figure 5. Stability over drive amplitude of the experimentally measured
Cartan coordinate trajectories. In the same experimental implementation
from Figure 2, as the entangling pulse drive amplitude ξ increased from
0.005Φ0 to 0.01Φ0, the Cartan coordinate trajectories were found to double
in speed but still be qualitatively similar. The data was collected over a two
day period. As in Figure 2, due to an experimental hardware constraint the
shortest possible entangling pulse duration was 4 ns, so the measured Cartan
trajectories begin there.

good 2Q basis gates.

Our calibration protocol does not include the use of

randomized benchmarking (RB) [54], [55], [56]. RB is best

suited for architectures with specific target gates that are

members of the Clifford group. Furthermore, interleaved

RB [57] will estimate the gate infidelity but will provide

no information about an error budget. In our setting we

do not have a fixed 2Q gate as the goal of implementation

and understanding the gate unitaries themselves is a primary

goal. We have thus decided GST and QPT are more suitable

for precise gate characterization.

The scalability of our proposed calibration method is not

different from traditional approaches. Calibration techniques

like QPT, RB, and GST can be applied to multiple 2Q gates

on the same device in parallel, as long as the gates do not

act on the same qubits. One can use an edge-coloring of

the device connectivity graph to determine which gates to

calibrate simultaneously. An edge-coloring of the grid graph

takes 4 colors, one for a sparser connectivity (e.g. heavy

hexagonal) takes fewer colors. Thus, for a superconducting

device with typical connectivity, the calibration overhead

on the quantum device does not scale with the size of the

device.

VII. COMPILING WITH NON-STANDARD 2Q BASIS GATES

Most quantum programs and benchmarks are already

specified at the 2 or 3 qubit gate level. Therefore, like

previous works [24][22][23] that discuss choice of 2Q basis

gate and how to use less conventional 2Q basis gates for

compilation, we use a transpiler pass to convert other 2Q

gates in a circuit into our own 2Q basis gates, instead of

building an entirely new compiler.

Some of the prior works decompose 2Q gates from

application circuits into 1Q gates and native 2Q gates using

a numerical approach [22], while others take an analytical

approach [24] [23]. Note that such a decomposition re-

quires finding the 1Q local unitaries, not just determining

the required circuit depth. The analytical and numerical

approaches each have their advantages. The numerical ap-

proach is more flexible. It can be applied to any 2Q basis and

target gates. The analytic methods have limits on what gates

they can be applied to, but are faster and some of them guar-

antee optimal results. There is currently no analytic formula

that convert between arbitrary sets of 2Q gates. Huang et al.

[24] and Peterson et al. [23] develop analytic algorithms

that decomposes an arbitrary 2Q gates into
√
iSWAP

and discrete sets of XX-type gates, respectively. The

decompose_two_qubit_interaction_into_four_

fsim_gates function in Cirq [58] implements an analytic

formula that decomposes an arbitrary 2Q gate into 4 layers

of a given fSim gate, via the B gate.

In this project, we need to synthesize other 2Q gates

from 2Q basis gates that are even less conventional than

the ones considered in previous work. Therefore, we take

a mostly numerical approach to gate synthesis and write

our numerical search code based on NuOp from [22]. The

difference is, we use knowledge about decomposition circuit

depth computed analytically to inform and speedup the nu-

merical search for 1Q local unitaries. NuOp first attempts to

search for a 1-layer decomposition, and moves on to 1 more

layer upon failure to find solution, until it meets the target

decomposition error rate. Using the analytic techniques for

determining circuit depth developed by [44] and extended by

our work for SWAP, we are able to skip to the step in NuOp

in which a perfect decomposition is guaranteed by theory.

This significantly speeds up the numerical search and also

guarantee that the solution has optimal depth.

Synthesizing all 2Q gates in the application programs

directly into the basis gates might incur a compilation

overhead. We avoid it by computing in advance and storing

the decompositions of a few common 2Q gates into our basis

gates. This only needs to be done once per calibration cycle

(usually 1 day) and costs little time. In this work (see Section

VIII) we only directly decompose SWAP and CNOT into our

basis gates. But instead of taking this minimalist approach,

one can alternatively prepare decompositions for a larger set

of potential target gates into the basis gates. The cost would

still quite small. We imagine that one can identify a set of

potentially useful target gates using an approach similar to

[22], except that [22] looks for a set of gates to calibrate

instead of decompose. In addition, in the scenario where

programs wait in long queues before execution, one might

be able to afford directly decomposing all 2Q gates in the

circuits into the basis gates.

VIII. CASE STUDY: ENTANGLING FIXED

FREQUENCY FAR-DETUNED

TRANSMONS WITH A TUNABLE
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COUPLER

A. Introduction to the case study entangling gate architec-

ture

Many efforts are being made in industry and academia to

design a 2Q entangling gate architecture that can be used for

scaling up to a general quantum computer [59], [18], [37].

The all-microwave cross-resonance gate was recently used

by IBM to do a high fidelity CNOT gate in 90 ns [59], but to

suppress the always-on ZZ crosstalk mentioned in Section

IV, precise crosstalk cancellation pulses applied to both

qubits during run time were required, adding complexity to

the architecture. Google Quantum AI and MIT have each

developed entangling gate architectures for high fidelity CZ

and iSWAP gates, with Google’s architecture supporting a

continuous set of these standard gates [18], [37]. Google’s

architecture requires all qubits and couplers to be flux-

tunable, which adds complexity and additional sources of

leakage and noise to their architecture. Similarly, in order

to suppress the always-on ZZ crosstalk, MIT’s architecture

requires one qubit per pair to be tunable as well as the

coupler.

The unit cell of our case study entangling gate architecture

is a pair of qubits and a coupler. This unit cell, first proposed

in [7], was designed to perform a diverse set of 2Q gates,

including iSWAP and CZ; the full list of 2Q gates can be

found in Table 1 of [7]. The two qubits are fixed frequency

transmon qubits; the benefits of fixed frequency transmons

are that they are easy to fabricate and can be reliably

engineered to have high coherence > 100 us [60]. The

two qubits are also far detuned from each other so there

is reduced single qubit control crosstalk. The coupler is

a generalized flux qubit which has been designed to have

several good properties for qubit control. Notably, because

the coupler’s positive anharmonicity has been designed to

balance out the negative anharmonicity of the two qubits,

the eigenspectrum of this architecture’s unit cell can support

a zero-ZZ crosstalk bias point. This architecture is relatively

simple to implement because fixed frequency transmons

have high coherence, there is only one flux-tunable element

in the unit cell (the coupler), and it is easy to bias the unit

cell to zero-ZZ crosstalk.

A model Hamiltonian of the two qubits coupled with a

tunable coupler is shown in Appendix A. Here we highlight

the time-dependent term, Ĥc(t) that describes the coupler

dynamics:

Ĥc(t) = ωc(t)ĉ
†ĉ+

αc

2
ĉ†2ĉ2 (2)

where αc is the coupler anharmonicity, ĉ is the annihilation

operator and the coupler frequency ωc(t), corresponding to

the transition to its first excited state, can be varied in time

via the flux through its superconducting loop. Low-crosstalk

2Q gates are realized by AC modulating this coupler fre-

quency after DC biasing it to the zero-ZZ crosstalk bias

Figure 6. (a) Optical image of the device presented in [43] shows two
fixed frequency transmons coupled via a tunable coupler. (b) Schematic for
modelling the device adapted from [7].

point.

In [43] an early prototype device (shown in Fig. 6)

for this case study architecture demonstrated a fast perfect

entangler biased to zero-ZZ crosstalk. This device produced

the nonstandard 2Q gate trajectory shown in Figure 2, which

included a 13 ns perfect entangler. Figure 5 shows how the

measured trajectories were similar over a range of entangling

pulse drive amplitudes that did not exceed ξ = 0.01Φ0,

the point at which strong drive effects would be expected

to become non-negligible [7]. So in this early prototype

device, the measured trajectories in Figures 2 and 5 were

not nonstandard because of strong drive effects, but because

of some other systematic in the experiment.

B. Our simulation approach

The case study entangling gate architecture natively sup-

ports strong parametrically activated interactions between

the two qubits. Since the full Hamiltonian for this archi-

tecture is computationally intensive to model [7], for our

simulation we use the simplified effective Hamiltonian from

[7] that models the device using fewer parameters while

still capturing all of the essential physics of the device (see

Appendix A). Our general protocol for simulating Cartan

trajectories is as follows:

1) We input the simulated device parameters into our

Hamiltonian. These parameters include the qubit fre-

quencies ωa and ωb, and the qubit coherence times.

This generates the eigenspectrum of the simulated

device.

2) We bias the coupler frequency (ω0
c ) between the two

qubit frequencies (ωa, ωb) such that the static ZZ term

(i.e. for δ(t) = 0) between the two qubits is tuned to

zero.

3) We specify the drive amplitude ξ of our entangling

pulse. In this case study we implement a iSWAP-

like entangler, so the entangling pulse is driven at

the frequency ωd that generates maximal population

swapping between the two qubits. For ξ ≤ 0.01Φ0, the

entangling pulse frequency ωd is essentially identical

to the difference frequency of the two qubits |ωa−ωb|.
However, increasing ξ > 0.01Φ0 activates the two-

photon process in Equation 2, causing population to

enter the second excited state of the coupler and

modify the entangling interaction. This in turn causes
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ωd to deviate from |ωa − ωb|. The entangling pulse

is modulated by a rectangular envelope, as was done

in experiment to obtain the measured trajectories; due

to qubit controllers typically having a time resolution

of 1 ns, short entangling gates ∼10 ns have to be

implemented using a pulse with a fast rise time.

Experimentalists typically choose between a flat top

Gaussian pulse with a short rise time, or a rectangular

pulse for simplicity.

4) We evolve the time-dependent Hamiltonian and project

the evolution propagator on the computational sub-

space to obtain the effective unitary operation with

respect to the entangling pulse drive duration. This

time ordered sequence of unitary operations can be

represented as a trajectory in the Weyl space using

Cartan coordinates. By examining the trace of the

effective unitary propagator we can obtain the leakage

outside the computational space. We confirm that the

leakage rates are much below the expected gate errors

due to decoherence.

In this case study we simulate standard and nonstandard

2Q trajectories. The simplest and most consistent way to

do this is to use the same simulated devices but to vary

the drive power ξ. For ξ ≤ 0.01Φ0 we expect the above

protocol to result in a standard iSWAP interaction between

the two qubits. But for ξ > 0.01Φ0, we expect strong

drive effects to begin to emerge and cause the Cartan

trajectory to deviate away from a standard iSWAP. We note

that the simulated trajectories differ in several ways from

the measured trajectories in Figures 2 and 5. Firstly, the

measured trajectories are nonstandard even for ξ ≤ 0.01Φ0

due to an additional systematic effect in the experiment.

Secondly, the simulated trajectories are consistently slower

than the measured trajectories; e.g. at ξ = 0.01Φ0, the

simulated trajectories are slower by a factor of 3.5 than the

measured trajectory, which included a 13 ns
√
iSWAP -like

entangling gate. These discrepancies can both be explained

by the simulation model Hamiltonian being significantly

simpler than the true device Hamiltonian. Aside from these

discrepancies, our simulations are realistic; our trajectories

are generated using parameters and techniques that closely

resemble those used in experiment and our method for

generating standard and nonstandard trajectories using a

single simulated device is physically intuitive.

Simulating Cartan trajectories over a range of entangling

pulse amplitudes ξ we observe the correct intuitive behavior.

The simulated trajectories deviate more and more from the

standard iSWAP as the entangling pulse amplitude increases

beyond ξ = 0.01Φ0. Secondly, the speed of the simulated

trajectories scales linearly with ξ. This agrees with the

experimental data shown in Figure 5 where the measured

trajectory doubled in speed when ξ increased by a factor of

two.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

Figure 7. Device simulation. The high and low frequency qubits are shown
in different colors. Each edge connects two qubits with different colors.

C. Methodology

We simulate a 10 by 10 device with grid connectivity (Fig.

7),where the qubit frequencies of each pair of neighbors

are sampled from two normal distributions respectively with

means that differ by 2 GHz. We use a 5% standard deviation

for sampling the qubit frequencies. Improved fabrication

techniques have reduced the smaller standard deviation to

about 0.5% [34], but we use a larger standard deviation

to show that our method is robust to variations in device

fabrication.

Between each pair of neighboring qubits on the 10 × 10
grid, we simulate two types of 2Q trajectory by varying

the entangling pulse amplitude ξ: 1) A baseline trajectory

generated with a low entangling pulse amplitude of ξ =

0.005Φ0 and 2) a nonstandard trajectory due to strong drive

effects resulting from a larger ξ = 0.04Φ0.

Then on each nonstandard trajectory, we select 2Q basis

gates using Criterion 1 and 2 (respectively) introduced in

Section V-E. We test these 3 sets of 2Q basis gates on

common application circuits as benchmarks. We use the

Qiskit[61] transpiler with the “SABRE”[62] layout and rout-

ing methods to map the benchmarks circuits to the 10× 10
grid connectivity. With the nonstandard basis gates, we

compile circuits using the methods from Section VII. With

the
√
iSWAP from the standard trajectories, we use the

analytic approach in [24]. Like the 2Q basis gates selected

with Criterion 2,
√
iSWAP decomposes SWAP in 3 layers

and CNOT in 2 layers, but we can also use it to directly

decompose other 2Q gates (like the CRZ gates in the QFT

benchmarks) analytically. For the 1Q gates in the gate and

circuit synthesis, we use a duration of 20 ns, which is typical

for fixed-frequency transmon qubit processors [42].

Decoherence is the dominant hardware noise in our noise

model, because crosstalk is suppressed by the high detuning

in the qubits. For each qubit, we model the decoherence error

as 1−e−t/T , where T is the coherence time of the qubit. We
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set T to a typical value of 80 µs for all qubits. We compute

t as tf − ti, where ti is the start of the first gate on the qubit

and tf is the end of the last gate on the qubit. The total

coherence-limited fidelity of a circuit is the product over

the e−t/T term from each qubit. The decomposition errors

in gate synthesis are negligible compared to the decoherence

errors, and can be reduced to arbitrarily close to zero in

theory. Thus we only show the coherence-limited fidelities

in the results.

D. Results

Before discussing our results, as a disclaimer we note that

while increasing the entangling pulse drive amplitude is one

way to speed up 2Q gates, it is by no means an all-purpose

solution that we generally advocate for. We chose to do this

in our simulation case study only because it was a simple and

intuitive way to compare standard and nonstandard simulated

gates for the same case study entangling architecture. For

this case study architecture, the drive amplitudes chosen

were realistic in an experimental setting.

Basis SWAP CNOT

Baseline
83.04 ns 329.1 ns 226.1 ns

99.884% 99.541% 99.684%

Criterion 1
10.15 ns 110.5 ns 110.5 ns

99.986% 99.845% 99.845%

Criterion 2
10.76 ns 112.3 ns 81.51 ns

99.985% 99.843% 99.886%

Table I. Average duration (top) and coherence-limited gate fidelity
(bottom) of the 2Q basis gates and the synthesized SWAP and CNOT

gates, from baseline, Criterion 1, and Criterion 2.

The average durations and coherence limited fidelities

(obtained using the Qiskit Ignis coherence_limit func-

tion [63]) of the synthesized SWAP and CNOT gates from

the two approaches are summarized in Table I. In Table II,

we show the coherence-limited circuit fidelities of 5 sets

of benchmark circuits, when transpiled to different sets of

2Q basis gates. We first observe that the faster nonstandard

2Q basis gates have ∼8x lower coherence-limited infidelities

than the baseline standard 2Q gates. We also observe that

the synthesized SWAP (CNOT) gates from Criterion 1 and

2 are 3.0x and 2.9x (2.0x and 2.8x) faster than the baseline,

respectively. Due to the relation between gate fidelity and

circuit fidelity, fidelity improvements scale exponentially in

benchmark size.

Next, we observe that Criterion 2 performs better than

Criterion 1. This is not surprising since it has significantly

faster CNOT gates and only slightly slower SWAP gates

compared to Criterion 1.

For the baseline case, the 1Q gate duration is 4x shorter

than the standard 2Q basis gate, and therefore ∼24% of

the duration of the compiled SWAP/CNOT gate is spent

performing 1Q gates. In contrast, for the nonstandard case,

the 1Q gate duration is 2x longer than the nonstandard

2Q basis gate, and ∼72% of the duration of the compiled

SWAP/CNOT gate is spent performing 1Q gates. This puts

us in the regime of today’s fastest large superconducting

processors such as Google’s Sycamore device, where the

optimal processor configuration that minimizes the overall

effects of gate error has the 1Q gates being roughly twice

as long as the 2Q gates [64].

IX. CONCLUSION

The idea of a uniform set of basis gates naturally arose

from early notions of universal gate sets, which experi-

mentalists then implemented on various qubit platforms. By

looking at the theory of possible entanglers, we have found

that there are many options for good 2Q basis gates, and

that these gates behave differently on each pair of interacting

qubits in a processor. This led us to a radically new idea,

why be constrained to a single canonical gate (e.g. CX or

CZ)? Why not tune up the gate that will have the highest

fidelity between every pair of qubits, allowing each to differ

and instead adjust for these variations in software? If we do

not treat all the coherent deviations in gate trajectories as

errors, we will have more freedom in hardware design and

achieve a higher gate fidelity.

In this paper, we examined the space of possible en-

tanglers and developed a practical method for finding a

high-fidelity entangler between every pair of qubits. In the

case study, we find heterogeneous basis gates that are ∼8x

Benchmark Baseline Criterion 1 Criterion 2

qft 10 58.2% 65.6% 70.8%
qft 20 1.33% 6.03% 9.94%
bv 9 88.7% 94.4% 95.3%
bv 19 79.3% 89.9% 91.0%
bv 29 44.5% 72.5% 74.3%
bv 39 26.8% 56.3% 59.7%
bv 49 27.7% 58.4% 62.4%
bv 59 12.5% 43.8% 47.4%
bv 69 9.15% 39.4% 43.2%
bv 79 0.428% 11.3% 14.2%
bv 89 2.44% 23.1% 26.3%
bv 99 0.06% 6.26% 7.97%
cuccaro 10 21.5% 46.3% 52.6%
cuccaro 20 0.800% 7.68% 11.8%
qaoa 0.1 10 97.2% 98.5% 98.8%
qaoa 0.1 20 84.4% 92.0% 93.6%
qaoa 0.1 30 14.4% 43.3% 49.0%
qaoa 0.1 40 0.00585% 5.59% 8.56%
qaoa 0.33 10 66.1% 81.0% 84.3%
qaoa 0.33 20 15.0% 42.2% 48.2%

Table II. The decoherence-limited fidelities of benchmark circuits,
transpiled using the standard 2Q basis gates from baseline, and the

nonstandard ones selected by Criterion 1 and 2. The QAOA benchmarks
all have p = 1 where p is the number of times the protocol is repeated.
The fractions 0.1 and 0.33 are the probablities that an edge is created

between a pair of nodes.
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faster than the baseline, and use them to synthesize faster

SWAP and CNOT gates than synthesized by the baseline√
iSWAP gate from the standard XY-type trajectories. We

then evaluate these heterogeneous basis gates on a number

of benchmark circuits and find fidelity improvements that

scale exponentially in benchmark size.

Our approach successfully uses software to overcome

the limitations of today’s hardware. Such types of adaptive

basis-gate design will be essential to pioneering innovative

future quantum systems.
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APPENDIX A.

HAMILTONIAN OF 2 QUBITS COUPLED WITH A TUNABLE

COUPLER

The system Hamiltonian of the two qubits coupled with

a tunable coupler can be modelled as in [7]:

Ĥ(t) = Ĥa + Ĥb + Ĥc(t) + Ĥg, (3)

with

Ĥa = ωaâ
†â+

αa

2
â†2â2,

Ĥb = ωbb̂
†b̂+

αb

2
b̂†2b̂2,

Ĥc(t) = ωc(t)ĉ
†ĉ+

αc

2
ĉ†2ĉ2.

Ĥg = −gabâ
†b̂− gbcb̂

†ĉ− gcaĉ
†â

− g∗abâb̂
† − g∗bcb̂ĉ

† − g∗caĉâ
†

(4)

where ωa(b) corresponds to the qubit a(b) frequency, gij
represents capacitive coupling strength between elements i

and j. The entangling interaction is realized by modulating

the coupler frequency as ωc(t) = ω0
c + δ sin(ωdt).

APPENDIX B.

SWAP SYNTHESIS IN 2 LAYERS

See the circuit in Fig. 3(a). Let A = SWAP we get the

equation

SWAP = (e⊗ f)C(c⊗ d)B(a⊗ b).

Move e ⊗ f and a ⊗ b to the other side and move e ⊗ f

through SWAP,

C(c⊗ d)B = (e⊗ f)†SWAP (a⊗ b)†

= SWAP (f ⊗ e)†(a⊗ b)†

= SWAP (fa⊗ eb)†.

Move (fa⊗ eb)† to the LHS, and C to the RHS,

(c⊗ d)B(fa⊗ eb) = C†SWAP.

This equation tells us that, B and C can synthesize SWAP

as in Fig. 3(a) if and only if the Cartan coordinates of B

are equal to the Cartan coordinates of C†SWAP up to

canonicalization. Let B ∼ (x, y, z) and C ∼ (x′, y′, z′), then

we have (x, y, z) ∼ (−x′,−y′,−z′) + ( 12 ,
1
2 ,

1
2 ). From this

we can tell that for every local equivalence class [B] of 2Q

gates, there is exactly one local equivalence class [C] such

that [B] and [C] together can synthesize SWAP in 2 layers.

And since we know how to canonicalize Cartan coordinates

into points within the Weyl chamber, given [B] we will be

able to find the corresponding [C]. Here we do not elaborate

on how we identify the geometric relation between [B] and

[C] inside the Weyl chamber, but the readers can check our

claim by applying Theorem 5.1.
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