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Abstract—Near-term quantum computers are primarily lim-
ited by errors in quantum operations (or gates) between
two quantum bits (or qubits). A physical machine typically
provides a set of basis gates that include primitive 2-qubit
(2Q) and 1-qubit (1Q) gates that can be implemented in a given
technology. 2Q entangling gates, coupled with some 1Q gates,
allow for universal quantum computation. In superconducting
technologies, the current state of the art is to implement the
same 2Q) gate between every pair of qubits (typically an XX-
or XY-type gate). This strict hardware uniformity requirement
for 2Q gates in a large quantum computer has made scaling
up a time and resource-intensive endeavor in the lab.

We propose a radical idea — allow the 2Q basis gate(s)
to differ between every pair of qubits, selecting the best
entangling gates that can be calibrated between given pairs of
qubits. This work aims to give quantum scientists the ability
to run meaningful algorithms with qubit systems that are not
perfectly uniform. Scientists will also be able to use a much
broader variety of novel 2Q gates for quantum computing. We
develop a theoretical framework for identifying good 2Q basis
gates on ‘“nonstandard” Cartan trajectories that deviate from
“standard” trajectories like XX. We then introduce practical
methods for calibration and compilation with nonstandard 2Q
gates, and discuss possible ways to improve the compilation.
To demonstrate our methods in a case study, we simulated
both standard XY-type trajectories and faster, nonstandard
trajectories using an entangling gate architecture with far-
detuned transmon qubits. We identify efficient 2Q basis gates
on these nonstandard trajectories and use them to compile
a number of standard benchmark circuits such as QFT and
QAOA. Our results demonstrate an 8x improvement over the
baseline 2Q gates with respect to speed and coherence-limited
gate fidelity.
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[. INTRODUCTION

Quantum computers have the potential to solve problems
currently intractable for conventional computers [1], but cur-
rent computations are limited by errors [2], particularly when
interacting two qubits to perform a quantum gate operation.
This is not surprising, as qubits are engineered to preserve
quantum state and be isolated from the environment, but
a quantum operation is a moment in time where external
control is applied from the environment to deliberately alter
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Figure 1. The Weyl chamber of 2Q quantum gates, explained in Sec
II-B. The non-local part of a 2Q gate is fully described by its position in
the Weyl chamber. As the duration of an entangling gate pulse increases,
the 2Q gate evolves, traversing a Cartan trajectory in the Weyl chamber.
CNOT and CZ are both represented by (%, 0,0). The SWAP gate is at the
top vertex (%, %, %) On the bottom surface, (tz,ty,0) and (1 —tz,ty,0)
represent the same equivalent class of gates. For example, the two points
Iy = (0,0,0) and I; = (1,0,0) both represent the 2Q identity gate I.

a qubit’s state. To accomplish low-error gates, the control
mechanisms are carefully designed and the control signals
are calibrated for each qubit or pair of qubits.

Similar to how classical computers use a small set of
classical logic gates (AND, OR, NOT, XOR...) as building
blocks for larger circuits, current superconducting quantum
devices typically only directly support a universal gate set
consisting of a few two-qubit (2Q) gates and a continuous set
of single-qubit (1Q) gates. This paper will refer to the set of
directly supported quantum gates as basis gates. In the space
of 2Q gates (see Fig.1), any point that does not coincide with
SWAP or Identity has nonzero entangling power. Any of
these 2Q entangling gates can achieve universal computation
when added to a continuous set of 1Q gates [3].

Using the minimal set of gates needed for universal com-
puting is rarely a desirable thing to do. For example, while



the NAND is universal in classical computing, building
circuits from it alone is less efficient than using a larger set
of logic gates. However, the intensive calibrations necessary
for high fidelity 2Q gates between qubits in a large quantum
computer make it impractical to support a large set of 2Q
basis gates. All logical 2Q gates scheduled to run on a
quantum computer have to be decomposed by its compiler
into alternating layers of pre-calibrated 1Q and 2Q basis
gates. Thus, the choice of which 2Q gates to directly support
is critical to enabling high-performance quantum computing.
On the hardware side, the 2Q basis gates must have high-
fidelity hardware implementations. On the software side,
they must enable the low-depth decomposition of other 2Q
gates.

Superconducting qubits support XX- and XY-type 2Q in-
teractions [4], [5]. The strength of each of these interactions
depends on the type of coupling, the coupling strength, and
the frequency detuning between the qubits [5]. The Weyl
chamber space of 2Q gates (Fig. 1) is a useful way to visu-
alize these interactions: the coordinates of a gate correspond
to its non-local part in Cartan’s KAK decomposition (see
Section II-B). In the Weyl chamber, gates in the XX family
form a straight trajectory from Identity to CNOT/CZ, while
gates in the XY family form a trajectory from Identity to
iSWAP. Cartan trajectories are generated by increasing the
duration of an entangling gate pulse, which evolves the 2Q
gate.

Section IV describes the various difficulties associated
with reliably performing standard 2Q gates like CZ and
iISWAP on today’s superconducting quantum computers.
Whether a deviation from a standard Cartan trajectory is a
2Q error depends on what the target 2Q gate is. If the target
2Q gate has to be a certain standard gate (e.g. iSWAP),
even a small amount of coherent crosstalk between the two
qubits will cause the gate to have a small CZ component,
and so the gate will not be identically iSWAP. However, if
that coherent crosstalk is a stable systematic that does not
add noise or cause decoherence, the gate could still be an
effective, high fidelity entangler that is useful for computing;
the target 2Q gate would just have to be a nonstandard
unitary rather than the standard iSWAP. In Section IV
we also show an example of an experimentally measured
Cartan trajectory of 2Q gates on a superconducting qubit
device. The measured Cartan trajectory includes very fast
nonstandard 2Q gates with high entangling power, but it does
not pass through traditional basis gates like iISWAP and CZ.
This example motivates us to develop methods that enable
the use of nonstandard 2Q gates for quantum computing. If
we allow for deviations from standard 2Q gates, we can use
high fidelity, non-standard quantum hardware for practical
quantum computing.

Using nonstandard 2Q basis gates requires methods for
identifying good basis gates on a general 2Q gate trajectory,
calibrating a nonstandard gate, and compiling with non-
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standard basis gates. The primary focus of our work is to
construct and demonstrate a framework for efficiently iden-
tifying a “good” set of 2Q basis gates from a nonstandard
trajectory. But we also propose solutions for calibration and
compilation.

What are our standards for a good set of 2Q basis gates?
Following the principle of Amdahl’s Law, we pay most
attention to the SWAP gate as a target for synthesis because
of its importance for communication within programs exe-
cuting on superconducting devices. To mitigate crosstalk and
satisfy other hardware constraints, superconducting devices
usually have the sparse connectivity of a grid lattice or a
hexagonal lattice. Therefore, the compiler has to schedule
a series of SWAP gates before it can interact two qubits
that are not adjacent to each other. Although clever mapping
from logical to physical qubits can result in a smaller number
of inserted SWAP gates, we still observe a high proportion
of SWAP gates in post-mapping quantum circuits. Besides
efficient synthesis of the SWAP gate, our framework also
allows one to prioritize other target gates, including but not
limited to CNOT, iSWAP, and the B gate. It also enables the
simultaneous prioritisation of multiple target gates.

The calibration of a non-standard 2Q basis gate requires
identifying a gate duration that gives an ideal basis gate
and then accurately characterizing the corresponding gate so
that we use the right unitary for compiling. Our proposed
calibration protocol address both without causing a long
downtime on a quantum device. However, we point out that
in order to precisely characterize a non-standard gate, one
should consider using gate set tomography (GST) as opposed
to quantum process tomography (QPT). The data collected
from GST experiments may require several hours of classical
processing. Before that finishes, one would have to use the
calibration results from the previous cycle. The speedup
of GST’s classical processing, which is an active field of
research [6], would help reduce the cost of calibrating non-
standard gates. In addition, we observed that the systematic
deviations are stable over days (Fig. 5). If the change in
deviation is negligible, one may not need to apply GST in
every calibration cycle.

Compiling with non-standard 2Q basis gates requires a
conversion from arbitrary 2Q gates into the basis gates.
There isn’t a general analytical formula that works for
arbitrary target and basis gate, so a numerical search is
needed. However, we can analytically obtain information on
the minimum circuit depth needed for a perfect synthesis
and use it to facilitate the numerical search. Besides, the
circuits that synthesise common gates from the basis gates
can be pre-computed after each calibration cycle, so that one
wouldn’t need to re-compute them for every program.

Our contributions are summarized below.

o Our work is the first to consider using 2Q basis gates

from general non-standard gate trajectories that are not
parametrized by a simple function.



« We provide a theoretical framework for identifying and
visualizing the set of good 2Q basis gates, given a set
of target 2Q gates to prioritize. With an emphasis on
SWAP, we characterize the sets of gates that enable the
synthesis of SWAP in 1, 2, and 3 layers, respectively.
As another example, we visualize the gates that are
able to both synthesize SWAP in 3 layers and CNOT
in 2 layers. After identifying the volume of desirable
basis gates in the Weyl chamber, one can select the first
intersection of the trajectory with the volume as the 2Q
basis gate. (Section V)

We propose a practical calibration protocol that is
agnostic as to whether a 2Q gate is standard or non-
standard. (Section VI)

We discuss a practical approach to compiling with non-
standard 2Q basis gates. (Section VII)

We apply our methods to a case study entangling gate
architecture with far-detuned transmon qubits [7]. First,
we use our theoretical framework to select 2Q basis
gates from simulated nonstandard Cartan trajectories
that are realistic for this case study architecture. By
increasing the entangling pulse drive amplitude we get
a significant 2Q basis gate speedup but introduce a
deviation into the Cartan trajectory. Then we use these
2QQ basis gates to run a variety of benchmark circuits
including BV[8], QAOA[9], the QFT adder[10], and
the Cuccaro Adder[11], and compare to the results
from using the ViSW AP gate on the standard XY-
type trajectory. (Section VIII)

II. BACKGROUND
A. Qubits and gates

Unlike a classical bit that is either 0 or 1, a quantum bit
(qubit) can exist in a linear superposition of |0) and |1); A
general quantum state can be expressed as «|0) 4 3|1) where
a, B are complex amplitudes that satisfy |a|? + |3]? = 1.
Thus, the state of one qubit can be represented by a 2-vector
of the amplitudes « and . A system of n qubits can exist
in a superposition of up to 2™ basis states, and its state can
be represented by a 2"-vector of complex amplitudes. A
quantum gate that acts on n qubits can be represented by a
2™ % 2™ unitary matrix.

B. Geometric characterization of 2Q gates

Two 2Q quantum gates Uy, Uy € SU(4) are locally equiv-
alent if it is possible to obtain one from the other by adding
1Q operations. In other words, 2Q operations U; and U,
are locally equivalent if there exist k1, k2 € SU(2)® SU(2)
such that U; = kjUsks. For example, CNOT and CZ are
locally equivalent via Hadamard gates.

Any 2Q quantum gate U € SU(4) can be written in the
form of

U=k exp(fig(th®X+tyY®Y+tzZ®Z))k2 (1)
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where X, Y, Z are the Pauli gates. This is called the Cartan
decomposition.

The space of two-qubit quantum gates can be represented
geometrically in a Weyl chamber (Fig. 1), where each point
stands for a set of gates that are locally equivalent to each
other [12]. The Cartan coordinates (¢,%,,t;) in Eq. (1)
are the coordinates of U in the Weyl chamber. They fully
characterize the non-local part of a 2Q gate. On the bottom
surface, (tz,t,,0) and (1 — ¢;,t,,0) represent the same
equivalent class of gates. The other points in the Weyl
chamber each represent a different equivalence class of 2Q
gates. We refer the interested readers to [13] for a more
thorough introduction to the Weyl chamber. Note that other
conventions of the Cartan coordinates are also common.
They usually differ from ours by a constant factor of m or
2.

In this paper, when we talk about some gate G in the
Weyl chamber, we usually mean the local equivalence class
of 2Q gates that includes G.

C. Entangling power of 2Q gates

The entangling power [14] is a widely accepted quan-
titative measure of the capacity of a 2Q gate to entangle
the qubits that it acts on. It is typically a good indicator
of the ability of a specific 2Q gate to synthesize arbitrary
2Q gates. For a unitary operator U, the entangling power
ep(U) € [0, 2] is defined as the average linear entropy of the
states produced by U acting on the manifold of all separable
states [14]. It is solely based on the non-local part of U,
which is characterized by the position of U in the Weyl
chamber.

A 2Q gate has 0O entangling power if and only if it
is locally equivalent to the Identity or the SWAP gate.
Conversely, 2Q gate U is called a perfect entangler if it can
produce a maximally entangled state from an unentangled
one[12]. Perfect entanglers (PE) have entangling power no
less than %. They constitute a polyhedron in the Weyl
chamber that is exactly half of the total volume. The 6
vertices of the PE ?olyhedron are CZ(CNOT), iSWAP,
VSWAP, V/SWAP', and the 2 points that both represent
ViSW AP. The perfect entanglers with maximal entangling
power of % are also called special perfect entanglers[15]. In
the Weyl chamber, they are on the line segment from CNOT
to iSWAP. The B gate, which is at the midpoint of this line
segment, has the property that it can synthesize any arbitrary
2Q gates within 2 layers[16]. However, there has been no
proposal to directly implement the B gate in hardware.

III. RELATED WORK

To the best of our knowledge, no prior work involves
using 2Q basis gates from arbitrary nonstandard gate tra-
jectories. In parallel with this work, Lao et al. [17] pro-
pose to mitigate coherent parasitic errors in 2Q gates by
software and present methods of compilation. Our work



is more general then [17], although we share the insight
that coherent errors in 2Q gates can be treated as part of
the gate for compilation. While our framework works for
general irregular trajectories and select basis gates on them
using the approach detailed in Section V, they focus on
iISWAP-like (XY) gates with an unwanted CPHASE (XX)
component (which belongs to the FSim gate set so is not
truly non-standard) and always use CPHASE(¢))iSWAP(7/4)
because it has similar expressivity as iSWAP(7/4) for small
deviation 1. They do not discuss calibration. Their baseline
for evaluation is similar to the baseline in our case study,
which is to make the trajectory more standard by lengthening
the gate duration.

Recent research from both the experimental [18], [19],
[20], [21] and theory sides has utilized 2Q (and 3Q) basis
gates from a continuous set of standard gates, as opposed to
only building and compiling with the best-known gates like
CNOT and iSWAP. The works that are most relevant to this
project are those that look for a small set of 2Q basis gates
(from a continuous standard gate set) that are the most valu-
able to calibrate. Lao et al. [22] use a numerical approach
to test the performance of different gates from the fSim and
XY gate sets on a range of application circuits, with the
overall circuit success rate as the objective. Peterson el al.
[23] from IBM use analytic techniques to find that the gate
set {CX,CX'/2 CX'/3} is almost as good as the entire
continuous set of XX gates in implementing random 2Q
gates. They try to minimize the expected (average) infidelity
in implementing random 2Q gates under an experimentally
motivated error model. Huang et al. [24] proposes using the
ViSWAP as 2Q basis gate, instead of using iSWAP or
CNOT, and implement it using a 2-fluxonium qubit device.
Recent proposals for novel nonstandard 2Q gates in the
superconducting qubit literature that are informed by the
current experimental challenges in scaling up with standard
2Q gates include [25], [26].

IV. SYSTEMATIC DEVIATIONS IN 2Q
GATES

The 2Q gate is a critical building block that must be well-
engineered before it is used to construct a quantum computer
with many qubits. In practice, engineering 2Q gates in the
lab involves iterating prototypes of the devices to minimize
any and all systematic errors that result from imperfect
device design or control along with nonuniformities in
device fabrication. Even if unwanted crosstalk between the
qubits is successfully reduced and the 2Q gate is shown
to be an effective entangler with a consistent identity, if the
gate’s identity is somehow nonstandard, one would normally
assume it is not useful. The constraint of requiring 2Q gates
to be standard is most burdensome for the superconducting
qubit platform, where device Hamiltonians are engineered
from scratch and there is no 2Q gate that is truly native to
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the platform - unlike, for instance, the SWAP gates that are
native to atomic qubits [27].

Today’s multi-qubit superconducting devices are not able
to perform perfectly identical 2Q gates between every pair
of qubits because of device-level imperfections, tradeoffs
and uncertainties. Experimentalists model the expected rate
of information leakage between on-chip elements using
microwave circuit design software [28], [29], but it is in-
evitable that irregularities arise during device fabrication and
packaging. The devices are at least partially handmade and
every fabrication tool has a finite precision. Also, the various
materials that make up the layers of the superconducting de-
vice can host physical two-level systems that act as sources
of noise and even can coherently interact with qubits [30],
[31]; reducing the effect of these two-level systems is an
active field of research [32]. Another active field of research
is reducing irregularities in the fabrication of Josephson
junctions, which are critical on-chip elements [33], [34]. For
a given device, it can be difficult for the experimentalist to
determine whether a systematic 2Q gate deviation is caused
by an imperfection in the device design or in its control. For
example, a common source of systematic 2Q gate deviation
is the imperfect mitigation of the static ZZ crosstalk which
is a dominant source of 2Q gate error for transmon qubits
[35], [36], [37], [38], [39], [40]. Devices can be designed
to suppress the static ZZ crosstalk but unless the device is
properly fabricated, packaged, biased and controlled there
will be nonzero static ZZ crosstalk which will cause the 2Q
gate to deviate from the target unitary.

Superconducting devices can also have higher order
Hamiltonian terms that result in the experimentally measured
Cartan trajectory of 2Q gates deviating from the expected
Cartan trajectory. This deviation is particularly significant for
fast gates enabled by large coupling or large drive strength
[71, [41], [42]. Experimentalists have historically tried to
suppress these deviations by reducing the 2Q gate drive
strength, which has the negative consequence of slowing the
2Q gate down. It is in general difficult to accurately model
the effect of the strong drives that perform fast 2Q gates on
the Hamiltonian level, and this is an active field of research
[7].

Plotting measured 2Q gates in Cartan coordinates is a
valuable tool experimentalists can use to easily visualize and
study any deviations their gates may have from the expected
Cartan trajectory. For example, Figure 2 shows a measured
Cartan trajectory that is nonstandard. This experimental
data was collected from one of the first iterations of a
superconducting device [43] that was designed to implement
a recently proposed entangling gate architecture [7]. The
data includes a very fast (13 ns) perfect entangler. Since
the measured trajectory was systematically offset from the
predicted one (XY), the experimentalists investigated po-
tential sources of that systematic offset. Since this source
of deviation could be eliminated with better device and
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Figure 2.  Experimental data showing a nonstandard Cartan coordinate
trajectory. An experimental implementation [43] of the iSWAP gate with
the entangler architecture proposed in [7] yielded a nonstandard Cartan
coordinate trajectory close to the plane of Iy, SWAP, and iSWAP. The
first instance of a perfect entangler was at an entangler duration of 13
ns. In this nonstandard trajectory, the 13 ns entangler is offset from the
Cartan coordinate for the square root of iSWAP and the 26 ns entangler
is likewise offset from the Cartan coordinate for iSWAP. Note that due to
an experimental hardware constraint the shortest possible entangling pulse
duration was 4 ns, so the measured Cartan trajectory begins there.

control engineering, the experimentalists began to optimize
their next device iteration accordingly. But in this work
we suggest that there is nothing inherently unusable about
measured Cartan trajectories that are nonstandard due to
this kind of coherent systematic offset, and that the 13 ns
nonstandard perfect entangler identified in Figure 2 could
be treated as a native 2Q basis gate by the compiler.

Our work seeks to enable the use of the nonstandard
2Q gates that can be native to superconducting devices.
If 2Q gate calibration and compiling protocols became
more flexible, usable superconducting 2Q gate yield would
increase considerably, enabling more rapid and effective
prototyping of 2Q gates which could be scaled to a computer.
Furthermore, any number of novel superconducting devices
with very fast 2Q gates that happen to be nonstandard could
be effectively utilized for computing.

V. IDENTIFYING GOOD 2Q BASIS GATES
A. Fidelity of a synthesized gate

If a 2Q quantum gate is not directly supported on a
device, it needs to be implemented by alternating layers
of 1Q and 2Q gates from the set of basis gates that are
directly supported. See Figure 3 for examples. We say that
a decomposition is n-layer if it contains n layers of 2Q
gates. Besides the errors that come from noises in the
quantum hardware, a synthesized gate also suffers from the
approximation error in gate decomposition. Thus the total
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fidelity of a gate should be the product of the hardware-
limited fidelity and the decomposition fidelity. In this work,
the decomposition errors are negligible compared to the
hardware errors.

In our error model, decoherence is the dominant source of
hardware error. So two factors determine whether a 2Q gate
set is ideal for synthesizing a target gate: the duration of the
basis gates, and the depth of the decomposition circuit. We
need to take both into account when deciding on a strategy
for selecting basis gates.

B. An analytic method for determining 2Q circuit depth

When deciding whether a potential basis gate is ideal
for synthesizing a target gate, we consider the depth of the
decomposition circuit as one of the factors. Given a 2Q target
gate A, and a 2Q gate B (or a gate set S), how to determine
the minimum circuit depth required for a decomposition of
A into B (or S) and 1Q gates? One can take a practical,
numerical approach to finding this decomposition. For a
given number of layers, one can fix the 2Q gates and then
numerically search for the 1Q gates that can minimize the
discrepancy between the target unitary and the synthesized
gate. One can start the numerical search from 1 layer, and
increment the number of layers until the decomposition error
gets below a threshold. But a more efficient and accurate
way to determine the circuit depth is to apply the analytic
method developed by Peterson et al. [44].

Without going into the technical details, here we sum-
marize a key result from [44] that we adapt and apply in
Section V-C and V-D.

Theorem 5.1: There exists a 2-layer decomposition of 2Q
gate A into B, C, and 1Q gates as in Figure 3(a), if and only
if any of the 1 to 8 sets of 72 inequalities that depend on
the non-local parts of A, B, C is all satisfied.

For details of the theorem, the readers can look at Theo-
rem 23 of [44] or the implementation of the function in our
code !. Note that Reference [44] characterizes the space of
2Q gates with LogSpec instead of the Cartan coordinates.
Both are valid ways to represent the non-local part of a
2Q gate, but care must be taken when converting between
the two. A gate U usually maps to 1 point in the Weyl
chamber, but it usually maps to 2 points in the LogSpec
space: LogSpec(U) = (a,b,c,d) and p(LogSpec(U)) =
(c+3,d+3%,a—5,b—3). 1f LogSpec(U) = p(LogSpec(U))
for all A, B, and C, we only need to check one set of
inequalities. If LogSpec(U) # LogSpec(U) for 1, 2, or
all 3 of A, B, and C, we need to plug in different versions
of the LogSpec and check 2, 4, or 8 versions of the 72
inequalities, respectively.

'0ur code can be found at https:/github.com/SophLin/nonstandard_
2qbasis_gates
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Figure 3. (a) Gate A, decomposed into 2 layers with 2Q gates B, C and 1Q gates Uq,Up,Uc,Uq,Ue,Uy. (b) A general 2-layer decomposition of the
SWAP gate. Here *, %o can be replaced by any pair of 2Q gates capable of synthesizing a SWAP in 2 layers. (c¢) The SWAP gate, decomposed into
3 CNOT gates. (d) A general 3-layer decomposition of the SWAP gate. Here the * can be replaced by any 2Q gate capable of synthesizing a SWAP in 3
layers.
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Figure 4. (a) Gates that are able to synthesize SWAP in 2 layers form 2 line segments in the Weyl chamber. The red one is from the B gate to
VSW AP, and the green one is from the B gate to v/ SWAPT. (b) Pairs of gates that are able to synthesize a SWAP in 2 layers. In blue is an
example trajectory that deviates from the standard XY interaction, in orange are the points that would complement the blue ones in synthesizing a
SWAP in 2 layers. (c) Gates that are NOT able to synthesize a SWAP in 3 layers. (d) Gates that are NOT able to synthesize a SWAP in 3 layers.
The 4 tetrahedra are defined by vertices {Io, CZ, (i, L0, LAy {cz,n,(3,4,0),3,1, L), {swap, (1,1 L (1 1 Ly (1111 and

11 14,51 1N 2 11 6766 1D 6’626 2'676/7'67676/7137376
{SWAP,(5,5,5)(5:5:5) (33> 5)} (e) Gates that are NOT able to synthesize CNOT in 2 layers. The 3 tetrahedra in the plot are defined by
vertices {Io, (1,0,0), (1,1, 1) VSWAPY}, {I,,(2,0,0),(3,1,0), VSWAP'}, and {SWAP,VSWAP, VSWAP', (1,1, 1)}, (f) Gates that
are able to decompose SWAP in 3 layers and CNOT in 2 layers.
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C. Synthesis of the SWAP gate

On bounded connectivity architectures, SWAPs make up
a significant portion of all two-qubit gates. A SWAP gate
exchanges the quantum states of two neighboring qubits. A
2Q gate in a quantum program can be directly scheduled
if it acts on two physical qubits that are connected to each
other, but this is not the case in general. Superconducting
devices are usually designed to have sparse connectivity,
because otherwise crosstalk errors would be difficult to
suppress. As a result, quantum programs usually contain a
large proportion of SWAP gates after they are compiled to
run on a superconducting device.

When we select the 2Q basis gate set for each pair
of qubits, a top priority is to optimize the fidelity of the
SWAP gate that is built from the gate set. We discuss three
approaches towards synthesizing a SWAP gate: decompose
it into 1, 2, or 3 layers of hardware 2Q gates.

SWAP in 1 layer: This requires a basis gate that is locally
equivalent to SWAP. In other words, the trajectory of the
available native gates needs to pass through the top vertex
of the Weyl chamber.

SWAP in 2 layers: We consider 2 cases: 2-layer decom-
position of SWAP using a single 2Q basis gate, and using
two different 2Q basis gates.

In the first case, the set of 2Q gates that are capable of
synthesizing SWAP in 2 layers are represented by 2 line
segments in the Weyl chamber as shown in Figure 3(b). One
is from the B gate to vV SW AP and the other is from B to
vV SWAPT. We denote them by Ly and L, respectively.

In the second case, for each point * in the Weyl chamber,
(as derived in Appendix B) there is exactly one point *,;;ror
such that they together enable a 2-layer decomposition of
SWAP (see Figure 3(b)). The line segment from * to *,,irror
always has one of Lg, L; as its perpendicular bisector. Thus,
given *, we can locate *,,;ror Dy rotating * by m around
the closer one of Lg, Li. One example pair of such points
is CNOT and iSWAP. For a trajectory that deviates from the
standard XY trajectory (goes from Identity to a point near
iISWAP), its “mirror” is a trajectory from SWAP to a point
near CNOT (Figure 4(b)). Since there’s no overlap between
the example trajectory and the “mirror”, we conclude that
the trajectory does not contain any pair of points that is able
to synthesize SWAP together in 2 layers.

SWAP in 3 layers: It is a well-known result that 3
invocations of CNOT are required to implement a SWAP
[45]. We show the circuit in Figure 3(c). In fact, CNOT
and iSWAP share the property that they can synthesize any
arbitrary 2Q gate in 3 layers but only a 0-volume set of gates
(in the Weyl chamber) in 2 layers [44].

For our purpose, we need to know what other gates are
capable of decomposing SWAP in 3 layers. We only consider
3-layer decomposition of SWAP using a single 2Q basis gate
as in Figure 3(d). Let Sswap,3 denote the set of gates that
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satisfy our requirement. To determine whether a 2Q basis
gate G is in Sgwap3, we first locate the corresponding
Gmirror sSuch that G and G,,irr0r together can provide a
2-layer decomposition of SWAP. Then we apply Theorem
5.1 with Girror as target and G as basis gate to check if
there exists a 2-layer decomposition of G, irror into G.

We apply the method above to a sample of points in the
Weyl chamber, and obtain the distribution of gates that are
able to synthesize SWAP in 3 layers. Since the complement
of the set has a simpler shape, here we show a plot of
Ssw ap,3, the points that are not able to synthesize SWAP in
3 layers, in Figure 4(c). A visual inspection tells us Ssw ap,3
consists of 4 tetrahedra in the Weyl chamber. After locating
the vertices of the tetrahedra, we obtain Figure 4(d). We also
learn that the volume of Sgyw ap,s is 68.5% the volume of
the Weyl chamber.

A 2Q gate trajectory starts from either Iy (or I;) and
goes out of the bottom left (or the bottom right) tetrahedron
in Figure 4(d). If the trajectory does not go directly to
SWAP, it will enter Sswaps after leaving the bottom
tetrahedron that it starts from. Thus, the fastest gate on the
trajectory that synthesizes SWAP in 3 layers can be found
by locating the intersection of the trajectory with the face
{CZ,(1.1.0): (5:5:6)} or {CZ,(3, 1.0, (3, 5> 5)}-

Summary: Given a 2Q gate trajectory that deviates from
XY or XX, the most suitable 2Q gate for SWAP synthesis
is the fastest one on the trajectory that is capable of
synthesizing SWAP in 3 layers. Although some gates in the
Weyl chamber are able to synthesize SWAP in 1 or 2 layers,
it is unlikely that the early part of the trajectory overlaps any
of them.

D. Synthesis of other gates

The techniques that we use to study the synthesis of
SWAP also applies to other 2Q gates. For example, by
applying Theorem 5.1 to a sample of points in the Weyl
chamber, with CNOT as target, we learn that the gates
that are able to synthesize CNOT in 2 layers (denoted
Scnor,e here) takes up 75% of the volume in the Weyl
chamber. The complement Scyo7,2 consists of 3 tetra-
hedra, as shown in Figure 4(e). Therefore, on a 2Q gate
trajectory, we can locate the fastest gate that synthesizes
CNOT in 2 layers by taking the intersection of the tra-
jectory with the face {(%,0,0),(3,%,3),VSWAP} or
{(%,0,0)7(%,i,O)A/SWAPT}. We can also locate the
fastest gate from the trajectory that can both synthesize
CNOT in 2 layers and synthesize SWAP in 3 layers, by
taking the first intersection of the trajectory with Scyor,2N

Sswap,3 (See Figure 4(f)).

E. A strategy for locating good 2Q basis gates

Our framework allows one to prioritize different com-
binations of target 2Q gates. In Section VIII, we test the



following two criteria for selecting 2Q basis gates from
native 2Q trajectories.
1) Select the fastest gate on the trajectory that can syn-
thesize SWAP in 3 layers.
2) Select the fastest gate on the trajectory that can both
synthesize SWAP in 3 layers and synthesize CNOT in
2 layers.
As explained in Section V-C, the gate that meets Crite-
rion 1 can be found at the intersection of the 2Q trajec-

tory and one of the 2 faces {CZ, (5, 3.0), (%, %, ¢)} and
{CZ,(3,4.0),(2, &, %)} And as explained in Section V-D,

the gate that meets Criterion 2 can be found similarly. With
this insight, we can locate a desired 2Q basis gate in an
experimental setting using the methods in Section VI.

Our framework can be easily adapted to other criteria for
selecting basis gates. For instance, we can select the fastest
gate that can decompose another set of target gates within
a certain number of layers. We can also incorporate other
metrics like the entangling power into a criterion, e.g. we
can locate the fastest gate on the trajectory that is both a PE
and can synthesize SWAP in 3 layers.

VI. CALIBRATION OF NONSTANDARD 2Q GATES

We propose two stages for calibrating a 2Q basis gate
on an unknown trajectory of 2Q gates: first, a more costly
“initial tuneup” stage that does not assume any knowledge
of the trajectory and then a less costly “retuning” stage
that utilizes information from the last initial tuneup and
the retunings after it. In a well-controlled industry setup we
would imagine the initial tuneup being done once a month
and retuning being done daily. In a less well-controlled
environment (e.g. one prone to low frequency drift), the
initial tuneup could be done more frequently, as needed.

Our proposed calibration approach uses two techniques
for experimentally characterizing the unitary of a potentially
non-standard 2Q gate: quantum process tomography (QPT)
[46], [47] and gate set tomography (GST) [48], [49], [50],
[51]. QPT is a simple way to estimate a unitary but it cannot
separate state preparation and measurement (SPAM) errors
from gate errors [52]. GST is a highly general and accurate
tomography technique that characterizes all the operations
in a gate set (including SPAM) simultaneously and self-
consistently. GST is simple to run, taking minutes to acquire
on a superconducting device. GST acquisition is followed by
classical processing of the data that can be computed on a
cluster in about two hours. Note that during the classical
processing, the quantum device can still be used with gates
from the previous calibration cycle. The speedup of GST’s
classical processing is an active field of research and may
be obtained by allowing physics to inform the dominant
errors that are expected [6]. The most relevant returns for
fine tuning the unitary are the error generators [53] for
the gate set. The error generators are a basis for writing
the transformation between the measured unitary and the
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unitary that GST expects. It measures coherent differences
and estimates stochastic noise levels. GST is thus a valuable
tool for directly characterizing 2Q gates.

Here we list the steps in the initial tuneup stage.

1) Do preliminary coarse tuning experiments such as
amplitude and frequency calibration of the entangling
pulse drive to estimate the entangling pulse duration
of interest. For example, a resonant iSW AP-like
interaction may have an amplitude and a frequency
to tune for optimal population swapping. (5 minutes
per pulse)

Perform QPT for each 2Q gate in the Cartan trajectory
leading up to the approximate 2Q gate of interest.
The qubit controller resolution (typically ~1 ns) will
determine the spacing between the trajectory points.
Based on the findings in Step 1 the trajectory can
be cropped around the entangling pulse duration of
interest. The unitaries found will be the full list of
candidate gates. (30-60 minutes per trajectory)

From the candidate gates in the previous steps, use
Section V to identify which of them might be the
fastest ones that also are good 2Q basis gates. In this
step the list of candidate basis gates is narrowed down.
We are not able to narrow down to one basis gate due
to the imprecision of QPT.

Perform GST to obtain full information about each
candidate 2Q gate, including an accurate gate unitary
and a breakdown of error sources. Then the set of 2Q
basis gates can be chosen. (~10 minutes for each 2Q
gate, followed by classical processing)

2)

3)

4)

The second calibration stage is the quick “retuning” of the
2Q basis gates that relies on the results of the initial tuneup.
Once the precise unitary for each 2Q basis gate is found,
the gates can be simply retuned using the coarse tuning
procedures in Step 1 of the initial tuneup. The information
gained in the initial tuneup would allow experimentalists to
prescribe a different retuning protocol to each 2Q basis gate
according to what it needs. In practice, retuning would most
likely be a simple combination of amplitude calibration and
frequency calibration of the elements involved in each 2Q
basis gate, and it would take approximately 1-5 minutes per
2Q basis gate.

The extent to which previously gathered information can
help reduce the cost of retuning depends on the stability
of the gate trajectories over time. Figure 5 shows the
nonstandard Cartan trajectories measured on two days, over
two entangling pulse drive amplitudes. Over the five day
period that Cartan trajectories were measured for this device,
the trajectories were all found to look qualitatively similar,
as in Figure 5. While limited, this experimental data suggests
that the measured Cartan trajectories obtained in the initial
tuneup stage could potentially be used for several days
afterward to provide an initial guess for the duration of the
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Figure 5. Stability over drive amplitude of the experimentally measured
Cartan coordinate trajectories. In the same experimental implementation
from Figure 2, as the entangling pulse drive amplitude & increased from
0.005% to 0.01d(, the Cartan coordinate trajectories were found to double
in speed but still be qualitatively similar. The data was collected over a two
day period. As in Figure 2, due to an experimental hardware constraint the
shortest possible entangling pulse duration was 4 ns, so the measured Cartan
trajectories begin there.

good 2Q basis gates.

Our calibration protocol does not include the use of
randomized benchmarking (RB) [54], [55], [56]. RB is best
suited for architectures with specific target gates that are
members of the Clifford group. Furthermore, interleaved
RB [57] will estimate the gate infidelity but will provide
no information about an error budget. In our setting we
do not have a fixed 2Q gate as the goal of implementation
and understanding the gate unitaries themselves is a primary
goal. We have thus decided GST and QPT are more suitable
for precise gate characterization.

The scalability of our proposed calibration method is not
different from traditional approaches. Calibration techniques
like QPT, RB, and GST can be applied to multiple 2Q gates
on the same device in parallel, as long as the gates do not
act on the same qubits. One can use an edge-coloring of
the device connectivity graph to determine which gates to
calibrate simultaneously. An edge-coloring of the grid graph
takes 4 colors, one for a sparser connectivity (e.g. heavy
hexagonal) takes fewer colors. Thus, for a superconducting
device with typical connectivity, the calibration overhead
on the quantum device does not scale with the size of the
device.

VII. COMPILING WITH NON-STANDARD 2Q BASIS GATES

Most quantum programs and benchmarks are already
specified at the 2 or 3 qubit gate level. Therefore, like
previous works [24][22][23] that discuss choice of 2Q basis
gate and how to use less conventional 2Q basis gates for
compilation, we use a transpiler pass to convert other 2Q
gates in a circuit into our own 2Q basis gates, instead of
building an entirely new compiler.

Some of the prior works decompose 2Q gates from
application circuits into 1Q gates and native 2Q gates using
a numerical approach [22], while others take an analytical
approach [24] [23]. Note that such a decomposition re-
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quires finding the 1Q local unitaries, not just determining
the required circuit depth. The analytical and numerical
approaches each have their advantages. The numerical ap-
proach is more flexible. It can be applied to any 2Q basis and
target gates. The analytic methods have limits on what gates
they can be applied to, but are faster and some of them guar-
antee optimal results. There is currently no analytic formula
that convert between arbitrary sets of 2Q gates. Huang et al.
[24] and Peterson et al. [23] develop analytic algorithms
that decomposes an arbitrary 2Q gates into ViSWAP
and discrete sets of XX-type gates, respectively. The
decompose_two_qubit_interaction_into_four_
fsim_gates function in Cirq [58] implements an analytic
formula that decomposes an arbitrary 2Q gate into 4 layers
of a given fSim gate, via the B gate.

In this project, we need to synthesize other 2Q gates
from 2Q basis gates that are even less conventional than
the ones considered in previous work. Therefore, we take
a mostly numerical approach to gate synthesis and write
our numerical search code based on NuOp from [22]. The
difference is, we use knowledge about decomposition circuit
depth computed analytically to inform and speedup the nu-
merical search for 1Q local unitaries. NuOp first attempts to
search for a 1-layer decomposition, and moves on to 1 more
layer upon failure to find solution, until it meets the target
decomposition error rate. Using the analytic techniques for
determining circuit depth developed by [44] and extended by
our work for SWAP, we are able to skip to the step in NuOp
in which a perfect decomposition is guaranteed by theory.
This significantly speeds up the numerical search and also
guarantee that the solution has optimal depth.

Synthesizing all 2Q gates in the application programs
directly into the basis gates might incur a compilation
overhead. We avoid it by computing in advance and storing
the decompositions of a few common 2Q gates into our basis
gates. This only needs to be done once per calibration cycle
(usually 1 day) and costs little time. In this work (see Section
VIII) we only directly decompose SWAP and CNOT into our
basis gates. But instead of taking this minimalist approach,
one can alternatively prepare decompositions for a larger set
of potential target gates into the basis gates. The cost would
still quite small. We imagine that one can identify a set of
potentially useful target gates using an approach similar to
[22], except that [22] looks for a set of gates to calibrate
instead of decompose. In addition, in the scenario where
programs wait in long queues before execution, one might
be able to afford directly decomposing all 2Q gates in the
circuits into the basis gates.

VIII. CASE STUDY: ENTANGLING FIXED
FREQUENCY FAR-DETUNED
TRANSMONS WITH A TUNABLE



COUPLER

A. Introduction to the case study entangling gate architec-
ture

Many efforts are being made in industry and academia to
design a 2Q entangling gate architecture that can be used for
scaling up to a general quantum computer [59], [18], [37].
The all-microwave cross-resonance gate was recently used
by IBM to do a high fidelity CNOT gate in 90 ns [59], but to
suppress the always-on ZZ crosstalk mentioned in Section
IV, precise crosstalk cancellation pulses applied to both
qubits during run time were required, adding complexity to
the architecture. Google Quantum AI and MIT have each
developed entangling gate architectures for high fidelity CZ
and iISWAP gates, with Google’s architecture supporting a
continuous set of these standard gates [18], [37]. Google’s
architecture requires all qubits and couplers to be flux-
tunable, which adds complexity and additional sources of
leakage and noise to their architecture. Similarly, in order
to suppress the always-on ZZ crosstalk, MIT’s architecture
requires one qubit per pair to be tunable as well as the
coupler.

The unit cell of our case study entangling gate architecture
is a pair of qubits and a coupler. This unit cell, first proposed
in [7], was designed to perform a diverse set of 2Q gates,
including iISWAP and CZ; the full list of 2Q gates can be
found in Table 1 of [7]. The two qubits are fixed frequency
transmon qubits; the benefits of fixed frequency transmons
are that they are easy to fabricate and can be reliably
engineered to have high coherence > 100 us [60]. The
two qubits are also far detuned from each other so there
is reduced single qubit control crosstalk. The coupler is
a generalized flux qubit which has been designed to have
several good properties for qubit control. Notably, because
the coupler’s positive anharmonicity has been designed to
balance out the negative anharmonicity of the two qubits,
the eigenspectrum of this architecture’s unit cell can support
a zero-ZZ crosstalk bias point. This architecture is relatively
simple to implement because fixed frequency transmons
have high coherence, there is only one flux-tunable element
in the unit cell (the coupler), and it is easy to bias the unit
cell to zero-ZZ crosstalk.

A model Hamiltonian of the two qubits coupled with a
tunable coupler is shown in Appendix A. Here we highlight
the time-dependent term, Hc(t) that describes the coupler
dynamics:

Ho(t) = we(t)ée + %6”62 @)
where «. is the coupler anharmonicity, ¢ is the annihilation
operator and the coupler frequency w.(t), corresponding to
the transition to its first excited state, can be varied in time
via the flux through its superconducting loop. Low-crosstalk
2Q gates are realized by AC modulating this coupler fre-
quency after DC biasing it to the zero-ZZ crosstalk bias

1051

(a) (b)

% dsin(wgt)e’e

Figure 6. (a) Optical image of the device presented in [43] shows two
fixed frequency transmons coupled via a tunable coupler. (b) Schematic for
modelling the device adapted from [7].

point.

In [43] an early prototype device (shown in Fig. 6)
for this case study architecture demonstrated a fast perfect
entangler biased to zero-ZZ crosstalk. This device produced
the nonstandard 2Q gate trajectory shown in Figure 2, which
included a 13 ns perfect entangler. Figure 5 shows how the
measured trajectories were similar over a range of entangling
pulse drive amplitudes that did not exceed £ = 0.01®P,
the point at which strong drive effects would be expected
to become non-negligible [7]. So in this early prototype
device, the measured trajectories in Figures 2 and 5 were
not nonstandard because of strong drive effects, but because
of some other systematic in the experiment.

B. Our simulation approach

The case study entangling gate architecture natively sup-
ports strong parametrically activated interactions between
the two qubits. Since the full Hamiltonian for this archi-
tecture is computationally intensive to model [7], for our
simulation we use the simplified effective Hamiltonian from
[7] that models the device using fewer parameters while
still capturing all of the essential physics of the device (see
Appendix A). Our general protocol for simulating Cartan
trajectories is as follows:

1) We input the simulated device parameters into our
Hamiltonian. These parameters include the qubit fre-
quencies w, and wp, and the qubit coherence times.
This generates the eigenspectrum of the simulated
device.

We bias the coupler frequency (w?) between the two
qubit frequencies (w,,wp) such that the static ZZ term
(i.e. for 0(t) = 0) between the two qubits is tuned to
zero.

We specify the drive amplitude ¢ of our entangling
pulse. In this case study we implement a iISWAP-
like entangler, so the entangling pulse is driven at
the frequency w, that generates maximal population
swapping between the two qubits. For £ < 0.01®, the
entangling pulse frequency wy is essentially identical
to the difference frequency of the two qubits |w, —wp|.
However, increasing £ > 0.01®9 activates the two-
photon process in Equation 2, causing population to
enter the second excited state of the coupler and
modify the entangling interaction. This in turn causes

2)

3)



wq to deviate from |w, — wp|. The entangling pulse
is modulated by a rectangular envelope, as was done
in experiment to obtain the measured trajectories; due
to qubit controllers typically having a time resolution
of 1 ns, short entangling gates ~10 ns have to be
implemented using a pulse with a fast rise time.
Experimentalists typically choose between a flat top
Gaussian pulse with a short rise time, or a rectangular
pulse for simplicity.

We evolve the time-dependent Hamiltonian and project
the evolution propagator on the computational sub-
space to obtain the effective unitary operation with
respect to the entangling pulse drive duration. This
time ordered sequence of unitary operations can be
represented as a trajectory in the Weyl space using
Cartan coordinates. By examining the trace of the
effective unitary propagator we can obtain the leakage
outside the computational space. We confirm that the
leakage rates are much below the expected gate errors
due to decoherence.

4)

In this case study we simulate standard and nonstandard
2Q trajectories. The simplest and most consistent way to
do this is to use the same simulated devices but to vary
the drive power &. For ¢ < 0.01®, we expect the above
protocol to result in a standard iISWAP interaction between
the two qubits. But for £ > 0.01®,, we expect strong
drive effects to begin to emerge and cause the Cartan
trajectory to deviate away from a standard iSWAP. We note
that the simulated trajectories differ in several ways from
the measured trajectories in Figures 2 and 5. Firstly, the
measured trajectories are nonstandard even for £ < 0.01®,
due to an additional systematic effect in the experiment.
Secondly, the simulated trajectories are consistently slower
than the measured trajectories; e.g. at & = 0.01®(, the
simulated trajectories are slower by a factor of 3.5 than the
measured trajectory, which included a 13 ns viSW AP-like
entangling gate. These discrepancies can both be explained
by the simulation model Hamiltonian being significantly
simpler than the true device Hamiltonian. Aside from these
discrepancies, our simulations are realistic; our trajectories
are generated using parameters and techniques that closely
resemble those used in experiment and our method for
generating standard and nonstandard trajectories using a
single simulated device is physically intuitive.

Simulating Cartan trajectories over a range of entangling
pulse amplitudes £ we observe the correct intuitive behavior.
The simulated trajectories deviate more and more from the
standard iSWAP as the entangling pulse amplitude increases
beyond £ = 0.01®(. Secondly, the speed of the simulated
trajectories scales linearly with &. This agrees with the
experimental data shown in Figure 5 where the measured
trajectory doubled in speed when & increased by a factor of
two.

1052

Figure 7. Device simulation. The high and low frequency qubits are shown
in different colors. Each edge connects two qubits with different colors.

C. Methodology

We simulate a 10 by 10 device with grid connectivity (Fig.
7),where the qubit frequencies of each pair of neighbors
are sampled from two normal distributions respectively with
means that differ by 2 GHz. We use a 5% standard deviation
for sampling the qubit frequencies. Improved fabrication
techniques have reduced the smaller standard deviation to
about 0.5% [34], but we use a larger standard deviation
to show that our method is robust to variations in device
fabrication.

Between each pair of neighboring qubits on the 10 x 10
grid, we simulate two types of 2Q trajectory by varying
the entangling pulse amplitude &: 1) A baseline trajectory
generated with a low entangling pulse amplitude of ¢ =
0.005®( and 2) a nonstandard trajectory due to strong drive
effects resulting from a larger £ = 0.04®,.

Then on each nonstandard trajectory, we select 2Q basis
gates using Criterion 1 and 2 (respectively) introduced in
Section V-E. We test these 3 sets of 2Q basis gates on
common application circuits as benchmarks. We use the
Qiskit[61] transpiler with the “SABRE”[62] layout and rout-
ing methods to map the benchmarks circuits to the 10 x 10
grid connectivity. With the nonstandard basis gates, we
compile circuits using the methods from Section VII. With

e ViSWAP from the standard trajectories, we use the
analytic approach in [24]. Like the 2Q basis gates selected
with Criterion 2, viSW AP decomposes SWAP in 3 layers
and CNOT in 2 layers, but we can also use it to directly
decompose other 2Q gates (like the CRZ gates in the QFT
benchmarks) analytically. For the 1Q gates in the gate and
circuit synthesis, we use a duration of 20 ns, which is typical
for fixed-frequency transmon qubit processors [42].

Decoherence is the dominant hardware noise in our noise
model, because crosstalk is suppressed by the high detuning
in the qubits. For each qubit, we model the decoherence error
as 1—e~ /T where T is the coherence time of the qubit. We



set 1" to a typical value of 80 us for all qubits. We compute
t as ty —t;, where ¢; is the start of the first gate on the qubit
and ty is the end of the last gate on the qubit. The total
coherence-limited fidelity of a circuit is the product over
the e~ */T term from each qubit. The decomposition errors
in gate synthesis are negligible compared to the decoherence
errors, and can be reduced to arbitrarily close to zero in
theory. Thus we only show the coherence-limited fidelities
in the results.

D. Results

Before discussing our results, as a disclaimer we note that
while increasing the entangling pulse drive amplitude is one
way to speed up 2Q gates, it is by no means an all-purpose
solution that we generally advocate for. We chose to do this
in our simulation case study only because it was a simple and
intuitive way to compare standard and nonstandard simulated
gates for the same case study entangling architecture. For
this case study architecture, the drive amplitudes chosen
were realistic in an experimental setting.

Basis SWAP CNOT
. 83.04 ns 329.1 ns 226.1 ns
Baseline

99.884% | 99.541% | 99.684%

Lo 10.15 ns 110.5 ns 110.5 ns
Criterion 1

99.986% | 99.845% | 99.845%

o 10.76 ns 1123 ns | 81.51 ns
Criterion 2

99.985% | 99.843% | 99.886%

Table I. Average duration (top) and coherence-limited gate fidelity
(bottom) of the 2Q basis gates and the synthesized SWAP and CNOT
gates, from baseline, Criterion 1, and Criterion 2.

The average durations and coherence limited fidelities
(obtained using the Qiskit Ignis coherence_limit func-
tion [63]) of the synthesized SWAP and CNOT gates from
the two approaches are summarized in Table I. In Table II,
we show the coherence-limited circuit fidelities of 5 sets
of benchmark circuits, when transpiled to different sets of
2Q basis gates. We first observe that the faster nonstandard
2Q basis gates have ~8x lower coherence-limited infidelities
than the baseline standard 2Q gates. We also observe that
the synthesized SWAP (CNOT) gates from Criterion 1 and
2 are 3.0x and 2.9x (2.0x and 2.8x) faster than the baseline,
respectively. Due to the relation between gate fidelity and
circuit fidelity, fidelity improvements scale exponentially in
benchmark size.

Next, we observe that Criterion 2 performs better than
Criterion 1. This is not surprising since it has significantly
faster CNOT gates and only slightly slower SWAP gates
compared to Criterion 1.

For the baseline case, the 1Q gate duration is 4x shorter
than the standard 2Q basis gate, and therefore ~24% of

the duration of the compiled SWAP/CNOT gate is spent
performing 1Q gates. In contrast, for the nonstandard case,
the 1Q gate duration is 2x longer than the nonstandard
2Q basis gate, and ~72% of the duration of the compiled
SWAP/CNOT gate is spent performing 1Q gates. This puts
us in the regime of today’s fastest large superconducting
processors such as Google’s Sycamore device, where the
optimal processor configuration that minimizes the overall
effects of gate error has the 1Q gates being roughly twice
as long as the 2Q gates [64].

IX. CONCLUSION

The idea of a uniform set of basis gates naturally arose
from early notions of universal gate sets, which experi-
mentalists then implemented on various qubit platforms. By
looking at the theory of possible entanglers, we have found
that there are many options for good 2Q basis gates, and
that these gates behave differently on each pair of interacting
qubits in a processor. This led us to a radically new idea,
why be constrained to a single canonical gate (e.g. CX or
CZ)? Why not tune up the gate that will have the highest
fidelity between every pair of qubits, allowing each to differ
and instead adjust for these variations in software? If we do
not treat all the coherent deviations in gate trajectories as
errors, we will have more freedom in hardware design and
achieve a higher gate fidelity.

In this paper, we examined the space of possible en-
tanglers and developed a practical method for finding a
high-fidelity entangler between every pair of qubits. In the
case study, we find heterogeneous basis gates that are ~8x

Benchmark Baseline Criterion 1 | Criterion 2
qft 10 58.2% 65.6% 70.8%
qft 20 1.33% 6.03% 9.94%
bv 9 88.7% 94.4% 95.3%
bv 19 79.3% 89.9% 91.0%
bv 29 44.5% 72.5% 74.3%
bv 39 26.8% 56.3% 59.7%
bv 49 27.7% 58.4% 62.4%
bv 59 12.5% 43.8% 47.4%
bv 69 9.15% 39.4% 43.2%
bv 79 0.428% 11.3% 14.2%
bv 89 2.44% 23.1% 26.3%
bv 99 0.06% 6.26% 7.97%
cuccaro 10 21.5% 46.3% 52.6%
cuccaro 20 0.800% 7.68% 11.8%
qaoa_0.1 10 97.2% 98.5% 98.8%
qaoa_0.1 20 84.4% 92.0% 93.6%
qaoa_0.1 30 14.4% 43.3% 49.0%
qaoa_0.1 40 0.00585% 5.59% 8.56%
qaoa_0.33 10 66.1% 81.0% 84.3%
qaoa_0.33 20 15.0% 42.2% 48.2%

Table II. The decoherence-limited fidelities of benchmark circuits,
transpiled using the standard 2Q basis gates from baseline, and the
nonstandard ones selected by Criterion 1 and 2. The QAOA benchmarks
all have p = 1 where p is the number of times the protocol is repeated.
The fractions 0.1 and 0.33 are the probablities that an edge is created
between a pair of nodes.
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faster than the baseline, and use them to synthesize faster
SWAP and CNOT gates than synthesized by the baseline
ViSW AP gate from the standard XY-type trajectories. We
then evaluate these heterogeneous basis gates on a number
of benchmark circuits and find fidelity improvements that
scale exponentially in benchmark size.

Our approach successfully uses software to overcome
the limitations of today’s hardware. Such types of adaptive
basis-gate design will be essential to pioneering innovative
future quantum systems.
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APPENDIX A.
HAMILTONIAN OF 2 QUBITS COUPLED WITH A TUNABLE
COUPLER
The system Hamiltonian of the two qubits coupled with
a tunable coupler can be modelled as in [7]:

H(t)=H, + Hy, + H.(t) + Hy, 3)

with

~ «
H, = w.ata + 7“&*2&2,

ﬁb = wblA)TlA) + %8*282,

Ho(t) = we(t)éte + %a%?. “)

Hg = _gab&v; - gbché - gcaéTa
~ gapab' — gibet — g cal
where wq () corresponds to the qubit a(b) frequency, g;;
represents capacitive coupling strength between elements ¢
and j. The entangling interaction is realized by modulating
the coupler frequency as w.(t) = w? + & sin(wqt).
APPENDIX B.
SWAP SYNTHESIS IN 2 LAYERS
See the circuit in Fig. 3(a). Let A = SWAP we get the
equation

SWAP = (e® f)C(c®d)B(a®Db).

Move e ® f and a ® b to the other side and move e ® f
through SWAP,

Clc®@d)B=(e® f)ISWAP(a®b)t
=SWAP(f®e)f(a@b)t
= SWAP(fa® eb)'.

Move (fa ® eb) to the LHS, and C to the RHS,
(c®d)B(fa® eb) = CTSWAP.

This equation tells us that, B and C' can synthesize SWAP
as in Fig. 3(a) if and only if the Cartan coordinates of B
are equal to the Cartan coordinates of CTSWAP up to
canonicalization. Let B ~ (z,y, z) and C' ~ (2', ¢/, 2’), then
we have (z,y,2) ~ (—2/,—y/,—2') + (%, 1, 3). From this
we can tell that for every local equivalence class [B] of 2Q
gates, there is exactly one local equivalence class [C] such
that [B] and [C] together can synthesize SWAP in 2 layers.
And since we know how to canonicalize Cartan coordinates
into points within the Weyl chamber, given [B] we will be
able to find the corresponding [C]. Here we do not elaborate
on how we identify the geometric relation between [B] and
[C] inside the Weyl chamber, but the readers can check our
claim by applying Theorem 5.1.
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