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Abstract— This paper presents Contact Mode Guided Ma-
nipulation Planning (CMGMP) for 3D quasistatic and quasi-
dynamic rigid body motion planning in dexterous manipulation.
The CMGMP algorithm generates hybrid motion plans includ-
ing both continuous state transitions and discrete contact mode
switches, without the need for pre-specified contact sequences
or pre-designed motion primitives. The key idea is to use
automatically enumerated contact modes of environment-object
contacts to guide the tree expansions during the search. Contact
modes automatically synthesize manipulation primitives, while
the sampling-based planning framework sequences those prim-
itives into a coherent plan. We test our algorithm on fourteen
3D manipulation tasks, and validate our models by executing
some plans open-loop on a real robot-manipulator system1.

I. INTRODUCTION

Dexterous manipulation planning is challenging in many
aspects. The first challenge is the exploitation of dexterity.
The dexterity in manipulation can come from the dexterity of
robot hands (intrinsic dexterity) and the exploitation of the
environments (extrinsic dexterity) [1]. A general dexterous
manipulation planner needs to use both intrinsic and extrinsic
dexterity cleverly. The second challenge is the contact-rich
nature of manipulation. Making and breaking contacts bring
more complexity into the system by changing its kinematics
and dynamics. This hybrid nature makes planning through
contacts difficult. The CMGMP aims to move one step
closer towards general dexterous manipulation planning by
considering the dexterity from both the robot hand and the
environment, and planning among these contacts.

The CMGMP algorithm is a Rapidly-Exploring Random
Tree (RRT) [2] based planner with automatically enumerated
contact modes to guide tree extensions. The key idea is to
use contact modes. Contact modes are helpful both in gen-
erating continuous motions and capturing discrete changes.
Contact modes serve like automatically generated “motion
primitives”, guiding the planning of continuous motions in
submanifolds of the configuration space. Compared with
manually designed motion primitives, contact modes auto-
matically generate more varied motions while requiring less
engineering effort. In the discrete space, contact modes help
find paths across manifolds. The set of kinematically feasible
contact modes capture all possible discrete contact changes
in the current system configuration because it enumerates
all possible transitions of the contact states. Combined with
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1 The video is available at https://youtu.be/JuLlliG3vGc
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Fig. 1: The goal is to get the object out of the box while
the gaps are too small for both fingers to get in. Our method
plans first to push the object on the top to create a wider gap
that lets the fingers slide up the object from the side.

sampling-based planning, contact modes boost the explo-
ration over large continuous and discrete spaces for contact-
rich motions.

This paper presents the complete version of the CMGMP
algorithm that can solve 3D quasistatic and quasidynamic
dexterous manipulation tasks with a rigid object in a rigid
environment, assuming non-sliding finger contacts, compat-
ible with user-provided 3D object mesh models and robot-
manipulator kinematic models. An example for peg-out-of-
hole planning is shown in Figure 1. The planner generates the
strategy of first pushing the object on the top to create a wider
gap that lets the fingers slide up the object from the side, and
then form a grasp. Compared to our 2D quasistatic version
[3], this work demonstrates that this type of algorithms can
solve a much more general range of manipulation tasks. To
the best of our knowledge, the CMGMP is the first method
capable of solving diverse dexterous manipulation tasks of
such levels of complexity without any pre-designed skill or
pre-specified modes. We believe the flexibility, simplicity,
and general applicability demonstrated by this work bring
us one step closer towards general dexterous robotic manip-
ulation.

II. RELATED WORK

A. Manipulation Planning

Efficient search and optimization algorithms have been de-
veloped to solve motion sequencing/planning problems [4],
[5]. Sampling-based planning methods like CBiRRT [6] and
IMACS [7] explore the manifolds of known constraints. Most
of these methods require predefined states or primitives.
The solutions are also confined to be the combinatorics of
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predefined states/primitives. As existing taxonomies cannot
even categorize all human grasping behaviors [8], it is
therefore impractical to develop a skill library that fulfills
the complexity and dexterity needed in general manipulation.
In contrast, our work uses contact modes to automatically
generate “motion primitives”, allowing the planner to find a
variety of lower-dimensional solutions.

Contact formations [9] have been explored in [10], [11],
[12], [13] to plan motions between two rigid bodies [12] and
within a robot hand [10], [14]. Contact information helps to
decompose the search space into smaller chunks. Search and
planning within contact formations are later combined into a
complete solution. These methods all require to precompute
all possible contact formations offline.

Our previous work is a simplified version of the CMGMP
[3]. The addressed problems are limited to 2D domains. The
quasistatic assumption prevents it from generating simple
actions like dropping or toppling. This work presents a more
complete version of the CMGMP by extending from 2D
domains to 3D domains, from quasistatic to quasidynamic,
from well-parameterized 2D object geometries to arbitray 3D
object models, and from simple free-moving point manipu-
lator model to more realistic user-defined robot kinematics
and non-sliding finger contact models.

B. Contact-rich Motion Generation

Trajectory optimization is effective in generating contact-
rich motion plans. Contact-Invariant Optimization meth-
ods [15], [16] produce complex whole-body and manipu-
lation behaviors in simulation, assuming soft contacts which
may violate physics laws. Dynamic manipulation planning
for rigid bodies is explored in [17], [18], [19], [20], generat-
ing simple manipulation actions with small numbers of con-
tact transitions, like pushing, pivoting, and grasping. Chen
et al. [21] interleaves tree search and trajectory optimization
to efficiently solve a 2D in-hand manipulation problem.
However, contact implicit trajectory optimization (CITO)
methods [17] could be intractable without good initialization.
To our best knowledge, there has not been any trajectory
optimization method that can solve the tasks of similar level
of complexities shown here.

III. PROBLEM DESCRIPTION

A. Inputs and Outputs

The inputs to our method are the start and goal poses of
the object, the geometries, and the properties of the object
and the environment:

1) Object start pose: qstart ∈ SE(3).
2) Object goal region: Qgoal ⊂ SE(3).
3) Object properties: a rigid body O with known geom-

etry, mass distribution, and friction coefficients with
environment µenv and with the manipulator µmnp.

4) Environment: E with known geometries.
5) Manipulator model: a user-defined model for the

robot-manipulator system. The manipulator can make
at most Nmnp contacts with the object.

Our method outputs a trajectory π that is a sequence of
object motions, contacts, and contact modes. At step t, the
trajectory π(t) gives:

1) Object motion: object configuration q(t) at step t.
2) Environment contacts: the contact points of the object

with the environment Nenv(t). The kth environment
contact cenvk (t) is specified by its contact location
penvk (t) and contact normal nenvk (t).

3) Manipulator configurations: the manipulator config-
uration qmnp(t). The manipulator contacts with the ob-
ject can be obtained from qmnp(t) using forward kine-
matics: cmnp(t) = [cmnp

1 (t), cmnp
2 (t), . . . , cmnp

Nmnp
(t)].

The kth manipulator contact is specified by its contact
location pmnp

k (t) and contact normal nmnp
k (t).

4) Contact mode: the 3D contact mode m(t) of the
environment contacts and the manipulator contacts.

B. Assumptions

In addition to the standard assumptions made within rigid
body simulators (non-penetration, point contacts, polyhedral
friction cones [22], [23], etc.), we assume the following:
(1) The users can choose to enforce either quasistatic or
quasidynamic assumptions. For quasistatic manipulation, in-
ertial forces are negligible, and the object needs to be in
force balance all the time. For quasidynamic manipulation,
the tasks involve occasional brief dynamic periods. The
accelerations do not integrate into significant velocities. Mo-
mentum and restitution of impact are negligible [24]. In our
experience, quasistatic [25] and quasidynamic assumptions
hold even during fairly fast manipulator velocities. Moreover,
manipulation motions synthesized in a quasistatic model are
inherently safer. (2) Environment-object contacts can have
any modes, but manipulator-object contacts are sticking only.
We currently does not plan finger sliding motions.

IV. CONTACT MODE BASED MANIPULATION MODELS

This section describes the force and motion models under
contact modes with quasistatic and quasidynamic assump-
tions.

A. Contact Modes in 3D

A contact mode describes the relative contact velocities
for all the contacts in a system [24]. A contact mode
m = [mcs,mss] in 3D consists of two parts: the contact-
ing/separating (CS) mode mcs and the sticking/sliding (SS)
mode mss. The CS mode mcs is the sign of the contact
normal velocities vc,n. For a system with N contacts, we
have mcs = [sign(vic,n)] ∈ {0,+}N , where vic,n is the
normal velocity for the ith contact in its own contact frame.
The SS mode mss of a CS mode identifies the directions
of contact tangent velocities vc,t ∈ R2. The contact tangent
planes are first being divided by nt equal angled hyperplanes
CT = [C1

T , . . . , C
nt

T ]T , we have mss = [sign(CT · vic,t)] ∈
{{−, 0,+}nt}N .

If we approximate unilateral contacts by linear comple-
mentarity constraints, each contact mode corresponds to a
facet of the complementary cone [26]. Individually solving
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for each contact mode divides the complementarity constraint
into easier sub-problems. Our previous work [27] shows that
the complexity of enumerating all 3D contact modes for one
object is O(Nd), where N is the number of contacts and d is
the effective degrees of freedom of the object. For example,
d is 6 for a free cube, 3 for a cube between two tight walls, 1
for a cube inside a tight square pipe. The number of contact
modes for one object is usually 50 to 400, which makes 3D
contact mode enumeration practical in our algorithm.

B. 3D Contact Mode Constraints on Velocities and Forces

If we adopt the polyhedral approximation of friction cones
[28], given a contact mode m ∈ M, we obtain linear
constraints about the object motion and contact forces.
Velocity Constraints Contact velocities for all the contacts
in the contact frames can be written as:

vc = GT vo −
[
Jq̇
0

]
(1)

where vo is the object body velocity in the twist form; G
is the contact grasp map [29]; q̇ is the manipulator joint
velocity and J is the manipulator’s Jacobians; the 0 part is
for environment contacts since they are fixed.

For the ith contact, its CS mode mi
cs ∈ {+, 0} constrains

the contact normal velocity vic,n:{
vic,n > 0 if mi

cs = +

vic,n = 0 if mi
cs = 0

(2)

The SS mode mi
ss ∈ {−, 0,+}nt constrains the contact

tangent velocity vic,t:
CjT · vic,t > 0 if mi,j

ss = +

CjT · vic,t = 0 if mi,j
ss = 0

CjT · vic,t < 0 if mi,j
ss = −

(3)

where CT contains nt vectors that partition the contact
tangent plane. If nt = 2 (for a 4-sided polyhedral friction
cone), we have C1

T = [1, 0] and C2
T = [0, 1].

Force Constraints
Let the magnitudes of contact force of the ith contact be

λi = [λit1 , λ
i
t2 , λ

i
n], for two contact tangent directions and

the contact normal direction respectively.
The CS mode decides whether there exists contact forces:{

λi = 0 if mi
cs = +

λin > 0 if mi
cs = 0

(4)

If mi
cs is 0, there exists contact forces. There are two

different conditions: the contact is sticking (∀j,mi,j
ss = 0),

and sliding (∃j,mi,j
ss 6= 0).

When the contact is sticking, λit1 and λit2 are the contact
tangent forces in x and y axis. The contact force should be
in the polyhedral friction cone of the friction coefficient µ:[

CT µ
−CT µ

]
· λi > 0 (5)

If the contact is sliding, due to the maximum dissipation
law, the tangent force should be in the opposite direction

of the sliding velocity. Let {hi,j} to be the edge(s) of the
1D/2D contact tangent velocity cone of mi

ss, λ
i
t1 and(or) λit2

are contact force magnitudes in the {hi,j} direction(s). In
our polyhedral approximation, the contact tangent force f it
should be in the opposite cone of the contact sliding velocity
cone:

f it = −
∑
j

λitjh
i,j , λitj > 0 (6)

where the edge(s) {hi,j} for all mi
ss can be precomputed by

CT . From the Coulomb friction law, we have:

λitj > 0, ∀j

µλin −
K∑
j=1

λitj = 0
(7)

Putting the velocity and force constraints for all contacts
together (Equation 1,2,3,4,5,7), letting λ be the magnitudes
of all contact force directions, we get a set of linear equations
and inequalities from contact mode constraints:

Aineq

[
v λ

]T
> bineq, Aeq

[
v λ

]T
= beq (8)

C. Quasistatic Assumption
In quasistatic manipulation, the object should always be

in a force balance. The force balance equation is written as:

[
G1h1, G2h2, . . .

]
·
[
λ1, λ2, . . .

]T
+ Fexternal = 0 (9)

where
[
λ1, λ2, . . .

]T
are the magnitudes of forces along

active contact force directions
[
h1, h2, . . .

]T
determined by

contact modes as described in Section IV-B.
[
G1, G2, . . .

]T
are the contact grasp maps. Fexternal includes other forces
on the object, such as gravity and other applied forces.

D. Quasidynamic Assumption
Quasidynamic assumption relaxes the requirement for

object being in force balance, allowing short periods of
dynamic motions. We assume accelerations do not integrate
into significant velocities. In numerical integration, the object
velocity from the previous timestep is 0. The equations of
motions become:

Mov̇o =
[
G1h1, G2h2, . . .

]
·
[
λ1, λ2, . . .

]T
+Fexternal (10)

In discrete time, the object acceleration v̇o can be written as
vo

h , where h is the step size.

E. Solve for Desired Motions at Every Timestep
In Section V-C, we use numerical integration to compute

the object trajectories. Here we describe how we find the
object motion at each timestep using the force and motion
models derived above. We solve a quadratic program to
obtain the optimal motion given a desired velocity vodes:

min
vo,q̇,λ,

‖vodes − vo‖22 + ελTλ

s.t. Equation 8 (contact mode constraints)
Equation 9 (quasistatic)/Equation 10 (quasidynamic)

(11)
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Algorithm 1 the CMGMP algorithm
Input: qstart, qgoal
Output: tree T

1: T .add-node(qstart)
2: while (Time limit has not been reached) do
3: qrand ← SAMPLE-OBJECT-CONFIG(qgoal)
4: qnear ← NEAREST-NEIGHBOR(T , qrand)
5: cenv ← COLLISION-DETECTION(qnear)
6: Mcs ← CS-MODE-ENUMERATION(cenv)
7: for mcs ∈Mcs do
8: // Iterate all CS modes
9: EXTEND(mcs, qnear, qrand, c

env)

10: return T

where ελTλ is a regularization term on the contact forces.

V. THE CMGMP ALGORITHM

A. Planning Framework Overview

Algorithm 1 presents our planning framework. The func-
tion SAMPLE-OBJECT-CONFIG samples an object configu-
ration qrand, with a user-defined possibility p of being a
random sample and 1−p of being qgoal. For qrand, its nearest
neighbor qnear in the tree T is found through a weighted
SE(3) metric:

d(q1, q2) = dtrans(q1, q2) + wr · dangle(q1, q2) (12)

where wr is the weight that indicates the importance of
rotation in the system, and dtrans is the translation and dangle
measures the rotation angle between two configurations. Col-
lision checking is performed to obtain environment contacts
cenv. The function CS-MODE-ENUMERATION enumerates all
feasible CS modes Mcs for cenv. Under each CS mode
mcs ∈ Mcs, the function EXTEND expands the tree from
qnear towards qrand for a user-defined maximum distance.

The EXTEND function has three major steps: (1) BEST-
SS-MODE: chooses a best SS mode given the desired object
motion; (2) RELOCATE-MANIPULATOR: tries to relocate fin-
gertip contacts when necessary; (3) PROJECT-INTEGRATE:
generates motions that move towards qrand under a contact
mode. A successful extension adds a new node qnew and
a new edge to T . The following subsections include more
details of these subcomponents in EXTEND.

B. Extend for Every CS Mode and Filter SS Modes

A CS mode indicates a transition between two contact
states. For every qnear, we extend all its CS modes, so that
the planner can explore all the next contact states from the
current contact state. For each CS mode, we don’t need to
explore all its SS modes. The SS modes are approximations
to the infinite number of sliding directions and polyhedral
friction cones. We only need to select the SS mode in the best
approximation cone for a desired object motion. In addition,
to find solutions that lie in the lowest-dimensional space for
a CS mode, such as an object pivoting around two sticking
contacts, we also extend the all-sticking SS mode for each
CS mode.

Algorithm 2 EXTEND function

Input: mcs, qnear, qrand, cmnp, cenv

1: mss ← BEST-SS-MODE(qnear, qrand, c
mnp, cenv)

2: m← FULL-MODE([mcs,mss])
3: qmnp ← PREVIOUS-MANIPULATOR-CONFIG(qnear)
4: if not MOTION-FEASIBLE(m, qnear, q

mnp, cenv) ...
5: or MANIPULATOR-FEASIBLE(qmnp) then
6: qmnp

new ← RELOCATE-MANIPULATOR(qnear, q
mnp,m)

7: else
8: qmnp

new ← qmnp

9: qnew ← PROJECT-INTEGRATE(qnear, qrand, q
mnp
new ,m)

10: if qnew 6= qnear then
11: ASSIGN-FINGER-CONTACT-TO-NODE(qnew, q

mnp
new )

12: T .add-node(qnew)
13: T .add-edge(qnear, qnew)
14: return

We select the best SS mode that has the smallest cost. In
the function BEST-SS-MODE, for every SS mode, a quadratic
programming is solved to get the closest velocity to the
goal velocity under the contact mode velocity constraints
(Equation 11). In practice, for the cost function in Equation
11, we assign a weight for angular velocity, often the same
as wa in the SE(3) metric in Equation 12, so that the cost
function becomes:

cost = ‖vodes(v) − vo(v)‖22 + wa‖vodes(ω) − vo(ω)‖22 (13)

where vo(v) is the translational velocity and vo(ω) is the
angular velocity.

C. Projected Integration

Starting from an object configuration qnear, all reachable
object configurations under the constraints by a contact mode
m form a manifold with boundary in the object configuration
space Mm. This projected integration process finds the
furthest configuration qnew that the object could reach from
qnear towards qrand on Mm.

At time-step k, we first update the desired object velocity
vodes as the body velocity between qk and qrand in the
twist form. Then, Equation 11 obtains vok by substantially
projecting vodes onto the tangent space at qk of Mm. We
integrate vok by the first order forward Euler method:

qk+1 = Tr(qk, hv
o
k) (14)

where h is the size of the time-steps, Tr is the rigid body
transformation computed from the body velocity hvok, applied
on qk [29]. The environment contacts in the constraints
of Equation 11 are updated every time-step by collision
checking.

The projected integration stops when: (1) vodes is zero: qk
is the closest configuration onMm to qrand. (2) No feasible
vok: moving towards qrand is not feasible with current contact
mode under the quasistatic or quasidynamic assumption. (3)
The robot collides with the environment, or new object-
environment contacts are made. (4) No solution exists for
the robot inverse kinematics (IK). (5) User-defined maximum
translation or rotation for a step has been reached.
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To address the constraint drift problem, we project the
object configuration back to the contact manifold every
several time-steps through a correction velocity vcor:

min
vcor
‖GNvcor − dc‖+ ε‖vcor‖ (15)

we have GN =
[
CNG

T
1 , . . . , CNG

T
i , . . .

]T
where CN =

[0, 0, 1, 0, 0, 0] and Gi is the grasp matrix of the ith contact.
dc = [dc1, . . . d

c
i ]
T are the contact distances. The solution is

vcor = (GTNGN + εI)−1GTNd
c.

D. Planning Finger Locations

The function RELOCATE-MANIPULATOR explores new
finger contacts and robot configurations when: (1) the initial
robot configuration is not assigned; (2) the current robot
configuration will be in a collision or out of workspace; (3)
current finger contacts no longer provides desired motions;
(4) being randomly sampled to.

This function is based on rejection sampling. We pre-
compute a set of evenly distributed finger placements based
on the object mesh model using supervoxel clustering [30].
In practice, we store about 200 finger placements per object.
During the planning, we first randomly select some fingers
to relocate to new contact locations on the object. The new
contacts should provide the desired motion under the current
contact mode. The transition is feasible if the remaining
finger contacts and new contacts from previously unlocated
fingers can keep the object in force balance (quasistatic
and quasidynamic) or can still provide the desired motion
(quasidynamic). Next, we solve the robot IK. If there is a
reachable collision-free robot configuration (a robot-specific
finger relocation sub-planner is required), the new sample is
accepted. Otherwise, the algorithm repeats this process until
it gets a feasible sample or reaches the iteration limit.

VI. RESULTS

A. Planning Results for Simulated Manipulation Tasks

We test our planner on manipulation tasks that vary in ob-
ject shapes, environments, model assumptions, manipulator
types, etc. All the tasks need dexterous maneuvers due to
specific task constraints. Table I gives brief descriptions on
14 representative simulated tasks. Figure 2 shows the real-
life scenarios for Task 1-4. The supplementary video1 and
Figure 4 visualize some planning results.

Task 1 (peg-out-of-hole), as explained in Section I, is
commonly encountered as unpacking in our daily life. Task
2 (bookshelf) requires the book to be first slid/pulled out to
form a grasp. We filmed a human participant taking a book
with all the fingers and with only two fingers. The strategies
by our planner are surprisingly similar to human strategies. In
Task 3 (pick up a blade), our planner consistently generates a
strategy of sliding the blade to the edge of the table to expose
its bottom for grasping, similar to the slide-to-edge grasp in
[31]. Task 4 (take a bottle) is inspired by a human grasping
behavior, “simultaneous levering out and grasp formation”,
observed in [8] when a human took a bottle of drink from the
fridge. Our planner finds similar strategies: the manipulator

Task 1 Task 3 Task 4Task 2Task 1 Task 3 Task 4Task 2

Fig. 2: Task 1-4. The lower row shows the corresponding
real-life scenarios. Task 1: get the first block out of packed
blocks. Task 2: take a book from a bookshelf. Task 3: pick
up a very thin book from the table. Task 4: grab a bottle
from the fridge full of bottles (the photo is from [8]).

cube hexboltT-Block

rollingreorientation

peanut

Start

Goal

Fig. 3: Test objects for object reorientation (Task 5-7) and
rolling (Task 8).

first pivots or pulls out the object to create more space to
form a three-finger grasp. All the strategies generated by our
planner for Task 1-4 leverage environmental contacts; they
may be seen as constraint-exploiting grasps [31] commonly
observed in human grasping behaviors. Our planner also
generates strategies to reorient and to roll objects of different
shapes in Figure 3. Task 8-9 demonstrate that this planner
can plan over many contact changes, although in practice it
should not be directly given such long horizon tasks. Task
11 - 14 exhibit the quasidynamic strategies that exploit the
gravity of the objects. For example, the robot can move the
fingers away and let the object drop. Another example is
Task 13 inspired by the flip-and-pinch strategy from [32].

B. Implementation and Planning Statistics

We implement the algorithm using C++ and Dart [33],
with Bullet [23] for collision detection. The code is available
at https://github.com/xianyicheng/cmgmp. Ta-
ble II shows the planning statistics provided by a computer
with the Intel Core i9-10900K 3.70GHz CPU. Our planner
generates most contact-rich plans in several seconds. The
number of nodes in the tree is small, indicating that the
exploration is efficient.

To set up new tasks, the users need to adjust some
parameters to reasonable ranges according to the tasks (no
need for careful tuning): (1) wa for the distance metrics
used in Equation 12 and 13, which should be the product of
the object characteristic length and the estimated importance
of rotations. (2) the maximum translational and rotational
distance for EXTEND to move towards qrand.
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# Task Name Assumption Robot Description

1 Peg-out-of-hole Quasistatic 3 free-moving balls The small gaps prevent a direct pickup
2 Bookshelf Quasistatic 3 free-moving ball

a parallel jaw gripper
the DDHand

Take a book from a bookshelf

3 Pick up a card Quasistatic 3 free-moving ball
the DDHand

The object is too thin or too wide to grasp

4 Grab a bottle Quasistatic 3 free-moving balls The bottle is surrounded by other bottles
5-7 Object Reorientation Quasidynamic 2 free-moving balls Cube (Task 5), T-block (Task 6), Hexbolt (Task 7)
8 Rolling Quasistatic 2 free-moving balls Reorient an object with a smooth surface
9 Cube-and-Wall Quasistatic One free-moving ball The object is too heavy to pick up
10 Cube-and-Stairs Quasistatic 2 free-moving ball The object is too heavy to pick up
11 Regrasp a Cube Quasidynamic A parallel jaw gripper Use a parallel jaw gripper to reorient an object
12 Placedown Quasidynamic 2 free-moving balls Place down a thin object in a grasp
13 Flip-and-Pinch Quasidynamic 2 free-moving ball

the DDHand
Flip then pinch a thin object on the table with two fingers

14 Object Reorientation Quadidynamic A robot arm + a rod finger Reorient a cube considering robot kinematics and collision

TABLE I: Brief description of some selected test tasks.

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Success 10/10 10/10 10/10 10/10 30/30 27/30 29/30 10/10 9/10 6/10 30/30 10/10 10/10 10/10
Time (second) 5.4±1.1 2.7±1.3 3.9±1.0 1.7±0.8 4.8±2.8 11±10 2.8±1.7 0.6±0.3 8.3±3.9 46±11 14±9.0 12±7.0 9.0±2.8 23±14

Nodes in Solution 9±2 7±1 8±2 6±1 7±3 11±6 15±8 7±3 12±8 42±12 6±2 12±4 12±5 4±0
Nodes in Tree 55±16 28±10 38±16 27±20 52±23 78±62 77±38 18±8 82±65 437±95 41±20 68±27 75±26 34±19

TABLE II: Planning statistics. A run is successful if a solution can be found within 100 iterations (200 for Task 10). “Time”,
“Nodes in Solution” and “Nodes in Tree” are in the format of “mean”±“standard deviation” for successful runs.

Fig. 4: Planned object trajectories for Task 2, 3, 4 and 8.

“I” fingertips

“L” fingertips

Fig. 5: Left: The Dexterous DDHand executing Task 3.
Right: the hand-robot system.

C. Real Robot Experiments

To validate our models, we planned for Task 2 (bookshelf),
Task 3 (pickup a blade), and Task 13 (flip-and-pinch) on a
Dexterous Direct Drive Hand (DDHand) [34] mounted on an
ABB IRB-120 robot arm, as shown in Figure 5. The hand has
two fingers, each with two degrees of freedom. There are two
types of fingertips, the “L” type for Task 3 and 13, and the
“I” type for Task 2. We provide the planner with the hand IK
model and contact models for the fingertips. An “L” finger
has a line contact model approximated by two point contacts.
An “I” finger has a patch contact model, approximated by
three point contacts. In the supplementary video, we run the
planned robot trajectories only with robot position control.
Although some runs are successful, the system is sensitive

to uncertainties like object initial position errors. Robust
executions will need controllers with force control [35] and
force and vision feedbacks.

VII. CONCLUSION AND DISCUSSION

We present the CMGMP framework that uses contact
mode as guidance to generate quasistatic and quasidynamic
dexterous manipulation motions in 3D. The strategies by our
planner effectively leverage the environment as an external
source for manipulation. For more general manipulation
planning, we conclude several directions for future work: (1)
Planning for fully dynamic manipulation plans will double
the dimensions of the search space, which is impractical
in our current framework; (2) We assume sticking finger
contacts. Local planners for finger rolling/sliding can be
considered for further dexterity; (3) The RRT is non-optimal,
while the optimal RRT-star is not pratical as it is almost
impossible to directly connect two nodes in our problem.
Post-processing with trajectory optimization could be used to
enhance the solution quality. Solutions from our planner can
also be used as warm-start for CITO [17]; (4) We observed
that some plans are fragile under uncertainty while others
are very robust to execute even in an open-loop manner. It
is important to have criteria over motion stability [36], [37]
to increase the overall solution qualities; (5) It is possible
to adapt ideas and techniques of the CMGMP into other
constrained sampling-based planning frameworks [7].
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