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ABSTRACT
An accumulator is a cryptographic primitive that allows a prover
to succinctly commit to a set of values while being able to provide
proofs of (non-)membership. A batch proof is an accumulator proof
that can be used to prove (non-)membership of multiple values
simultaneously.

In this work, we present a zero-knowledge batch proof with
constant proof size and constant veri�cation in the Bilinear Pairings
(BP) setting. Our scheme is 16⇥ to 42⇥ faster than state-of-the-art
SNARK-based zero-knowledge batch proofs in the RSA setting.
Additionally, we propose protocols that allow a prover to aggregate
multiple individual non-membership proofs, in the BP setting, into a
single batch proof of constant size. Our construction for aggregation
satis�es a strong soundness de�nition—one where the accumulator
value can be chosen arbitrarily.

We evaluate our techniques and systematically compare them
with RSA-based alternatives. Our evaluation results showcase sev-
eral scenarios for which BP accumulators are clearly preferable and
can serve as a guideline when choosing between the two types of
accumulators.
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• Security and privacy!Cryptography; • Theory of computa-
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1 INTRODUCTION
An accumulator is an authenticated data structure for a set of el-
ements. It allows a prover to provide a succinct binding digest to
a set of elements and to generate a short proof of membership or
non-membership for any element in the accumulator domain. A ver-
i�er can e�ciently check the proof of (non-)membership using the
digest without requiring access to the entire set. Accumulators have
found numerous applications including timestamping [8], fail-stop
signature schemes [6], anonymous credentials [2, 4, 15, 16], cloud
storage [48, 57] and more recently, stateless and privacy-preserving
cryptocurrencies [10, 21, 35].

Batching and aggregation. In traditional applications, accumu-
lators have been used in a setting where the prover had to pro-
vide (non-)membership proofs for a single element at a time. How-
ever, in emerging applications, such as cryptocurrencies, a prover
must simultaneously prove (non-)membership of multiple elements.
Naively, the prover could include individual proofs for each element,
but this imposes high bandwidth usage and computational cost on
the veri�er. A better approach is a batch proof, that is, a succinct
proof for multiple elements, which can be used to e�ciently and
simultaneously prove (non-)membership of multiple elements. For
example, in UTXO-based stateless blockchains [10, 21], all trans-
actions are accompanied by a proof of membership in the UTXO
set. If a block proposer naively includes all individual proofs for
validation (instead of a single batch proof), the size of the blocks
transmitted across the network increases along with the computa-
tional overhead on the veri�ers.

Let - be the set of elements in an accumulator. A batch member-
ship proof for a set of elements � ✓ - can be computed: (1) by using
the trapdoor (e.g., factors of the modulus in the RSA setting), or (2)
from scratch using all the elements in - , or (3) by aggregating pre-
viously computed individual proofs of elements in � . Unfortunately,
computing the batch proof using the trapdoor is impractical as it
requires a trusted accumulator manager to hold the trapdoor. Fur-
thermore, if the trapdoor is compromised, an adversary can forge
proofs at-will. Computing the batch proof using the entire set is also
impractical in a distributed setting, as nodes may not have access
to the entire set or the trapdoor or a trusted accumulator manager.
Moreover, updates to the accumulator arrive in batches (e.g., batch
of transactions in a block). In comparison with other approaches,
computing the batch proof by aggregating individual proofs is use-
ful and relevant in the distributed setting as it does not require the
trapdoor or the entire set. This brings us to the �rst question: Is it
possible to e�ciently aggregate individual (non-)membership proofs?
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Zero-knowledge proofs. Proofs of (non-)membership for accu-
mulators are often required in applications where privacy is critical.
As an example, consider the application of anonymous credentials
for authentication where valid (i.e., non-revoked) credentials are
stored in an accumulator. When users wish to prove something
about their credential embedded attributes, they also need to prove
that their credential is valid via a proof of membership. Such proofs
are usually done in a zero-knowledge (ZK) fashion in order to
guarantee unlinkability between proving sessions and speci�c user
credentials. More concretely, let G be a user credential accumulated
in �. The user will compute a commitment 2 = Commit(G), and
prove, in zero-knowledge, membership of the committed value G .
However, being able to simultaneously prove (non-)membership of
a set of elements, � , is an important property in scenarios where
a user/organization controls multiple credentials. Additionally, a
prover may also need to argue that this set � is of at least some size
3 while hiding � . For instance an organization holding |� | � 3 valid
credentials might want to prove in ZK that it can cast up to 3 votes.
Such questions become even more relevant in recently developed
decentralized identity systems [1, 30]. This brings us to a second
question: Is it possible to e�ciently prove knowledge of a set � that is
a subset of/disjoint from X, without revealing �? And reveal a lower
bound of |� |, if needed?
Batching, aggregation, and ZK in RSA accumulators. One of
the most popular accumulator instantiations is the RSA accumula-
tor [8, 16, 32]. Given a set- of prime numbers (G1, . . . , G=), one can
de�ne the accumulator �- as the RSA group element 6

Œ
G8 , and a

membership proofF of ~ 2 - as the accumulator of - \ {~}, which
can be veri�ed by checking whetherF~ equals�- . Boneh et al. [10]
de�ned batch proofs for the RSA accumulator and also provided
aggregation algorithms for both membership and non-membership
RSA proofs. The resulting batch proofs are non-interactive and of
constant size. They also present a Proof-of-Exponentiation protocol
(PoE) to concretely speed up batch veri�cation by reducing the
number of group operations from $ ( |� |) to a constant. Without
PoE, the veri�er would need to perform a large exponentiation that
grows with the number of elements in the proof. On the ZK front,
Ozdemir et al., introduced improved SNARK-friendly techniques
to batch prove (non-)membership in the RSA setting [39]. Subse-
quently, Campanelli et al. adopted a “hybrid” approach where they
prove the batch membership without SNARKs and prove that ele-
ments of the batch are from the prime domain using SNARKs [18].
However, their accumulator does not support both membership
and non-membership simultaneously.

While RSA accumulators have been used in many applications,
they do present some crucial limitations:
• First, RSA group elements are large and this a�ects veri�cation
time and proof sizes.

• Second, they only support accumulation of elements that reside
in a prime domain. Thus, they cannot be directly used for the
accumulation of arbitrary elements. 1

These problems are fundamental and limit the use of RSA accumu-
lators in the batch setting regardless of the privacy concerns.

1While there exist techniques to map arbitrary elements to primes (i.e., hash to
primes [10]), such mappings can harm the soundness of the accumulator if not carefully
implemented during veri�cation, especially if the mappings are not 1-1.

The case for bilinear accumulators. As opposed to RSA accu-
mulators, bilinear-pairing accumulators (BP) [38, 57] have much
smaller proofs and faster exponentiations. Moreover, BP accumula-
tors can support the accumulation of arbitrary elements, making
them directly applicable to a broader set of applications. Given a set
- of arbitrary numbers (G1, . . . , G=), the accumulator� is:6

Œ(B+G8 ) ,
where 6 is a prime order group generator and B is a secret trapdoor.
The membership proof F of ~ 2 - is the accumulator of - \ {~},
which can be veri�ed by using the �- and the pairing operator.
As highlighted above, we are interested in accumulators for the
distributed setting, i.e., where nobody can have access to the secret
trapdoor B or the accumulated set - . Existing batching approaches
in bilinear setting are only secure under a weak soundness de�ni-
tion [19, 26, 44] (with [44] additionally missing security proof), or
require large public parameters [57]. Moreover, to the best of our
knowledge, no prior work allows for e�cient aggregation of non-
membership proofs or e�cient zero-knowledge (non-)membership
proofs in the batch setting for trapdoorless accumulators (no accu-
mulator operation except the setup requires the trapdoor, and the
trapdoor is destroyed after setup if used). This is the main focus of
our work.

Contributions. In the distributed setting, we make the following
contributions to trapdoorless BP accumulators:

(1) We formally prove soundness of batch membership and non-
membership proofs for the Nguyen [38] accumulator under
the Uber assumption [7] (§4). Our proof holds for a stronger
de�nition of soundness than those considered in prior works,
since we do not assume that the accumulator is well-formed
and we allow the adversary to pick the accumulator value (Def-
inition 3.2). We remark that this strong de�nition is crucial for
many modern applications of accumulators, especially in the
distributed/blockchain setting, as it is not always realistic to
assume that the accumulator value is well-formed.

(2) We design the �rst e�cient ZK scheme that can prove batch
(non-)membership of BP accumulator using the knowledge-of-
exponent assumption (§7). Moreover, we show how to addi-
tionally reveal a lower bound on the size of the batch witness
without revealing the elements of the batch proof. Asymptoti-
cally, our proof size is constant, the veri�cation cost is constant,
and the prover is$ (3), where 3 is the size of the batched subset.

(3) We propose a new algorithm to aggregate individual non-mem-
bership proofs into a single constant sized proof (§5) and pro-
vide a constant-time algorithm to update the extended Eu-
clidean based individual non-membership proofs (§6).

(4) We perform an experimental evaluation and comparison of the
RSA and BP accumulators in both ZK and non-ZK setting (§9).
Concretely, we observe that in the ZK setting, both the prover
and the veri�er is at least 16⇥ and 7⇥ faster than RSA based
baseline, respectively.
In the non-ZK setting, we benchmark the batching and aggre-
gation of accumulator proofs. For the �rst time, we explicitly
take the mapping cost (from arbitrary domain to accumula-
tor domain) into account. We observe that membership and
non-membership proofs in BP accumulators are 2.5⇥ to 5⇥
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smaller and 3.5⇥ smaller than the RSA accumulators, respec-
tively. Moreover, veri�cation of aggregated BP accumulator
proofs is on an average 4⇥ faster than the RSA accumulators.

(5) Finally, in §8, we propose a PoE protocol in Elliptic Curve (EC)
groups that help us speed up batch veri�cation. Our PoE can
prove exponentiation of an arbitrary group element and it con-
cretely saves one exponentiation for the prover when compared
to concurrent works [23, 44]. We use our PoE to verify expo-
nentiation of a group element by ✓-degree polynomial without
having to perform $ (✓) group exponentiations, only $ (✓) op-
erations in the �eld.

Implications of our results and evaluations.As indicated above,
batch membership proofs in BP accumulators, clearly outperform
their RSA counterparts in the size of the proofs (2.5⇥ to 5⇥). This
makes our protocols very appealing to applications where commu-
nication cost is critical.

An example of such an application is the extension of ✓-bit
Byzantine agreement (BA) and broadcast protocols (BB) [37] where
bilinear-accumulators are used to obtain state-of-the-art communi-
cation costs for ✓-bit BA/BB. Our batching techniques can improve
their so called: “distribute phase” by batching the proofs sent be-
tween the participants which would result in a constant size proof
and signi�cantly reduce their communication costs.

In the ZK setting, the advantages of BP accumulators are appar-
ent in both prover and veri�cation costs. In decentralized identity
systems with privacy, issuers sign the users attributes/identity and
these signatures (aka the credential) are kept in an accumulator.
Later, users should be able to perform batch proofs of (non-)mem-
bership for their stored credentials. Typically, the underlying signa-
ture schemes output integers (dlog, RSA-based schemes) or group
elements that can be trivially mapped to integers (ECC schemes).
Thus, one can immediately utilize a BP accumulator. If an RSA ac-
cumulator is used to hold the credentials, a Hprime function (maps
to prime) needs to be applied to each element individually and a ZK
proof of primality is required. Ozdemir et al. [39] show how the use
of Pocklington certi�cates reduce the cost of proving primality in
ZK, but it only reduces the number of Miller-Rabin primality tests.
This still results in non-constant veri�cation time. This hashing
operation, along with a primality test, needs to also be included in
the ZK proof. This makes the computation of the ZK proof much
more complex (e.g., if one uses zk-SNARKs or other specialized ZK
proofs for non-algebraic statements [3]).

Limitations. While both BP and RSA accumulators require a
trusted setup phase to compute the public parameters, the size
of BP parameters is signi�cant: 18 MiB for 217 elements (although
not necessarily needed for veri�cation). These parameters grow
even more (3⇥) in our ZK setting due to the use of the knowledge-
of-exponent assumption. Finally, it should be noted that in BP
accumulators (as opposed to RSA), it is unknown how to add or
generate proofs of (non-)membership without the knowledge of
the entire accumulated set - .

2 RELATEDWORK
Based on the use of trapdoors for accumulator operations, accumu-
lators can be: trapdoor-based or trapdoorless. In a trapdoor-based

accumulator, a trusted entity, called the accumulator manager, holds
some secret trapdoor information, which allows the entity to e�-
ciently perform accumulator operations. A trapdoorless accumulator
on the other hand, operates without the trapdoor and if a trapdoor
is used during setup, it is later destroyed.

We classify prior works into three broad categories: (1) accumu-
lators based on hash functions, (2) accumulators in hidden-order
groups, and (3) accumulators in known-order groups.

Hash-based. Accumulators built based on Merkle tree [5, 34] or
Bloom-�lters [56] do not support batching, aggregation, and ZK
proof of batch (non-)membership without general purpose tools
such as SNARKs, unlike the techniques proposed in this work.

Hidden-order groups. In the single-proof setting, Camenisch and
Lysyanskaya [16] proposed the �rst dynamic accumulator (sup-
ports both set di�erence and set union without requiring to fully
recompute the accumulator from scratch) secure under strong RSA
assumption based on prior accumulator constructions [6, 8]. How-
ever, their construction is not in the trapdoorless setting as the trap-
door is used to delete elements from the accumulators. Li et al. [32]
proposed the �rst universal accumulator (supports both member-
ship and non-membership proofs) by generalizing the Camenisch
and Lysyanskaya accumulators [16] to support non-membership
proofs under the strong RSA assumption. They also provided e�-
cient algorithms to update non-membership proofs on changes to
the accumulated set.

Boneh et al. [10] support batching and aggregation of member-
ship and non-membership proofs in the distributed and trapdoorless
setting. They also leverage their contributions to realize a state-
less blockchain [10, 21] in the UTXO setting. However, RSA based
constructions have larger proof size and veri�cation cost when
compared to the BP-based constructions.

Known-order groups. In the single-proof setting, Nguyen pro-
posed the �rst accumulator [38] using bilinear-maps and based on
the C-strong bilinear Di�e-Hellman assumption. In a later work,
Damgård et al. [24] and Au et al. [4] extended the accumulator con-
struction by Nguyen to support constant-sized non-membership
proof for a single element. This non-membership proof scheme
relies on Polynomial Remainder Theorem (PRT) to prove non-
membership [55]. However, this construction does not extend to a
constant-sized batch non-membership proofs or consider e�cient
aggregation of non-membership proofs. In our work, we study
constant-sized batch proofs and present aggregation techniques
for the greatest common divisor (GCD) based non-membership
construction, rather than the PRT-based.

Thakur [44] propose batching techniques for BP accumulators
(for weak soundness and without rigorous analysis). In their latest
version (Sept, 2021), they also propose two PoE protocols. However,
one of the PoE approaches assumes that it is possible to exponen-
tiate an arbitrary base to the trapdoor (which is only feasible in
the trapdoor-based setting). Connolly et al. [23] also propose a PoE
protocol based on [44], under a di�erent assumption (q-co-GSDH).
Compared to [44] and [23], our PoE is concretely one exponenti-
ation fewer under the adaptive variant of q-SDH. Finally, neither
[44] nor [23] consider aggregation or ZK batch proofs.
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Prior works [19, 23, 26, 41] de�ne a batch proof for multiple
elements. However, these works either: (1) assume in their sound-
ness de�nition that the accumulator is well-formed and honestly
computed or (2) does not consider aggregation [26] or (3) rely on
an accumulator manager [49]. On the other hand, our batch proofs
are sound even for an adversarially chosen accumulator value and
our techniques support aggregation in the trapdoorless setting.

Camenisch et al. [15] and Zhang et al. [57] proposed BP accumu-
lators that are algebraically quite di�erent from [38]. These schemes
have parameters that are equal to the size of the accumulator do-
main or more.

Vector Commitment (VC). A VC is a primitive closely related
to accumulators, that provides a succinct commitment and posi-
tional binding to an ordered set of values [20]. Catalano and Fiore
proposed a technique to transform a VC into an accumulator [20].
However, this approach results in an accumulator scheme with
public parameters that are equal to the size of the accumulator
domain [20, 21, 27, 31, 47].

Tomescu et al. proposed aggregatable sub-vector commitments
in the bilinear-map setting based on Lagrange polynomials and
KZG commitments [29, 47]. Their work uses the partial fraction
decomposition technique [53] to aggregate VC proofs. We adopt
techniques to aggregate proofs in BP accumulators. Campanelli
et al. [17] de�ned incremental aggregation, i.e., aggregation of
aggregated proofs for a RSA-based VC. Although inspired by [10],
their work cannot be e�ciently directly applied to accumulators.

Zero-knowledge (ZK). There are known techniques to e�ciently
achieve ZK for a single element in the BP [4] and the RSA [9, 16]
setting. Naively, a batch ZK RSA proof corresponds to proving that
the exponent is the product of multiple distinct elements, which
results in a linear size proof. Recent work by Campanelli et al. [18]
constructs ZK proofs of batch membership for RSA using SNARKs
and get a constant size proof. Their construction can be transformed
to prove non-membership (it corresponds to membership of inter-
vals) but it cannot support both membership and non-membership
at the same time without having an accumulator manager holding
the trapdoor.

3 PRELIMINARIES
Let G1,G2,G) denote groups of prime order ? and let 61,62 be the
generators of G1 and G2, respectively. Also, let Z? be a �eld of
prime order and Z? [G] be a polynomial ring. We denote the degree
of polynomial � (G) 2 Z? [G] as deg(� ).

Bilinear pairing. A bilinear pairing is an e�ciently computable
map, 4 : G1 ⇥ G2 ! G) , satisfying the following properties:

• bilinearity: 8(%,&,0,1) 2 (G1⇥G2⇥Z? ⇥Z? ): 4 (%0,&1 ) =
4 (%0,&)1 = 4 (%,&1 )0 = 4 (%,&)01

• non-degeneracy: 4 (61,62) < 1
We denote a pairing instance bp = (?,G1,G2,G) , 4,61,62)  
BilGen(1_). When G1 = G2 = h6i, the pairing is called symmetric
and is denoted as (?,G,G) , 4,6).

Partial fraction decomposition (PFD). A rational polynomial
can be decomposed into simpler fractions [53]. Concretely, let
�(G) =

Œ
82� (G + 08 ) be a polynomial and let �0 (G) be the �rst

derivative of �(G) with respect to G . Then,
1

�(G) =
’
82�

1
�0 (�08 ) (G + 08 )

.

Polynomial remainder theorem (PRT). When a polynomial
�(G) is divided by (G + A ), the remainder is the evaluation of �(G)
at �A . Let @(G) denote the quotient polynomial [55]. Then,

�(G) = @(G) (G + A ) +�(�A ).

Bézout’s theorem (for polynomials). Given 5 (G),6(G) 2 F[G],
there exists ? (G),@(G),⌘(G) 2 F[G] such that [54]:

? (G) 5 (G) + @(G)6(G) = gcd(5 (G),6(G)) = ⌘(G)
Moreover, deg(?) < deg(6)�deg(⌘) and deg(@) < deg(5 )�deg(⌘).
Pedersen vector commitment (PVC). Given a group G1 or G2 of
prime order ? and a vector Æ2 = (20, . . . , 2C ) 2 ZC? . Let (61,62, . . . ,6C ,⌘)
2 GC+11 or GC+12 generators where log68 6 9 , 8 < 9 relationship is
unknown. In order to commit to the vector Æ2 , one has to pick A  $

Z? and compute PVC(Æ2, A ) = ⌘A6200 6
21
1 . . .62CC .

The Pedersen commitment scheme [42] (and its vector gener-
alization) is homomorphic, perfectly hiding and computationally
binding under the discrete logarithm assumption.

Zero-knowledge proofs.A ZK proof for a relationR(G ;F), where
G is the public statement andF is the witness, is a set of algorithms
(Setup, Prove, Verify) with the following syntax:

• Setup(1_,R)! pp: given the security parameter _ and the
relation, outputs parameters pp.

• Prove(pp, G,F)! c : given the parameters pp, a statement
G and a witnessF , it returns a proof c for R(G ;F).

• Verify(pp, x, c) ! 1 2 {0, 1}: given the parameters pp, the
statement G and the proof c , it accepts or rejects the proof.

Properties. A ZK proof has to be correct, sound and zero-knowledge.
Correctness means that if (G,F) 2 R, then Verify(pp, x, c) = 1
with overwhelming probability. We support knowledge soundness -
if a proof passes veri�cation, then there exists a polynomial time
algorithm (the extractor) which by interacting with the prover can
extract the witness. Finally, zero-knowledge implies that the proof
leaks nothing about the witness, i.e., there exists a simulator with
access only to the public statement which can output a valid proof.

3.1 Cryptographic accumulators
An accumulator is a cryptographic primitive that supports a suc-
cinct binding commitment to an arbitrary set of values. In this
work, we consider trapdoorless, dynamic, and universal accumula-
tors. Following the de�nitions and notation from [5] and [10], our
de�nitions refer to the batch setting, where � is a set of elements.
The traditional accumulator algorithms can be derived for � = {G}.

De�nition 3.1 (Trapdoorless Accumulator). Let D be the domain
of the accumulated elements, and consider set - 2 D|- | and set
� 2 D|� | (where each element from sets - and � is in D). An
accumulator consists of the following ��� algorithms:

(1) (pp, D)  Acc.Setup(1_ ) : Takes security parameter _, returns
the public parameters pp and D of the accumulated set. A trusted
entity may use a secret trapdoor to generate pp. The trapdoor
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is then destroyed by the setup. In the rest of the document, we
assume that pp = (pp, D) .

(2) �-  Acc.Commitpp (- = {G1, . . . ,G |- | } ) : Takes set- 2 D|- | ,
outputs the accumulator digest �- .

(3) �0-  Acc.Addpp (�- ,- , � ) : Adds set � 2 D|� | , � \ - = ;, to
the accumulator and returns the new digest �0- .

(4) �0-  Acc.Delpp (�- ,- , � ) : Removes set � , � ✓ - , from the
accumulator and returns the new accumulator value, �0- .

(5) c�  Acc.MemProvepp (- , � ) : Generates a membership proof
for set � , � ✓ - .

(6) {0, 1}  Acc.MemVerifypp (�- , � ,c� ) : Returns 1 if the member-
ship proof c� , for the set � , � ✓ - , is valid against the accumulator
digest, �- .

(7) c �  Acc.NonMemProvepp (- , � ) : Generates non-membership
proof for the set � , � \- = ;, disjoint from the accumulated set.

(8) {0, 1}  Acc.NonMemVerifypp (�- , � ,c � ) : Returns 1 if the non-
membership proof c � , of the set � , � \- = ;, is valid against the
accumulator digest, �- .

(9) c�  Acc.AggMempp (�- , � , {c1, · · · ,c |� | } ) : Combines individ-
ual membership proofs {c1, · · · ,c |� | } into a single aggregated
proof.

(10) c �  Acc.AggNonMempp (�- , � , {c1, · · · ,c |� | } ) : Combines in-
dividual non-membership proofs {c1, · · · ,c |� | } into a single
aggregated proof.
The following algorithms update a (non-)membership proof of a

single element after changes to the accumulated set.
(11) c 0~  Acc.MemProofUpdOnAddpp (�- ,- , ~,c~, � ) : Updates the

membership proof c~ of element ~ on addition of set � (~ 8
� ,- = - [ � ) to the accumulator.

(12) c 0~  Acc.MemProofUpdOnDelpp (�- ,�0- ,- , � , ~,c~ ) : Updates
the membership proof c~ of element ~ on deletion of set � ,
- = - \ � , from the accumulator.

(13) c 0~  Acc.NonMemProofUpdOnAddpp (�- ,- , ~,c~, � ) : Updates
the non-membership proof c~ of element ~ disjoint from set -
on addition of set � (~ 8 � ,- = - [ � ) to the accumulator.

(14) c 0~  Acc.NonMemProofUpdOnDelpp (�- ,�0- ,- , � , ~,c~ ) : Up-
dates the non-membership proofc~ of an element ~ disjoint from
set - on deletion of set � (- = - \ � ) from the accumulator.

3.2 Correctness and soundness
The basic security property for accumulators is soundness (some-
times called undeniability [33]) which states that an adversary can-
not construct an accumulator � and a set � for which both c� and
c � are simultaneously valid. Below we state strong soundness (also
found in [10]), which allows the adversary to create the accumulator
without revealing the accumulated set - to the challenger.

De�nition 3.2 (Soundness). For any ��� adversary A, it holds:

Pr

26666664

pp Acc.Setup(1_)
(�, � , c� , c � )  A(pp)

Acc.MemVerifypp (�, � , c� ) = 1 ^
Acc.NonMemVerifypp (�, � , c � ) = 1

37777775
= negl(_)

Since no trapdoor is needed for algorithmsAcc.Addpp,Acc.Delpp,
Acc.MemProvepp, Acc.NonMemProvepp, A can adaptively update
the accumulator and construct honest proofs during the game be-
fore coming up with the accumulator value � and proofs c� , c � .

We formally de�ne correctness of (non-)membership proofs, the
correctness of aggregation, and present the accumulator soundness
proof under a weak de�nition in the extended version of our paper.
This weak soundness de�nition assumes that the accumulator value
is honestly generated for the set- . Our construction is secure under
this weak de�nition of soundness using the C-SBDH assumption.
The weak soundness de�nition is useful if one wants to avoid the
Uber assumption [7] (under which our protocols satisfy strong
soundness).

3.3 Accumulator based on bilinear-maps
In this subsection, we review the standard accumulator based on
bilinear-pairing (BP) introduced by Nguyen [38] and improved by
[24, 40]. Here, we present the classic BP construction that operates
on individual proofs. In §4 and §5 we show how to batch and ag-
gregate proofs in the BP setting, and in §6 we present a technique
to e�ciently update non-membership proofs.

Let - be the accumulator set and - (B ) =
Œ

G 2- (B + G ) be the
accumulator polynomial.
pp Acc.Setup(1_ ) : Let bp = (?,G1,G2,G) , 4,61,62 ) be the out-
put of BilGen(1_ ) . Assume that B is a trapdoor randomly sampled
from Z⇤? . The public parameters are pp = (bp, {6B81 ,6B

8

2 | 0  8 
C }, D0 = Z? ) where C is the maximum capacity of the accumulator.
�-  Acc.Commitpp (- = {G1, . . . ,G |- | } ) : The accumulator di-

gest of the set - = {G1, · · · ,G= }, is �- = 6- (B )
1 , where the poly-

nomial - (B ) = Œ
G 2- (B + G ) .

�0-  Acc.Addpp (�- ,- , � ) : A set of elements � , � \ - = ;, can
be added to the accumulator and the digest can be updated as:
�0- = 6

Œ
G 2-[� (B+G )

1 = �
Œ

G8 2� (B+G8 )
- .

�0-  Acc.Delpp (�- ,- , � ) : A set of elements � ✓ - can be deleted
from the accumulator and the digest can be updated as: �0- =

6
Œ

G 2- \� (B+G )
1 = �

1/ŒG8 2� (B+G8 )
- .

c~  Acc.MemProvepp (- , ~) : The proof of membership of an el-

ement ~ can be computed as c~ = 6
Œ

G 2- \{~} (B+G )
1 , where - is the

accumulated set.
{0, 1}  Acc.MemVerifypp (�- , ~,c~ ) : The membership proof of
an element ~ 2 - in the accumulator can be veri�ed by performing
the following pairing check: 4 (c~,6

~
2 6

B
2 ) = 4 (�- ,62 ) .

c~ = (U,6V (B )
1 )  Acc.NonMemProvepp (- , ~) : The non-memb-

ership proof of {~} \ - = ; involves computing the Bézout co-
e�cients U (B ) and V (B ) s.t. U (B ) · - (B ) + V (B ) · (B + ~) = 1. As
the monomial (B + ~) is of degree one, the polynomial U (B ) is
in fact a constant! Thus, the c~ = (U,6V (B )

1 ) 2 (Z? ,G1 ) is the
non-membership proof of element ~.
{0, 1}  Acc.NonMemVerifypp (�- , ~,c~ ) : The non-membership

proof can be veri�ed by checking 4 (�- ,6U2 ) · 4 (6
V (B )
1 ,6B26

~
2 ) =

4 (61,62 ) , where c~ = (U,6V (B )
2 ) .

c 0~  Acc.MemProofUpdOnAddpp (�- ,- , ~,c~, � ) : Themember-
ship proof of an element c~ , can be updated on addition of set � , to
the accumulated set, - = - [ � , by computing, c 0~ = c

Œ
I2� (B+I)

~ .
When � = {I}, c 0~ = �- · cI�~

~ is the updated proof.
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c 0~  Acc.MemProofUpdOnDelpp (�- ,�0- ,- , � , ~,c~ ) : Themem-
bership proof c~ can be updated on deletion of set � from the ac-

cumulated set, - = - \ � , by computing, c 0~ = c
1Œ

I2� (B+I)
~ . When

� = {I}, c 0~ = ( c~
cI

)
1

I�~ is the updated proof.

Non-membership in BP accumulator. There are two ways to
prove non-membership in the BP acccumulator: (1) based on the
PRT [4, 24] and (2) based on GCD [40]. The two methods are equiv-
alent, in that they both require$ ( |- |) �eld operations. In this work,
we focus on the GCD-based method because it allows for e�cient
batching and aggregation as we show in §4.2 and §5.2. Additionally,
we present a new algorithm to update individual non-membership
proofs §6.

BP accumulator soundness. The soundness of the BP construc-
tion relies on the C-sBDH assumption.

4 BATCHING BP ACCUMULATOR PROOFS
4.1 Membership
Recall that the membership proof of a single element ~ 2 - is
de�ned as c~ = 6

Œ
G 2- \~ (B+G )

1 and the membership proof of ~ can
be veri�ed by checking 4 (c~,6 (B+~)2 ) = 4 (�- ,62), where �- is the
digest of the accumulator.

Batch proof. A batch membership proof is a single succinct proof
for a set of elements in the accumulator. A batch proof contains
a polynomial in the exponent that includes every element in the
accumulator except the monomials terms that correspond to values
in the set � .

c�  Acc.MemProvepp (- , � ) : A batch membership proof for set � ✓ -

is computed as follows: c� = 6
Œ

G8 2- \� (B+G8 )
1

{0, 1}  Acc.MemVerifypp (�- , � ,c� ) : The batch proof can be veri�ed

by checking 4 (c� ,6
Œ

G8 2� (B+G8 )
2 ) = 4 (�- ,62 ) .

Asymptotics. The batch membership proof for � consists only of
one element inG1 (as opposed to |� | ·G1 elements, if proved individ-
ually). Verifying a batch proof takes $ ( |� | log2 |� |) �eld operations
to compute the coe�cients of polynomial � (B) = Œ

G8 2� (B + G8 ) us-
ing FFT, one |� |-sized multi-exponentiation in G2 to compute 6� (B )2
and 2 pairings. However, verifying |� | individual proofs requires |� |
individual exponentiations (cannot use fast multi-exponentiations),
and 2|� | pairings.

4.2 Non-membership
A non-membership proof of an element ~ 8 - leverages the fact
that gcd(- (B), (B +~)) = 1. Thus the Bézout coe�cients U and V (B)
satisfy: U- (B) + V (B) (B + ~) = 1. We generalize this observation to
prove the non-membership of set � \ - = ;.
Batch proof. We de�ne a batch non-membership proof as a single
succinct proof for a set of elements disjoint from the accumulator.
Observe that there are no common roots between polynomials- (B)
and � (B) = Œ

~8 2� (B + ~8 ), therefore gcd(- (B), � (B)) = 1. Moreover,
the Bézout coe�cients U (B) and V (B) of - (B), � (B) are non-constant
polynomials.

c �  Acc.NonMemProvepp (- , � ) : A batch non-membership proof for

a set � , where � \ - = ;, is c � = (6U (B )
2 ,6V (B )

1 ) 2 (G2,G1 ) such that
U (B ) · - (B ) + V (B ) · Œ~8 2� (B + ~8 ) = 1.
{0, 1}  Acc.NonMemVerifypp (�- , � ,c � ) : The batch proof can be ver-

i�ed by checking 4 (�- ,6U (B )
2 ) · 4 (6V (B )

1 ,6
Œ

~8 2� (B+~8 )
2 ) = 4 (61,62 ) ,

where c � = (62U (B ) ,61V (B ) ) .

Asymptotics. The batch non-membership proof consists of only
one element from G1 and one element from G2. Verifying a batch
proof takes $ ( |� | log2 |� |) �eld operations to compute the coe�-
cients of polynomial � (B) using FFT, one |� |-sized multi-expone-
ntiation in G2 to compute 6� (B )2 and 2 pairings. However, verifying
|� | individual proofs requires |� | individual exponentiations (cannot
use fast multi-exponentiations) and 2|� | pairings. If 4 (61,62) is not
precomputed, then batch veri�cation and individual veri�cation
requires 3 pairings and 2|� | + 1 pairings, respectively.

4.3 Soundness of batching
T������ 4.1. Batch membership and non-membership proofs

c� , c � , are sound, by De�nition 3.2, under the adaptive Uber assump-
tion in the AGM.

P����. Deferred to the extended version of our paper. ⇤

5 AGGREGATION
5.1 Membership
The BP accumulator based on Nguyen et al. resembles the KZG poly-
nomial commitments [29, 38]. As demonstrated in prior works [14,
25, 47], KZG polynomial commitments can be aggregated using the
PFD [53]. We use these techniques to aggregate proofs in the BP
accumulator.

c�  Acc.AggMempp (�- , � , {c1, · · · , c |� | }): Let � ✓ - be the set
of elements to be aggregated, - (B) =

Œ
G2- (B + G) be the accu-

mulator polynomial of - , � (B) = Œ
G8 2� (B + G8 ) be the accumulator

polynomial of � , and -8 (B) =
Œ

G2-\{G8 } (B + G). The goal is to com-
pute the polynomial. (B) = Œ

G8 2-\� (B +G8 ), which excludes all the
monomials that correspond to values in the set � . Using PFD [53]:

. (B ) = - (B ) · 1
� (B ) = - (B )

’
G8 2�

1
� 0 (�G8 ) (B + G8 )

=
’
G8 2�

1
� 0 (�G8 )

· -8 (B )

Thus, the aggregated proof, c� = 61. (B ) =
Œ

G8 2� c
28
8 , where 28 =

1
� 0 (�G8 ) , �

0 is the �rst derivative of � w.r.t B , and c8 is the individual
membership proof of element 8 .

Correctness and soundness. We can see that as long as each
individual c8 ’s are correct, c� satis�es aggregation correctness. Note
that Thm. 4.1, is su�cient to argue the soundness of aggregation
(De�nition 3.2) since the resulting proof after aggregation is a batch
proof and thus can be veri�ed by runningMemVerify.

Asymptotics. In a �eld with su�ciently many roots of unity, FFT
based polynomial interpolation and multi-point evaluation tech-
niques can be used to compute the polynomial � (B) and evaluate
� 0 (B) at all G8 ’s in $ ( |� | log2 |� |) �eld operations. Asymptotically, it
takes$ ( |� | log2 |� |) operations in Z? (to compute all the 28 ’s) and |� |
sized multi-exponentiation in G1 to compute the aggregated proof.
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The complexity of verifying an aggregated proof is the same
as verifying a batch proof. Note that veri�cation requires a single
multi-exponentiation of size |� | in G2 to compute 62� (B ) . However,
using the PoE protocol, we can outsource the exponentiation cost
to an untrusted prover. We discuss this optimization in §8.

5.2 Non-membership
In this section, we give an algorithm to combine multiple individual
non-membership proofs into a single non-membership proof.

c �  Acc.AggNonMempp (�- , � , {c1, · · · , c |� | }): Let � be a set of

elements disjoint from the accumulated set - , c8 = (U8 ,6V8 (B )1 ) 2
Z? ⇥G1 be the non-membership proof of the element~8 2 � ,- (B) =Œ

G2- (B + G) be the accumulator polynomial, � (B) = Œ
~8 2� (B +~8 )

be the accumulator polynomial of � , and .8 (B) = � (B )
(B+~8 ) .

Observe that gcd(.1 (B),.2 (B), . . . ,.|� | (B)) = 1. By generalization
of Bézout’s identity for polynomials, 9 polynomials 28 (B), s.t.:

|� |’
8=1

28 (B) · .8 (B) = gcd(.1 (B),.2 (B), . . . ,.|� | (B)) = 1 (1)

L���� 5.1. The Bézout coe�cient polynomials, 28 (B), of Eq. 1 are
non-zero constants.

P����. Deferred to the extended version of our paper. ⇤

To compute the non-membership proof of � , we need to compute
polynomials U (B) and V (B) such that:

U (B) · - (B) + V (B) ·
÷
~8 2�

(B + ~8 ) = gcd(- (B),
÷
~8 2�

(B + ~8 )) = 1

Recall that each individual non-membership proof satis�es:

U8 · - (B) + V8 (B) · (B + ~8 ) = 1,where deg(U8 ) = 0

Multiplying by 28 ·.8 (B):U828.8 (B)- (B)+28V8 (B) (B+~8 ).8 (B) = 28.8 (B)
) U828.8 (B)- (B) + 28V8 (B)� (B) = 28.8 (B)

Summing over 8 = 1 to |� |:Õ |� |
8=1 U828.8 (B)- (B)+Õ |� |

8=1 28V8 (B)� (B) =Õ |� |
8=1 28 · .8 (B)

Using Eq. 1:
✓ Õ |� |

8=1 U828.8 (B)
◆
· - (B) +

✓ Õ |� |
8=1 28V8 (B)

◆
· � (B) = 1

Therefore,

U (B) =
|� |’
8=1

U828.8 (B) V (B) =
|� |’
8=1

28V8 (B) (2)

Thus the non-membership of set I is c � = (62U (B ) ,61V (B ) )
Correctness and soundness. We can see that as long as each
individual c8 ’s are correct, c � satis�es aggregation correctness. The
algorithm AggNonMem always outputs c � because terms 28 do
not depend on trapdoor B (Lemma 5.1), therefore exponentiation
by 28 is feasible. We remark that Thm. 4.1, is su�cient to argue
the soundness of aggregation (De�nition 3.2) since the resulting
proof after aggregation is a batch proof and thus can be veri�ed by
running NonMemVerify.

Asymptotics. The task of computing the aggregated proof can
be divided into: (1) task of computing the Bézout coe�cients 28 ’s,

Scheme RSA BP

Domain Prime Z?

Setup(1_ ) O(1) $ (C ) · (G1 + G2 )

Commit $ ( |- | ) · G $ ( |- | ) · G1 +
$ ( |- | log2 |- | ) · Z?

AggMem
$ ( |� | log |� | ) · G +
$ ( |� | log |� | ) · F

$ ( |� | ) · G1 +
$ ( |� | log2 |� | ) · Z?

MemVerify $ ( |� | ) · G 2P +$ ( |� | ) · G2 +
$ ( |� | log2 |� | ) · Z?

MemVerifyPoE
$ (1) · G +
$ ( |� | ) · F

3P + 1G1 + 1G2+
$ ( |� | log2 |� | ) · Z?

AggNonMem
$ ( |� | log |� | ) · G +
$ ( |� | log |� | ) · F

$ ( |� | ) · (G1 + G2 ) +
$ ( |� |2 log |� | ) · Z?

NonMemVerify $ ( |� | ) · G 2P +$ ( |� | ) · G2 +
$ ( |� | log2 |� | ) · Z?

NonMemVerifyPoE
$ (1) · G +
$ ( |� | ) · F

5P + 1G1 + 1G2+
$ ( |� | log2 |� | ) · Z?

Table 1: Set - denotes the entire accumulated set and � ✓ - . Let$ (. ) ·
G denotes one large exponentiation to the product of Y elements or Y
exponentiations. All exponentiations in BP can be sped up by a logarithmic
factor using multi-exponentiations.

(2) task of computing the coe�cients of each .8 (B), and (3) task of
computing (62U (B ) ,61V (B ) ).

First, the task of computing the Bézout coe�cients in Eq. 1 takes
$ ( |� | log2 |� |) �eld operations. Second, the task of computing all
.8 ’s take $ ( |� |2 log |� |) �eld operations. This is because computing
each .8 (B) costs $ ( |� | log |� |) �eld operations. Third, the task of
computing 62

Õ|� |
8=1 U828.8 (B ) and 61

Õ|� |
8=1 28V8 (B ) requires a single multi-

exponentiation of size |� | in G2 and G1, respectively. Thus, in total,
it takes$ ( |� |2 log |� |) �eld operations and multi-exponentiations of
size $ ( |� |) in G1,G2 to compute the aggregated non-membership
proof from individual proofs.

The complexity of verifying an aggregated proof is the same
as verifying a batch proof. Note that veri�cation requires a single
multi-exponentiation of size |� | in G2 to compute 62� (B ) . However,
using the PoE protocol, we can outsource the exponentiation cost
to an untrusted prover. We discuss this optimization in §8.

6 NON-MEMBERSHIP PROOF UPDATES
In this section, we describe a new protocol that allows to e�ciently
update a GCD-based non-membership proof for the BP accumula-
tor after changes (additions/deletions) to the accumulated set. Let
~ 8 - and c~ = (U,61V (B ) ) 2 Z? ⇥ G1 s.t. U- (B) + V (B) (B + ~) = 1.
c 0~  Acc.NonMemProofUpdOnAddpp (�- ,- ,~, c~, � = {I}): Re-

call that,

U- (B) + V (B) (B + ~) = 1 (3)

Since ~ < I, by Bézout’s Identity,

D (B + I) + E (B + ~) = 1, where D, E 2 Z? (4)

Goal is to �nd U 0 and V0 (B) s.t.,
U 0- 0 (B) + V0 (B) (B + ~) = 1, where - 0 (B) = - (B) (B + I) (5)
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Multiplying Eq. 3 by D (B + I): DU- (B) (B + I) +DV (B) (B + I) (B +~) =
D (B + I).
Using Eq. 4:

DU- (B) (B + I) + DV (B) (B + I) (B + ~) = 1 � E (B + ~)
(DU)- 0 (B) + (E + DV (B) (B + I)) (B + ~) = 1

From Eq. 5 we have: U 0 = DU and V0 (B) = E + DV (B) (B + I)
However, it is not possible to compute 61V

0 (B ) without the coef-
�cients of V (B) because individual proofs only contain 6V (B ) . Thus,
we simplify V0 (B)0 = E +DV (B) (B +I), replace D (B +I) as 1� E (B +~)
from Eq. 4: V0 (B) = E + V (B) (1 � E (B + ~)) =E + V (B) � EV (B) (B + ~)
= E (1 � V (B) (B + ~)) + V (B). Replace 1 � V (B) (B + ~) as U- (B) from
Eq. 3: V0 (B) = EU- (B) + V (B).

Thus, U 0 = DU , V0 (B) = EU- (B) + V (B) and c 0~ = (U 0,61V
0 (B ) ) =

(DU,�-
EU · 61V (B ) ).

To compute the updated non-membership proof,c 0~ = (U 0,61V
0 (B ) ),

we calculate constants D, E in Eq. 4 by running the extended Eu-
clidean algorithm for degree one polynomials, which takes only
$ (1) operations. We can compute the constant U 0 with one mul-
tiplication operation in Z? . Similarly, we can compute 61V

0 (B ) =
((�- )U )E · 61V (B ) with one multiplication operation in Z? , one
exponentiation operation in G1 by Z? , and one addition in G1.

c 0~  Acc.NonMemProofUpdOnDelpp (�- ,�0- ,- , � = {I},~, c~):
Recall that, U- (B)+V (B) (B+~) = 1. Since~ < I, by Bézout’s Identity,

D (B + I) + E (B + ~) = 1, where D, E 2 Z? (6)

Goal is to �nd U 0 and V0 (B) s.t.,

U 0- 0 (B) + V0 (B) (B + ~) = 1, where - 0 (B) = - (B)
(B + I) (7)

U- (B) + V (B) (B + ~) = 1) U- 0 (B) (B + I) + V (B) (B + ~) = 1

Replace (B +I) as 1�E (B+~)
D from Eq. 6: U- 0 (B)

✓
1�E (B+~)

D

◆
+V (B) (B +

~) = 1) U
D-
0 (B) +

✓
V (B) � EU

D - 0 (B)
◆
(B + ~) = 1

Thus, from Eq. 7, U 0 = U
D , V

0 (B) = V (B) � EU 0- 0 (B) and c 0~ =

(U 0,61V
0 (B ) ) =

✓
U
D ,

61V (B )

�EU 0
- 0

◆
.

To compute the updated non-membership proof,c 0~ = (U 0,61V
0 (B ) ),

we calculate constants D, E in Eq. 6 by running the extended Eu-
clidean algorithm for degree one polynomials, which takes only
$ (1) operations. We can compute the constant U 0 with one inver-
sion operation and one multiplication operation in Z? . Similarly,

we can compute 61V
0 (B ) = 61V (B )

�EU 0
- 0

with one multiplication operation

in Z? , one inversion operation, one exponentiation operation in G1
by Z? , and one addition operation in G1.

7 ZK BATCH PROOFS
We now show how our batch (non-)membership proofs in BP accu-
mulators can be made zero-knowledge. We consider the following
setting: a set - = {G1, . . . , G=} of elements is accumulated, and a
prover holds witnesses for a subset � ✓ - , where |� | = 3 . We want
to prove that � ✓ - (or � \ - = ;) while hiding the set � itself.
Additionally, we want to be able to reveal just the size of � or in

other words that it includes “at least 3 elements”. This is important
since typically a batch proof does not hide the number of batched el-
ements and this is useful in identity systems, sanctions/embargoed
lists, e-cash, etc. At the same time, we want to maintain the bene�ts
of batch proofs: (1) the veri�er cost should be constant for both
membership and non-membership proofs, and (2) the size of the
ZK batch proof should remain sublinear.

In the ZK setting, the veri�er does not hold the set � or the
proof c� (or c � ) in order to run the veri�cation algorithm. Instead,
the prover has to prove in ZK that the pairing equations in the
veri�cation algorithm hold. The prover’s witness is the set � , the
randomness A used in the commitment to � , a proof of membership
c� or a proof of non-membership c � . The inputs known to the
veri�er are the public parameters pp, a commitment to the subset
⇠� , and the accumulator value �- .

More speci�cally, the prover (that knows the polynomial � (G)
and the commitment randomness A ) has to compute ZK proofs for
the following relations:
• Rmem (pp,⇠� ,�- ;c� , A ) knowledge of c� such that membership
veri�cation holds and knowledge of randomness A

• Rnonmem (pp,⇠� ,�- ;c � , A ) knowledge of c � such that non-me-
mbership veri�cation holds and knowledge of randomness A

• If revealing the size, Rdegcheck (pp,⇠� ,3 ; � , A ) proves that the set
size |� | = 3 and the set corresponds to⇠� . A proof for this relation
is analyzed in the following tasks:
– Proving that � (G) = Œ3

8=1 (G+G8 ) = G3+5 (G), where deg(5 ) 
3 � 1 using a hiding commitment ⇠5 ,

– Proving well-formedness of ⇠5 in relation to ⇠� .
The commitment ⇠� allows the prover to later open all elements

in � (if needed) by revealing A . In the following paragraphs, we
explain in details how these proofs are constructed.

Notation. Let pp be the following public parameters:
• 61,⌘1, g, g1, g2 2 G1 and 62,⌘2, h, h1, h2 2 G2
• gs1 = [61,6B1, . . . ,6B

C

1 ] 2 GC+11 , gs2 = [62,6B2, . . . ,6B
C

2 ] 2 GC+12
• a = [602 ,60B2 , . . . ,60B

C

2 ] 2 GC+12
We view a polynomial � (G) as equivalent to its coe�cients that
form a vector, therefore for the rest of the paper, we overload the
Pedersen VC input with both vectors and polynomials.

7.1 Proving membership (Rmem)
The high level idea of the initial proof is the following: Rmem.init
essentially proves that the veri�cation equation holds for ⇠�⌘�A2
and proves knowledge of A .

Rmem.init =
⇢

(pp,⇠� 2 G2,�- 2 G1;c� 2 G1, A 2 Z? ) :
⇠� = ⌘A26

� (B )
2 ^ 4 (c� ,⇠� ) · 4 (c� ,⌘2 )�A = 4 (�- ,62 )

�

However, it still does not hide the witness c� . Using techniques
from RingCT [43], Rmem.init can be transformed into Rmem, which
proves the above statement in ZK. Speci�cally, it adds a proof that
Rmem.init veri�es for c� ,26�g1 and proves knowledge of g1, where
c1,2 is the blinded version of the batch proof c� .



Batching, Aggregation, and Zero-Knowledge Proofs in Bilinear Accumulators CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Rmem =

8>>>><
>>>>:

(pp,⇠� 2 G2,�- 2 G1;c� 2 G1, A ,g1,g2 2 Z? ) :
⇠� = ⌘A26

� (B )
2 ^ X1 = g1A ^ X2 = g2A ^

c� ,1 = 6g11 gg2 ^ c� ,2 = c�gg1 ^
4 (c� ,2,⇠� )
4 (�- ,62 ) = 4 (g,⇠� )g1 · 4 (g,⌘2 )�X1 · 4 (c� ,2,⌘2 )A

9>>>>=
>>>>;

Rmem is instantiated with a generalized version of Schnorr’s
protocol for knowledge of DL as A , g1 are scalars.

Protocol for relation Rmem. The interactive version of the pro-
tocol is as follows:

• Prover
– Picks g1,g2  Z?
– Computes c� ,1 = 6g11 gg2 and c� ,2 = c�gg1

– Picks AA , Ag1 , Ag2 , AX1 , AX2 2 Z?
– Sends:
⇤ c� ,1,c� ,2

⇤ '1 = 6
Ag1
1 gAg2 , '2 = c� ,1AA 6

�AX1
1 g�AX2

⇤ '3 = 4 (g,⇠� )Ag1 4 (g,⌘2 )�AX1 4 (c� ,2,⌘2 )AA
• Veri�er sends 2  Z?
• Prover sends:

– BA = AA + 2A
– Bg1 = Ag1 + 2g1, Bg2 = Ag2 + 2g2
– BX1 = AX1 + 2X1, BX2 = AX2 + 2X2

• Veri�er checks:
– '1 = c�2� ,1 6

Bg1
1 gBg2

– '2 = cBA
� ,16
�BX1
1 g�BX2

– '3 · (
4 (c� ,2,⇠� )
4 (�- ,62 ) )

2 = 4 (g,⇠� )Bg1 4 (g,⌘2 )�BX1 4 (c� ,2,⌘2 )BA

Correctness, soundness, and ZK. We defer the security argu-
ments to the extended version of our paper.

Asymptotics. The instantiation of Rmem consists of 5 group ele-
ments and 5 �eld elements, and has constant prover and veri�er.

7.2 Proving non-membership (Rnonmem)
For non-membership, Rmem.init is replaced by

Rnonmem.init =

8>>>><
>>>>:

(pp,⇠� 2 G2,�- 2 G1;
(�,⌫) 2 G2 ⇥ G1, A 2 Z? ) :

⇠� = ⌘A26
� (B )
2 ^

4 (�- ,�) · 4 (⌫,⇠� ) · 4 (⌫,⌘)�A = 4 (61,62 )

9>>>>=
>>>>;

Similarly,Rnonmem.init still does not hide thewitness c� . Thus, us-
ing techniques from RingCT [43], Rnonmem.init can be transformed
into Rnonmem, which proves the above statement in ZK.

Rnonmem =

8>>>>>>>>><
>>>>>>>>>:

(pp,⇠� 2 G2,�- 2 G1; (�,⌫) 2 G2 ⇥ G1,
A ,g1,g3,g4 2 Z? ) :

⇠� = ⌘A26
� (B )
2 ^ X3 = g3A ^ X4 = g4A ^

�2 = �hg1 ^
⌫1 = 6g31 gg4 ^ ⌫2 = ⌫gg3 ^

4 (�- ,�2 ) ·4 (⌫2,⇠� )
4 (61,62 ) =

4 (�- , h)g1 · 4 (g,⇠� )g3 ·
4 (g,⌘2 )�X3 · 4 (⌫2,⌘2 )A

9>>>>>>>>>=
>>>>>>>>>;

The rest of the protocol remains the same. We defer the security
arguments to the extended version of our paper.

Protocol for relation Rnonmem. The interactive version of the
protocol is as follows:

• Prover
– Picks g1,g3,g4  $ Z?
– Computes
⇤ �2 = �hg1

⇤ ⌫1 = 6g31 gg4 , ⌫2 = ⌫gg3

– Picks AA , Ag1 , Ag3 , Ag4 , AX3 , AX4  $ Z?
– Sends:
⇤ �2, ⌫1, ⌫2
⇤ '2,1 = 6

Ag3
1 gAg4 , '2,2 = (⌫1 )AA 61�AX3 g�AX4

⇤ '3 = 4 (�- , h)Ag1 · 4 (g,⇠� )Ag3 · 4 (g,⌘2 )�AX3 · 4 (⌫2,⌘2 )AA
• Veri�er sends 2  Z?
• Prover sends:

– BA = AA + 2A , Bg1 = Ag1 + 2g1
– Bg3 = Ag3 + 2g3, Bg4 = Ag4 + 2g4
– BX3 = AX3 + 2X3, BX4 = AX4 + 2X4

• Veri�er checks:
– '2,1 = (⌫1 )�261Bg3 gBg4
– '2,2 = (⌫1 )BA 61�BX3 g�BX4
– '3 · ( 4 (�- ,�2 ) ·4 (⌫2,⇠� )

4 (61,62 ) )2 = 4 (�- , h)Bg1 ·4 (g,⇠� )Bg3 ·4 (g,⌘2 )�BX3 ·
4 (⌫2,⌘2 )BA

7.3 Proving degree bound (Rdegcheck)
We now want to prove in ZK the following statement: The prover
knows at least 3 elements. So far, the veri�er only knows that the
veri�cation algorithm holds for some commitment ⇠� . In order to
be convinced that ⇠� is a commitment to a set � = {G1, . . . , G3 }, the
veri�er has to prove knowledge of a polynomial � (G) of degree 3 .
It is implied that as long as � (G) is a polynomial, it is well-formed
as a product of 3 monomials (G + G8 ) (� (G) is part of the accu-
mulator exponent (membership) or coprime to the accumulator
exponent(non-membership)). We de�ne the following relation:

Rdegcheck =
⇢

(pp,⇠� 2 G2,3 2 Z? ; A 2 Z? , � ⇢ Z? ) :
⇠� = ⌘A26

� (B )
2 ^ |� | = 3

�

For proving the above statement with existing protocols (that
prove maximum instead of minimum polynomial degree), we use
the following idea: a correct computation of the polynomial � (G)
that corresponds to elements in the set � with |� | = 3 , results to the
following polynomial:

� (G) =
3÷
8=1

(G + G8 ) = G3 + 03�1G
3�1 + · · · + 01G + 00

Let 5 (G) = 03�1G3�1 + · · · + 01G + 00, Thus, � (G) = G3 + 5 (G).
In order to prove that the degree of � (G) is at least 3 it su�ces

to show that deg(5 (G))  3 � 1. This implies that there is no term
of 5 that eliminates G3 . Therefore, the degree of polynomial � is at
least 3 .

Proving that deg(f ) d�1. In order to prove a polynomial’s max-
imum degree, we follow the technique used in Marlin [22]. Instead
of publishing parameters of degree-speci�c size, we transform the
proof to use the accumulator’s parameters of size C and we shift the
polynomial such that it has degree C instead of 3 .

Informally: polynomial 5 (G) gets multiplied with a random poly-
nomial of degree C � (3 � 1) (the sparse polynomial 2 · GC� (3�1)
where 2 is a random scalar would su�ce). This is what we call a shift
and can be proven to be computed correctly with the use of pairings.
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Using knowledge assumptions [28] (and commitment to the same
polynomial multiplied with 0) the prover shows knowledge of 5 . In
other words, the prover was able to construct the result polynomial
using public parameters (that consist of generators raised to powers
of B up to C ), therefore the degree of 5 does not exceed 3 � 1.
Protocol for Rdegcheck. The interactive version of the protocol is
as follows:

• Prover
– Computes: 5 (G ) as � (G ) =

Œ3
8=1 (G + G8 ) = G3 + 5 (G ) , where

deg(5 )  3 � 1
– Sends⇠5 = ⇠�

6B
3
2

• Veri�er
– Sends: 2 2 Z?

• Prover
– Computes: 5 (G ) · 2GC�3+1 and A · 2GC�3+1

– Sends:⇠ = 65 (B )2B
C�3+1

2 ⌘A ·2B
C�3+1

2 2 G2,⇠0 2 G2
• Veri�er checks:

– 4 (61,⇠� ) = 4 (61,⇠5 ) · 4 (61,⌘B
3 )

– 4 (61,⇠ ) = 4 (62BC�3+11 ,⇠5 ) , 4 (61,⇠0 ) = 4 (601 ,⇠ )

Correctness, soundness, and ZK. We defer the security argu-
ments to the extended version of our paper.

Asymptotics. The protocol has $ (3) prover cost that comes from
multiplying 5 (G) with the polynomial of degree C � (3 � 1) and
computing its commitment⇠ . It can be made non-interactive using
the Fiat-Shamir transformation. The proof size is constant (the
prover has to send over constant sized commitments⇠� ,⇠5 ,⇠,⇠

0 : a
commitment to polynomial � (G), to polynomial 5 (G), to polynomial
5 (G)·2 ·GC� (3�1) and to polynomial0·5 (G)·2 ·GC� (3�1) respectively)
and veri�cation cost is also constant (7 pairings).

8 PROOF OF EXPONENTIATION
We present the Proof-of-Exponentiation (PoE) protocol in the kno-
wn-order group setting. Informally, the prover can convince the
veri�er that the exponentiation of a group element by the evalu-
ation of a known polynomial at a speci�c point is correct. That
is, given a tuple, (�* ,�, ,+ (G)) 2 (G,G,Z? [G]), the prover can
convince the veri�er that �, = �+ (B )

* , with a constant sized proof
requiring constant number of pairing checks. Given the coe�cients
of polynomial + (B), naively, computing 6+ (B ) would require as
many exponentiations as deg(+ (B)). However, with PoE, the veri-
�er has to just perform cheaper polynomial division and constant
pairing computation instead of performing linear number of group
exponentiations.

Since naively verifying batch (non-)membership proofs require
a multi-exponentiation of size |� |, we can delegate the expensive
exponentiations to the prover using the PoE protocol. Note that
the PoE protocol is of independent interest and can be used as a
building block in other constructions.

For ease of exposition, we present the protocol (Fig. 1) using
symmetric pairings. However, the protocol can be instantiated using
asymmetric pairings.

RPoE =
⇢

( (�* ,�, 2 G,+ (G ) 2 Z? [G ] ) ;?) :
�, = �+ (B )

* 2 G

�

pp PoE.Setup(1_ ) :

1. (?,G,G) , 4,6)  BilGen(1_ )
2. B  $ Z⇤?

3. pp := ( (?,6,G,G) , 4 ), {6B
8 | 0  8  C })

Protocol PoE for RPoE:
Params: pp PoE.Setup(1_ )
Inputs: (�* ,�, 2 G,+ (G ) 2 Z? [G ] )
Claim: �, = �+ (B )

* 2 G
1. Veri�er sends ✓  $ Z?
2. Prover computes:

@ (G ), A s.t.+ (G ) = @ (G ) · (G + ✓ ) + A
&1 = 6@ (B ) using pp
&2 = 6@ (B ) · (✓+B ) using pp

3. Prover sends&1,&2 to Veri�er.
4. Veri�er computes: A s.t. A ⌘ + (G ) mod (G + ✓ )

Accepts if: 4 (&1,6 (B+✓ ) ) ?= 4 (&2,6) ^
4 (�* ,&2 ) · 4 (�* ,6A ) ?= 4 (�, ,6)

Figure 1: PoE protocol. We use Fiat-Shamir transformation to make this
protocol into non-interactive. For the ease of exposition we present the
construction in the symmetric pairing setting. However, we remark that
our implementation uses asymmetric paring.

We present the interactive version of the protocol for the symmetric
pairing in Fig. 1, which can be made non-interactive using Fiat-
Shamir transformation. The soundness of RPoE is de�ned similar
to its RSA counterparts as de�ned in [51] and [10]. We defer the
proof of soundness of our PoE protocol to the extended version of
our paper.

9 EVALUATION
In this section, we experimentally compare the aggregation oper-
ations in the RSA [10] and BP setting. We implement RSA accu-
mulator using C++17, GNU Multiple Precision Arithmetic library
6.2.1 [52], and OpenSSL 3.0.2 [45]. We choose two 1024-bits prime
numbers at random and compute the product to obtain a 2048 RSA
modulus (using OpenSSL [45]). We implement 2 the BP accumula-
tor using Golang bindings of the mcl library [36, 46]. Speci�cally,
we use BLS12-381, a pairing-friendly elliptic curve. A single group
element G and a �eld element F in the RSA setting, by the virtue of
the choice of parameters, are 256 and 32 Bytes, respectively. In the
elliptic curve group, a single compressedG1,G2,G) group element
requires 48, 96, 576 Bytes, respectively. Moreover, an element in
Z? requires 32 Bytes. A single exponentiation in the RSA group G
by an exponent at most 256-bits takes 449 `s on an average. How-
ever, a single exponentiation in the elliptic curve source groups
take G1 and G2 takes 106 `s and 250 `s, respectively. As BLS12-381
curve contains numerous roots of unity, we implement FFT based
polynomial algorithms to support fast polynomial operations in
go-mcl [46].

Our implementation is single threaded and all our experiments
where performed on an Intel Core i7-4770 CPU @ 3.40GHz with 8
cores and 32 GiB of RAM. Unless stated otherwise, we perform 3
runs of each experiment and report the average.

2Our code is available at: https://github.com/accumulators-agg/accumulators

https://github.com/accumulators-agg/accumulators
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Batch size
Operation Sch. 29 211 213 215 217

Domain mapping (s) RSA 0.33 1.31 5.25 20.99 83.95
BP 0 0 0 0 0

Commit (s) RSA 0.52 2.09 8.38 33.55 134.37
BP 0.05 0.24 1.12 5.17 24.28

AggMem (min) RSA 0.04 0.17 0.8 3.66 16.49
BP 0 0.01 0.18 2.51 38.35

MemVerify (s) RSA 0.52 2.1 8.38 33.54 134.37
BP 0.11 0.46 2.0 8.65 38.14

AggMemPoE (min) RSA 0.04 0.19 0.86 3.87 17.33
BP 0 0.02 0.2 2.58 39.12

MemVerifyPoE (s) RSA 0.33 1.32 5.32 21.4 86.16
BP 0.03 0.16 0.77 3.8 18.62

AggNonMem (min) RSA 0.05 0.25 1.16 5.3 23.9
BP 0.1 1.54 24.54 N/A N/A

NonMemVerify (s) RSA 0.72 2.87 11.49 45.98 184.12
BP 0.11 0.46 2.0 8.65 38.14

AggNonMemPoE (min) RSA 0.07 0.3 1.37 6.14 27.24
BP 0.1 1.55 24.58 N/A N/A

NonMemVerifyPoE (s) RSA 0.34 1.34 5.33 21.41 86.17
BP 0.03 0.16 0.77 3.8 18.62

Table 2: Accumulator batching operation costs for di�erent batch sizes. In
the �rst column, (s) denotes seconds and (min) minutes. The costs for RSA
operations include the computations required to map to the prime domain.
N/A stands for very large costs which are not interesting to compute.

9.1 Aggregation
In Table 1, we present the asymptotic costs for various operations
in the BP setting, and in Table 2 we present our corresponding
evaluation results.

Public parameters. Both the RSA and the BP accumulators require
a trusted setup phase to generate the public parameters. Classgroups
based accumulator constructions [13] do not require trusted setup in
the unknown-order group setting, but they are too slow in practice.
The public parameters in the RSA setting is just the RSA modulus
and the group generator. However, in the BP setting, the public
parameter consists of = · G1 + = · G2 elements, where = is the
maximum size of the accumulated set3. For = = 217, the public
parameters occupies 18 MiB. With PoE, it is su�cient to store only
constant number of values (61,6B1,62,6B2) from the public parameter
by the veri�er. Recall that 61,62 are the group generators of G1 and
G2, respectively.

Domain mapping. To add values from an arbitrary domain D to
the accumulator set, each element has to be mapped to a value in
the speci�c accumulator domainD0. Since the RSA accumulator re-
quires a prime domain, we implement the standard “hash to prime"
algorithm [9, 10], where the hash operation is successively applied
on the input until the hash function returns a prime value. We use
Blake2s hash implementation in OpenSSL [45] to convert a value
from arbitrary domain to Prime domain and GMP’s Miller-Rabin’s

3Rather than relying on a trusted entity, it is possible to use an MPC based setup
ceremony to generate public parameters. We can adopt approaches from real-world
MPC ceremonies of Zcash and AZTEC protocol which have successfully generated
SNARK parameters for circuit sizes 221 and 227 , respectively [12][50].

primality testing (15 rounds). For the BP setting, as discussed in
§3.3, the speci�c domain is Z? . In our implementation we use the
BLS12-381 curve for which the group order is around 256-bits [11].
Thus, we can accumulate any arbitrary string of size up to 256-bits
without the need of any mapping.

In our experiments, we consider the accumulation of arbitrary
256-bit strings. In Table 2, we report the cost mapping these ar-
bitrary strings to the accumulator domain. Mapping an arbitrary
string to the prime domain takes 640 to 894 `s for 15 to 50 rounds of
Miller-Rabin primality testing. Before performing an accumulator
operation, all elements have to be converted to the accumulator
domain. Thus, we include the cost of mapping to the accumulator
domain for all operations in Table 1.
Discussion.We now brie�y discuss what could go wrong in a uni-
versal accumulator if we don’t include the mapping process during
veri�cation.

Consider the two most popular Hprime approaches [9, 10]4 for
mapping a non-prime element G to a prime ~: (1) perform repetitive
hashing � (� (. . .� (G))) = ~ until a primality test indicates that
the output is a prime, then outputs G and A where A is the number
of hashing rounds required, (2) perform repetitive hashing of the
value (G | |A ), where A is a random nonce, until � (G | |A ) = ~ is a
prime. In both cases, when a prover wishes to add element G to
the RSA accumulator, it �rst calculates the mapping ~ and stores
A . The element ~ is accumulated. When they wish to prove (non-
)membership, they provide A as a witness along with the proof to
decrease veri�cation costs. However, if a malicious prover can �nd
two numbers of hashing rounds A1, A2 for the same element G , that
correspond to two elements ~1,~2 in D0, then if say ~1 was the
accumulated value (for G), the malicious prover could use ~2 to
argue non-membership for G .

In order to avoid such attacks in universal accumulators5, before
verifying any (non-)membership proof, all veri�ers need to check
that the given prime mapping ~ is the �rst one that corresponds
to the arbitrary element G and thus need to run all the repetitive
steps the prover does. If the proof is a batch proof for |� | elements,
the veri�ers need to repeat the process |� | times individually for
each element. The same holds for updates (addition or deletions)
to ensure primality since they might be initiated by an untrusted
entity.

Commit. To commit to a set � in the RSA setting, we �rst com-
pute the product of the elements in the set. Then, we perform
modular exponentiation of this large product of size $ (_ · |� |)-bits.
However, for BP accumulators, we �rst compute the coe�cient of
the accumulator polynomial using the subproduct algorithm and
fast polynomial multiplication. Then, we perform a single multi-
exponentiation of size |� |. Observe that from Table 2, even after
subtracting the domain mapping costs from the Commit, BP ac-
cumulators are faster! For a set size of 215, it takes around 12.56
seconds to perform Commit, in the RSA setting, whereas it takes
just 5.17 seconds in the BP setting.

4A recent work [39], attempts to optimize the “hash to prime” approach, by using
Pocklington primality certi�cates in order to reduce the cost of primality testing on
the side of the veri�er. However, it still does not guarantee a deterministic mapping.
5If the accumulator does not support non-membership, then this attack does not apply.
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Operation RSA
(Bytes)

BP
(Bytes)

Digest 256 48

Mem. proof 256 48

Non-mem. proof 288 80

Agg. mem. proof (Naive) 256 48

Agg. non-mem. proof (Naive) 3.85⇤ MiB 144* Bytes

Agg. mem. proof (PoE) 512 192

Agg. non-mem. proof (PoE) 1312 336

PoE 256 144 or 96

PoKE 544 ⇥
Table 3: Sizes of accumulator digest and proofs in bytes. Asterisk(*) denotes
a batch size of 217.

Membership aggregation. We implement the membership proof
aggregation algorithm from Boneh et al. to aggregate a set of mem-
bership proofs in RSA accumulators [10]. Aggregating a pair of
membership proofs involves computing Shamir’s trick, which re-
quires computing the Bézout coe�cients and performing two ex-
ponentiations. However, aggregating membership proofs in BP
accumulators, involves $ ( |� | log2 |� |) �eld operations and one |� |-
sized multi-exponentiation (Table 1). Thus, we observe that the
prover’s cost to aggregate is lower for the BP accumulator for set
sizes up to |� | = 215. Beyond these set sizes, the �eld operations in
BP dominates aggregation cost. It is not very common for a prover
to hold (or wish to aggregate) more than 215 proofs. Thus, for most
applications BP should be preferable.

We also implement PoE from Boneh et al. [10] and from §8 to
optimize the veri�cation of the aggregated proof in RSA and BP
accumulator, respectively. Since the prover overhead in comput-
ing the aggregated proof is dominated by �eld operations in both
RSA and BP accumulators, the additional exponentiations over-
head incurred by a PoE enabled prover is limited. We observe this
in our experiments as the prover engaging PoE additional incurs
only around 12.7 and 4.2 seconds for RSA and BP accumulators,
respectively, for 215 values (Table 2).

We observe that verifying batch proofs (without PoE) in BP
accumulator is 3.5⇥ to 4.7⇥ faster than RSA accumulators. This
is because the multi-exponentiations in elliptic curve group G1 is
faster than a single large exponentiation in the RSA group G. In
the PoE enabled setting, we observe that BP veri�cation is 4.6⇥ to
11⇥ faster than RSA. In addition to the domain mapping costs, we
also include the overhead to compute the Fiat-Shamir coins in our
experiments.

Non-membership aggregation. The prover’s cost to aggregate
non-membership proofs is better for RSA regardless of the use of
PoE. This is due to BP’s $ ( |� |2 log |� |) �eld operations that comes
from constructing the .8 (B) terms (§5.2).

In comparisonwith RSA, verifying batch non-membership proofs
in BP is at least 4.6⇥ faster in any case. Observe that verifying a
batch non-membership is computationally similar to verifying a

Batch size
Operation 29 211 213 215

Pedersen
Commitment (s) 0.08 0.31 1.24 4.98

Prover Rmem 2.97 ms

Veri�er Rmem 3.66 ms

Proof size Rmem 0.91 KiB

Prover Rnonmem 4.65 ms

Veri�er Rnonmem 5.18 ms

Proof size Rnonmem 1.03 KiB

Prover Rdegcheck (s) 0.17 0.64 2.57 11.29

Veri�er Rdegcheck 4.49 ms

Proof size Rdegcheck 0.29 KiB

Table 4: Single-threaded microbenchmarks for our ZK constructions.

batch membership proof in the BP setting, regardless of the us-
age of PoE (Table 1). Thus, we observe similar performance num-
bers for NonMemVerify and NonMemVerifyPoE when compared
toMemVerify andMemVerifyPoE, respectively, in the BP setting.

Storage and proof sizes. In Table 3, we present the storage over-
head of proofs in both RSA and BP setting. For a similar level of
security, an RSA group element G is of size 256 bytes as opposed to
an elliptic curve element that is of size 48 Bytes for G1 and 96 Bytes
forG2. The accumulator value and the batch membership proof con-
sist of one group element in both constructions. Non-membership
consists of one group element and one integer for RSA and two
group elements in the BP setting. The integer in RSA batch non-
membership proof grows linear in the batch size. The PoE proof
adds to the proof size one group element in the RSA. However, in
the BP setting PoE adds an overhead of either (G1,G1) or (G1,G2)
depending on whether prover computes a proof for 6� (B )2 or 6� (B )1 ,
respectively. The RSA non-membership proof can be made succinct
using PoE and PoKE [10]. We note that in BP, non-membership
proofs do not need PoKE as the proofs are already constant sized.
Thus, we observe that membership and non-membership proofs in
BP accumulators are 2.5⇥ to 5⇥ smaller and 3.5⇥ smaller than the
RSA accumulators, respectively.

9.2 Zero-knowledge batch proofs
We microbenchmark our proposed ZK batch proofs in Table 4.

Public parameters. The constructions for Rmem and Rnonmem,
require the prover and the veri�er to store additional generators
for Pedersen commitment. However for Rdegcheck, since we rely
on C-PKE assumption, the prover needs to additionally store 3= ·G2
elements (36 MiB). Whereas, the veri�er needs to store only 2= · G
elements (24 MiB). When = = 217, generating additional 3= · G2
parameter takes around 98 seconds using a single thread.

Prover overhead. To commit to coe�cients of a polynomial using
Pedersen commitment, we use the values 6B

8

2 and an independent
group generator. Using multi-exponentiation, it takes 4.98 seconds
to commit to a batch of size 215. Recall that, given a commitment
to the subset � , prover incurs constant overhead to generate a ZK
proof for Rmem and Rnonmem regardless of the batch size. Thus,
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to prove Rmem and Rnonmem, it takes 2.97 and 4.65 milliseconds,
respectively. To prove a lower bound on the degree of � (B), the
prover needs to compute Pedersen commitments on � (B) with and
without C-PKE.

Veri�cation time and proof size. The proof of Rmem is (4 · G1 +
G) + 5 ·Z? ) and the proof of Rnonmem is (3 ·G1 +G2 +G) + 6 ·Z? ).
With a 64-bit integer to denote the degree and three elements inG2,
a prover can prove a lower bound on the degree of a polynomial.
All the proofs in our scheme can be veri�ed with a constant number
of exponentiations and pairing operations.

9.3 Comparison with HARiSA [18]
In this subsection, we argue that our approach to ZK batch proofs
of membership can be at least 16⇥ faster than the current state-
of-the-art approaches to ZK batch membership proofs in the RSA
setting for a reasonable choice of batch size. We also report the
performance of our ZK batch proof of non-membership in Fig. 2.
HARiSA does not support non-membership.

Experimental setup.We �x the maximum size of the set to 217
elements and measure the performance of computing the zero-
knowledge proof of batch (non-)membership while revealing the
size of the batched subset. Moreover, we consider an experimen-
tal setup where the prover must do maximal work. That is, we
assume that the prover: (1) has access only to the individual (non-
)membership witness but not the batch membership witness, (2)
does not have access to the commitment to the batched subset,
and (3) has access to the accumulator digest and public parameters.
Thus, the prover incurs the cost of: (1) computing the commitment
to set � , (2) aggregating the individual (non-)membership witnesses
to obtain batch witness, (3) proving the relation Rmem or Rnonmem,
and (4) proving the relation Rdegcheck for 3 = |� |.

Baseline measure.We compare the performance of our scheme
against results of HARiSA [18] by Campanelli et al., which builds a
succinct batch proof of membership while preserving the privacy
of the batched elements. Their work combines proof of knowledge
of exponent (PoKE) along with CP-SNARK for integer arithmetic
relations and bound checks to prove batch membership. They im-
plement their construction using LegoGroth16 in C++. Similar to
our experiments, they require the prover to compute the batch
witness using individual witnesses and their experiments are single

4 6 8 10
Batch size (log2 scale)

100

101

102

P
ro

vi
ng

tim
e

(s
)

Membership
Non-membership
HARiSA (membership)

Figure 2: We extrapolate the proving costs using the numbers reported
in HARiSA [18]. Note that the results in the RSA setting does include the
Hash-to-prime costs.

Scheme Setup Veri�er Proof size

HARiSA [18] Mem. Trusted 63 ms 1.14 KiB

This work Mem. Trusted 7.94 ms 1.2 KiB
Non-Mem. 9.41 ms 1.32 KiB

Table 5: Veri�cation overhead and proof size.

threaded. Also, recall that in our experiments we reveal the size of
the subset � , which is currently not implemented in HARiSA [18].

Proving time. HARiSA reports a prover time of 2.86 and 9.02 sec-
onds for a batch of size 16 and 64, respectively. Recall that their im-
plementation uses LegoGroth16 proof system, thus the prover time
is dominated by large FFTs and exponentiations. The performance
numbers reported by HARiSA uses Amazon EC2 r5.8xlarge [18,
Figure 4], which we extrapolate for various batch sizes in Fig. 2.
However, in Fig. 2, the performance of our scheme is measured
on an Intel Core i7-4770 CPU@ 3.40GHz. We observe that for a
batch size of 16, our approach takes merely 0.18 seconds, whereas
HARiSA takes 2.86 seconds, thus resulting in 16⇥ speed up. Clearly,
our performance is still an order of magnitude faster even when
benchmarked on a much slower machine. Thus, we argue that our
order of magnitude performance gain will carry over even when
we benchmark our scheme and HARiSA on the same machine.

To the best of our knowledge, there are no known sub-linear
proof sized privacy preserving batch non-membership proofs in the
RSA setting without generic arguments such as SNARKs. However,
SNARKs based approaches are too slow in practice. Thus, we report
the performance of our non-membership scheme in the context of
membership scheme due to lack of appropriate baseline.

Veri�cation time and proof size. Our approach has a comparable
proof size and superior veri�cation speed. We report this in Table 5.
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