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Abstract Autotrophic and heterotrophic organisms
require resources in stoichiometrically balanced ratios
of carbon (C) to nutrients, the demand for which
links organismal and ecosystem-level biogeochemi-
cal cycles. In soils, the relative availability of C and
nitrogen (N) also defines the strength of competition
for ammonium between autotrophic nitrifiers and
heterotrophic decomposers, which may influence
the coupled dynamics between N mineralization and
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nitrification. Here, we use data from the publicly
available US National Science Foundation funded
Long Term Ecological Research (LTER) network
to evaluate the influence of soil C concentration on
the relationship between net nitrification and net
N mineralization. We found that soil C availability
constrains the fraction of mineralized N that is ulti-
mately nitrified across the continental gradient, con-
tributing to reduced rates of nitrification in soils with
high C concentrations. Nitrate, which is produced
by nitrification, is a highly mobile ion that easily
leaches to aquatic ecosystems or denitrifies into the
greenhouse gas nitrous oxide (N,O). Understand-
ing the connection between soil C concentration and
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soil N transformations is thus important for manag-
ing potential ecosystem N losses, understanding the
biogeochemical constraints of these losses, and accu-
rately representing coupled C-N dynamics in ecosys-
tem models.

Keywords Nitrogen mineralization - Nitrification -
Soil carbon - Long Term Ecological Research

Introduction

Autotrophic and heterotrophic organisms require
carbon (C) and nutrients in fixed ratios, which links
biogeochemical cycles from the organismal to eco-
system levels (Sterner and Elser 2002). These stoi-
chiometric relationships constrain soil organic matter
(SOM) turnover and nutrient release (Buchkowski
et al. 2019) and control soil greenhouse gas emissions
(Baral et al. 2014). The coupled dynamics of C and
nitrogen (N), specifically, serve as an indicator of sto-
ichiometric limitations on soil microbial metabolism
and help determine terrestrial site fertility. Within
soil microbial communities, the relative availability
of C and N also defines the strength of competition
between heterotrophic decomposers (fungi & bacte-
ria) and autotrophic nitrifiers (bacteria & archaea) for
ammonium (Booth et al. 2005; Verhagen and Laan-
broek 1991), and the subsequent fate of SOM-derived
N. Both heterotrophic microbes and autotrophic
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nitrifiers play a critical role in N transformations
(Keiser et al. 2016), which subsequently support
their own nutrient requirements. The N forms pro-
duced by heterotrophs and autotrophs have contrast-
ing fates within the soil: heterotrophically-produced
ammonium (NH4+) can be sorbed onto soil surfaces
(Venterea et al. 2015), taken up by plants, or further
transformed, while autotrophically-produced nitrate
(NO;7) is a highly mobile ion easily taken up by
plants, leached from soils to aquatic systems, or deni-
trified into N, or the greenhouse gas nitrous oxide
(N,O) (Viviroli et al. 2007). Therefore, understanding
the connection between soil C pools and the amount
and forms of available N is important for understand-
ing ecosystem C and N dynamics and the potential
for N losses from ecosystems (Vitousek et al. 1982,
1979).

Heterotrophic microbes rely on soil C pools for
energy, growth, and maintenance (Soong et al. 2020),
and on soil N pools, including ammonium, for pro-
tein and amino sugar synthesis and to meet nutri-
tional requirements (Farrell et al. 2014). In contrast,
nitrifying bacteria or archaea rely on the ammonium
produced by heterotrophic N mineralization as their
energy source (Kaye and Hart 1997), and fix carbon
dioxide (CO,) through the oxidation of ammonium
to nitrate (nitrification). Competition for ammonium-
N between autotrophs and heterotrophs can slow the
rate of nitrification and nitrate production (Bernhardt
and Likens 2002; Leptin et al. 2021; Vitousek et al.
1982). As heterotrophic N demand is stoichiometri-
cally coupled with soil C availability, increasing soil
C concentration, if reflective of available C, should
increase competition for ammonium-N between het-
erotrophs and autotrophs (Bernhardt and Likens
2002; Hart et al. 1994; Verhagen et al. 1992). Het-
erotrophic N uptake reduces the NH,* available for
nitrification and subsequently reduces the fraction
of mineralized N that is ultimately nitrified (Fig. 1).
In contrast, lower soil C availability may promote C
limitation of heterotrophic microbes, decreasing their
demand for NH," and increasing its availability for
nitrifiers (Dijkstra et al. 2008; Fig. 1). These dynam-
ics are also observed in freshwater ecosystems, where
increasing dissolved organic carbon (DOC) availabil-
ity is associated with declines in nitrifier abundance
and activity (Bernhardt et al. 2002; Bernhardt and
Likens 2002). Similarly, in a temperate U.S. forest,
increasing soil C availability decoupled the rate of N
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Fig. 1 Conceptual model
of hypothesized differences
in microbially-mediated
soil N fluxes in high C

(N limited) vs. low C (C

A - nitrogen flux

\

limited) soils. In high soil C Q = autotrophic nitrifiers

‘\‘\ = heterotrophic decomposers

environments, heterotrophic
organisms will immobilize

High C soils (N limited)

Low C soils (C limited)

more N as NH,* to meet
stoichiometric demands,
resulting in lower rates of
nitrification. In contrast
within low soil C environ-
ments, more ammonium is
available in the soil with
greater subsequent rates of
nitrification

mineralization from that of nitrification (Keiser et al.
2016). These relationships, however, have not been
identified across the diverse soil types of terrestrial
ecosystems.

An array of abiotic, vegetation, and anthropogenic
factors have the potential to disrupt the link between
soil C availability and N transformations. Differences
in seasonality among ecosystems result in sites with
varying precipitation regimes and temperature ranges.
Some locations, for example, have distinct dry and
wet seasons with cycles of soil drying and rewetting,
while others at northerly latitudes or high elevation
have freeze/thaw cycles. Limited soil water avail-
ability through dry periods or freezing disrupts plant
root uptake of N (Campbell et al. 2014; He and Dijk-
stra 2014) and exudation of labile C substrates used
by heterotrophic microbes to mineralize N (Williams
and de Vries 2020). Prolonged dry periods or drought
and repeated freeze/thaw cycles can also affect the
size of the microbial community and thus N transfor-
mations, as well as access to substrates and nutrients
(Fierer and Schimel 2002; Parker and Schimel 2011).
Intrinsic site characteristics, such as soil texture or
mineralogy, affect cation exchange capacity (Syers
et al. 1970) and soil water retention (Libohova et al.
2018), which, in turn, affect the capacity of a soil to
retain ammonium or nitrate. Ecosystem management
practices such as fertilizer additions (Poffenbarger
et al. 2015) or disruption of soil structure through
tilling (Six et al. 1999), as well as N inputs from

atmospheric deposition, which vary in magnitude
and composition across the U.S. (NRSP-3 2020), may
also skew expected coupled dynamics of C and N.
Therefore, changing site conditions that control the
availability or microbial access to C and N resources
could disrupt the link between soil C and coupled N
transformations across regional- and continental-scale
gradients. If these or other factors dominate effects on
soil C or N availability, soil C and N dynamics may
be weak or uncoupled across broad geographic gra-
dients. In addition, total soil C concentration may not
accurately reflect microbial soil C availability (Zhou
et al. 2020), leading to a weak relationship between
total soil C and N dynamics.

We examined whether soil C concentration, as
% soil C, influences N mineralization and nitrifica-
tion coupling across North American ecosystems
encompassing a diverse range of climates, veg-
etation types, and resource availability conditions.
Using publicly available archives from terrestrial
sites within the US National Science Foundation
funded Long-Term Ecological Research (LTER)
network, we aggregated data describing net N min-
eralization and net nitrification rates, as well as
total soil C concentration from 2672 independent
observations from 14 LTER sites. The large data
set allowed us to evaluate how soil C concentra-
tion mediates the relationship between N miner-
alization and nitrification across diverse soil types
and climate gradients. We hypothesized that soil
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C concentration ultimately controls the fraction of
mineralized N that is nitrified beyond local climatic
drivers, whereby high soil C concentration reduces
nitrate production.

Methods
Database assembly

This work was initiated for an “All Scientists Meet-
ing” of the U.S. LTER network in September 2019
and was limited to LTER cross-site analysis. As
such, we searched public databases associated
with all terrestrial North American LTER sites for
datasets reporting soil net N mineralization (ug
N g dry soil™! day™"), soil net nitrification (ug N
g dry soil™! day™!), and total soil C concentration
(% soil C). Mineralization and nitrification rates
were measured using both laboratory incubations
(56% of samples) and field-buried bag and core
approaches (44% of samples). We targeted net N
fluxes rather than gross N transformations because
they are widely measured and thus allowed for the
development of a dataset encompassing diverse
soil types and ecosystems.

In instances when prior studies reported two of
the three required components to test our hypoth-
eses, we followed up with individual data contribu-
tors to access content absent from the LTER data-
base where possible. This included net nitrification
rates when net N mineralization rates were solely
available in the public archive. From datasets rep-
resenting 19,271 soil cores from multiple loca-
tions within 14 terrestrial LTER sites (Supplemen-
tary Table S1), we assembled site- and core-level
metadata. Our dataset included: site latitude and
longitude, mean annual temperature (MAT), mean
annual precipitation (MAP), altitude, soil type, pH,
and total soil N content, where available. We used
30-year (1991-2020) average monthly air tempera-
ture data (Arguez et al. 2021) to calculate annual
site potential evapotranspiration (PET) using the
Thornthwaite model (Thornthwaite 1948) and
expressed site water balance as MAP-PET (mm
year !). Data were transformed to common units
(ug N g dry soil~! day™!) and percent soil C.
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Statistical analyses

For plots containing soil cores taken over time or
multiple sub-plot collections, we calculated a plot-
level mean of the N mineralization rates, nitrifica-
tion rates, and soil C concentrations since these cores
were not statistically independent (2672 independent
observations in final dataset of 19,271 total observa-
tions). We used mixed effects models to evaluate the
relationship between soil C concentration (% soil C)
and site meteorology (single main effect of MAT,
MAP, or water balance; random effect=study). Soil
C concentration was log-transformed to approximate
normality. Soil pH was not regularly reported with
the N cycling data, so it is not considered broadly in
the analysis.

We used model selection to identify the combi-
nation of predictors that best explained variation in
nitrification rates. We fit a global mixed-effects model
relating net nitrification rate to a potential set of pre-
dictor variables including net N mineralization rate,
soil C concentration (log-transformed), site MAT, site
water balance (MAP-PET), and all two-way interac-
tions with N mineralization (N mineralization*Soil
C concentration; N mineralization*MAT; N
mineralization*water balance) using the nlme R pack-
age (Pinhiero et al. 2019). MAP was excluded from
the model selection due to strong correlation with site
water balance (Pearson correlation=0.86; Table S2).
All remaining main effects maintained a variance
inflation factor < 1.6 (car R package; Fox & Weisberg
2019) and thus were retained within the global model.
Predictors were centered and scaled by their mean
and standard deviations, respectively (scale func-
tion in R). From each LTER site, data were derived
from multiple studies run by separate investigators
often with different models. Therefore, individual
study was included as a random effect. We used the
‘dredge’ function to generate a full set of sub-mod-
els containing all combinations of main effects and
interactions (MuMIn R package; Nakagawa and Schi-
elzeth 2013).

To separately compare the effect of MAT, MAP,
and soil C concentration on the relationship between
net N mineralization and nitrification, we fit three
separate mixed effects models associating net nitri-
fication rates to either (1) N mineralization*soil
C concentration; (2) N mineralization*MAT; (3)
N mineralization*water balance [MAP-PET] (R
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package nlme; Pinheiro et al. 2017). Soil C concentra-
tion was log-transformed to approximate normality,
and variables were centered and scaled as described
above. Individual study was included as a random
effect. The three models allowed us to examine the
strength of the individual and interactive effects on
net nitrification.

Results

The fourteen terrestrial LTER sites considered in
this analysis (and six additional metropolitan sites
outside of the LTER Network sampled in associa-
tion with the Baltimore Ecosystem Study) were dis-
tributed across the continental U.S. (Fig. 2a). The
14 sites ranged in MAT from — 7.9 to 24.3 °C and
193 to 2289 mm in MAP. The LTER sites spanned
25.8 to 68.6 degrees latitude and a range of ecosys-
tems, including deciduous forest, coniferous for-
est, grassland, dryland, and tundra (Supplementary
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Fig. 2 Site distribution and cross-site meteorological condi-
tions. A Distribution of terrestrial LTER sites included in the
analysis; B Relationship between site MAT and % soil C; C
relationship between site MAP and soil C concentration; D
relationship between site water balance (MAP-PET) and soil

C concentration. Soil C concentration was log-transformed to
approximate normality in statistical models, but untransformed
relationships are shown here. Abbreviations as follows: BES
Baltimore Ecosystem Study; CAP Central Arizona Phoenix
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Table 1). Across replicate-averaged samples
(n=2672), soil C concentration (log-transformed)
decreased with MAT (p<0.001; Fig. 2b) and
increased with MAP (p <0.001) and site water bal-
ance (MAP-PET; p<0.001). Alaskan LTER sites
dominated observations with low MAP but high soil
C where low temperatures and permafrost presence
moderate moisture limitation and slow organic mat-
ter decomposition. The soil C-to-N ratio increased
significantly with soil C concentration across sites
(»<0.0001).

The multiple regression model identified via model
selection contained all possible covariates (net N
mineralization, MAT, water balance [MAP-PET], and
soil C concentration) relating edaphic characteristics
and meteorological conditions to soil net nitrification
rates. Both the main effects of net N mineralization
rate and site water balance, as well as the interactions
between net N mineralization and soil C concentra-
tion and net N mineralization and site water balance
emerged as significant predictors describing net nitri-
fication rates (Table 1). Our subsequent individual

models allowed us to explore these interactions in
more detail.

The rate of net nitrification increased with net N
mineralization across sites (slope =0.26; p <0.0001).
When soil C concentration was introduced as an
additional main effect with net N mineralization,
there was a significant negative interaction between
soil C concentration and net N mineralization on
nitrification, such that the fraction of mineralized N
that was nitrified decreased with increasing soil C
concentrations (p<0.0001; Table 2a; Fig. 3), as we
had hypothesized (Fig. 1). At low soil C concentra-
tions (<5%), there was a positive, linear relationship
between N mineralization and nitrification. However,
as soil C concentrations increased (>5%), the rela-
tionship between N mineralization and nitrification
disappeared, showing that increased N mineralization
does not always correlate with increased nitrification
(Fig. 3). This pattern persisted when we removed all
observations from the Arctic tundra, which maintains
water-logged permafrost soils (Table S3), and when
we considered only the subset of observations in

Table 1 Mixed-effect

. K Parameter Parameter value Std. Error P-value

multiple regression model

of net nitrification ide?ntiﬁed Net N Mineralization 1.619 0.088 <0.0001

through model selection MAT 0.013 0.151 0.932
Water balance 0.255 0.117 0.030
% Soil C —0.185 0.094 0.050

Individual study was Mineralization* MAT —0.158 0.140 0.258

included as a random effect Mineralization* % Soil C —0.397 0.080 <0.0001

Instances in which P <0.05 Mineralization* Water balance 0.769 0.123 <0.0001

are italicized

Table 2 Results of three mineralization-covariate statistical
mixed effects models describing the relationship between net
N mineralization and (a) % soil C; (b) site water balance; and

(c) MAT on net nitrification rates (Nitrification ~Mineraliza-
tion + Covariate + Mineralization*Covariate, random effect:
LTER site)

Parameter Parameter value Std. Error P-value
(a) Mineralization 1.673 0.070 <0.0001
% Soil C —0.016 0.094 0.862
Mineralization * % Soil C —0.235 0.056 <0.0001
(b) Mineralization 1.380 0.047 <0.0001
Water balance 0.184 0.093 0.0449
Mineralization * Water balance 0.603 0.040 <0.0001
(©) Mineralization 2.117 0.060 <0.0001
MAT 0.166 0.133 0.213
Mineralization * MAT 0.541 0.046 <0.0001

Instances in which P <0.05 are italicized
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Fig. 3 Relationship between net N mineralization (ug N g
soil ™! day™"), net nitrification (ug N g soil™! day™"), and soil
C concentrations (% soil C). Each symbol represents a single
observation while the color represents the soil C concentration.
At low soil C concentrations, there is a strong, positive rela-
tionship between net nitrification and net N mineralization. As
soil C increases, the relationship breaks down and net miner-
alization does not necessarily result in net nitrification

which soil C concentration is < 10% to exclude poten-
tially high organic samples that sustain fluctuating
redox conditions or anoxia (86% of observations and
spanning all sites; Table S4).

In separate models examining the effects of MAT
and then MAP on net nitrification, there were signifi-
cant positive interactions between net N mineraliza-
tion rates and site MAP (Table 2b) as well as between
net N mineralization and site MAT (Table 2c). This
relationship is consistent across the subsets of sam-
ples derived from both laboratory (Table S5a) and
field (Table S5b) incubations. In contrast to soil C
concentration, the fraction of mineralized N that was
nitrified increased with both MAT and MAP across
sites (Table 2b—c).

Discussion

Using data from across the LTER network, we
explored the influence of soil C concentration on
the coupling of net N mineralization and net nitrifi-
cation across a broad range of North American eco-
systems. Overall, the pattern conformed with our
hypothesis that high soil C concentrations constrain
the amount of mineralized N that is ultimately

nitrified. We found that soil C concentration (% soil
C) moderated the fraction of mineralized N that was
nitrified across diverse soil types and environments.
In soils with low C concentration, net nitrification
increased with net N mineralization more rapidly
than in soils above the cross-site mean C concen-
tration (Fig. 3). This bifurcated pattern matches
the role of soil C as gatekeeper over nitrification
(Hart et al. 1994) previously identified at a single
LTER site, the Coweeta Hydrologic Laboratory in
the Appalachian Mountains of southwestern North
Carolina (Keiser et al. 2016). At Coweeta, undis-
turbed forest soils maintained larger soil C concen-
trations (9.7+7.8%C) and nitrification rates were
decoupled from net N mineralization rates, whereas
the disturbed soils maintained smaller soil C pools
(4.5+1.5%C) and higher nitrification relative to
mineralization (Keiser et al. 2016). Importantly,
our study shows that this influence of soil C as a
driver of the N mineralization-nitrification relation-
ship extends beyond local scales to operate across
a diverse range of ecosystems (deciduous forest,
coniferous forest, grassland, desert, tundra) and cli-
mates, after accounting for the influence of MAT
and MAP (Table 1). Our results demonstrate the
broad role of soil C as a mediator of N cycling and
as a potential buffer against N loss from terrestrial
ecosystems.

Ecological stoichiometry appears to drive the link
between soil C concentration and N transformations,
despite this analysis employing %C as opposed to a
more direct measure of microbially available soil
C. Under low soil C concentrations, C limitation
should constrain heterotrophic microbial N demand,
leaving ammonium available for nitrifying bacteria
and archaea. In contrast, high soil C concentrations
should induce greater heterotrophic N demand and
heighten competition for ammonium between hetero-
trophs and autotrophs (Booth et al. 2005; Silva et al.
2005), which appears to decouple N mineralization
and nitrification (Keiser et al. 2016). The progression
or inhibition of net nitrification has been measured
in forest soils with low and high C:N ratios, respec-
tively (Midgley and Phillips 2016), despite consist-
ent nitrifier populations (Mushinski et al. 2019). Our
results combined with those found previously suggest
that the mediating role of soil C on N cycle dynam-
ics is driven by stoichiometric demands by hetero-
trophs and their ability to outcompete nitrifiers for N
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resources. Importantly, our results extend previous
single-site-level analyses to show a broader, continen-
tal-scale pattern.

While this study highlights broad cross-site pat-
terns, it is unknown how the dominance of ammonia-
oxidizing archaea (AOA) versus ammonia-oxidizing
bacteria (AOB) and their disparate distribution across
ecosystems may alter competitive dynamics with soil
heterotrophs. Ammonia-oxidizing archaea, which
dominate nitrification in low-N soils and substrates,
are strong competitors for ammonium and may out-
compete heterotrophic microbes for ammonium, even
in high-C environments (Martens-Habbena et al.
2009; Prosser and Nicol 2012). Therefore, cross-site
shifts in the relative abundance of AOA versus AOB
may attenuate the influence of soil C on the decou-
pling of nitrification and mineralization, especially
under N-limited conditions.

Our analysis showing the relationship between
soil C and N transformations was based on N min-
eralization incubations in the lab and field, which
exclude the role of plants. The presence of N-fixing
plants could reduce rates of N mineralization (Hun-
gate et al. 1999) and alter the heterotrophic—auto-
trophic competition for N irrespective of soil C (Mal-
chair et al. 2010). More broadly, plants compete with
nitrifiers for ammonium, and their rates of N uptake
vary with MAT and MAP. This plant-nitrifier com-
petition would extend to mycorrhizal associations in
forest ecosystems (Phillips et al. 2013), and include
mechanisms that further influence soil C. For exam-
ple, ectomycorrhizal fungi are thought to promote the
accumulation of soil C in part by limiting N availabil-
ity to heterotrophic microbes and slowing decomposi-
tion (Averill et al. 2014). In this case, plant and myc-
orrhizal demand for N also would not only increase
the N immobilization potential by heterotrophs via
greater soil C but would also drive substrate limita-
tion of nitrifiers directly. Plant-nitrifier competition
can further depend on the rhizosphere, which creates
hotspots for microbial activity through continuous
plant—microbe-soil interactions and exchanges of C
and nutrients (Cantarel et al. 2015).

Incubations exclude those root-microbe-soil inter-
actions that could shift our observed N transforma-
tion rates at fine scales. Furthermore, these analyses
use net, rather than gross, rates of N mineralization
and nitrification. Net rates provide a straightforward
representation of changes to inorganic N pool sizes,

@ Springer

are commonly measured in field and laboratory stud-
ies, and thus observations of them are more widely
available than gross transformation measurements.
Net fluxes, however, may mask important underly-
ing components of the N mineralization process. For
example, in this analysis, we assume that low net
nitrate production suggests heterotrophic microbes
are outcompeting nitrifiers for N and immobilizing
ammonium prior to nitrification. However, nitrate,
the product of nitrification, can also be assimilated
by heterotrophic microbes to meet their N demand
(Laungani and Knops 2012; Laungani et al. 2012),
which would also reduce the nitrate pool size and
measured net nitrification rate (Hart et al. 1994; Stark
and Hart 1997). Gross N mineralization and nitrifi-
cation rates measured using '°N isotopes can more
explicitly track ammonium and nitrate transforma-
tions (Elrys et al. 2022). While measurement of gross
N transformations could help confirm the underlying
mechanism highlighted here, our results and those of
others suggest stoichiometric demands and N com-
petition between heterotrophic microbes and auto-
trophic nitrifiers drives the coupling between soil C
and N transformations.

Despite the important role of soil C, site mete-
orological factors also contribute to the coupling
or uncoupling of N mineralization and nitrification
across the LTER-wide climate gradient. Soil mois-
ture influences coupled N transformations because
it influences aerobic conditions required for N min-
eralization and nitrification (Robertson and Groff-
man 2007), the activity and movement of soil micro-
bial communities (Fierer and Schimel 2002) and
the movement of the mobile and soluble nitrite ion
to prolific nitrite oxidizers (Grundmann et al. 2001;
Parker and Schimel 2011; Schimel 2018; Stark and
Firestone 1995). Our analysis shows a positive inter-
action between N mineralization and site water bal-
ance (MAP-PET), whereby a larger fraction of min-
eralized N is nitrified at sites with greater water
availability, reinforcing moisture availability as a
mediator of coupled N transformations. However, soil
moisture is strongly impacted by inherent site char-
acteristics, including soil texture and temperature,
which would influence how much water is retained
or lost. These site characteristics influence relation-
ships between MAP-PET and nitrification (Fig. S1).
For example, the Alaskan arctic tundra and boreal
forest soils with the lowest MAP are highly organic,
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contributing to the maintenance of water-saturated
conditions that limit aerobic activity and contribute to
decoupling of net N mineralization and nitrification.
Similarly, C-rich soils from HJ Andrews forest, a tem-
perate rainforest in Oregon (MAP=2289 mm) may
also experience regular periods of anoxia disrupting
inorganic N transformations. Therefore, site water
balance, and thus soil moisture, is indicative of cou-
pled N relationships, but mediated by additional site
conditions.

In contrast, temperature exerts control over meta-
bolic activity of soil organisms and thus miner-
alization of soil C (Alster et al. 2020; Davidson and
Janssens 2006). Across our study sites, the relation-
ship between temperature and C turnover is evident
through a decrease in soil C concentration as MAT
increases (Fig. 2b). Net nitrification also gener-
ally increases with MAT, corresponding with both
increased metabolic activity and a decrease in soil C
concentration at sites with higher temperatures (Fig.
S1). Therefore, MAT has potential indirect control
over the coupling of N transformations through its
influence on soil C availability. Together, tempera-
ture and moisture conditions may contribute to the
observed variation in the relationship between soil C
concentration and the N mineralization-nitrification
relationship (Fig. 2). Other site-specific variables,
such as land management, the presence of N-fixing
plants (Mushinski et al. 2019), or soil mineralogy
may contribute to variation noted among sites. For
example, soils collected from agricultural experi-
ments at Kellogg Biological Station, located in south-
western Michigan, experienced variable fertilizer
inputs, tillage regimes, and cultivation practices, all
of which can influence N turnover (Mahal et al. 2019)
and microbial biomass (Kim et al. 2020; Nguyen
et al. 2016). In light of the importance of tempera-
ture and precipitation on coupled N transformations
across ecosystems and climates, site-level characteris-
tics need to be examined more closely among sites of
similar soil C concentrations to better describe vari-
ability in coupled N transformations and the potential
cross-scale interactions identified here.

The relationship between soil C and N transforma-
tions has important global ramifications for the fate
of N. For example, current efforts to increase soil C
stocks to offset growing atmospheric CO, concentra-
tions may simultaneously reduce nitrification rates. If
reduced nitrification rates lead to reductions in N,O

emissions either due to reduced nitrification itself or
a smaller soil nitrate pool accessible for denitrifica-
tion (Firestone and Davidson 1989; Venterea and
Rolston 2000), increasing soil C may be a strategy for
reducing concentrations of CO, and N,O, depending
on ecosystem and land management (Guenet et al.
2021). At the same time, increasing soil C stocks may
further reduce available N for plant uptake because
of increased microbial demand for N (Guenet et al.
2021; Yanai et al. 2013), including bioavailable forms
of organic N (Daly et al. 2021). Within forested eco-
systems or within agroforestry, microbial immobiliza-
tion of N could increase the rate of progressive N lim-
itation (Groffman et al. 2018) and constrain ongoing
increases in forest biomass (Aber and Driscoll 1997).
Within agricultural soils, any reduction in nitrifica-
tion from increased soil C could subsequently reduce
soil nitrate losses and improve water quality (Tilman
et al. 2002; Zhang et al. 2021). Our results from data
collected across North American ecosystems demon-
strate that C and N are not simply coupled with each
other but can help explain N transformations and
availability within and across ecosystems. Coupled C
and N interactions can be used to model the influence
of N fertilization on SOM decomposition (Neff et al.
2002) and, in turn, soil C storage capacity (Janssens
et al. 2010), or to predict greenhouse gas emissions
across soils according to N availability and C inputs
(Liang et al. 2015). This research advances the use of
stoichiometrically based relationships to infer large-
scale ecosystem processes. Knowing there is a con-
sistent pattern linking the transformation and avail-
ability of inorganic N with soil C across ecosystem
types could help refine biogeochemical models and
strategies to manage individual ecosystems.
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