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Abstract

Synthesis research in ecology and environmental science improves understanding,

advances theory, identifies research priorities, and supports management strat-

egies by linking data, ideas, and tools. Accelerating environmental challenges

increases the need to focus synthesis science on the most pressing questions. To

leverage input from the broader research community, we convened a virtual

workshop with participants from many countries and disciplines to examine

how and where synthesis can address key questions and themes in ecology

and environmental science in the coming decade. Seven priority research

topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human

and natural systems, (3) actionable and use-inspired science, (4) scale, (5) gen-

erality, (6) complexity and resilience, and (7) predictability. Additionally, two

issues regarding the general practice of synthesis emerged: the need for

increased participant diversity and inclusive research practices; and increased

and improved data flow, access, and skill-building. These topics and practices

provide a strategic vision for future synthesis in ecology and environmental

science.

KEYWORD S
complexity, coupled systems, diversity, ecological scale, justice, predictability, use-inspired
science

INTRODUCTION

Planet Earth faces dramatic and accelerating conse-
quences of climate change (IPCC, 2022), biodiversity loss
(IPBES, 2019), and expanding and intensifying influences
of human activities (Halpern et al., 2019; Venter et al.,
2016). It is urgent to understand and forecast the
social–ecological effects of these changes so society can
build strategies to mitigate, adapt to, or transform these
circumstances (Folke et al., 2021), a need that requires

transdisciplinary research spanning scales from local to
global, integration of multiple knowledge and value
systems, and data and analytical tools to support the
research. These needs sit squarely within the fields of
ecology and environmental science.

The scope, scale, and speed of data collection and
availability are increasing rapidly, driven in part by
advances in automated field-based sensors (e.g., camera
traps, hydraulic flow sensors), satellite-based remote
sensing, and coordinated sampling (Farley et al., 2018)
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along with sustained efforts to gather socioeconomic data.
These trends are facilitated by coordinated networks
(e.g., National Ecological Observatory Network, Long-Term
Ecological Research, Global Ocean Observing System) and
distributed research initiatives (e.g., DroughtNet, NutNet)
that are creating vast, open data repositories. Although
advances in open science have created opportunities for
accelerated scientific discovery (Hampton et al., 2017),
obstacles remain, such as inadequate rewards for collecting
and sharing data, integrating Indigenous knowledge and
approaches into data practices, and equitable access to and
control of these data (Carroll et al., 2020; Reichman
et al., 2011).

Synthesis in ecology and environmental science—
bringing together data, ideas, tools, and knowledge
(Baron et al., 2017)—is a key approach for understanding
complexity across scales, leveraging data from various
disciplines, facilitating discovery of general patterns in
natural systems, and informing policy (Halpern et al.,
2020). Given these potential roles of synthesis science
and the pressing need to address environmental chal-
lenges, we wanted to reflect on where the greatest oppor-
tunities lie for synthesis in ecology and environmental
science in the coming decade.

Here we assess the research questions and themes that
we, as members of the research community, prioritize as

future synthesis needs in ecology and environmental
science. To develop these priorities, we convened a
virtual workshop at the National Center for Ecological
Analysis and Synthesis (NCEAS) on February 17–18,
2021, with 127 participants across career stages, institu-
tions, backgrounds, and geographies, which were
selected through an application process (Appendix S1).
Participants were drawn from ecology and environmen-
tal sciences and largely identified as natural scientists.
We asked workshop participants to anonymously iden-
tify key synthesis questions in ecology and environmen-
tal science, and the challenges and innovations needed
to answer those questions. Participants proposed ideas or
questions in pre-workshop brainstorming sessions;
added and upvoted questions online; and worked in
breakout teams during the workshop to refine upvoted
questions into lists of top three questions. These final
lists were then grouped into themes by the 12-person
steering committee and discussed at length by the work-
shop participants. An overview of the process is shown
in Figure 1. We highlight seven emergent research priori-
ties identified by this group and describe core ideas, chal-
lenges we face addressing them, and how synthesis can
help overcome those challenges. We additionally address
two priorities around the practice of synthesis that were
extensively discussed during the workshop.

F I GURE 1 Our approach to engaging participants and all perspectives in developing, honing, and presenting the set of questions and

ideas that form the basis for our recommended priorities. DEIJ is diversity, equity, inclusion, and justice.
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PRIORITY TOPICS

Diversity, equity, inclusion, and justice

A central priority that emerged was for ecological synthesis
on questions that address issues of diversity, equity, inclu-
sion, and justice (DEIJ). Recent work in environmental
justice has highlighted important intersections between
ecosystem well-being and equity for human societies
(Bullard, 2019). Environmental degradation can negatively
affect human health, livelihoods, and well-being, with
a disproportionate effect on disadvantaged populations,
exacerbating societal inequalities (Hoffman et al., 2020).
Costs of conservation measures and environmental poli-
cies are rarely borne equally. Structural inequalities such
as racism and the practices of redlining in cities can also
influence ecological and evolutionary processes by leading
to an unequal distribution of “nature” and therefore eco-
logical processes within cities (Schell, Dyson, et al., 2020).
Explicit integration of DEIJ into synthesis research could
improve knowledge by addressing topics of relevance
and importance to historically underrepresented groups,
and support efforts that simultaneously promote human
well-being and conservation.

Lack of diversity among ecologists and environmental
scientists, along with scientific and societal institutions
that tend to exclude individuals from certain identity
groups (Graves et al., 2022), creates inherent barriers to
including ideas and perspectives of diverse groups in
developing and conducting research. Ecologists and envi-
ronmental scientists can reduce these barriers by engag-
ing with diverse communities and experts from social
science disciplines (Bennett et al., 2017). By increasing
diversity of participants, we can better define and answer
research questions that inform policy relevant to and
impactful on a broader community. In the last section we
explore how the process of synthesis science can be made
more diverse and inclusive, and beneficial to society as a
whole.

Coupled human–natural systems

Environmental synthesis has provided valuable insights
into the causes and impacts of environmental change,
but still needs to address the complexities of coupled
human–natural systems to understand how human
values, decisions, and governance structures affect envi-
ronmental outcomes (Folke et al., 2021). For example,
human population growth, energy use, economic activity,
and greenhouse gas policies define emission scenarios
of the Intergovernmental Panel on Climate Change
(IPCC, 2022), which in turn determine global projections

of species extinctions, native and non-native species
distributions, and nature’s contributions to people under
climate change (Chaplin-Kramer et al., 2019). People
adapt to environmental changes in ways that mitigate or
amplify their effects on ecosystems and societies (Cinner
et al., 2018).

Integrating perspectives, approaches, data, and
knowledge from diverse fields poses many challenges.
Socioeconomic factors act at different spatial or tempo-
ral scales from natural systems (Bergsten et al., 2014).
For example, ecological regime shifts often proceed
quickly and are detected too late to inform management
intervention (Biggs et al., 2009). Such scale mismatches
between ecological and human systems can cause decreases
in resilience in socioecological systems, mismanagement
of natural resources, and declines in human well-being
(Cumming et al., 2006). Additionally, varied data processing
and analysis practices among disciplines challenge
effective integration of datasets for systemic understand-
ing. Interdisciplinary data management often requires
special consideration for cultural and traditional knowl-
edge and socioeconomic data, underscoring the need for
privacy policies and recognition that standardization is
not always possible (or desirable) across disciplines.

Synthesis science is well positioned to integrate a
broader range of disciplines to understand coupled
human–natural systems (Folke et al., 2021). To achieve
this integration, scientists and funders can account for
the additional time and effort needed to create a shared
understanding and language for integrating across disci-
plinary traditions and approaches.

Actionable and use-inspired science

Synthesis science in ecology and environmental science is
particularly well suited to informing decision makers.
Rigorous systematic reviews, meta-analyses, and predictive
models can distill research to effectively support environ-
mental policy and management (Pullin et al., 2020). This
strength of synthesis science in making inference across
diverse systems is also its primary challenge for guiding
actions fully connected to local contexts. Like other
approaches to conducting use-inspired research, synthesis
science has inadequately engaged practitioners to help
codevelop questions, research methodologies, and data to
be used. For knowledge exchange to be effective and action-
able, knowledge can flow bidirectionally or be cocreated
through authentic relationships and partnerships in spaces
among science, policy, and practice (Jarvis et al., 2020).

Improved communication, coproduction, transparency,
and data reuse practices can support evidence-informed
decisions (Donnelly et al., 2018). Synthesis scientists can
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ensure relevance of their work by codeveloping questions
with decision makers who address relevant questions on
relevant timelines with a clearly defined audience and
entry point into management systems (Haddaway et al.,
2017). Synthesis science can better embrace local,
Indigenous, and experiential knowledge and tools and the-
ories from across social and biophysical sciences and envi-
ronmental humanities (Bennett et al., 2017). Education
around synthesis can focus on honing skills and under-
standing levers of influence in the nonresearch world,
speaking the language of partner organizations or develop-
ing shared vocabulary, and investing resources in building
and managing connections (Pelletier, 2020).

Scale

Advancing ecological understanding across spatial and
temporal scales remains a challenge to social–ecological
research (Kramer et al., 2017; Levin, 1992). Synthesis plays
a key role in addressing this challenge by empowering
researchers to integrate data and approaches across scales,
to assess how insights translate to different scales, and to
link these insights to policy and decision-making from
local to global scales.

Challenges in addressing questions of scale (spatial,
temporal, taxonomic, and governance) arise primarily
from (1) scarcity of long-term data, (2) difficulties integrat-
ing heterogeneous information in preparation for analyses,
(3) limited opportunities and support for developing the
skills needed to work across various scales, and (4) bar-
riers to integrating diverse knowledge and perspectives
of project partners at different scales. While long-term
ecological research has expanded over the last half cen-
tury, additional commitments to collection, curation,
and integration of diverse data over long temporal and
large spatial scales are critical for overcoming these
obstacles.

Generality

Science tends to seek general principles that explain pat-
terns and processes. When common principles are not
found, it is possible that they exist but there is too much
contingency to detect them, or that human impacts
obscure them. Synthesis science is well positioned to find
generality where it exists and to identify when and why
context matters (Lawton, 1999).

Two key challenges, however, persist. First, lack of
sufficient replication among comparable studies at differ-
ent temporal and spatial scales constrains opportunities
for synthesis. Emphasis on novelty is at odds with

replication of studies. Second, bias in what researchers
choose to study and report can limit the material for
synthesis and introduce bias.

Several interventions may help distill individual
conclusions into generality: incentivizing open science,
standardizing reporting, and addressing systematic
biases in funding and publication processes. Open sci-
ence practices that support replication and synthesis
(e.g., open science research workflows, freely available
datasets and code) are critical for progress but lack sup-
port (NASEM, 2021). In addition, shifting emphasis from
novelty and speed in funding and publishing toward,
for example, distributed experimental networks would
facilitate collection of data well suited to testing generali-
ties. Developing incentives and platforms for publishing
null or nonsignificant results would ensure that findings
from all studies are discoverable, regardless of their
outcome. Cross-sectoral and cross-disciplinary working
groups that facilitate comparison across ecosystems and
integrate empirical with theoretical approaches are one
possible way to encourage the broad thinking that would
enable progress.

Complexity and resilience

Ecosystems are inherently complex, particularly when
incorporating social, cultural, economic, and political fac-
tors. This complexity can create resilience in systems
through redundancies in functions and connections
(Cowles et al., 2021), but can also cause fragility, as shifts
in one system (e.g., economic collapse) can drive major
changes in others (e.g., ecosystem tipping points; Folke
et al., 2021). This complexity framing is increasingly being
used to address issues like water, food, and energy, among
others.

Complexity complicates synthesis efforts, in part
because it is context dependent, challenging efforts to
find generalities, including identifying predictors of eco-
system resilience (Pace et al., 2015). The highly interdis-
ciplinary nature of this research demands equally
heterogeneous data, and these data are often not avail-
able or not well harmonized. Few scientists are being
taught to do interdisciplinary research, limiting the pool
of researchers.

Ideally, synthesis research helps build understanding
of how complexity structures ecosystem responses and
identifies strategies that can bolster provisioning of eco-
system services for the greatest diversity of human needs
and the environment. Efforts to push synthesis to be fully
interdisciplinary can accelerate progress but will require
institutional support and efforts to connect data reposito-
ries across disparate disciplines.
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Predictability

This time of unprecedented environmental change
increases the need to predict ecosystem condition and the
resulting contributions to people at multiple temporal
scales (Dietze et al., 2018). Such information is critical for
timely adaptive management and conservation (Priority 3).
While near-term prediction (months to years) is common
in fields such as climate science and finance, it is rare in
ecology.

Two perceived challenges to research on near-term
predictability center on concerns that current models
may not be “good enough” and that inaccurate forecasts
could be harmful (e.g., misinform management and con-
servation decisions). However, predictions do not need to
be perfect to advance science and improve decisions if
their limits are recognized (Gabrys et al., 2016). The
fastest way to improve predictions is to iteratively test
and update them, providing continuous feedback and
learning (Dietze et al., 2018).

Six strategies can support and accelerate progress of
prediction in ecology. First, science will benefit from a
culture where prediction is fostered and encouraged,
and where failed predictions are expected and used as
a platform for learning. Second, standardized observa-
tional and experimental studies and data and stream-
lined integration of heterogeneous data will help
support development of ecological forecasting. Third,
greater focus on real-time or continuously updated
data will help constrain near-real-time forecasts.
Fourth, open access tools for automated, reproducible
workflows will facilitate analyses, reduce redundancy,
and lower barriers to entry for new forecasters
and maintenance costs of keeping forecasts online
(Fer et al., 2021). Fifth, a revised core curriculum
that presents ideas and concepts from a predictive
perspective would raise the bar in quantitative learn-
ing and provides opportunities to learn forecasting
specifically. Finally, clear communication between
users and forecasters will help determine which
variables are most useful for decision-making and
on-the-ground management (Schell, Guy, et al.,
2020). Stronger connections between decision science
and prediction can help support sustainable natural
resource management.

PROCESS AND PRACTICE OF
SYNTHESIS SCIENCE

Two common threads cut across all topics discussed during
our workshop: expanding participation and expanding
available data.

Expanding participation in synthesis
science

Synthesis science is most powerful when it integrates
datasets, perspectives, and insights across regions and
ecosystems. By increasing diversity of participants and
fostering inclusive research environments, we can bet-
ter identify and answer research questions that inform
just and equitable solutions to pressing challenges.
Without prioritizing diversity and inclusion, syntheses
risk being biased and less broadly applicable (Hofstra
et al., 2020), which may lead to unjust and inequitable
outcomes. Although the principles of diversity and
inclusion are relevant to any scientific endeavor,
they are particularly salient for synthesis given its
integrative nature.

The regional to global scale of much of synthesis
science emphasizes the value of including people, ideas,
and data from multiple cultures, geographies, and lan-
guages. Scientific and academic institutions and cultures
have historically excluded people on the basis of race,
ethnicity, gender, abilities, sexual orientation, and other
identities (Bernard & Cooperdock, 2018), as well as from
research conducted in their native land (Heberling et al.,
2021). Exclusion of local and Indigenous knowledge can
be especially detrimental to our understanding of ecologi-
cal dynamics (Maas et al., 2021; Okeke et al., 2017), par-
ticularly of understudied organisms and systems (Mori
et al., 2021), and sustainable management of resources
amidst ongoing land use and climate change (Robards
et al., 2018). Greater effort can be made to prioritize and
facilitate representation and integration of diverse scien-
tists and perspectives by providing appropriate funding
and compensation, mentoring and education, appropriate
authorship credit, and modes for virtual and asynchro-
nous participation (Lashley et al., 2020). Investing in
open science and data science skill-building can increase
participation in synthesis science.

The use of English in much of the scientific literature,
data, and scientific meetings (Amano et al., 2016) creates
an additional barrier to participation in synthesis
research and often excludes information published in
other languages (Amano et al., 2021). Multilingual scien-
tific collaborations and searches can be conducted when
doing meta-analysis and synthesis projects (e.g., Nuñez &
Amano, 2021).

Although we can strive to assemble diverse groups of
people in synthesis science endeavors, the practice of
increasing diversity can be ineffective or even harmful to
individuals from historically marginalized groups in the
absence of concrete steps to ensure inclusion and belong-
ing. Racist, sexist, ableist, and colonial structures have
informed many traditional scientific practices and
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cultural norms. Reimagining systems and institutions to
be safe and supportive spaces where everyone can thrive
and determine their own questions, approaches, and
potential solutions is important (Trisos et al., 2021).
Equally important is providing adequate opportunities
and support infrastructures for marginalized and under-
represented voices to learn and lead synthesis science
(Nocco et al., 2021), and celebrating excellence of specific
groups (Miriti et al., 2020; Schell, Guy, et al., 2020).

To advance engagement with marginalized communi-
ties, it is important for individuals from dominant groups
to engage and participate with humility, curiosity, and
patience (Borrelle et al., 2021). Safety and trust among
individuals can be fostered by listening, acknowledging
shortcomings, and building relationships before acting.
Developing a practice of open dialogue and conflict reso-
lution can also help groups engage in inclusive synthesis
research and address institutional barriers. Group leaders
could also consider allowing for diverse modes of engage-
ment to facilitate greater participation. Fundamentally,
building relationships and networks needed to support
underrepresented communities and redistributing power
among different groups of people in a collaboration can
shift power dynamics and can facilitate greater inclusivity
in synthesis.

Expanding the data and knowledge
foundation

The quantity of data for use in synthesis science is growing
(Farley et al., 2018). Efforts are being made to standardize
and synthesize data across multiple existing databases
(e.g., Jeliazkov et al., 2020) and harmonize data across sci-
entific networks (e.g., O’Brien et al., 2021). These efforts
enable research on ecological questions that could not be
addressed by any one database (Bates et al., 2021).
However, dedicated funding to support data curation,
management, and archiving is needed to advance existing
and future efforts.

Careful consideration of the ethics of assembling
diverse datasets must be part of any equitable data syn-
thesis future. Some individuals, communities, and insti-
tutions may not share their data publicly for privacy,
ethical, or safety concerns, or are unable due to legal or
policy constraints. Some researchers may be disadvan-
taged by current open science norms if, by making their
data freely available, they effectively cede control of their
intellectual property to others with greater resources who
can more rapidly use it. This “information drain” from
under-resourced institutions, researchers, and countries
risks exacerbating existing inequalities in academic output
and rewards. Even if there are barriers to providing equal

participation opportunities, it is crucial to follow just, equi-
table, and inclusive practices in authorship and acknowl-
edgment of the diverse people who generate scientific data
and improve standards going forward (Armenteras, 2021).

Many potential synthesis datasets are inaccessible or
of limited value due to poor-quality metadata (Quarati &
Raffaghelli, 2020). Data may be difficult to find or access
because they are published in a language that is not
native to the investigator, not digitized, or housed in
databases with barriers to access (Haddaway & Bayliss,
2015). Alternative forms of data, including qualitative
datasets (e.g., traditional knowledge, photographs), tend
not to be included in public databases (Moon et al., 2016;
Young et al., 2018). Limitations in using these forms of
information can hinder our ability to identify ecological
patterns and processes (Konno et al., 2020). Tools that
aid scientists in accessing diverse data sources, such as
machine learning techniques that help identify relevant
data sources across many languages (Han et al., 2020),
are key to addressing these hurdles. Ultimately, increased
inclusion in synthesis efforts through global collaboration
across diverse groups of people is one of the best ways to
move forward.

CONCLUSION

The above priorities are neither exhaustive nor represent
consensus, but rather emerged from the workshop pro-
cess as priority topics and themes that synthesized the
many individual questions offered by workshop partici-
pants (the full list of questions is available at https://doi.
org/10.5063/F19885GC). Many were interconnected, with
several focusing on interactions between people and
nature and others focused on the quest for a science of
ecology that can be predictive across scales.

Across all themes, discussions focused on the need for
equity through open science as an integral part of how to
improve synthesis (Ramachandran et al., 2021). Central to
synthesis helping advance science is the need for greater
data access and diversity, and education for people to learn
how to leverage these data. Greater diversity within teams
of scientists and practitioners would provide perspectives
and contributions that would better frame synthesis-based
questions. Such diversity, along with open science prac-
tices and technology that foster sharing of data and ideas,
offers great potential for the future of synthesis in ecology
and environmental science. Achieving greater inclusion
goes far beyond inviting more diverse participants to dis-
cussions; it requires fundamental changes in the structure
of science education and funding to achieve broad partici-
pation and leadership, and acknowledgment of those who
generate data. Greater inclusion also requires mechanisms
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ensuring datasets follow the findability, accessibility, inter-
operability, reusability (FAIR) principles (Wilkinson et al.,
2016), efforts to promote shared open access data reposito-
ries and tools, and the platforms and skills needed
for ongoing iterative interactions and data integration
among researchers (Djenontin & Meadow, 2018; Keeler
et al., 2017).

We focused here on priority questions that emerged
primarily from a natural science perspective, with an inter-
est in integrating social science, rather than beginning
from a socioecological framing that explicitly addresses
epistemological differences between social and natural sci-
ences. Such a shift in framing can influence the nature
and focus of research questions, and future efforts to iden-
tify additional research priorities could benefit from this
socioecological framing.

Synthesis science is already advancing discovery
within and across these topics, building on significant
investments to collect data needed for synthesis, build
the cyberinfrastructure to enable better use of those data,
and support the infrastructure and learning needed to
conduct synthesis. To ignite the next generation of syn-
thesis science, strategic investments to make data more
interoperable and synthesis science more inclusive hold
significant promise for transformative advances in the
practice and outcomes of synthesis.
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