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Abstract—We propose a new fast streaming algorithm for the
tensor completion problem of imputing missing entries of a low-
tubal-rank tensor using the tensor singular value decomposition
(t-SVD) algebraic framework. We show the t-SVD is a specializa-
tion of the well-studied block-term decomposition for third-order
tensors, and we present an algorithm under this model that can
track changing free submodules from incomplete streaming 2-D
data. The proposed algorithm uses principles from incremental
gradient descent on the Grassmann manifold of subspaces to
solve the tensor completion problem with linear complexity and
constant memory in the number of time samples. We provide a
local expected linear convergence result for our algorithm. Our
empirical results are competitive in accuracy but much faster in
compute time than state-of-the-art tensor completion algorithms
on real applications to recover temporal chemo-sensing and MRI
data under limited sampling.

Index Terms—t-SVD, Grassmannian optimization, online ten-
sor completion, block-term decomposition

I. INTRODUCTION

Modern data are increasingly high-dimensional and multi-
way, increasing the storage and computational burden of signal
processing algorithms. Many practical applications collect data
over multiple modalities and can be approximated by a linear
spectral mixture model, such as hyperspectral imaging (HSI),
which captures dozens or even hundreds of images in narrow,
adjacent spectral bands for each frame [52], or time-sequential
HSI, i.e., hyperspectral video (HSV), with hundreds of spectral
bands and megapixel spatial resolution which requires images
to be recorded at the order of 10 G pixels per second. It is
currently infeasible to process this type of high-rate data in real
time applications [19]. Similarly, chemo-sensing experiments
record sensor readings from dozens of channels in hundreds of
experiments over thousands of time series. Batch processing
of large-scale tensor data quickly becomes computationally
intractable, and even storing these tensors is problematic as
the memory requirements grow rapidly with the number and
size of the tensor modes. Additional challenges include large
numbers of missing tensor entries, streaming multiway data
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that needs to be processed on the fly, and data that may evolve
in time with model dynamics.

To address these concerns, there is extensive recent lit-
erature studying low-dimensional tensor decompositions and
fast algorithms for computing them. These decompositions
provide a low-memory model approximation to tensor data
that can be used for compression and interpolation of missing
entries. Several algebraic frameworks exist for the analysis
and decomposition of tensors, each with their own notion of
tensor rank. In this paper, we consider sampling and recovery
of three-way tensors using the algebraic framework of the
tensor singular value decomposition (t-SVD) [15], [29], [39].
Three-way tensors are treated as linear operators over the
space of oriented matrices and group rings of fibers under
the tensor-product (t-product) multiplicative operator. Using
this framework, one obtains an SVD-like factorization referred
to as the tensor-SVD (t-SVD) with a defined notion of rank
referred to as the tubal-rank. A key property of the t-SVD
is the optimality of the truncated t-SVD for data approxi-
mation under the Frobenius norm measure [58]. The t-SVD
has found wide utility in computer vision [11], [60], image
and signal processing [59], [62], [34], geophysics, HSI/HSV
[17], [18], and other applications because of its ability to
capture signal shifts and scaling due to the model’s circulant
algebra. However, most existing t-SVD based methods are
batch methods that require all of the data to be stored in
memory at computation time and/or require the computation of
multiple SVDs. This is very time-consuming and inefficient for
large-scale data. Current t-SVD algorithms also do not model
dynamically changing data.

Despite much development of the t-SVD, little work has
shown its connections to standard multilinear algebra models,
which are more mathematically interpretable. In this paper, we
show the t-SVD can be equivalently expressed in standard mul-
tilinear algebra as a certain block-term decomposition (BTD)
problem. The BTD model is a generalization of both the
CANDECOMP/PARAFAC decomposition (CPD) and Tucker
tensor decompositions with important applications in linear
spectral mixture models, decoupling multivariate polynomials,
and audio signal separation [44]. To the best of our knowledge,
we are the first to show this equivalence. We show the t-SVD is
an efficient factorization of each block in the BTD by utilizing
a fixed unitary factor—the discrete Fourier transform matrix—
in the third mode.

The impetus of this paper is to propose a fast, efficient
algorithm for recovering low-tubal-rank tensor data from
streaming, highly-incomplete multiway data with incremen-
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tal gradient descent on the product manifold of low-rank
matrices. Our methods are online by nature and can handle
dynamically changing data, avoid computing SVDs, maintain
orthonormality on the product of Grassmann manifolds, scale
linearly in computation with the number of samples, and are
highly parallelizable. We compare our method to batch t-
SVD methods and online tensor decompositions. We show our
method’s ability to track dynamically time-varying low-rank
free submodules in real data settings.

A. Organization of this paper

• Section II introduces our notation and the mathematical
representations for the CP, Tucker, and BTD decomposi-
tions. Since our tensor factorization algorithm is based on
the t-product [15], we briefly cover the background for
this decomposition and leave the details for the appendix.
At a high level, the t-product is convolutional and so can
be performed by a product in the Fourier domain. We
also discuss the properties of the t-SVD as it relates to
the block-term decomposition.

• Section III details related work in tensor decompositions
and completion.

• Section IV proposes our tensor completion method, sum-
marized in Algorithm 1. This section also provides a local
convergence result for the proposed algorithm, showing
that in a local region we achieve a linear convergence
rate in expectation.

• Section V gives experimental results for synthetic data,
chemo-sensing experiments, and MRI completion.

II. PRELIMINARIES

A. Notation
We shall denote all scalar quantities as s, vectors as v,

matrices as A, and tensors as XXX . The ith lateral slice of a
three-way tensor XXX is a matrix and is denoted as

−→
XXX i; in

MATLAB notation this object refers to XXX (:, i, :). The (frontal)
faces of a tensorXXX , denoted asXi, areXXX (:, :, i). Any 1×1×d3

tube along the third-dimension is denoted as −→v . The n-mode
unfolding of a tensor XXX ∈ F d1×···×dN into a dn × ΠN

i6=ndi
matrix is written as X(n).

We write the Kronecker product as ⊗, the Khatri-Rao
product as �, and the outer product as ◦. The mode-n product
of a tensor XXX with matrix C is denoted as XXX ×n C and its
mode-n matricization is defined as (XXX ×n C)(n) = CX(n).
Refer to [30] for more on these products and their properties
and identities. For the purposes of t-SVD and BTD models,
we will often need to write XXX ×3 C, for some tensor XXX and
matrix C, which we will denote as XXX . The faces of XXX are
then written as Xi.

We denote the Frobenius norm as ‖AAA‖F =
√∑

ijk |AAAijk|
2.

The complex conjugate of a quantity conj(·) takes the com-
plex conjugate of each entry. The complex conjugate transpose
of a matrix A is denoted as A′ and the psuedo-inverse as A†.

B. Multilinear tensor decompositions
A rank-r CP decomposition is a sum of r rank-1 outer

products [24]. For a three-way tensor XXX ∈ F d1×d2×d3 with

scalar weights λ = [λ1 · · ·λr]′ ∈ Rr and factor matrices
(assumed to be normalized to have unit column norms)
A = [a1 · · ·ar] ∈ F d1×r, B = [b1 · · · br] ∈ F d2×r, and
C = [c1 · · · cr] ∈ F d3×r the decomposition is expressed as

(CP) XXX ≈
r∑
i=1

λiai ◦ bi ◦ ci := [[λ;A,B,C]]. (1)

A multirank-(m,n, p) Tucker decomposition [49] permits a
different rank in each mode unfolding of the tensor and repre-
sents each unfolding’s columns in the span of an orthonormal
basis. The Tucker decomposition for orthonormal factor ma-
trices A = [a1 · · ·am] ∈ F d1×m, B = [b1 · · · bn] ∈ F d2×n,
C = [c1 · · · cp] ∈ F d3×p and core tensor GGG ∈ Fm×n×p is

(Tucker) XXX ≈ GGG ×1A×2B×3C := [[GGG;A,B,C]]. (2)

The core tensor is a smaller tensor whose entries show the
level of interaction between the different components A,B,
and C. A Tucker tensor is decomposed as a core multiplied
by the corresponding factor matrix along each mode [30].
Observe that the CPD is a Tucker tensor whose factors are
non-orthogonal with a core tensor having all ones along the
super-diagonal and zeros everywhere else.

The block-term decomposition (BTD) model [12] is a useful
generalization of both the CP and Tucker decompositions. The
model expresses a third-order tensor XXX ∈ Rd1×d2×d3 as a sum
of low-multirank tensors:

(BTD) XXX ≈
K∑
k=1

[[GGGk;Ak,Bk,Ck]], (3)

where GGGk ∈ RMk×Nk×Pk is each multirank-(Mk, Nk, Pk)
core tensor, and Ak ∈ Rd1×Mk , Bk ∈ Rd2×Nk , and Ck ∈
Rd3×Pk for k = 1, . . . ,K are the factor matrices. From (3),
it is easy to see the K = 1 BTD with orthogonal factors
specializes to the Tucker decomposition while a multirank-
(1, 1, 1) BTD is simply the CPD.

C. t-SVD tensors
1) Discrete Fourier Transform: Denote the normalized

Discrete Fourier Transform (DFT) matrix for operation on a
length-n signal as the unitary matrix Fn ∈ Cn×n and the
DFT of some vector v ∈ Rn as v̄ = Fnv ∈ Cn. The DFT
is computed in O(n log n) time by the fast Fourier transform
(FFT) as v̄ = fft(v). Similarly, v = F ′nv̄ computes the
inverse DFT (IDFT).

We denote XXX ∈ Cd1×d2×d3 as the result of computing
the DFT along the 3rd dimension, i.e. performing the DFT
on the tubes of XXX , or equivalently XXX := XXX ×3 Fd3 . Using
the FFT (with indexing in MATLAB notation) we have
XXX = fft(XXX , [], 3) and similarly by the inverse DFT, we have
XXX = ifft(XXX , [], 3).

2) Tensor-tensor product: Define the block-diagonal matrix
X ∈ Cd1d3×d2d3 to be the matrix with d3 frontal faces of XXX
along the diagonal, i.e. denote each frontal face of size d1×d2

as Xk and we have

X = bdiag(XXX ) =

X1

. . .
Xd3

 . (4)
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We define the block-circulant matrix of the frontal faces of XXX
as bcirc(XXX ), where

bcirc(XXX ) =


X1 Xd3 . . . X2

X2 X1 . . . X3

...
...

. . .
...

Xd3 Xd3−1 . . . X1

 ∈ Rd1d3×d2d3 .

From properties of block-circulant matrices, bcirc(XXX ) can
be block-diagonalized by the DFT:

X = (Fd3 ⊗ Id1) · bcirc(XXX ) · (F−1
d3
⊗ Id2), (5)

where (F−1
d3
⊗ Id2) is unitary [11]. For XXX ∈ Rd1×d2×d3 we

define the fold and unfold operators [15]:

unfold(XXX ) =
[
X ′1 X ′2 · · · X ′d3

]′
,

fold(unfold(XXX )) = XXX ,

where the unfold(·) operator maps XXX to a matrix of size
d1d3 × d2 and fold(·) is its inverse operator.

Definition II.1. Tensor-product (t-product)[15]: Let AAA ∈
Rd1×d2×d3 and BBB ∈ Rd2×l×d3 . Then the t-product AAA ∗∗∗ BBB is
defined to be a tensor of size d1 × l × d3,

AAA∗∗∗BBB = fold(bcirc(AAA) · unfold(BBB)). (6)

The t-product can be understood from several perspectives.
First, in the canonical domain, a three-way tensor of size d1×
d2× d3 can be thought of as an d1× d2 matrix whose entries
are tubes lying in the third dimension. The t-product is then
analogous to matrix-matrix multiplication but where circular
convolution replaces scalar multiplication between the matrix
elements. Second, the t-product is equivalent to matrix-matrix
multiplication in the Fourier domain, or CCC =AAA∗∗∗BBB is equivalent
to C = AB from (5). This is shown as follows:

unfold(CCC) = bcirc(AAA) · unfold(BBB)

= (F−1
d3
⊗ Id1) · ((Fd3 ⊗ Id1)bcirc(AAA)(F−1

d3
⊗ Id2)) (7)

· ((Fd3 ⊗ Id2)unfold(BBB))

= (F−1
d3
⊗ Id1)A · unfold(BBB).

Therefore,

unfold(CCC) = A · unfold(BBB)

and for each front slice of C, Ck = AkBk ∀k = 1, . . . , d3.
Eq. (7) and Lemma D.1 in the Appendix admit an efficient
algorithm to compute the t-product using FFTs, as shown in
Algorithm 3 in the Appendix. Like matrix multiplication, the
t-product is associative and linear [15]. In the case where d3 =
1, it is easy to see that the t-product becomes regular matrix
multiplication.

With the definition of this product between tensors, we can
define analogous definitions of conjugate transpose (XXX ′), the
identity tensor (IIInnd ∈ Rn×n×d), orthogonal tensors, and
a type of diagonal tensor called the F-diagonal tensor. We
leave these details for the reader in Appendix D. Next we
briefly discuss an SVD-like factorization of tensors under the

t-product, and a definition of tubal-rank under the t-product
and t-SVD.

Theorem II.2 (Tensor Singular Value Decomposition
(t-SVD)). [15] Any tensor AAA ∈ Rd1×d2×d3 can be factorized
as AAA = UUU ∗∗∗ SSS ∗∗∗ VVV ′, where UUU ∈ Rd1×d1×d3 ,VVV ∈ Rd2×d2×d3
are orthogonal tensors, and SSS ∈ Rd1×d2×d3 is an F-diagonal
tensor.

We state Theorem II.2 without proof here and refer the
reader to [11] for a detailed proof. The t-SVD can be computed
efficiently by Algorithm 4 in the appendix.

Definition II.3 (Tensor multi-rank and tubal-rank). [62] For
any XXX ∈ Rd1×d2×d3 , its multi-rank is a vector defined as
r = (rank(X1), . . . , rank(Xd3)) ∈ Rd3 . The tensor tubal-
rank, rankt(XXX ), is defined as the number of nonzero singular
tubes of SSS from the t-SVD, i.e.,

rankt(XXX ) = #{i : SSS(i, i, :) 6= 0}= max{r1, . . . , rd3},

where rk = rank(Xk).

Definition II.4 (Module over the commutative ring). [60] It
can be shown the set of tubes C1×1×d3 equipped with the
t-product forms a ring with unity R(Gd3) [48]. Define Md1

d3
to be a module, or the set of all 2-D lateral slices of size
d1 × 1 × d3, over the ring of tubes. Since for any element−→
XXX ∈Md1

d3
and coefficient tube −→v ∈ R1×1×d3 , the lateral slice

−→
YYY =

−→
XXX ∗∗∗ −→v is also an element of the module, so Md1

d3
is

closed under tubal-scalar multiplication.

Definition II.5 (Free submodule (FSM)). Md1
d3

is called a free
submodule of dimension r < d1 over the commutative ring
R(Gd3) [60], where one can construct a spanning basis of
orthonormal lateral slices {

−→
UUU 1,
−→
UUU 2, . . . ,

−→
UUU r} for which we

we can uniquely represent any element
−→
XXX ∈Md1

d3
as a t-linear

combination of the spanning basis with some tubal coefficients
−→wk:

−→
XXX =

r∑
k=1

−→
UUU k ∗∗∗ −→wk = UUU ∗∗∗

−→
WWW. (8)

Together, {
−→
UUU 1,
−→
UUU 2, . . . ,

−→
UUU r} form the orthonormal tensor

UUU ∈ Rd1×r×d3 , and the arranged tubes −→wk form the lateral
slice

−→
WWW ∈ Rr×1×d3 .

The definitions of free submodule over a ring generalize
the notions of vector subspaces over a field of scalars and
a spanning basis for a vector subspace, where the scalars of
the field are the elements of the ring. Our algorithm uses the
notions of free submodule to learn a spanning basis for the
observed 2-D lateral slices of data in Md1

d3
.

Before defining the manifolds and orthogonal groups used
in our tensor problem, we first denote the complex orthogonal
group, complex Stiefel manifold, and complex Grassmann
manifold, respectively, from matrix linear algebra [1], [16]:

O(r) := {R ∈ Cr×r, R′R = RR
′

= Ir},
S(r, d1) := {U ′U = I : U ∈ Cd1×r},

[U ] :=
{
U R : R ∈ O(r)

}
∈ G(r, d1), for U ∈ S(r, d1).

(9)
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Next we provide extensions of these definitions to third order
tensors under the t-product.

Definition II.6 (t-orthogonal group). Define O(r, r, d3) as the
t-orthogonal group of tubal rank-r:

O(r, r, d3) :=
{
RRR ∈ Rr×r×d3 : RRR′ ∗∗∗RRR =RRR∗∗∗RRR′ = IIIrrd3

}
.

(10)

Definition II.7 (t-Stiefel manifold). The t-Stiefel manifold
consisting of all tubal-rank-r tensors with orthonormal lateral
slices defined as

S(r, d1, d3) := {UUU ∈ Rd1×r×d3 , UUU ′ ∗∗∗ UUU = IIIrrd3}. (11)

We note that the t-Stiefel manifold is indeed a product of
Stiefel manifolds in the Fourier domain, since each frontal
slice of UUU = UUU ×3 Fd3 is orthonormal and is a point on a
Stiefel manifold, making UUU a point in the product space of
Stiefel manifolds. We also note that UUU = UUU ×3 F

′
d3

, where
F ′d3 is an invertible linear mapping of the frontal slices of
UUU . This together with the smoothness of UUU (as a product of
smooth manifolds) implies that S(r, d1, d3) is also a smooth
manifold; see, e.g., [56, Lemma 1].

Definition II.8 (t-Grassmann manifold). Let ∼t denote an
equivalence relation on the t-Stiefel manifold S(r, d1, d3) in
the sense that for any UUU1,UUU2 ∈ S(r, d1, d3), UUU1 ∼t UUU2 means
that there exists aRRR ∈ O(r, r, d3) such that UUU1 = UUU2∗∗∗RRR. The
quotient space of S(r, d1, d3) under this equivalence relation,
S(r, d1, d3)/O(r, r, d3), is called t-Grassmann manifold, i.e.,

G(r, d1, d3) :=
{

[UUU ] : UUU ∈ S(r, d1, d3)
}
, (12)

where [UUU ] denotes the equivalence class under ∼t:

[UUU ] :=
{
UUU ∗∗∗RRR : RRR ∈ O(r, r, d3)

}
,

which is the r-dimensional free sub-module in Md1
d3

spanned
under the t-product by the lateral slices of UUU .

Proposition II.9. G(r, d1, d3) is a smooth compact manifold
of dimension d3r(d1 − r).

Proof. Let

G(r, d1, d3) :={
[UUU ] : UUU ∈ Cd1×r×d3 , Uk ∈ S(r, d1), ∀k ∈ [d3]

}
,

(13)

where

[UUU ] :=
{
fold

(
U1R1; . . . ;Ud3Rd3

)
,Rk ∈ O(r), ∀k ∈ [d3]

}
,

recalling fold(·) is defined in Section II and stacks the slices
in its argument into a tensor. Then, we have

[UUU ] = {U1R : R ∈ O(r)} × · · · × {Ud3R : R ∈ O(r)}
= [U1]× [U2]× · · · × [Ud3 ].

This implies that [UUU ] ∈ G(r, d1)×· · ·×G(r, d1), where G(r, d1)
is a smooth compact manifold of dimension r(d1 − r) [16].
Therefore, G(r, d1, d3) is a smooth compact (product) mani-
fold of dimension d3r(d1−r), and since the Fourier transform
is invertible, using the properties of the t-product in Defini-
tion II.1, for any UUU ∈ S(r, d1, d3), we have [UUU ×3 Fd3 ] = [UUU ]

Fig. 1: An element of a free module generated by t-linear
combination of spanning basis and coefficients.

and [UUU ×3 F
′
d3

] = [UUU ]. This implies that the t-Grassmannian
G(r, d1, d3) from Definition II.8 is indeed a smooth and
compact manifold.

D. t-SVD and BTD Equivalence

Definition II.10 ({(rk, rk, 1)}Kk=1-multi-rank BTD). For
multi-rank vector r = [r1 · · · rK ]′ ∈ NK+ , define the BTD
tensor with the following decomposition for factors Ak ∈
Rd1×rk , Bk ∈ Rd2×rk , ck ∈ Rd3 :

XXX =

K∑
k=1

AkB
′
k ◦ ck. (14)

Proposition II.11. Let F−1
d3

= [f̄1 · · · f̄d3 ], where F−1
d3

denotes the inverse-DFT matrix. For any tensor decompo-
sition XXX = UUU ∗∗∗ WWW with factor tensors UUU ∈ Rd1×r×d3 ,
WWW ∈ Rr×d2×d3 , multi-rank (r1, . . . , rd3), and tubal rank
r = maxi{ri}, we have

UUU ∗∗∗WWW =

d3∑
k=1

UkW
′
k ◦ f̄k. (15)

Here, Uk ∈ Cd1×rk , U
′
kUk = Irk , W

′
k ∈ Crk×d2 ∀k =

1, . . . , d3, and Uk and W
′
k are the rank-rk faces of UUU =

UUU ×3 Fd3 and WWW =WWW ×3 Fd3 respectively.

Proof. Let F−1
d3

be the d3 × d3 IDFT matrix. The identity in
(15) is clear after writing the definition of the t-product:

unfold(UUU ∗∗∗WWW) = (F−1
d3
⊗ Id1)·

(Fd3 ⊗ Id1)bcirc(UUU)(F−1
d3
⊗ Id2) · (Fd3 ⊗ Id2)unfold(WWW)

= (F−1
d3
⊗ Id1) ·U · unfold(W )

= unfold

(
d3∑
k=1

(UkW
′
k) ◦ f̄k

)
.

Note that UUU = UUU ×3 Fd3 and WWW = WWW ×3 Fd3 respectively;
these mode-products apply the Fourier transform to the third-
mode fibers.

In particular, Equation (15) links tubal and BTD decom-
positions and shows how a tensor factorization with multi-
rank (r1, . . . , rd3) can equivalently be represented as a BTD
factorization with multi-rank {(rk, rk, 1)}d3k=1. The equiva-
lence reveals the t-SVD as a specialization of the BTD model
with the third-mode fixed as the columns of the inverse DFT
matrix. Each term in the t-SVD/BTD is itself a (rk, rk, 1)-
multi-rank tensor with the identity core. In the linear spectral
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mixture model, each UkW
′
k is the rank-rk spectral map

corresponding to a frequency component f̄k. For a tubal-rank-
1 t-SVD decomposition, (15) is a rank-d3 CPD [[U ;W ;C]],
where C = F−1

d3
is the IDFT matrix.

Choosing all d3 of the multi-ranks would be especially
challenging. Since the tubal-rank r is much smaller than either
of the tensor dimensions, we will slightly overparameterize the
problem to a (r, r, 1)-tubal BTD:

Definition II.12 ((r, r, 1)-tubal BTD). Tensor XXX has a
(r, r, 1)-tubal BTD if XXX has the decomposition in (15) for

XXX =

d3∑
k=1

UkW
′
k ◦ f̄k,

where Uk ∈ Cd1×r, U ′kUk = Ir, W
′
k ∈ Cr×d2 ∀k =

1, . . . , d3.

In the strict sense, the t-SVD is not a true tensor de-
composition since it lacks the trilinearity in the third mode.
Rather, it is a collection of matrix factorizations that describe
a tensor structure. In the light of its relationship to the BTD
and linear spectral mixture models, the t-SVD, along with its
variants using the DCT or other invertible linear transforms
[28], becomes appropriate for applications like HSI and video
compression when the tensor faces are shifted and scaled
versions of one another; i.e. the model describes spectral
correlations by the embedded circular convolution [61]. In the
BTD form, the t-SVD decomposes the data into the frequency
makeup of each pixel.

It is well-established the t-SVD is powerful in capturing
the ubiquitous spatial-shifting and scaling correlations in real-
world multiway data. We show tensors whose third modes
exhibit these correlations lie in the t-linear span of the same
free submodule, and formalize this notion in Proposition II.13
using the multilinear algebra interpretation of the t-SVD.

Proposition II.13. An r-dimensional free submodule spanned
by UUU over the t-product is closed under circular-shifting and
scaling.

Proof. Let XXX i = UUU ∗∗∗
−→
WWWi =

∑d3
k=1Ukw̄i,k ◦ f̄k, where w̄i,k ∈

Cr are the frontal faces of
−→
WWWt ×3 Fd3 .

LetXXX i,shift := αi·circshift(XXX i, si,dims = 3) for some
real numbers αi and integers si that scale and circularly shift
the faces of each XXX i. Then for n linear combinations of slices,

n∑
i=1

XXX i,shift =
n∑
i=1

d3∑
k=1

αie
−j2πsik

d3 ·Ukw̄i,k ◦ f̄k

=

d3∑
k=1

Uk

(
n∑
i=1

αie
−j2πsik

d3 w̄i,k

)
◦ f̄k.

Thus,
∑n
i=1XXX i,shift shares the same UUU in its t-SVD as each

XXX i.

III. RELATED WORK

It is well known that low-rank decompositions of highly
undersampled matrix data, with certain assumptions of in-
coherent left and right singular vectors from the SVD and

random sampling patterns, can be exploited to recover missing
data by solving a convex optimization program [10]. This
setting treats matrix data (a 2-way tensor) as a linear operator
over a vector space and defines the rank of the matrix via its
minimal decomposition into a sum of rank-1 matrices [58].
However, multiway data often contains correlations or inter-
actions between modes of the tensor that would be destroyed
if the tensor is flattened into a matrix [32]. More sophisticated
algebraic techniques are required to analyze these special
structures.

A. CANDECOMP/PARAFAC decomposition

One of the most widely used tensor decompositions is the
CPD factorization, which finds a sum of rank-1 outer products
that best compose the tensor, where the minimal number of
such factors required is referred to as the CP rank. CP is
powerful for imputing missing tensor data and also recovering
latent factors that describe the tensor along each mode [30].
CP methods often use alternating least squares to update the
factor matrices in a nonconvex optimization problem. Several
varieties of CP algorithms exist for batch tensor completion
[2], [26], [31]. However there are known computational and ill-
posedness issues with the CP model, the foremost issue being
that it is NP-hard to compute the CP rank of a tensor or the best
low-rank CP approximation of a tensor in the Frobenius norm
sense [23]. Furthermore, the alternating least squares algorithm
is prone to getting stuck in local minima, so it may be sensitive
to initialization or may require a special initialization step. CP
models may also not be expressive enough to represent certain
physical systems with block term decompositions.

Newer work in tensor completion has seen the develop-
ment of several streaming CP tensor completion methods. A
prominent streaming version of CP tensor completion was
proposed by Mardani et al. [38] using stochastic gradient
descent. Kasai [27] proposed another streaming CP tensor
completion algorithm with a second-order stochastic gradient
descent procedure based on the CP decomposition exploiting
recursive least squares for faster convergence than the SGD
method in Mardani et al., but at a higher computational cost.
The main disadvantage to these streaming CP methods is that
they require several hyperparameters that may be difficult to
tune or know beforehand. These include a forgetting factor
and the regularization parameters that penalize the Frobenius
norm of the factor matrices [46]. While the forgetting factor
must be hand-tuned, it does allow for the benefit of varying the
algorithm’s tracking ability from online mode to purely batch
mode. Setting the appropriate CP rank of the model may also
be challenging. Other streaming CP algorithms include [37],
[22], [36], [50], [41].

B. Tucker decomposition

Another approach is to use the Tucker tensor decomposition
in (2) and Tucker multilinear rank (or multirank) and its
convex relaxation. The multirank formulation allows each
tensor mode to be expressed in a subspace of different dimen-
sion. Tucker decompositions are typically computed using the
Higher Order SVD (HOSVD) [13]. However, Tucker-based
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convex relaxation is not a tight relaxation of the Tucker rank
and cannot give optimal recovery for tensor completion [48],
[58].

The work in [47] proposes using randomized linear algebra
in the fully-observed data setting to sketch the Tucker decom-
position, which naturally permits their algorithm to handle
streaming data. The authors in [40] propose a multi-aspect
streaming Tucker-tensor algorithm for completing missing
entries where one or more modes of the tensor grows in
dimension length with time.

The online algorithm for tensor completion in [54] can
also be thought of as an incremental Tucker algorithm with
identity core tensor, which is the tensor of ones along the
super-diagonal and zero elsewhere. Similar to our method,
their algorithm tracks a low-dimensional subspace on the
Grassmannian in each mode of the tensor using geodesic steps
like the GROUSE algorithm [5].

C. Block-term decomposition

De Lathauwer et al. [12] explores a special class of third-
order tensor decompositions called the block-term decompo-
sition (BTD) model and its theoretical properties, including
the specialization to the multirank-(rk, rk, 1) model which
represents a sum of matrix-vector outer products. In many
applications, it is natural to represent data in the BTD model in
modes of space-space-frequency [57]. The works in [44], [57]
explicitly link the (rk, rk, 1)-BTD to applications with strong
physical interpretation like linear spectral mixture models and
spectrum cartography that could not be well-represented by
CP or Tucker tensors. BTD permits a richer, more expressive
representation of data with more than one tensor component,
like in the Tucker model, or without restriction to rank-1
components like CP [44].

The work in [44] proposes a block-coordinate descent batch
algorithm to compute the decomposition under full sampling.
The authors of [57] propose algorithms for the case where
tensor entries are missing in various patterns, and they prove
the uniqueness and completion guarantees of the (rk, rk, 1)
BTD factors under mild conditions.

D. t-SVD

The t-SVD, a factorization originally posed by Kilmer et al.
[29], enjoys many similar properties as matrix factorization
problems, is solved by the SVD, and gives optimal recov-
ery results under the Frobenius norm whenever the tensor
data reveals a low-tubal rank structure [58], [11]. In many
applications, for example time series or other ordered data,
the corresponding tensor has a distinguishing orientation that
exhibits a low tubal-rank structure [48]. Several works have
proposed t-SVD factorization algorithms for tensors with
missing entries. Zhang and Aeron [58] solve the exact tensor
completion problem under the t-SVD algebra in a batch way
using the tensor nuclear norm, a convex relaxation of tensor
tubal-rank. The algorithm involves solving a convex program
on each frontal slice of the tensor in the Fourier domain, which
provably recovers the missing tensor entries given certain
incoherence conditions. Zhou et al. [62] propose a different

algorithm using a tensor factorization model under the t-
product for rapid, efficient optimization, and Tarzanagh and
Michailidis [48] employ randomized linear algebra to compute
fast sketches of factorizations under the t-product. Each of
these algorithms can only complete batch tensor data and
cannot handle streaming multiway data.

Little work has been done to extend online matrix com-
pletion methods to the case of multiway tensor data using
the t-SVD framework, apart from the work in [60] which
proposed an online tensor robust principal component analysis
algorithm. However, this method cannot predict missing tensor
values and does not utilize orthonormal factorization. The
work in [43] proposed an online tensor completion algorithm
using the tensor nuclear norm for low-tubal-rank tensors, but
it must compute multiple SVDs for each update.

The algorithm proposed in this paper differs from all of
these methods in that it can operate incrementally over a
tensor in batch mode or stream in online mode, even with
dynamically changing data. Our proposed algorithm TOUCAN
seeks the optimal low-rank approximation of a tensor in the
Frobenius norm sense under the t-SVD and the BTD models
when the data reveals a low tubal-rank structure, and is
empirically robust to initialization. TOUCAN requires only a
tolerance threshold and the model rank—which can be more
easily determined empirically by inspecting the tubal singular
value decomposition of the t-SVD of small batches of data or
over the entire batch if feasible. This paper builds off the work
in [20], giving a full derivation of the algorithm, exploring
connections to the BTD model, adding new algorithms and
theory, and including new and more extensive experiments.

IV. PROPOSED METHOD

A. Model

In the t-SVD framework, using Proposition II.11 we model
the three-way tensor data XXX ∈ Rd1×d2×d3 as

XXX ≈
d3∑
k=1

UkW
′
k ◦ f̄k +NNN = UUU ∗∗∗WWW +NNN , (16)

where NNN ijk ∼ N (0, σ2) represents white-Gaussian noise, and
UUU ∈ Rd1×r×d3 is an orthonormal tensor under the tensor-
product, and Uk ∈ Rd1×r,U ′kUk = Ir ∀k = 1, . . . , d3.

Given d2 2-D data samples
−→
XXX 1, . . . ,

−→
XXX d2 of size d1 × d3,

we arrange them as lateral slices to make a three-way tensorXXX
of size d1 × d2 × d3 [60]. In most circumstances, the t-SVD
method would be used to compute UUU and WWW [29]. For the
purposes of this work, we consider the case of three-way tensor
data where each lateral slice arrives sequentially in time and
may contain missing entries, i.e. at every time t, we observe
an incomplete lateral slice

−→
XXX t ∈ Md1

d3
on the indices Ωt ⊂

{1, . . . , d1} × {1, . . . , d3}. Like the work in [60], we wish to
compute the spanning low-dimensional free submodule of this
multiway streaming data in an online way without storing the
full tensor in memory or computing the t-SVD – both which
may be prohibitive in large data settings.

We can learn the spanning free submodule using stochastic
gradient techniques, similar to what the GROUSE algorithm
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[5] does for matrices with streaming columns. We aim to track
a r-dimensional free submodule of Md1

d3
that may evolve over

time. Let UUU ∈ Rd1×r×d3 be an orthonormal tensor whose r
lateral slices span the free submodule of Md1

d3
.

B. Deriving the objective function

We begin by writing the problem we wish to solve as a
tubal-rank-r problem in t-SVD notation, and then we will
express it as a (r, r, 1)-tubal BTD. In the scenario where
the underlying free submodule does not change over time,
a natural optimization problem with squared `2 error loss is
given as

min
[UUU ]∈G(r,d1,d3)

1

T

T∑
t=1

min−→
WWWt∈Rr×1×d3

1

2

∥∥∥AΩt(
−→
XXX t −UUU ∗∗∗

−→
WWWt)

∥∥∥2

F
.

(17)
Here, AΩt(·) is the linear operator that extracts the observed

samples in the set Ωt from each lateral slice in XXX =

[
−→
XXX 1, . . . ,

−→
XXX d2 ], and G(r, d1, d3) denotes the t-Grassmannian

from Definition II.8. We let L(UUU) := 1
T

∑T
t=1 Lt(UUU) where

Lt(UUU) :=
1

2

∥∥∥AΩt

(−→
XXX t −UUU ∗∗∗

−→
WWWt(UUU)

)∥∥∥2

F
, and

(18a)
−→
WWWt(UUU) := argmin

−→
WWWt∈Rr×1×d3

1

2

∥∥∥AΩt

(−→
XXX t −UUU ∗∗∗

−→
WWWt

)∥∥∥2

F
.

(18b)

Since we have concatenated the time slices on the second
dimension, let d2 = T . We see it is possible to solve
this problem incrementally, as described in [8], in terms of
the orthonormal free-submodule UUU and the optimal weights−→
WWWt(UUU) ∈ Rr×1×d3 for all t = 1, . . . , T . We solve the nested
optimization problem in (17) for each slice

−→
XXX t with stochastic

gradient descent. From the results in Proposition II.11 and
Proposition IV.1, we express each Lt(UUU) in each slice at
time t as a (r, r, 1)-tubal BTD. Let Lt denote Lt in terms
of the Fourier variables, and recall U denotes the block-
diagonal matrix representation of UUU = UUU ×3 Fd3 , where Uk

is the kth block on its diagonal of sizes d1 × r. Let Uk and
w̄t,k(U) ∈ Cr for all k ∈ [d3] be the frontal faces of the
tensors UUU and the optimal

−→
WWWt(UUU)×3 Fd3 , respectively. Then

denoting w̄t(U) = [w̄′t,1(U) · · · w̄′t,d3(U)]′, we can write Lt
as

Lt(U) =
1

2

∥∥∥∥∥PΩtvec
(−→
XXX t −

d3∑
k=1

(Ukw̄t,k(U)) ◦ f̄r
)∥∥∥∥∥

2

2

=
1

2

∥∥PΩtvec(∆Ωt(
−→
XXX t))

−PΩt

[
(f̄1 ⊗ Id1) . . . (f̄d3 ⊗ Id1)

]︸ ︷︷ ︸
(F−1
d3
⊗Id1 )

 U1w̄t,1(U)
...

Ud3w̄t,d3(U)

∥∥2

F

=
1

2

∥∥∥FΩt

( x̄Ωt,1

...
x̄Ωt,d3

−
U1 0

. . .
0 Ud3


 w̄t,1(U)

...
w̄t,d3(U)

)∥∥∥2

2
.

Above, each x̄Ωt,k ∈ Cd1 denotes the kth frontal face of
XXXΩt = ∆Ωt(

−→
XXX t)×3 Fd3 , where ∆Ωt(·) imputes zeros on the

missing coordinates. PΩt is a subsampled identity matrix of
size |Ωt| × d1d3, and FΩt := PΩt(F

′
d3
⊗ Id1) ∈ C|Ωt|×d1d3 ,

which in the t-SVD framework is the subsampled inverse
Fourier transform. The derivation of this relation using the
t-SVD algebra is also shown in Appendix F.

Let us denote x̄t := vec(XXXΩt) ∈ Cd1d3 . Using the
result above, the objective (17) in t-product form then has the
equivalent nested optimization problem in the Fourier domain:

min
[Uk]∈G(r,d1) ∀k∈[d3]

1

T

T∑
t=1

Lt(U),

where Lt(U) :=
1

2
‖FΩt(x̄t −Uw̄t(U))‖22

and w̄t(U) = argmin
w̄t∈Cd3r

1

2
‖FΩt(x̄t −Uw̄t)‖22.

(19)

The following proposition characterizes the smoothness of
L(UUU).

Proposition IV.1. Suppose |Ωt| is sufficiently large such that
(FΩtU)′(FΩtU) remains full rank. Then,
(P1) the inner least-squares problem (18b) has a unique solu-

tion.
(P2) L is a well-defined smooth function over G(r, d1, d3) and

it admits a global optimizer.

We leave the proof of Proposition IV.1 to Appendix E. At
a high level, the proof shows that the (outer) optimization
problem constrained to [UUU ] ∈ G(r, d1, d3) is a well-defined
problem on a product manifold of Grassmannians in the
Fourier domain. Note that our assumption on |Ωt| is identical
to [5], [6].

The problem in (19) is nonconvex from the coupling of U
and w̄U and the orthonormality constraints U

′
kUk = Ir for

all k ∈ [d3]. We will minimize a problem over a product of d3

Grassmannians G1(r, d1)× . . .×Gd3(r, d1) represented by U .
For a single data observation, we first compute the unique
minimizer w̄t(U) (equivalently

−→
WWWt(UUU)) to the inner least-

squares problem, and then take a stochastic gradient descent
step in the negative gradient direction of Lt(U) with respect
to each block Uk on the diagonal of U for estimating UUU
(equivalently UUU ).

C. Updating UUU
To update our estimate of the free submodule UUU , we perform

a gradient descent step on each Grassmannian in the Fourier
domain. We compute the gradient of the objective function Lt
with respect to each Uk and then follow this gradient along
a short geodesic curve on the Grassmannian [5]. Substituting
the expression for the unique closed-form solution w̄t(U) into
the objective, where w̄t(U) = argminw̄t∈Cd3r

1
2‖FΩt(x̄t −

Uw̄t)‖22, we find the partial derivatives of Lt with respect to
U :

∂Lt
∂U

= −F ′ΩtFΩt(x̄t −Uw̄t(U))w̄t(U)′

:= −F ′ΩtFΩt r̄tw̄t(U)′.

(20)
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See Appendix C for the derivation of the gradient. When
computing the gradient, w̄t(U) is solved for as detailed in
the next subsection.

Remark IV.2. Note that the partial derivative (20) derived
for the nested problem (19) should not be confused with the
case where Lt(U) = 1

2‖FΩt(x̄t − Uŵt)‖22 for some fixed
ŵt. In that case, the gradient with respect to U is also
∂Lt
∂U

= −F ′ΩtFΩt(x̄t −Uŵt)ŵ′t. However, the difference in
our case is that, under the first assumption of Proposition IV.1,
the weights w̄t(U) = (U

′F ′ΩtFΩtU)−1U
′F ′Ωt are a func-

tion of U ; See Appendix C for further details.

Using the work in [16], the gradient on the product of
Grassmannians in Fourier space is given by

∇Lt = PD
(

(I−U U ′)∂Lt
∂U

)
, (21)

where PD(·) sets the non-block-diagonal entries of the gradi-
ent to zero. The gradient of the objective on the product of
Grassmannians then has the form (using w̄ instead of w̄t(U)
for ease of notation and indexing the d3 blocks of w̄)

∇Lt =

−γ̄1w̄
′
1 0

. . .
0 −γ̄d3w̄′d3

 ∈ Cd1d3×d3r, (22)

where

∇Lt,k = −γ̄kw̄′k ∈ Cd1×r (23)

γ̄k =
(
I−UkU

′
k

)
r̄Ωt,k (24)

r̄Ωt = F ′ΩtFΩt r̄t = unfold(fft(∆Ωt(
−→
RRRt), [], 3)).

(25)
Here,

−→
RRRt = ∆Ωt(

−→
XXX t)−

−→
PPP t,
−→
PPP t = UUU∗∗∗

−→
WWWt(UUU), ∆Ωt(·) imputes

zeros on the unobserved tensor entries, and fft(·, [], 3) takes
the Fourier transform along the third-mode tubes.

A gradient step along each geodesic in the product manifold
with tangent vector −∇Lt,k is given by Equation (2.65) in [16]
and is a function of the singular values and vectors of ∇Lt,k
[5]. Each ∇Lt,k has the rank-one SVD:

∇Lt,k =

{
ukσkv

′
k, k = 1, . . . , dd3+1

2 e
conj(∇Lt,(d3−k+2)), k = dd3+1

2 e+ 1, . . . , d3

(26)

uk =
−γ̄k
‖γ̄k‖

, v′k =
w̄′k
‖w̄k‖

, σk := ‖γ̄k‖‖w̄k‖.

From [16], a rank-one step of length η > 0 in the direction
−∇Lt,k is given by

U t+1,k = (27)

U t,k +

(
sin(σkηk)

γ̄k
‖γ̄k‖

+ (cos(σkηk)− 1)
p̄k
‖p̄k‖

)
w̄′k
‖w̄k‖

,

where p̄k = Ukw̄k is the kth frontal face of PPPt =−→
PPP t ×3 Fd3 (equivalently, in block diagonal matrix form, the
kth block element of P t = U tW t(U t), where W t(U t)

is the block-diagonal matrix formed from the w̄k). Us-
ing conjugate symmetry of the Fourier transform, Uk =
conj(U (d3−k+2)), k = dd3+1

2 e+ 1, . . . , d3.
Following from the result in [55], we use a greedy step

size ηk = arctan(‖γ̄k‖/‖w̄k‖) on each Grassmannian. This
choice of step size adaptively changes based on the FSM fit to
the data, growing proportionally based on the angle between
the projection and its residual. Using principles of conjugate
symmetry of the FFT, we can save time by only computing
the matrix-vector multiplications on half of the frontal slices
in the Fourier domain and using the complex conjugate to find
the others.

D. Computing the weights
−→
WWWt(UUU)

For the gradient computations in U , we first require com-
puting

w̄t(U) = argmin
w̄t∈Cd3r

1

2
‖FΩt(x̄t −Uw̄t)‖22. (28)

If we were to solve for the optimal w̄t(U) in closed form,
this would require forming and inverting the d3r×d3r matrix
U
′F ′ΩtFΩtU , which can be very large. Instead, the block-

wise separable structure of this quadratic problem suggests we
use conjugate gradient descent (CGD) to estimate w̄t(U) for a
fixed U . The structure permits fast, efficient computations by
matrix-vector products U

′F ′ΩtFΩtUv for some vector v ∈
F d3r. Within the t-SVD, this involves FFTs, separable matrix-
vector products in each slice (from the block diagonal structure
of U ), and zero-padding.

We observe faster overall convergence of our algorithm
when solving the problem in w̄t(U) at each time step with
higher accuracy. CGD is guaranteed to converge in as many
iterations as the dimension of the optimized vector [45], but
since w̄t(U) is d3r-dimensional, the number of maximum
iterations could be rather large. As the number of missing
entries increases, the matrix FΩtU in the least squares prob-
lem of Eq. (28) becomes more poorly conditioned, and since
the convergence rate of CGD is dependent on the condition
number of this matrix, denoted κ(FΩtU), the algorithm will
require more iterations to solve the problem to within some
ε > 0 accuracy, slowing the run-time of our algorithm.
However, as noted above, it is impractical to form and store the
large matrix, much less compute its SVD to find κ. We prove
a practical upper bound on the number of CGD iterations as
a function of the sampling rate and show CGD converges in
far fewer iterations than the maximum for most subsampling
rates. The proof, along with accompanying lemmas, is left
to Appendix A. Empirical studies of our algorithm show the
number of maximum CGD iterations is tightly bounded by our
Theorem IV.4 for most subsampling rates.

For the following theorem, we will require a notion of tensor
coherence, given in [58]:

Definition IV.3 (Tensor coherence). Let UUU ∈ Rd1×r×d3 be
an orthonormal tensor whose r lateral slices span the free
submodule of Md1

d3
. Then, the µ-coherence of UUU is given by

µ(UUU) := max
i=1,...,d1

‖UUUT ∗∗∗ e̊i‖22, (29)
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where e̊i ∈ Rd1×1×d3 is the column basis with e̊i11 = 1 and
the rest of the entries are zero. Note that r

d1d3
≤ µ(UUU) ≤ 1.

It is standard practice in matrix and tensor completion
literature to make some assumption that the coherence is not
too large to guarantee recovery (see Candes & Recht [10]
for matrix completion and Zhang & Aeron [58] who consider
tensor completion under the t-product.) We will impose a
coherence upper bound assumption on all of the iterates of
UUU t as well as a sampling condition for the number of entries
per slice that must be observed.

Theorem IV.4. Let PΩt sample |Ωt| rows from (F ′d3 ⊗ Id1)U
uniformly at random such that |Ωt|/ log(|Ωt|) > C2µ0d3r,
where C is a universal constant and µ0 > 1/d3 is small.
Assume coherence of the UUU t iterates remains bounded as
µ(UUU t) ≤ µ0r

d1
. Then with probability at least 1 − δ, where

δ ∈ [0, 1], the maximum number of conjugate gradient descent
iterations, J , required to solve (28) to within ε-precision for
ε > 0 is upper bounded as:

J ≤ 1

2

√
1 + δ−1τ

1− δ−1τ
log(2/ε), (30)

where τ = C

√
µ0rd3

log(|Ωt|)
|Ωt|

.

The proof is found in Appendix A.

E. Algorithm

The preceding updates give an efficient algorithm we call
TOUCAN (Tensor rank-One Update on the Complex grass-
manniAN) for computing each variable in the Fourier domain
with simple, efficient linear algebra operations and fast Fourier
transforms. TOUCAN is numerically stable by maintaining or-
thonormality on the product of Grassmannians and is constant
in memory use, scaling linearly with the number of observed
data samples instead of in polynomial-time like batch t-SVD
methods. In addition, like other t-SVD algorithms, independent
computations in each slice (equivalently the blocks of the
block-matrix terms) in the Fourier domain can be carried out
in parallel. TOUCAN is summarized in Algorithm 1.

TOUCAN can handle two cases of online and streaming
data. The first is incremental batch completion where the
batch tensor is too large to read into local memory, but can
be stored elsewhere. Our algorithm reads only slice

−→
XXX t into

local memory, updates its estimate of UUU and weights
−→
WWWt(UUU),

discards this local copy of
−→
XXX t, and passes over each data

slice like this in sequence. In this setting, it is possible to
make multiple passes over the full batch while only reading
parts into memory. This is a sensible approach when the
underlying low-rank model is believed to be static or stationary
throughout the batch. The second use case of TOUCAN is for
purely streaming data where we seek to learn UUU from each
new observation and discard each observation completely after
processing. The algorithm then tracks any changes in UUU only
from new observations and is able to track a time-varying
low-rank model.

Algorithm 1 Tensor rank-One Update on the Complex grass-
manniAN (TOUCAN): Arbitrary Missing Tensor Entries

Require: Data:
−→
XXX t ∈ Rd1×1×d3 ∀i = 1, . . . , T observed

on Ωt; tubal-rank r, tolerance ε > 0.
1: Initalize Fourier transformed orthonormal tensor UUU0 ∈

Cd1×r×d3 .
2: for t = 1 to T do
3: Compute XXXΩt = fft(∆Ωt(XXXΩt), [], 3).
4: Estimate optimal weights w̄t(U) by solving Eq. (28)

with CGD to within tolerance ε > 0.
5: Predict full slice in the Fourier domain:

P t = U tW t(U t).
6: Shape into tensor and transform:

−→
PPP t = ifft(PPPt, [], 3).

7: Compute residual:
−→
RRRt = ∆Ωt(

−→
XXX t)−

−→
PPP t.

8: Compute gradient terms from Eqs. (24) and (25).
9: Update subspace: UUU t+1 from (27).

10: Transform: UUU t+1 = ifft(UUU t+1, [], 3).
11: Transform:

−→
WWWt(UUU t) = ifft(WWWt(UUU t), [], 3).

12: end for
13: return UUU ,

−→
WWWt(UUU t), ∀t = 1, . . . , T

F. Memory and computational analysis

TOUCAN processes a tensor incrementally and thus only
needs to store an orthonormal tensor UUU ∈ Rd1×r×d3 , the
weights

−→
WWWt(UUU) ∈ Rr×1×d3 per t = 1, . . . , T , requiring

d1d3r + d3r memory elements per iteration at time t. Upon
updating UUU , the new

−→
WWWt+1(UUU) is computed at the next iteration

using the same memory. At each time instance, this is far
less than storing the entire tensor in memory which would
require d1Td3 memory elements, especially when any of the
dimensions is very large.

Implemented efficiently, the main loop of our algorithm
requires 4 fast inverse Fourier transforms and one fast Fourier
Transform. The CGD update takes O(J(Nd1r+d1d3 log(d3))
flops where N = d(d3 + 1)/2e and J is the number of CGD
iterations. Computing

−→
RRR takes O(Nd1r+d1d3 log(d3)+d1d3)

flops. The update in (25) takes O(d1d3 log(d3)) flops, and
(24) takes O(Nd1r) flops. Computing the subspace update
requires O(Nd1r) flops. Table I summarizes the memory
and computational requirements of our algorithm compared
to other t-SVD algorithms.

G. Convergence

Here, we prove expected linear local convergence of our
algorithm. Our analysis follows naturally from the work in [6],
which proved a similar result for the GROUSE algorithm, for
which TOUCAN is a related extension to t-product tensors.
The problem of proving convergence for this class of algo-
rithms is complicated by the setting of streaming data, missing
entries, and the optimization problem being constrained to
a nonlinear manifold with rank-one updates. Other analyses
for related problems may exist like in [25], but often these
are limited to the cases of batch data, fully observed entries,
and a specific type of retraction operator on the manifold.
However, little work in the literature exists for finite-sample
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Algorithm Memory per iteration Total batch computational complexity Computation per iteration
TOUCAN O(d1rd3 + rd3) O(B(J(d1Td3 log(d3) + d1rTN))) O(J(d1d3 log(d3) + d1rN))

TCTF O(d1rd3 + rTd3) O(A(d1Td3 log(d3) + d1rTN)) O(d1Td3 log(d3) + d1rTN)
TNN-ADMM O(d1Td3) O(A(d1Td3 log(d3) + d1TN min(d1, T ))) O(d1Td3 log(d3) + d1TN min(d1, T ))

TABLE I: Algorithm memory and computational complexities. A here denotes the number of algorithm iterations for batch
methods, and B denotes the number of batch passes for TOUCAN. Here usually B � A.

analysis with missing data, and the only results for streaming
subspace estimation with missing data in the matrix case are
local convergence results for the GROUSE algorithm in [6]
and the work in [14]; see [4] for a recent survey of the area.

Our problem and analysis are tailored to these specific
settings, and we apply similar assumptions as made in [6]
and other standard assumptions made in the literature. For
simplicity of analysis, we focus on the case of tubes sampled
uniformly at random since it allows us to extend the results
provided in [6] to the tensor case.

Our theory provides expected linear local convergence under
(i) the randomness of the observed tensor and (ii) the random-
ness of the subset of elements observed at each iteration. More
specifically, we have the following assumptions:

A1. Each
−→
XXX t = UUU∗∗∗∗

−→
SSS t for planted model [UUU∗] ∈ G(r, d1, d3)

and (
−→
SSS t)ijk

i.i.d.∼ N (0, 1).

A2. Let Ωt ⊂ {1, . . . , d1} denote the tube indices, and assume
the tube indices are chosen uniformly at random. In other
words, the data

−→
XXX t are sampled tubal-wise, where a tube

consists of d3 entries along the third mode dimension.

It is worth mentioning that A1 is a generalization of the
assumption made in [6] to the tensor problem. We also note
that conditions analogous to A2 have been used in [35] for
t-product based tensor completion tasks.

Before providing the main result, we give some additional
notations and definitions. Let µ(U) denote the matrix co-
herence of complex orthonormal matrix U ∈ Cd×r, i.e.
µ(U) := d

r maxi=1,...,d ‖U
′
ei‖22, where ei is the ith standard

basis unit vector in Cd. We note this is consistent with
Definition IV.3. For a vector argument x̄ ∈ Cd, this further
specializes to µ(x̄) = d‖x̄‖2∞/‖x̄‖22. We use µmax(UUU∗) :=
maxk=1,...,d3 µ(U

∗
k) to denote the maximum coherence of the

frontal slices of UUU .
Denote

εt,k := r − ‖U∗k
′
U t,k‖2F , ∀k ∈ [d3]. (31)

We will analyze the sequence εt measuring the error be-
tween the planted model UUU∗ and the algorithm’s estimate UUU t:

εt := d3r − ‖UUU∗′ ∗∗∗ UUU t‖2F

= d3r − ‖U
∗′
U t‖2F =

d3∑
k=1

εt,k, (32)

where U
∗
(resp. U t) denotes the current estimate of the block-

diagonal Fourier representation of UUU∗(resp. UUU t). Again, here
we use the normalized DFT matrix when taking the Fourier
transform. The second equality follows from the definition
of the Frobenius norm under the t-product. If UUU t perfectly

estimates the free submodule spanned by UUU∗, it’s easy to see
from (32) that εt = 0; on the other hand, if UUU t is orthogonal
to UUU∗ in t-product, εt = d3r.

Theorem IV.5. Let {(
−→
WWWt−1(UUU t−1),UUU t)}t≥1 denote the se-

quence generated by Algorithm 2. Suppose A1 and A2 hold,
and the number of sampled tubes |Ωt| ≥ q for all t such that

q ≥ C1 log(d1)2rµmax(UUU∗) log(20rd3) (33)

for some C1 ≥ 64/3. Suppose there exists δ̄ ∈ (0, 0.6/d3) such
that the residual vector v̄t,k := x̄t,k −U t,kU

′
t,kx̄t,k satisfies

µ(v̄t,k) ≤ log d1

(
0.045

log(10d3)
C1rµ(U t,k) log(20rd3)

) 1
2

,

(34a)

µ(v̄t,k) ≤ (log d1)2 0.05

8 log(10d3)
C1 log(20rd3), (34b)

for all k = 1, . . . , d3 each with probability at least 1 − δ̄.
Assume further that

εt,k ≤ min

{
q2

128d2
1r
,

r

16d1
µ(U

∗
k)

}
, ∀k ∈ [d3], (35a)

εt ≤ (8 · 10−6)(0.6− d3δ̄)
2 q3

d3
1r

2
. (35b)

Then,

E[εt+1|εt] ≤
(

1− 0.16(0.6− d3δ̄)
q

d1r

)
εt. (36)

Remark IV.6. We note that in the matrix case, i.e., d3 = 1,
our result recovers [6, Corollary 2.15]. We also note that the
failure probability increases as d3 grows which is similar to
the results provided in the t-SVD literature under the tubal
sampling assumption; see, e.g., [58, Theorem 3.2].

Remark IV.7. The analogous supposition that Equations
(34a) and (34b) hold was also made in [6] for the matrix
case, where they pointed out that empirical evidence supports
this assumption. This is essentially assuming that the residual
vectors are roughly as incoherent as the subspaces themselves.
The assumptions in (35a) and (35b) define the local region in
which the expected linear rate of convergence is achieved. As
discussed in [6], this local region is conservative according to
empirical evidence, which is also supported by the experiments
in our own work.

Remark IV.8. In (36), the expectation is with respect to
the randomness in the data drawn from UUU∗ with normally
distributed coefficients, and the high probability result is with
respect to the tubes observed at random. Supposing that we are
within the radius of local convergence, the rate (36) suggests
our algorithm converges faster the closer q

d1r
is to 1, and the
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fastest when we observe fully sampled data. Conversely, with
fewer tube observations q, the rate of convergence slows.

V. EXPERIMENTAL RESULTS

A. Numerical experiments

1) Incremental Tensor Completion: We first verify the
validity and efficiency of TOUCAN in recovering large-scale
missing tensor data from synthetically generated isotropic
Gaussian distributions with low-tubal-rank. We compute the
t-product of two low-tubal-rank tensors UUU ∗∗∗WWW to yield a third
order tensor of tubal-rank r = 3 and sample 20% of tensor
entries/tubes randomly according to a Bernoulli distribution.
TOUCAN observes one lateral slice sequentially, solves the
inner CGD step to within a set tolerance (10−6), and is
allowed to process over the entire batch twice. Our simulations
compare against t-SVD batch tensor completion algorithms: 1)
an algorithm that optimizes tensor nuclear norm via alternating
direction method of multipliers (TNN-ADMM) [58], and 2)
Tensor Completion by Tensor Factorization (TCTF) of [62],
which factorizes the tensor for the t-product of two low-
tubal-rank tensors. For TCTF, we omit the rank-reduction
steps and set the multi-ranks equal to the planted tubal-rank
since our synthetic examples are generated in this manner,
and the steps only add computation; this also makes TCTF
more comparable to TOUCAN since they both seek a sim-
ilar nonconvex factorization under the t-product. Fig. 2(a)-
(d) plot the normalized root-mean-squared error (NRMSE)
‖XXX est. −XXX true‖F /‖XXX true‖F of the recovered tensor to the true
tensor by median elapsed wall clock time in seconds over 10
trials. In addition, we also examine cases with additive white
Gaussian noise. All algorithms are coded in Python with our
optimized implementations of TNN-ADMM, TCTF, and STC;
for OLSTEC and TeCPSGD, we use the implementations from
[27] converted to Python. Experiments were run on a Intel(R)
Core(TM) i7-6850K CPU @ 3.60GHz. Our implementation
can be found at https://github.com/kgilman/TOUCAN.

For tensors with large d2 dimension, TOUCAN can rapidly
complete the data in substantially less time than either batch
algorithm while using only 0.3% of the memory per iteration
compared to storing the entire tensor for our synthetic exam-
ple. Fig. 2 shows the algorithm scales up well with the tensor
dimensions, and can achieve batch completion for large-scale
tensors in orders of magnitude less computation time. With
additive Gaussian noise, our stochastic gradient algorithm
achieves accuracy to within a noise floor proportional to the
noise variance. For smaller size tensors, the batch algorithms
succeed in less wall clock time, so TOUCAN only becomes
advantageous when the dimensions of the tensor scale to
be very large. With larger amounts of additive noise, the
algorithm’s advantage diminishes since the batch algorithms
are able to more quickly average the noise out than our
stochastic algorithm. Since the first observations in the initial
phase of the algorithm will be revisited in later passes over
the batch, the NRMSE curve with respect to the entire tensor
shows slower progress for TOUCAN in the first iterations, but
this graph under-reports the accuracy of the estimate of UUU .

2) Dynamic FSM Tracking: We demonstrate TOUCAN’s
ability to track a dynamically changing FSM from streaming
multiway data with missing entries. We generate a random
orthonormal basis UUU for various tubal-ranks from an i.i.d.
Gaussian distribution and draw 2-D lateral slices by t-product
with i.i.d. Gaussian weights. 50% of the tensor entries are sam-
pled at random, and we record the NRMSE of the completed
tensor slice ‖

−→
XXX t,est. −

−→
XXX t,true‖F /‖

−→
XXX t,true‖F . The experiment

simulates abrupt system dynamics by randomly reinitializing
the underlying FSM every 500 slices. The results in Fig.
2(e),(f) illustrate TOUCAN’s ability to adaptively re-estimate
each new FSM and capture system dynamics that the batch
algorithms cannot, as they compute estimates based on the
entire batch of data collected over time.

B. Real data experiments

1) Application to Gas Measurements Tensor: We deploy
our algorithm to track a dynamically changing free submodule
from streaming 2-D lateral slice data with missing entries
in chemo-sensing data collected by Vergara et al. [51]. The
dataset consists of measurements as a gas is blown over an
array of conductometric metal-oxide sensors in a wind tunnel
[31]. The data is made up of six arrays each with 72 sensors,
260 seconds of data points collected at ∼ 100 Hz, and 300
experiments for each of 11 gases. The sensor values vary
in time as a gas permeates throughout a wind tunnel and
then dissipates [31]. We chose to fix the array and gas, using
the fourth sensor array and Toulene gas for our experiments,
downsample to 10 Hz, and remove sensor 33 (out of 72) and
time samples 1103 and 2012, which seemed to have erratic
measurements, resulting in a tensor of size 300× 2600× 71.
We subtract the sample mean from the columns of each time
slice – a column referring to 300 experiment samples per
sensor – normalize each time slice by its Frobenius norm, and
subsample only 25% of the data to simulate missing entries.

TOUCAN is compared to the batch t-SVD algorithms,
the two online CP algorithms TeCPSGD and OLSTEC (we
use the source code from [27] for our implementations of
OLSTEC and TeCPSGD), and the online tensor completion
algorithm Sequential Tensor Completion [54], which estimates
an orthonormal rank-r unfolding for each mode, to recover
undersampled chemo-sensing data. The online algorithms pro-
cess each time slice sequentially, observing a 300× 71 matrix
of experiments versus sensor channels, and pass over the entire
data once. We empirically found tracking a 1-dimensional
FSM with TOUCAN to have the best performance. The
algorithm updates its estimate of UUU t+1, and weights

−→
WWWt(UUU t).

For competing algorithms, we tuned parameters by grid
search (see Appendix I) to find the best performance in
NRMSE on the first 300 time samples. The online CP algo-
rithms learn a rank-50 decomposition, with their factors initial-
ized with the left-singular subspaces of the mode unfoldings
of the first 300 samples. We set λ = 10−5 and the initial step
size to be 103 for TeCPSGD, and λ = 0.9 and µ = 10−8 for
OLSTEC. STC learns a multirank (15, 15, 1) model. TCTF
learns a tubal-rank 10 factorization, and the ADMM algorithm
penalty is set to be ρ = 1.5 for TNN-ADMM. The batch

https://github.com/kgilman/TOUCAN
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(a) r = 3, d1 = 100, d2 = 1000,
d3 = 20, σ2 = 0.

(b) r = 3, d1 = 100, d2 = 1000,
d3 = 20, σ2 = 10−3.

(c) r = 3, d1 = 200, d2 = 1500,
d3 = 50, σ2 = 0.

(d) r = 3, d1 = 200, d2 = 1500,
d3 = 50, σ2 = 10−3.

(e) r = 3, d1 = d3 = 100, σ2 = 0. (f) r = 3, d1 = d3 = 100, σ2 = 10−3.

Fig. 2: (a)-(d): Batch completion of t-SVD synthetic tensors with 20% entries observed and median wall-clock time over 10
trials on the x-axis. Markers are plotted every 100 TOUCAN iterations and 50 batch algorithm iterations. (e) & (f): TOUCAN
completing a tensor from a dynamically changing FSM over time compared to batch completion t-SVD methods with 50% of
the entries observed. Markers are plotted for every 50 TOUCAN iterations. The second dimension of the tensor passed to the
batch algorithms TCTF and TNN-ADMM is equal to the number of iterations.

Fig. 3: NRMSE of each recovered time slice for Toluene gas
dataset from 25% samples.

TABLE II: Total wall clock times in seconds for Toluene gas
dataset

Algorithm Time (s)
TOUCAN 30.81
TeCPSGD 137.31

STC 363.54
OLSTEC 552.53

TCTF 725.55
TNN-ADMM 879.78

algorithms iterate until the difference NRMSE between iterates
is less than 10−4 or a maximum number of 75 iterations is
reached.

Fig. 3 compares the NRMSE of each recovered 2D slice to
the true data at each time instance for the algorithms, which
shows TOUCAN tracking the sensor readings with comparable
error to OLSTEC. Due to the non-stationary behavior of the
data, the tracking errors fluctuate as the data changes in time.
While the batch methods achieve the best overall NRMSE
error computed for the entire tensor, the online methods show
the best reconstruction error on each sample after the initial

start-up iterations. We also give the total computation time for
each algorithm in Table II, emphasizing the significant speedup
TOUCAN attains over the baseline algorithms, particularly
the batch algorithms that are computationally prohibitive with
large tensor data.

2) Streaming dynamic MRI reconstruction: Magnetic res-
onance imaging (MRI) collects a high-dimensional tensor
that is often undersampled due to computational limitations
exacerbated by large volumetric and dynamic acquisitions.
One successful solution to image reconstruction from limited
sampling is low-rank tensor completion [7], [38]. A t-SVD
factorization of the spatial frequency-by-time (or k-t space)
tensor reveals low-tubal-rank structure in the real and complex
components [7], and t-SVD algorithms have been shown to
be proficient at completing the k-t space tensor for image
reconstruction. MRI data can also contain significant motion
content and time-varying dynamics such as breathing mo-
tion. We employ TOUCAN’s ability to track streaming time-
dynamic multiway day to recover the k-t space tensor.

We test the completion abilities of each algorithm on the
invivo myocardial perfusion dataset data from [33] with both
varying levels of uniformly random entry sampling and tube
sampling along the ky direction. The dimensions of the data
are kx = 190, ky = 90 and kt = 70, and the data contains
many dynamic motions such as heartbeats, breathing motion,
and image intensity changes.

The streaming algorithms pass over the data once with the
k-space rows oriented along the third tensor mode (ky = d3).
TOUCAN learns a free submodule of tubal-rank 5, and two
streaming CP algorithms learn a rank-50 CP decomposition.
After exhaustive search for hyperparameters, we set λ = 0.5
and µ = 10−4 for OLSTEC, and λ = 10−4 and the initial step
size to be 105 for TeCPSGD. We set the ranks to be r1 = r2 =
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(a) 40% missing entries at frame 39.

(b) 40% sampled entries uniformly at random.

Fig. 4: Reconstructed myocardial perfusion images and
NRMSE of recovered real component by frame index.

25, r3 = 5 for STC. STC cannot handle tube-sampled data
since an entire column of one of the tensor unfoldings will be
missing, so we only test it in the case where arbitrarily random
entries are missing. The batch t-SVD algorithms are allowed to
compute over the data until the difference in NRMSE between
iterates is less than 10−4 or the algorithm exceeds a specified
maximum number of iterations.

We record the NRMSE, mean structural similarity index
measures (SSIM) [53] of the reconstructed images, and total
algorithm wall-clock times in Table III. Fig. 4 displays a
sample of the reconstruction results, along with plots of the
NRMSE of each frame’s recovered real k-t space as the online
algorithms pass over the data.

When deployed on the highly dynamic invivo cardiac per-
fusion data, our algorithm achieves competitive reconstruction
error in less wall clock time. In the tubal-sampling case, which
is most practical in real fMRI collection, our method can
more rapidly update its subspace estimate during initialization.
Beginning at frame 41, strong breathing motion occurs, and
the three algorithms are comparable in their subspace tracking
abilities. Adjusting the streaming CP algorithms’ hyperparam-
eters and STC’s choice of multirank also requires exhaustive
trial and error, and the results are often sensitive to these
choices.

VI. DISCUSSION & FUTURE WORK

In this paper we presented a novel algorithm for low-tubal-
rank tensor completion with stochastic gradient descent on the
product of Grassmann manifolds under the t-SVD algebraic
framework. Our method avoids computing any SVDs, and

only needs to update and store a smaller orthonormal tensor
and the lateral slice of weights per iteration, leading to a
powerful and efficient online algorithm that scales linearly
in memory use and computation. TOUCAN naturally extends
well-known concepts from matrix algebra to the tensor domain
for streaming data under the t-SVD model, making it practical
in big data settings where batch methods would become
intractable.

As long as the input tubal-rank to our algorithm is an upper
bound for the tubal-rank of the data generated, our method
should find a good approximation to the tensor, in which
case some of the tensor factors may have small coefficients,
showing that the rank could be smaller. Establishing good
techniques for determining tubal-rank in an online way from
missing data is a very interesting direction for future work.

TOUCAN is practical in many big data problems where the
tensor data is inherently oriented, such as time series data, and
contains modes with periodic data best captured by the FFT
in the t-SVD framework. Fixing the third mode factor matrix
to be the DFT matrix is a strong model assumption, and other
works have extended the t-SVD to use other fast orthogonal
transforms in the third mode [28]. Future work could consider
learning an orthogonal factor matrix in the third mode that
best fits the data.

Choosing the best tensor orientation is not always apparent
and requires trial and error. While t-SVD algorithms can
leverage periodic structure in the data, CP and Tucker models
are compatible with any tensor orientation. These methods
may also be preferable when the CP or multilinear ranks are
much smaller than either tensor mode dimension; TOUCAN’s
memory requirement will grow multiplicatively between d1,
d3, and k to store the orthonormal basis, whereas CP and
Tucker methods require only storing three small factor ma-
trices and a small core tensor in the case of Tucker tensors.
Lastly, t-SVD methods are only useful for imputing missing
entries when the data reveals a low-tubal-rank structure, but
not for recovering interpretable latent factors that may be
useful for data analysis. An interesting line of future work
would be to develop a novel tensor decomposition agnostic to
tensor orientation and enjoys the low memory footprint and
latent factor interpretability of CP decompositions.
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APPENDIX A
PROOF OF THEOREM IV.4

Proof. The proof follows from Lemma G.1, and the fact FU
is a d1d3 × d3r matrix with orthonormal columns.

From Lemma G.1, we have that

J ≤ 1

2

√
κ log(2/ε) ≤ 1

2

(
1 + δ−1τ

1− δ−1τ

) 1
2

log(2/ε), (37)

where

κ := κ(FΩtU)2, and τ := C

√
d1d3µ(FU) log(|Ω|)/(|Ω|).

Now, from our assumption bounding the coherence of the
iterates UUU t, the result from Lemma G.2 gives µ(FU) ≤
µ0r/d1. To ensure the bound is not vacuous, we must ensure

1 ≥ δ > τ ≥ C
√
d1d3µ(U) log(|Ω|)/|Ω|. (38)

In other words, we must sample sufficiently many rows, i.e.,

|Ωt|/ log(|Ωt|) > C2µ0rd3. (39)

for some constant C independent of µ0, r, d1, and d3.
We can simply verify Equation (39) for low rank tensors as

follows. Without loss of generality, assume d1 ≥ d3. Then, it
follows that log(|Ωt|) ≤ 2 log(d1)� d1. Further, if the tensor
is low rank and incoherent, both µ0 and the tubal rank are
small, which implies that the right side of Equation (39) is
sufficiently small. Finally (39) ensures that (38) holds, and we
can ensure the number of CGD iterations is low.

APPENDIX B
MISSING TENSOR TUBES

Again, let XXX = [
−→
XXX 1 . . . ,

−→
XXX T ] ∈ Rd1×T×d3 be a set of

lateral slices for each time instance. At every time t, we
observe an incomplete lateral slice XXX t ∈ Md1

d3
on the indices

Ωt ⊂ {1, . . . , d1} where not all tubes of the slice are observed.
Denote PPPΩt ∈ R|Ωt|×d1×d3 as the tensor that selects the
coordinate axes of Rd1 indexed by Ωt. PPPΩt is a tensor whose
first frontal slice is a subsampled identity matrix on the rows
indexed by Ωt; all other frontal slices are zeros. We then
observe the lateral slice PPPΩt ∗∗∗

−→
XXX t at time t. Let UUUΩt denote

the subtensor of UUU consisting of the tubes indexed by Ωt, and
XXXΩt = PPPΩt∗∗∗

−→
XXX t denote a lateral slice in R|Ωt|×1×d3 observed

on the tubes indexed by Ωt. It can be shown that the objective
function can be rewritten as

min
[UUU ]∈G(r,d1,d3)

1

T

T∑
t=1

min−→
WWWt∈Rr×1×d3

1

2

∥∥∥−→XXX Ωt −UUUΩt ∗∗∗
−→
WWWt

∥∥∥2

F
.

(40)
In the Fourier domain, Lt becomes becomes

Lt(U) = min
W t

1

2
‖XΩt −UΩtW t‖2F . (41)

The notation UΩt ∈ C|Ωt|d3×d3r denotes the block-diagonal
matrix of U consisting of the rows indexed by Ωt. Similarly,
XΩt is a block-diagonal matrix in R|Ωt|d3×d3 observed on the
rows indexed by Ωt. The problem is block-diagonal, and as

the work in [21] showed, it is separable in each frontal slice
in the Fourier domain. The algorithm is similar to that in Alg.
1, except the optimal weights

−→
WWWt(UUU) can be solved exactly

in closed form using pseudo-inverses in the Fourier domain,
and ρ̄k is replaced by r̄k in Eq. 27. Likewise, our step size
is ηk = arctan(‖r̄k‖/‖W t,k‖). We give the full algorithm in
Algorithm 2.

Algorithm 2 Tensor rank-One Update on the Complex grass-
manniAN (TOUCAN): Missing Tensor Tubes

Require: Data:
−→
XXX t ∈ Rd1×1×d3 ∀t = 1, . . . , T observed

on Ωt; tubal-rank r.
1: Initialize Fourier transformed orthonormal tensor UUU0 ∈

Cd1×r×d3 .
2: for t = 1 to T do
3: Compute XXXΩt = fft(∆Ωt(XXX t), [], 3).
4: Estimate optimal weights: W t,k(U t) = U

†
Ωt,kXΩt,k.

5: Predict full vector: P t = U tW t(U t).
6: Shape into tensor and transform:

−→
PPP t = ifft(PPPt, [], 3).

7: Compute residual:
−→
RRRt = ∆Ωt(

−→
XXX t)−

−→
PPP t.

8: Update subspace: UUU t+1 from (27).
9: Transform: UUU t+1 = ifft(UUU t+1, [], 3).

10: Transform:
−→
WWWt(UUU t) = ifft(WWWt(UUU t), [], 3).

11: end for
12: return UUU ,

−→
WWWt(UUU t), ∀t = 1, . . . , T

APPENDIX C
GRADIENT DERIVATION

Our algorithm substitutes w̄t(U) =

(U
′F ′ΩtFΩtU)−1U

′F ′Ωt into L(U) and computes the
gradient with respect to U directly. First rewrite Lt as

Lt(U) =
1

2
‖FΩt x̄t‖22 −

1

2
tr((U

′
CU)−1U

′
BU),

where C := F ′ΩtFΩt and B := Cx̄tx̄
′
tC for ease of

notation.
Now, we can take the gradient with respect to U for this

form of trace function via [42, Equation (126)] and obtain

∂Lt
∂U

= −BU(U
′
CU)−1

+CU(U
′
CU)−1U

′
BU(U

′
CU)−1. (42)

It is then straight-forward to see Eq. (20) is equivalent to the
above gradient by substituting the expression for w̄t(U) and
simplifying.

APPENDIX D
T-PRODUCT AND T-SVD

Using properties of the Fourier Transform, we give Lemma
Lemma D.1, which describes conjugate symmetry of a real-
valued signal transformed into the Fourier domain:

Lemma D.1. [11] Given AAA ∈ Rd1×d2×d3 ,A1 ∈
Rd1×d2 and conj(Ak) = Ad3−k+2, k = 2, . . . , dd3+1

2 e.
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Algorithm 4 t-SVD [11]
Inputs: AAA ∈ Rd1×d2×d3
Output: t-SVD components UUU ,SSS , and VVV of AAA.

1: Compute AAA = fft(AAA, [], 3)
2: Compute each frontal slice of UUU ,SSS,VVV by
3: for k = 1, . . . , dd3+1

2 e do
4: [Uk,Sk,V k] = SVD(Ak);
5: end for
6: for k = dd3+1

2 e+ 1, . . . , d3 do
7: Uk = conj(Ud3−k+2))
8: Sk = conj(Sd3−k+2))
9: V k = conj(V d3−k+2))

10: end for
11: Compute UUU = ifft(UUU , [], 3), SSS = ifft(SSS, [], 3), VVV =

ifft(VVV, [], 3)

Lemma D.1 states the conjugate symmetry property for a
real-valued signal in the frequency domain using properties
from the Fourier transform; this will be useful later for
avoiding redundant computations.

Algorithm 3 Tensor-Tensor Product [11]
Inputs: AAA ∈ Rd1×d2×d3 ,BBB ∈ Rd2×l×d3
Output: CCC =AAA∗∗∗BBB ∈ Rd1×l×d3

1: Compute AAA = fft(AAA, [], 3) and BBB = fft(BBB, [], 3)
2: Compute each frontal slice of CCC by

Ck =

{
AkBk, k = 1, . . . , dd3+1

2 e
conj(C

(d3−k+2)
), k = dd3+1

2 e+ 1, . . . , d3

3: Compute CCC = ifft(CCC, [], 3)

Definition D.2. Conjugate transpose [15] The conjugate
transpose of a tensor AAA ∈ Cd1×d2×d3 is the tensor AAA′ ∈
Cd2×d1×d3 obtained by conjugate transposing each frontal
slice of AAA and then reversing the order of transposed slices 2
through d3:

AAA′ = fold
([
A1
′ Ad3

′ · · · A2
′]′) .

Definition D.3. Identity tensor[15] The identity tensor
IIInnd3 ∈ Rn×n×d3 is the tensor whose first frontal slice being
the n×n identity matrix, and all other frontal slices being all
zeros. Property: AAA∗∗∗ III = III ∗∗∗AAA =AAA.

Definition D.4. Orthogonal tensor [15] A tensor QQQ ∈
Rn×n×d3 is orthogonal if it satisfies QQQ′ ∗∗∗QQQ =QQQ∗∗∗QQQ′ = III.

Definition D.5. F-diagonal tensor [15] A tensor is called F-
diagonal if each of its frontal slices is a diagonal matrix.

APPENDIX E
PROOF OF PROPOSITION IV.1

Proof. (P1) Assuming we sample enough entries of the data
such that (FΩtU)′(FΩtU) remains full rank, then w̄t(U) is
the unique minimizer of the inner least-squares problem.
(P2) For a fixed UUU , let

−→
WWWt(UUU) be the unique minimizer in (18b)

as shown in (P1), and say we choose a different basis for [UUU ],
i.e. UUUR := UUU ∗∗∗RRR for any t-orthogonal tensor RRR ∈ O(r, r, d3).
Now we see that

−→
WWWt(UUUR) =RRR′∗∗∗

−→
WWWt(UUU). Since Lt(UUU) defined

in (18a) merely depends on the product UUU ∗∗∗
−→
WWWt(UUU), we have

Lt(UUUR) = Lt(UUU) which implies that the outer objectives of
UUU and UUUR are identical, i.e., L(UUUR) = L(UUU). Hence, the
objective is constant over sets of full tubal-rank tensors UUU
spanning the same free submodule. Now, considering these
sets as an equivalence class [UUU ], the problem is well-defined
and smooth on the t-Grassmannian. This type of argument
was also provided in [9, Section 3] for the offline matrix
completion problem on the Grassmannian.

By Proposition II.9, Lt(U) in (19) is a smooth function
over the Cartesian product of complex (matrix) Grassmann
manifolds in the Fourier domain. This, together with the fact
that the Fourier transform operator Fd3 is invertible, also
implies that F : G(r, d1, d3) → R is a well-defined smooth
function over the product manifold. Further, the solutions of
the original problem in (17) can be obtained as follows:

UUU = UUU ×3 F
′
d3 = fold(U1;U2; . . . ;Ud3)×3 F

′
d3 ,−→

WWWt(UUU) = fold(w̄t,1; w̄t,2; . . . ; w̄t,d3)×3 F
′
d3 .

This completes the proof.

APPENDIX F
T-SVD INTERPRETATION OF TOUCAN

We note here that UUU is one choice of representation for a
point on the product Grassmannian where the Fourier trans-
form along its tubes UUU has as each frontal face a matrix with
orthonormal columns. However, we can equivalently represent
this point using an d1d3 × d3r block-diagonal matrix in the
Fourier domain, with the frontal faces of UUU on the diagonal.
We will revisit this representation below.

We can rewrite the objective function using the block-
circulant matrix definition of the t-product:

Lt(UUU) = min−→
WWWt

1

2
‖PΩtunfold(∆Ωt(

−→
XXX t))

− PΩt(bcirc(UUU) · unfold(
−→
WWWt))‖2F .

Here PΩt is a subsampled identity matrix of size |Ωt|×d1d3,
unfold(∆Ωt(

−→
XXX t)) ∈ Rd1d3 , bcirc(UUU) ∈ Rd1d3×d3r, and

unfold(
−→
WWWt) ∈ Rd3r. Using block-circulant diagonalization

and the fact d2 = 1 when processing a single slice, we can
rewrite the product PΩt · (bcirc(UUU) · unfold(

−→
WWWt)) as

PΩt(F
−1
d3
⊗ Id1)(Fd3 ⊗ Id1)bcirc(UUU)F−1

d3
Fd3unfold(

−→
WWWt)

= PΩt(F
−1
d3
⊗ Id1)Uw̄t,

where w̄t := unfold(
−→
WWWt) and U = (Fd3⊗Id1)·bcirc(UUU)·

F−1
d3

. U is of size d1d3 × d3r and gives us another represen-
tation of UUU , with the frontal slices of UUU on the diagonal, with
d3 blocks of size d1 × r. We therefore have the following
equivalent form for Lt(U):

Lt(U) = min
w̄t

1

2
‖FΩt(x̄t −Uw̄t)‖22,
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where x̄t ∈ Rd1d3 := vec(∆Ωt(
−→
XXX t) ×3 Fd3) ∈ Cd3r for

convenient notation. Finally, FΩt = PΩt(F
−1
d3
⊗ Id1) ∈

C|Ωt|×d1d3 is the subsampled inverse Fourier transform.

APPENDIX G
SUPPORTING LEMMAS OF THEOREM IV.4

The following lemma utilizes the notion of coherence
of an m × r subspace basis U , defined as µ(U) =
max1≤i≤m ‖PUei‖22, where PU is the orthogonal projection
onto U and ei is the ith standard basis vector [10].

Lemma G.1. [3, Lemma 8.3.3] Let U be an m× r orthonor-
mal matrix and S be a random subsampling operator that
samples |Ω| rows from U uniformly such that |Ω|/ log(|Ω|) ≥
C2mµ(U). Let C be a universal constant, and δ ∈ [0, 1].
Then, with probability at least 1− δ
E{‖Ir−

m

|Ω|
U ′S′SU‖} ≤ C

√
mµ(U) log(|Ω|)/|Ω| := τ, and

κ(SU) ≤
√

1 + δ−1τ

1− δ−1τ
. (43)

Lemma G.2. Let Fd3 = [f1 . . .fd3 ] denote the normalized
d3 × d3 DFT matrix. Let U be the block-diagonal form of UUU
in the Fourier domain. For a tensor UUU , define

FU := (F−1
d3
⊗ Id1)U . (44)

Then, we have µ(UUU) = µ(FU), where the function µ is given
in Definition IV.3.

Proof. It follows from Definition IV.3 and (4) that

µ(UUU) = max
i=1,...,d1

∥∥∥∥∥∥∥
U
′
1 0

. . .
0 U

′
d3


ei...
ei


∥∥∥∥∥∥∥

2

2

= max
i=1,...,d1

d3∑
j=1

‖U ′jei‖22, (45)

where ei is the ith standard basis vector in Rd1 . Further, from
the definition of FU in (44), we have

µ(FU) = max
i=1,...,d1d3

‖U ′(Fd3 ⊗ Id1)ei‖22. (46)

Denote the (i, j)-th entry of the normalized DFT matrix by
fij . Through simple algebra, we can see that (Fd3 ⊗ Id1)ei =
fm ⊗ en for i ∈ {d1d3}, m ∈ {d3}, and n ∈ {d1}. This
together with (46) implies that

µ(FU) = max
i=1,...,d1d3

‖U ′(Fd3 ⊗ Id1)ei‖22

= max
n=1,...,d1
m=1,...,d3

∥∥∥∥∥∥∥
U
′
1 0

. . .
0 U

′
d3


 f1men

...
fd3men


∥∥∥∥∥∥∥

2

2

= max
n=1,...,d1
m=1,...,d3

d3∑
j=1

|fjm|2‖U
′
jen‖22

= max
n=1,...,d1

d3∑
j=1

‖U ′jen‖22.

Here, the second equality uses (45) and the last equality
follows from the maximum element of the normalized Fourier
transform’s vectors being e0 = 1.

APPENDIX H
PROOF OF THEOREM IV.5

Proof. The result follows by noting the following steps:
(i) Under Assumption A2, the tensor problem in (17) which

can be re-written as d3 separable optimization problems
in the Fourier domain:

min
[Uk]∈G(r,d1)

1

T

T∑
t=1

min
w̄t,k∈Cr

1

2
‖PΩt(x̄t,k)− PΩt(U t,k)w̄t,k‖2F .

(ii) Under assumption A1, each
−→
XXX t is generated as

−→
XXX t = fold(F x̄t), x̄t = U

∗
s̄t, s̄t

i.i.d∼ CN (0, Id3r),

where U
∗ ∈ Cd1d3×d3r is block-diagonal. Hence, we

have that each slice x̄t,k = U
∗
ks̄t,k where s̄t,k

i.i.d∼
CN (0, Ir). This follows from the fact that if st =

unfold(
−→
SSS t) ∼ N (0, Id3r), then s̄t is just a linear trans-

form of a Gaussian-distributed random variable under the
(normalized) Fourier transform matrix.

(iii) Let δ := 0.1/d3. Let U t,k denote the kth block of UUU at
iteration t, and let [U t,k]Ωt denote the restriction of U t,k

to the rows indexed in Ωt. Since |Ωt| ≥ q for all t and q
satisfies (33), for all k ∈ [d3], we obtain

q ≥ C1 log(d1)2rµ(U
∗
k) log(20rd3)

≥ C1

2
log(d1)2rµ(U t,k) log(20rd3) (47)

for some C1 ≥ 64/3, where the last inequality follows
from (31) and our assumption that εt,k ≤ r

16d1
µ(U

∗
k);

see, [6, Lemma 2.5] for more details. Now, it follows
from [6, Lemma 2.8], for each k ∈ [d3],

‖[x̄t,k − p̄t,k]Ωt‖22 ≥
|Ωt|(1− ξt,k)− rµ(U t,k)

(1+βt,k)2

1−γt,k
d1

· ‖x̄t,k −U t,kU
′
t,kx̄t,k‖22,

(48)

with probability at least 1 − 3δ. Here, p̄t,k = U t,kw̄t,k
where w̄t,k is the optimal weights,

ξt,k :=

√
2µ(v̄t,k)2

|Ωt|
log

(
1

δ

)
,

βt,k :=

√
2µ(v̄t,k) log

(
1

δ

)
,

γt,k :=

√
8rµ(U t,k)

3|Ωt|
log

(
2r

δ

)
.

Since δ = 0.1/d3, and |Ωt| ≥ q and q satisfies (47), we
get γ2

t,k ≤ 1/4 for all k ∈ [d3]. This together with [6,
Theorem 2.6] implies that with probability at least 1− δ,

λi([U t,k]′Ωt [U t,k]Ωt) ∈
[
0.5
|Ωt|
d1

, 1.5
|Ωt|
d1

]
(49)



19

for all i = 1, . . . , r, where λi stands for the ith eigen-
value.
We note that (34) holds with probability at least 1 −
δ̄. Hence, using the union bound, we have that the
bounds (34), (48), (49) all hold with probability at least
1− (4δ + δ̄) = 1− ( 0.4

d3
+ δ̄).

For all k ∈ [d3], let θt,k denote the angle between
R(U t,k) and the random observation vector x̄t,k, where
R(·) stands for the range. Let r̄t,k := x̄t,k − p̄t,k denote
the residual vector for kth block in the Fourier domain.
We note that [r̄t,k]Ωct = 0. Now, using bounds (34),
(48), (49), it follows from [6, Lemmas 2.9 and 2.10] that
for each k ∈ [d3],

‖r̄t,k‖2

‖p̄t,k‖2
≥ (0.32)

q

d1
sin2 θt,k (50)

with probability at least 1− ( 0.4
d3

+ δ̄).
(iv) Following [6, Section 2.5], for all k ∈ [d3] we obtain

εt+1,k ≤ εt,k − ‖r̄t,k‖
2

‖p̄t,k‖2 + 55
√

d1
q ε

3/2
t,k . This together with

(50) yields

εt+1,k ≤ εt,k − 0.32
q

d1
sin2 θt,k + 55

√
d1

q
ε
3/2
t,k (51a)

with prob. at least 1−
(

0.4

d3
+ δ̄

)
,

εt+1,k ≤ εt,k + 55

√
d1

q
ε
3/2
t,k otherwise. (51b)

Let πt :=
∑d3
k=1 sin2 θt,k. From Step (ii), we have

s̄t,k
i.i.d∼ CN (0, Ir) for each k ∈ [d3] which together

with [6, Lemma 2.13] gives

E[πt] =

d3∑
k=1

E[sin2 θt,k] =

d3∑
k=1

εt,k
r

=
εt
r
. (52)

where the expectation is with respect to the entries of s̄t,k
that generate the data, and the last equality follows from
(32).

(v) We now put together the theory derived in Steps (i)–(iv)
to demonstrate the expected decrease in εt over a single
iteration. Taking a union bound across all d3 blocks in
(51), we obtain

εt+1 =

d3∑
k=1

εt+1,k

≤
d3∑
k=1

εt,k − 0.32
q

d1

d3∑
k=1

sin2 θt,k + 55

√
d1

q

d3∑
k=1

ε
3/2
t,k

≤
d3∑
k=1

εt,k − 0.32
q

d1

d3∑
k=1

sin2 θt,k + 55

√
d1

q

(
d3∑
k=1

εt,k

)3/2

= εt − 0.32
q

d1
πt + 55

√
d1

q
ε
3/2
t

with probability at least 0.6 − d3δ̄ while εt+1 ≤ εt +

55
√

d1
q ε

3/2
t otherwise. Taking the expectation with re-

spect to the randomness of the data and using (52), we
obtain

E[εt+1 | εt] ≤ εt − (0.32)(0.6− d3δ̄)
q

d1r
εt + 55

√
d1

q
ε
3/2
t

≤
(

1− 0.16(0.6− d3δ̄)
q

d1r

)
εt.

Here, the last inequality follows since

55

√
d1

q
ε
1/2
t ≤ 55

√
d1

q
(0.0029)(0.6− d3δ̄)

q3/2

d
3/2
1 r

≤ (0.16)(0.6− d3δ̄)
q

d1r
,

where the second inequality uses (35b).

APPENDIX I
EXPERIMENT HYPERPARAMETERS

For the algorithms listed in Section V, we used the following
grids of values for the parameter search:
• TeCPSGD grids: rank = [1, 5, 10, 15, 20, 25, 30, 50],
λ = [10−5, 10−4, 10−3, 10−2, 0.1, 0.5, 1], step size =
[1, 10, 102, 103, 104, 105, 106].

• OLSTEC grids: rank = [1, 5, 10, 15, 20, 25, 30, 50],
λ = [10−5, 10−4, 10−3, 10−2, 0.1, 0.5, 1],
µ = [10−8, 10−5, 10−4, 10−3, 10−2, 0.1, 1].

• STC grid: multi-ranks (r1, r2, r3) where each ri ranges
from [1, 5, 10, 15, 20, 25, 30].

• TCTF grid: tubal rank ranging from
[1, 5, 7, 10, 15, 20, 25, 30].
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