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Fig. 1. Lensless 3D imaging. The lensless measurement is a linear combination of the depth dependent point spread function contributed by each
scene point. We propose a learning-based approach called FlatNet3D to learn the inverse mapping from a 2D measurement to intensity and depth
map.

hand-crafted priors to recover the 3D volume from the 2D
measurements. However, these methods mainly work for sparse
scenes and are extremely slow due to their iterative nature [12],
and they use an optimization-based approach to solve for both
intensity and absolute depth from a single lensless measurement.
However, they only showed results for separable lensless mod-
els, which are known to have poor system characteristics [5].
References [13,14] used a programmable mask to improve the
conditioning of the lensless system for depth recovery. But their
system has a much thicker form-factor and requires multiple
captures to estimate an accurate depth map.

The above challenges make the development of a robust
3D scene estimation algorithm for single-shot lensless imag-
ing the need of the hour. Keeping this in mind, we propose an
end-to-end trainable deep network that learns direct mapping
from a single lensless measurement to the scene intensity and
the absolute depth map. We call this deep network FlatNet3D,
which employs an efficient physics-based 3D mapping stage
followed by a fully convolutional network, which is trained in a
coupled fashion. Finally, to verify the robustness and efficiency
of FlatNet3D, we perform extensive experiments on challenging
simulated and real scenes captured using PhlatCam [5]. Please
see Fig. 1. Our contributions are as follows:

• We propose a feed-forward deep network for fast and
high-quality intensity and depth reconstruction from single
lensless capture.

• At the core of our approach is the proposed learned
physics-based 3D mapping stage that brings the measurement
to an intermediate 3D volume. It is extremely efficient, requires
very few parameters to learn, and allows fast implementation in
the Fourier domain.

• We perform our evaluations on both simulated and real
captures under various scenarios.

• Finally, we show relevant applications that can benefit
from the 3D imaging abilities of the lensless system.

A. Related Works

1. Mask-BasedLensless Imaging

Ultra-thin mask-based lensless cameras replace the lens of
a traditional lens-based system with an optical mask placed
close to the sensor. FlatCam [1] used a separable amplitude
mask placed approximately a millimeter from the sensor. It
was used to show 2D imaging and 3D volume reconstruction
in [11]. DiffuserCam [2] used a random off-the-shelf diffuser
as a mask placed nearly 10 millimeters from the sensor. The
authors demonstrated 3D imaging ability using this prototype.
More recently, its ability to do high speed imaging [15] was also
demonstrated. Spectral DiffuserCam [16] exploits the multi-
plexing ability of lensless imagers to do hyper-spectral imaging.
PhlatCam [5] was recently proposed and uses a designed phase-
mask with specific properties that make solving the inverse
problem easier. The authors demonstrated its ability to do both
2D and 3D imaging.

2. Learning for Lensless Imaging

Recently numerous learning-based algorithms have been pro-
posed for lensless scene reconstructions. Reference [9] proposed
a feed-forward deep network that performed photorealistic 2D
scene reconstructions from separable mask FlatCam measure-
ments. Reference [7] proposed an unrolled deep network that
performed 2D intensity reconstructions from DiffuserCam
measurements. Recently, [6] proposed FlatNet that was shown
to perform 2D intensity reconstructions for a general lensless
system. Reference [10] proposed an unsupervised iterative
approach that exploits deep image prior for lensless reconstruc-
tions. Although the above deep-learning-based techniques are
for 2D scene reconstructions, there are no deep learning based
approaches for 3D scene estimation from single-shot lensless
captures. Moreover, extending the 2D methods for 3D is not
trivial, and a naive extension can lead to significant blow-up in
memory requirement and parameter count. In this work, we
bridge this gap by proposing a fast photorealistic learning-based
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3D scene estimation algorithm. Recently transformers [17] have
been shown to be effective for lensless image recognition and
2D scene reconstruction [18,19] that are purely data-driven and
do not require modeling the lensless camera and calibrating the
PSFs—a condition desirable when accurate calibration of PSFs
is not possible. However, these works have not explored 3D
lensless imaging. Moreover, transformers used in these works
consume a significant amount of memory, and fitting them on
a single Titan X GPU, which has been used in this work, is not
possible. In contrast, since we have an accurate calibrated PSF,
the two-stage approach of FlatNet3D makes the estimation
more efficient. First, the efficient 3D mapping stage decouples
the depth information from a single measurement while reveal-
ing the image-like structures. Then, in the second stage, the
decoupled volume of image-like features is passed through a
U-Net to efficiently estimate RGB and depth map.

3. 3DLensless Imaging

References [2,5] perform 3D voxel reconstructions from 2D
lensless measurement using strong scene priors and traditional
optimization routines. Recently, authors in [12] proposed
a joint intensity and depth reconstruction framework using
alternating optimization framework. However, their approach
was only shown for a separable model, and extending it to non-
separable model is not trivial. The above works rely on strong
hand-crafted priors and traditional optimization routines, and
they are iterative in nature. In contrast, our proposed approach
is feed-forward, learns the priors from the data, and is extremely
fast. Another line of work involves using programmable masks
and multiple measurements for 3D estimation from thicker
form-factor lensless cameras [13,14]. In [8], the authors use
amplitude Fresnel zone aperture (FZA) masks. They use 4–16
radially phase-shifted FZA to combine multiple measurements
with a virtual FZA to obtain a refocus stack. Changing the pitch
of the virtual FZA post-capture allows them to obtain the refo-
cus stack. However, this method is limited to the FZA pattern
and uses multiple measurements. Compared to these works,
we show 3D imaging capabilities of lensless cameras for a single
passive mask and for an ultra-thin geometry, which is much
more challenging.

2. 3D LENSLESS IMAGING—A BRIEF

BACKGROUND

Each scene point in the field of view of a lensless camera forms a
PSF on the sensor. This PSF is a function of the 3D position of
the point. Assuming shift invariance within each scene plane,
the measurement recorded at the sensor can be written as

Y =
∑

z

S(z) ∗ H(z). (1)

Here, S(z) represents the scene points at the depth plane located
at z, H(z) represents the on-axis PSF corresponding to a point
source located at z distance from camera, and the asterisk rep-
resents 2D convolution. Y is the 2D measurement recorded at
the sensor. The summation over z indicates the super-position
of the contribution made by each depth plane. Moreover, if
H∞(x , y ) is the PSF for an on-axis point source at optical

infinity, then the PSF for an on-axis point at depth z is given by

H(x , y , z) = H∞

(

x

1 + d/z
,

y

1 + d/z

)

, (2)

where d is the mask to sensor distance and z is the same depth
as before [5]. The above equation indicates that the effect of
depth on the PSF is reflected through scaling, and this scaling is
more challenging to resolve for ultra-thin lensless cameras. The
shift-invariance assumption is valid due to the small thickness
and large sensor size of the PhlatCam [5] lensless camera that we
have used to demonstrate our experiments.

The objective of this paper is to estimate scene intensity
∑

z S(z) and the depth map z(i, j ) corresponding to each scene
point. In our experiments, we discretize the depth into planes.

3. FLATNET3D—TWO-STAGE NETWORK FOR

LENSLESS 3D IMAGING

FlatNet3D is a two-stage deep network that learns the mapping
from a 2D lensless measurement to a scene intensity and depth
map. The first stage of the network maps the 2D measurement
to a intermediate 3D stack. The second stage learns a mapping
from this stack to the intensity and depth map through a fully
convolutional network. Finally, the network is trained using
losses imposed on the intensity and depth map (see Fig. 2). In
this section, we will describe each of these stages in detail.

A. Physics-Based Measurement to 3D Mapping

Lensless measurements, due to global multiplexing, lack local
structures [6,7]. Moreover, from Eq. (1), it can be seen that the
measurement at the sensor is a compressed representation of the
3D volume. Therefore, we need to map the measurement to an
intermediate stage with image-like local structures while simul-
taneously preserving the 3D information. We do so by solving,
for each depth plane, the following approximated regularized
2D least squares:

SE (z) = argmin
S(z)

||Y − H(z) ∗ S(z)||2F

+ λ(z)||P (z) ∗ S(z)||2F . (3)

Here, the asterisk represents 2D convolution, Y is the lensless
measurement, H(z) is the PSF corresponding to depth z, S(z)
corresponds to scene points at depth z, and P (z) is a regulari-
zation filter. If F and F−1 represent the Fourier transform
and its inverse, respectively, then the solution to Eq. (3) can be
represented as

SE (z) =F
−1(F(Y ) � W(z)), (4)

where

W(z) =
F(H(z))∗

|F(H(z))|2 + λ(z)|F(P (z))|2
. (5)

SE (z) in the above equation resembles a noisy focal stack with
scene points at that particular depth z appearing sharp. Once the
stack is obtained, we pass it through the next fully convolutional
volume processing stage.
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Fig. 2. FlatNet3D. Our proposed network first maps the measurement into an intermediate 3D stack. A convnet then uses this stack to generate
intensity and depth estimates. Finally, the entire network is trained in an end-to-end fashion using VGG loss on intensity images and L1 loss on depth
maps.

Given that both Eqs. (4) and (5) are fully differentiable,
we learn the filters P (z) and the vector λ(z). Please note that,
unlike the trainable inversion stage of FlatNet [6], the learned
mapping corresponding to FlatNet3D has much fewer param-
eters. This is because of the efficient parameterization of W(z)
using Eq. (5), where only P (z) and λ(z) are learned, which are
typically of much lower dimensions.

B. 3D Stack to Intensity and Depth Prediction

The next stage of FlatNet3D takes in the stack SE from the pre-
vious stage and outputs the depth and intensity estimate. Owing
to its large scale success in image-to-image translation, image
segmentation, and depth reconstruction problems, we choose
a U-Net [20] to learn this mapping from SE to final intensity
and depth map. We have kept the kernel size fixed at 3 × 3,
and the number of filters has been gradually increased from 64
to 1024 across five encoder blocks and then reduced back to
64 across 4 decoder blocks. The number of input channels of
the U-Net is thrice the total number of discrete depth planes
C with each set corresponding to R, G, and B channels of each
image in the stack. Since we formulate our depth estimation
as a regression problem, the decoder part of the U-Net has
four output channels where the first three channels output the
RGB intensity estimate and the last one is used to predict the
depth of the pixels. Owing to the success of attention gates in
previous works, we have used grid-attention proposed by [21]
that enables the model to “focus” on the important regions and
retain only the necessary activations. Details of the U-Net are
provided in Supplement 1.

C. Loss Function

Our model jointly learns to predict the intensity image as well as
the depth map. To do so, we use a combination of the following
losses.

1. VGGLoss

To learn the intensity mapping, we use the VGG loss proposed
in [22], which is known to produce photorealistic images. Let φ j

denote the feature map of size C j × W j × H j obtained by the
jth activation within the VGG19 network. The 22nd convolu-
tional layer in the VGG model has been used as the perceptual
output. We then define the VGG loss as the Euclidean distance
between the feature representations of a reconstructed image Irec

and the reference image Iref,

LVGG =
1

C j W j H j
||φ j (Irec) − φ j (Iref)||

2
2. (6)

2. L1 Loss

We formulate the depth estimation as a regression problem for
each pixel. Given the target depth dref and the predicted depth
image dpred, which is also the output of the neural network, the
L1 loss is given by the L1 norm between dref and dpred,

LL1 = ||dref − dpred||1. (7)

3. Total Loss

The final loss function used for jointly training the network is

LT =LVGG + αLL1, (8)

where α is a scalar hyper-parameter.

4. EXPERIMENTS AND RESULTS

A. Dataset

For all our experiments, we will be focusing on the camera
geometry of PhlatCam [5]. PhlatCam is a thin passive mask-
based lensless camera. It uses a fixed phase-modulating mask
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placed very close to the sensor (<2 mm) giving a very thin
form-factor. The design of this mask is described in [5] and is
based on certain heuristics that allow high-quality imaging. The
mask was fabricated using a two-photon lithography 3D printer
(Photonic Professional GT, Nanoscribe GmbH). It was printed
on a 700 µm thick, 25 mm square fused silica glass substrate
using Nanoscribe’s IP-DIP photoresist in the Dip-in Liquid
Lithography (DiLL) mode with a 63× microscope objective
lens. Given that the thickness of PhlatCam is less than 2 mm, we
consider a scene depth range of up to 20 cm. Beyond 20 cm, the
effect of PSF scaling becomes negligible, and only 2D imaging
is possible from single capture. We first capture real PSFs by
placing a point source at 25 different depths between 3.6 cm
to 20 cm from PhlatCam. Since there is no existing dataset for
lensless depth and intensity with measurements and ground
truth pairs, we leverage existing RGB-D datasets for generating
them. To this end, we use the intensity and disparity images
of a subset of the FlyingThings3D [23] dataset to generate
lensless measurements using the forward model described in
Eq. (1). We use 26,066 RGB-D scenes for this purpose (21,818
for training, 3000 for validation, and 1248 for testing). Given
that the FlyingThings3D dataset provides only the disparity,
we first clipped the disparities to lie within [10,1000]. This
ensures uniformity in the cropped depth images. We calculate
the inverse disparity and scale it to the range [0,1]. This is finally
followed by a linear map [0,1] to [3.6 cm,20 cm], which is our
required depth range. Finally, using the captured PSFs, the
scenes, and the depth maps, we simulate the measurements. We
add Gaussian noise to the simulated measurement so that the
peak signal to noise ratio (PSNR) measurement corresponds to
20–50 dB. We then use this simulated dataset for training and
testing purposes. In our experiments, we consider a scene size of
128 × 128.

For testing on real data, we use PhlatCam to capture scenes
placed within the above depth range in front of the camera. We
provide visual results for these captures later in this section.

B. Training Details

We implemented our models in PyTorch [24]. The Adam opti-
mizer [25] was used to train the network with a learning rate of
10−3. Due to the GPU constraints, we used a batch size of 7.
The weight α was varied from 0.001 to 0.002. NVIDIA Titan X
GPUs were used for our experiments.

C. Baselines and Metrics

1. Baselines

For comparison with the traditional approach, we used two
different methods to obtain a 3D volume or focal stack and
used this stack to estimate depth and intensity images. The
first approach was to solve, for each depth plane, the Laplacian
regularized 2D least squares given by

Ŝ(z) = argmin
S(z)

||Y − H(z) ∗ S(z)||2F + λ||L ∗ S(z)||2F , (9)

where Y is the measurement, * represents 2D convolution, S(z)
are the scene points at depth z, H(z) is the PSF corresponding to

depth z, L is a 2D Laplacian filter of size 3 × 3, and λ is a con-
stant. The solution to Eq. (9) is given by

Ŝ(z) =F
−1

(

F(H(z))∗

|F(H(z))|2 + λ|F(L)|2
�F(Y )

)

. (10)

This is the commonly used 2D constrained least squares
(CLS) filter used in image processing [26]. The second approach
is to use the alternating direction method of multipliers
(ADMM) proposed in [2,5]. The ADMM-based approach
treats the 3D reconstruction problem as a regularized least
squares optimization problem:

Ŝ = argmin
S

1

2
||Y −

∑

z

H(z) ∗ S(z)||22 + λ||9(S)||1 + λ1||S||1.

(11)

Here, 9 is the gradient operator, S is the 3D volume, and Ŝ is its
estimate. The rest of the notations have the same meaning as that
in Eq. (9).

The 3D volume obtained by using the above methods may
have non-zero values for a pixel at more than one depth plane.
Hence, we must apply other methods on top of 3D volume
estimation to obtain the intensity image and the depth map. To
obtain the same, we have used a graph-cut [27] to minimize the
following energy function formulated in [28]:

E (x ) =
∑

i∈V

E i (xi ) + λ
∑

(i, j )∈E

E ij(xi , x j ), (12)

where E (x ) is the energy of a depth labeling x , xi is the depth
assigned to a pixel i ∈ V , and E i (xi ), called the unary potential
of a pixel i ∈ V , is a measure of defocus and is obtained by com-
puting exp (−|∇ I (i)|2) followed by Gaussian averaging over a
fixed window. Also, E ij(xi , x j ) = |xi − x j |, where (i, j ) ∈ E ,
the set of edges connecting adjacent pixels. λ is a weighting
constant between the unary and pairwise terms. The RGB value
of the pixel i in the all-in-focus image is the corresponding RGB
value of the xi th stack.

We call these methods CLS + Graphcut and ADMM +

Graphcut depending on the approach used to obtain the 3D
volume.

We also make a comparison against a modified version of
FlatNet [6], which was originally proposed for 2D scene esti-
mation from lensless measurements. We modify FlatNet by
replacing its inversion stage with the learned mapping described
in Section 3.A. However, this mapping now uses only the PSF
corresponding to the hyperfocal distance. We also modify the
perceptual enhancement stage of FlatNet to predict both the
RGB and depth map. We call this model FlatNet2D.

2. Metrics

For quantitative evaluation, we use a combination of PSNR (in
dB), structural similarity index measure (SSIM), and learned
perceptual image patch similarity (LPIPS) [29] for intensity
reconstructions. While PSNR measures the signal distortion,
SSIM and LPIPS are useful for quantifying the perceptual
quality of the estimates. Higher values of PSNR and SSIM,
and lower values of LPIPS, indicate better estimates. For depth
estimates, we use root mean square error (RMSE) (in cm) for our
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evaluation. We report the average metrics evaluated on the sim-
ulated test set only. The real data does not have corresponding
ground truth. We also report the average inference time for each
approach evaluated on a Nvidia Titan X GPU.

D. Comparison with Baselines

1. Quantitative Evaluation

We present the quantitative comparison of our approach against
the baselines. Table 1 reports the average metrics evaluated on
the simulated test set described in Section 4.A. We can see that
FlatNet3D clearly outperforms traditional optimization-based
approaches like ADMM + Graphcut or CLS + Graphcut in
terms of accuracy and speed. This is primarily because both
ADMM and CLS lead to noisy 3D volume predictions, and
as a result, the subsequent Graphcut-based approach is unable
to extract meaningful depth and intensity from this volume.

Table 1. Quantitative Comparison with Other

Approaches
a

Method

PSNR

(dB) SSIM LPIPS

RMSE

(cm)

Inference

Time (s)

CLS + Graphcut 16.24 0.56 0.51 4.87 1.21
ADMM +

Graphcut
15.94 0.63 0.32 5.26 10.26

FlatNet2D 19.86 0.65 0.30 1.92 0.011

FlatNet3D 21.91 0.79 0.14 1.42 0.013

aWe report the average metrics for the proposed FlatNet3D along with that

of the baselines evaluated on the simulated test set. FlatNet3D outperforms all

the other baselines in terms of model accuracy.

Among the learning-based approaches, FlatNet3D outperforms

FlatNet2D because the latter is not able to extract the depth

information accurately from one PSF. Moreover, FlatNet3D

Fig. 3. Comparison on simulated dataset. FlatNet3D provides more photorealistic intensity images and accurate depth maps.
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Fig. 4. Comparison on real captures. We show real results for two scenes. FlatNet3D provides better contrast for intensity images and cleaner
depth maps for both the scenes.

Fig. 5. Noise analysis. We vary the measurement noise and evaluate
the performance of all the methods. FlatNet3D outperforms all other
methods.

is nearly 100x faster than ADMM + Graphcut and nearly 10x
faster than CLS + Graphcut.

2. Qualitative Evaluation

In this subsection, we provide visual results for the proposed
FlatNet3D against the baselines. In Fig. 3, we show the intensity
and depth map reconstructions for two simulated scenes.
FlatNet3D provides better depth maps and perceptual intensity
quality as reflected through lower LPIPS and RMSE values.
The traditional approaches provide noisier intensity and depth
estimates while FlatNet2D is unable to extract sharp image and
accurate depth map from a single focal stack image.

We also provide visual comparison on real data captured
using PhlatCam [5] in Fig. 4. Similar to results on simulated
data, FlatNet3D provides better quality intensity estimates
reflected through better contrast. The depth estimates using
FlatNet3D have fewer spurious regions especially for the bot-
tom scene that lacks texture. Traditional methods suffer from
noise for these data as well, with ADMM + Graphcut per-
forming better than CLS + Graphcut. FlatNet2D is unable to
extract sharp intensity image and accurate depth map from a
single focal stack image. Since dark regions can have ambiguous
depth values, we throw away the depth values corresponding to
dark scene pixels in Fig. 4. Following [12], we suppress the depth
values for pixels with mean intensities (across the color channels)
below the image standard deviation.

E. Noise Analysis

We have trained our model with a large range of noise. In this
subsection, we evaluate its performance against the baselines
for different noise levels. We vary the simulated measurement
PSNR from 20–50 dB by varying the noise levels and observe
the intensity and depth reconstructions for all the methods. For
traditional approaches, we tune the regularization parameters
for each noise level separately for optimal performance. In Fig. 5,
we show the average LPIPS of intensity estimates and the RMSE
of the depth estimate for various noise levels. We only focus on
LPIPS since our network parameters are optimized for good
perceptual metrics of intensity estimates. Despite using carefully
tuned parameters, traditional approaches perform consistently
worse than the learning-based approaches both in terms of
intensity and depth quality. FlatNet3D outperforms FlatNet2D
at all noise levels.

F. Performance on Different Tasks

We evaluate the performance of FlatNet3D on two different
RGB-D data based tasks—endoscopy 3D imaging and RGB-D
saliency detection.

1. Endoscopy 3D Imaging

Getting absolute depth information from endoscopic scenes is
of vital importance for diagnosis. In this experiment, we show
that low form-factor lensless cameras can allow absolute depth
and intensity imaging from endoscopic scenes from single-shot
captures. To do this, we simulate lensless measurements from
the colon subset of the synthetic EndoSLAM dataset [30] that
provides intensity images along with relative depth maps. We
use 5000 colon samples for training and 100 samples each
from colon, small intestine, and stomach scenes for testing.
We first undistort the input images using the calibration files
provided by the authors. We then scale the depth to a maximum
of 10 cm and fine tune our trained FlatNet3D on this dataset.
Figure 6 shows visual results for the intensity and depth maps
for various frames. Despite the scenes being extremely low in
texture, FlatNet3D is able to extract meaningful absolute depth
information from a single measurement.
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Fig. 6. Performance on EndoSLAM Dataset. We fine tune FlatNet3D on the EndoSLAM RGB-D dataset. It can be seen that FlatNet3D is able to
provide a high-quality depth map despite the scenes being low in texture.

Fig. 7. Performance on salient object detection. Estimates from FlatNet2D and FlatNet3D are used as inputs for saliency detection. Because
FlatNet3D predicts both accurate depth map and intensity images, the saliency model trained on its outputs outperforms the saliency model trained
on FlatNet2D predictions.

2. SaliencyDetection

Saliency detection refers to the detection of salient
objects/regions within the scene, i.e., the most informative
scene regions. Effective detection of salient regions can have
numerous applications like object detection, image compres-
sion, and medical diagnosis [31,32]. This task can benefit
significantly from 3D information.

Saliency detection is a task that can benefit from 3D infor-
mation. Therefore, we use the predicted intensity and depth
map from FlatNet3D for salient object detection. We use the
RGB-D saliency dataset proposed in [33]. We first simulate

lensless measurements from these RGB-D images and then

apply FlatNet3D to them to predict the intensity and depth

map. We then use these intensity and depth maps to learn the

saliency map using U-Net. In Fig. 7, we compare the perform-

ance of saliency detection. As can be observed, saliency detection

from the predictions of FlatNet3D is better than the saliency

detection from the predictions of FlatNet2D. This indicates

that the better depth and intensity predictions from FlatNet3D

are crucial for high-quality saliency detection. Although we have

shown FlatNet3D-based saliency detection for natural scenes,

it can be extended for endoscopic scenes as well given enough
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labeled endoscopic samples. Such a saliency detector would
be useful in assisting physicians in diagnosis, and designing it
would be an interesting future research direction.

5. DISCUSSION AND CONCLUSION

In this work, we proposed a novel deep network for inten-
sity and depth estimation from monocular lensless captures.
Our method exploits the scaling of lensless PSF at close depth
ranges for this estimation. Unlike traditional methods like
[2,5,12], our method exploits the prior in the data for doing so,
leading to superior quality intensity and depth estimates. The
key component of our approach is the physics-based learned 3D
stack mapping stage, which is very efficiently parameterized.
FlatNet3D is a step toward making ultra-thin light-weight 3D
imaging systems more ubiquitous.

FlatNet3D’s performance is limited by the lensless camera’s
physical geometry constraints—beyond a certain depth, PSF
scale becomes insensitive to depth. This implies that the per-
formance of depth estimation worsens with an increase in depth
values. However, absolute depth estimation for small ranges can
be very useful for systems like endoscopes where form-factor
is a serious constraint and the scenes are typically very close
to the camera. For such short ranges, due to the PSF scaling
cue, getting depth from a single-shot lensless capture is much
better posed than getting the same from single-shot lens-based
captures. In future, it would be interesting to explore depth
estimates using multiple lensless cameras, monocular cues, and
dynamic mask patterns similar to [13].
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