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ABSTRACT

An accumulator is a cryptographic primitive that allows a prover
to succinctly commit to a set of values while being able to provide
proofs of (non-)membership. A batch proof is an accumulator proof
that can be used to prove (non-)membership of multiple values
simultaneously.

In this work, we present a zero-knowledge batch proof with
constant proof size and constant verification in the Bilinear Pairings
(BP) setting. Our scheme is 16X to 42X faster than state-of-the-art
SNARK-based zero-knowledge batch proofs in the RSA setting.
Additionally, we propose protocols that allow a prover to aggregate
multiple individual non-membership proofs, in the BP setting, into a
single batch proof of constant size. Our construction for aggregation
satisfies a strong soundness definition—one where the accumulator
value can be chosen arbitrarily.

We evaluate our techniques and systematically compare them
with RSA-based alternatives. Our evaluation results showcase sev-
eral scenarios for which BP accumulators are clearly preferable and
can serve as a guideline when choosing between the two types of
accumulators.
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1 INTRODUCTION

An accumulator is an authenticated data structure for a set of el-
ements. It allows a prover to provide a succinct binding digest to
a set of elements and to generate a short proof of membership or
non-membership for any element in the accumulator domain. A ver-
ifier can efficiently check the proof of (non-)membership using the
digest without requiring access to the entire set. Accumulators have
found numerous applications including timestamping [8], fail-stop
signature schemes [6], anonymous credentials [2, 4, 15, 16], cloud
storage [48, 57] and more recently, stateless and privacy-preserving
cryptocurrencies [10, 21, 35].

Batching and aggregation. In traditional applications, accumu-
lators have been used in a setting where the prover had to pro-
vide (non-)membership proofs for a single element at a time. How-
ever, in emerging applications, such as cryptocurrencies, a prover
must simultaneously prove (non-)membership of multiple elements.
Naively, the prover could include individual proofs for each element,
but this imposes high bandwidth usage and computational cost on
the verifier. A better approach is a batch proof, that is, a succinct
proof for multiple elements, which can be used to efficiently and
simultaneously prove (non-)membership of multiple elements. For
example, in UTXO-based stateless blockchains [10, 21], all trans-
actions are accompanied by a proof of membership in the UTXO
set. If a block proposer naively includes all individual proofs for
validation (instead of a single batch proof), the size of the blocks
transmitted across the network increases along with the computa-
tional overhead on the verifiers.

Let X be the set of elements in an accumulator. A batch member-
ship proof for a set of elements I C X can be computed: (1) by using
the trapdoor (e.g., factors of the modulus in the RSA setting), or (2)
from scratch using all the elements in X, or (3) by aggregating pre-
viously computed individual proofs of elements in I. Unfortunately,
computing the batch proof using the trapdoor is impractical as it
requires a trusted accumulator manager to hold the trapdoor. Fur-
thermore, if the trapdoor is compromised, an adversary can forge
proofs at-will. Computing the batch proof using the entire set is also
impractical in a distributed setting, as nodes may not have access
to the entire set or the trapdoor or a trusted accumulator manager.
Moreover, updates to the accumulator arrive in batches (e.g., batch
of transactions in a block). In comparison with other approaches,
computing the batch proof by aggregating individual proofs is use-
ful and relevant in the distributed setting as it does not require the
trapdoor or the entire set. This brings us to the first question: Is it
possible to efficiently aggregate individual (non-)membership proofs?
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Zero-knowledge proofs. Proofs of (non-)membership for accu-
mulators are often required in applications where privacy is critical.
As an example, consider the application of anonymous credentials
for authentication where valid (i.e., non-revoked) credentials are
stored in an accumulator. When users wish to prove something
about their credential embedded attributes, they also need to prove
that their credential is valid via a proof of membership. Such proofs
are usually done in a zero-knowledge (ZK) fashion in order to
guarantee unlinkability between proving sessions and specific user
credentials. More concretely, let x be a user credential accumulated
in A. The user will compute a commitment ¢ = Commit(x), and
prove, in zero-knowledge, membership of the committed value x.
However, being able to simultaneously prove (non-)membership of
a set of elements, I, is an important property in scenarios where
a user/organization controls multiple credentials. Additionally, a
prover may also need to argue that this set I is of at least some size
d while hiding I. For instance an organization holding |I| > d valid
credentials might want to prove in ZK that it can cast up to d votes.
Such questions become even more relevant in recently developed
decentralized identity systems [1, 30]. This brings us to a second
question: Is it possible to efficiently prove knowledge of a set I that is
a subset of/disjoint from X, without revealing I? And reveal a lower
bound of |I|, if needed?

Batching, aggregation, and ZK in RSA accumulators. One of
the most popular accumulator instantiations is the RSA accumula-
tor [8, 16, 32]. Given a set X of prime numbers (xy, ..., X,), one can
define the accumulator Ax as the RSA group element gn ¥i and a
membership proof w of y € X as the accumulator of X \ {y}, which
can be verified by checking whether w¥ equals Ax. Boneh et al. [10]
defined batch proofs for the RSA accumulator and also provided
aggregation algorithms for both membership and non-membership
RSA proofs. The resulting batch proofs are non-interactive and of
constant size. They also present a Proof-of-Exponentiation protocol
(PoE) to concretely speed up batch verification by reducing the
number of group operations from O(|I|) to a constant. Without
PoE, the verifier would need to perform a large exponentiation that
grows with the number of elements in the proof. On the ZK front,
Ozdemir et al., introduced improved SNARK-friendly techniques
to batch prove (non-)membership in the RSA setting [39]. Subse-
quently, Campanelli et al. adopted a “hybrid” approach where they
prove the batch membership without SNARKSs and prove that ele-
ments of the batch are from the prime domain using SNARKs [18].
However, their accumulator does not support both membership
and non-membership simultaneously.

While RSA accumulators have been used in many applications,
they do present some crucial limitations:

e First, RSA group elements are large and this affects verification
time and proof sizes.

e Second, they only support accumulation of elements that reside
in a prime domain. Thus, they cannot be directly used for the
accumulation of arbitrary elements. !

These problems are fundamental and limit the use of RSA accumu-
lators in the batch setting regardless of the privacy concerns.

!While there exist techniques to map arbitrary elements to primes (i.e., hash to
primes [10]), such mappings can harm the soundness of the accumulator if not carefully
implemented during verification, especially if the mappings are not 1-1.

Shravan Srinivasan, loanna Karantaidou, Foteini Baldimtsi, & Charalampos Papamanthou

The case for bilinear accumulators. As opposed to RSA accu-
mulators, bilinear-pairing accumulators (BP) [38, 57] have much
smaller proofs and faster exponentiations. Moreover, BP accumula-
tors can support the accumulation of arbitrary elements, making
them directly applicable to a broader set of applications. Given a set
X of arbitrary numbers (x1, . . ., X,), the accumulator A is: gn(”xi),
where g is a prime order group generator and s is a secret trapdoor.
The membership proof w of y € X is the accumulator of X \ {y},
which can be verified by using the Ax and the pairing operator.
As highlighted above, we are interested in accumulators for the
distributed setting, i.e., where nobody can have access to the secret
trapdoor s or the accumulated set X. Existing batching approaches
in bilinear setting are only secure under a weak soundness defini-
tion [19, 26, 44] (with [44] additionally missing security proof), or
require large public parameters [57]. Moreover, to the best of our
knowledge, no prior work allows for efficient aggregation of non-
membership proofs or efficient zero-knowledge (non-)membership
proofs in the batch setting for trapdoorless accumulators (no accu-
mulator operation except the setup requires the trapdoor, and the
trapdoor is destroyed after setup if used). This is the main focus of
our work.

Contributions. In the distributed setting, we make the following
contributions to trapdoorless BP accumulators:

(1) We formally prove soundness of batch membership and non-
membership proofs for the Nguyen [38] accumulator under
the Uber assumption [7] (§4). Our proof holds for a stronger
definition of soundness than those considered in prior works,
since we do not assume that the accumulator is well-formed
and we allow the adversary to pick the accumulator value (Def-
inition 3.2). We remark that this strong definition is crucial for
many modern applications of accumulators, especially in the
distributed/blockchain setting, as it is not always realistic to
assume that the accumulator value is well-formed.

(2) We design the first efficient ZK scheme that can prove batch
(non-)membership of BP accumulator using the knowledge-of-
exponent assumption (§7). Moreover, we show how to addi-
tionally reveal a lower bound on the size of the batch witness
without revealing the elements of the batch proof. Asymptoti-
cally, our proof size is constant, the verification cost is constant,
and the prover is O(d), where d is the size of the batched subset.

(3) We propose a new algorithm to aggregate individual non-mem-
bership proofs into a single constant sized proof (§5) and pro-
vide a constant-time algorithm to update the extended Eu-
clidean based individual non-membership proofs (§6).

(4) We perform an experimental evaluation and comparison of the
RSA and BP accumulators in both ZK and non-ZK setting (§9).
Concretely, we observe that in the ZK setting, both the prover
and the verifier is at least 16X and 7x faster than RSA based
baseline, respectively.

In the non-ZK setting, we benchmark the batching and aggre-
gation of accumulator proofs. For the first time, we explicitly
take the mapping cost (from arbitrary domain to accumula-
tor domain) into account. We observe that membership and
non-membership proofs in BP accumulators are 2.5X to 5x
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smaller and 3.5x smaller than the RSA accumulators, respec-
tively. Moreover, verification of aggregated BP accumulator
proofs is on an average 4X faster than the RSA accumulators.

(5) Finally, in §8, we propose a PoE protocol in Elliptic Curve (EC)
groups that help us speed up batch verification. Our PoE can
prove exponentiation of an arbitrary group element and it con-
cretely saves one exponentiation for the prover when compared
to concurrent works [23, 44]. We use our PoE to verify expo-
nentiation of a group element by ¢-degree polynomial without
having to perform O(f) group exponentiations, only O(¢) op-
erations in the field.

Implications of our results and evaluations. As indicated above,
batch membership proofs in BP accumulators, clearly outperform
their RSA counterparts in the size of the proofs (2.5X to 5%). This
makes our protocols very appealing to applications where commu-
nication cost is critical.

An example of such an application is the extension of ¢-bit
Byzantine agreement (BA) and broadcast protocols (BB) [37] where
bilinear-accumulators are used to obtain state-of-the-art communi-
cation costs for £-bit BA/BB. Our batching techniques can improve
their so called: “distribute phase” by batching the proofs sent be-
tween the participants which would result in a constant size proof
and significantly reduce their communication costs.

In the ZK setting, the advantages of BP accumulators are appar-
ent in both prover and verification costs. In decentralized identity
systems with privacy, issuers sign the users attributes/identity and
these signatures (aka the credential) are kept in an accumulator.
Later, users should be able to perform batch proofs of (non-)mem-
bership for their stored credentials. Typically, the underlying signa-
ture schemes output integers (dlog, RSA-based schemes) or group
elements that can be trivially mapped to integers (ECC schemes).
Thus, one can immediately utilize a BP accumulator. If an RSA ac-
cumulator is used to hold the credentials, a Hpime function (maps
to prime) needs to be applied to each element individually and a ZK
proof of primality is required. Ozdemir et al. [39] show how the use
of Pocklington certificates reduce the cost of proving primality in
ZK, but it only reduces the number of Miller-Rabin primality tests.
This still results in non-constant verification time. This hashing
operation, along with a primality test, needs to also be included in
the ZK proof. This makes the computation of the ZK proof much
more complex (e.g., if one uses zk-SNARKs or other specialized ZK
proofs for non-algebraic statements [3]).

Limitations. While both BP and RSA accumulators require a
trusted setup phase to compute the public parameters, the size
of BP parameters is significant: 18 MiB for 217 elements (although
not necessarily needed for verification). These parameters grow
even more (3X) in our ZK setting due to the use of the knowledge-
of-exponent assumption. Finally, it should be noted that in BP
accumulators (as opposed to RSA), it is unknown how to add or
generate proofs of (non-)membership without the knowledge of
the entire accumulated set X.

2 RELATED WORK

Based on the use of trapdoors for accumulator operations, accumu-
lators can be: trapdoor-based or trapdoorless. In a trapdoor-based

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

accumulator, a trusted entity, called the accumulator manager, holds
some secret trapdoor information, which allows the entity to effi-
ciently perform accumulator operations. A trapdoorless accumulator
on the other hand, operates without the trapdoor and if a trapdoor
is used during setup, it is later destroyed.

We classify prior works into three broad categories: (1) accumu-
lators based on hash functions, (2) accumulators in hidden-order
groups, and (3) accumulators in known-order groups.

Hash-based. Accumulators built based on Merkle tree [5, 34] or
Bloom-filters [56] do not support batching, aggregation, and ZK
proof of batch (non-)membership without general purpose tools
such as SNARKs, unlike the techniques proposed in this work.

Hidden-order groups. In the single-proof setting, Camenisch and
Lysyanskaya [16] proposed the first dynamic accumulator (sup-
ports both set difference and set union without requiring to fully
recompute the accumulator from scratch) secure under strong RSA
assumption based on prior accumulator constructions [6, 8]. How-
ever, their construction is not in the trapdoorless setting as the trap-
door is used to delete elements from the accumulators. Li et al. [32]
proposed the first universal accumulator (supports both member-
ship and non-membership proofs) by generalizing the Camenisch
and Lysyanskaya accumulators [16] to support non-membership
proofs under the strong RSA assumption. They also provided effi-
cient algorithms to update non-membership proofs on changes to
the accumulated set.

Boneh et al. [10] support batching and aggregation of member-
ship and non-membership proofs in the distributed and trapdoorless
setting. They also leverage their contributions to realize a state-
less blockchain [10, 21] in the UTXO setting. However, RSA based
constructions have larger proof size and verification cost when
compared to the BP-based constructions.

Known-order groups. In the single-proof setting, Nguyen pro-
posed the first accumulator [38] using bilinear-maps and based on
the ¢-strong bilinear Diffie-Hellman assumption. In a later work,
Damgérd et al. [24] and Au et al. [4] extended the accumulator con-
struction by Nguyen to support constant-sized non-membership
proof for a single element. This non-membership proof scheme
relies on Polynomial Remainder Theorem (PRT) to prove non-
membership [55]. However, this construction does not extend to a
constant-sized batch non-membership proofs or consider efficient
aggregation of non-membership proofs. In our work, we study
constant-sized batch proofs and present aggregation techniques
for the greatest common divisor (GCD) based non-membership
construction, rather than the PRT-based.

Thakur [44] propose batching techniques for BP accumulators
(for weak soundness and without rigorous analysis). In their latest
version (Sept, 2021), they also propose two PoE protocols. However,
one of the PoE approaches assumes that it is possible to exponen-
tiate an arbitrary base to the trapdoor (which is only feasible in
the trapdoor-based setting). Connolly et al. [23] also propose a PoE
protocol based on [44], under a different assumption (q-co-GSDH).
Compared to [44] and [23], our PoE is concretely one exponenti-
ation fewer under the adaptive variant of q-SDH. Finally, neither
[44] nor [23] consider aggregation or ZK batch proofs.
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Prior works [19, 23, 26, 41] define a batch proof for multiple
elements. However, these works either: (1) assume in their sound-
ness definition that the accumulator is well-formed and honestly
computed or (2) does not consider aggregation [26] or (3) rely on
an accumulator manager [49]. On the other hand, our batch proofs
are sound even for an adversarially chosen accumulator value and
our techniques support aggregation in the trapdoorless setting.

Camenisch et al. [15] and Zhang et al. [57] proposed BP accumu-
lators that are algebraically quite different from [38]. These schemes
have parameters that are equal to the size of the accumulator do-
main or more.

Vector Commitment (VC). A VC is a primitive closely related
to accumulators, that provides a succinct commitment and posi-
tional binding to an ordered set of values [20]. Catalano and Fiore
proposed a technique to transform a VC into an accumulator [20].
However, this approach results in an accumulator scheme with
public parameters that are equal to the size of the accumulator
domain [20, 21, 27, 31, 47].

Tomescu et al. proposed aggregatable sub-vector commitments
in the bilinear-map setting based on Lagrange polynomials and
KZG commitments [29, 47]. Their work uses the partial fraction
decomposition technique [53] to aggregate VC proofs. We adopt
techniques to aggregate proofs in BP accumulators. Campanelli
et al. [17] defined incremental aggregation, i.e., aggregation of
aggregated proofs for a RSA-based VC. Although inspired by [10],
their work cannot be efficiently directly applied to accumulators.

Zero-knowledge (ZK). There are known techniques to efficiently
achieve ZK for a single element in the BP [4] and the RSA [9, 16]
setting. Naively, a batch ZK RSA proof corresponds to proving that
the exponent is the product of multiple distinct elements, which
results in a linear size proof. Recent work by Campanelli et al. [18]
constructs ZK proofs of batch membership for RSA using SNARKs
and get a constant size proof. Their construction can be transformed
to prove non-membership (it corresponds to membership of inter-
vals) but it cannot support both membership and non-membership
at the same time without having an accumulator manager holding
the trapdoor.

3 PRELIMINARIES

Let G1, Go, Gt denote groups of prime order p and let g1, g2 be the
generators of G and Gy, respectively. Also, let Z,, be a field of
prime order and Z,[x] be a polynomial ring. We denote the degree
of polynomial I(x) € Z,[x] as deg(I).

Bilinear pairing. A bilinear pairing is an efficiently computable
map, e : G; X Gy — Gr, satisfying the following properties:

o bilinearity: V(P,Q,a b) € (G1 xGy XZy X Zp): e(P%, Q) =

e(P%Q)" = e(P,Q")% = e(P,Q)%

e non-degeneracy: e(g1,g2) # 1
We denote a pairing instance bp = (p, G1, G2, Gr,€,91,92) «—
BilGen(1%). When G; = Gy = (g), the pairing is called symmetric
and is denoted as (p, G, Gr, e, g).

Partial fraction decomposition (PFD). A rational polynomial
can be decomposed into simpler fractions [53]. Concretely, let
A(x) = [ljer(x + a;i) be a polynomial and let A’(x) be the first
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derivative of A(x) with respect to x. Then,

1 1
Alx) Z Al(-ai)(x +a;)
iel
Polynomial remainder theorem (PRT). When a polynomial
A(x) is divided by (x + r), the remainder is the evaluation of A(x)
at —r. Let g(x) denote the quotient polynomial [55]. Then,

A(x) =q(x)(x+r1)+A(-r).

Bézout’s theorem (for polynomials). Given f(x), g(x) € F[x],
there exists p(x), g(x), h(x) € F[x] such that [54]:

p(xX)f(x) +q(x)g(x) = ged(f(x), g(x)) = h(x)
Moreover, deg(p) < deg(g)—deg(h) and deg(q) < deg(f)—deg(h).

Pedersen vector commitment (PVC). Given a group G; or G of
prime order p and a vector ¢ = (cq, . ..,ct) € Z;,. Let (91,92, -.,9t, h)
€ G!*! or GL*! generators where log,, gj.i # j relationship is
unknown. In order to commit to the vector ¢, one has to pick r «s
Z, and compute PVC(C,r) = h"g’g(" ... g}".

The Pedersen commitment scheme [42] (and its vector gener-
alization) is homomorphic, perfectly hiding and computationally
binding under the discrete logarithm assumption.

Zero-knowledge proofs. A ZK proof for a relation R (x; w), where
x is the public statement and w is the witness, is a set of algorithms
(Setup, Prove, Verify) with the following syntax:
. Setup(l’l, R) — pp: given the security parameter A and the
relation, outputs parameters pp.
e Prove(pp, x, w) — m: given the parameters pp, a statement
x and a witness w, it returns a proof 7 for R (x; w).
o Verify(pp,x, 1) — b € {0, 1}: given the parameters pp, the
statement x and the proof 7, it accepts or rejects the proof.
Properties. A ZK proof has to be correct, sound and zero-knowledge.
Correctness means that if (x,w) € R, then Verify(pp,x,7) = 1
with overwhelming probability. We support knowledge soundness -
if a proof passes verification, then there exists a polynomial time
algorithm (the extractor) which by interacting with the prover can
extract the witness. Finally, zero-knowledge implies that the proof
leaks nothing about the witness, i.e., there exists a simulator with
access only to the public statement which can output a valid proof.

3.1 Cryptographic accumulators

An accumulator is a cryptographic primitive that supports a suc-
cinct binding commitment to an arbitrary set of values. In this
work, we consider trapdoorless, dynamic, and universal accumula-
tors. Following the definitions and notation from [5] and [10], our
definitions refer to the batch setting, where I is a set of elements.
The traditional accumulator algorithms can be derived for I = {x}.

Definition 3.1 (Trapdoorless Accumulator). Let D be the domain
of the accumulated elements, and consider set X € DXI and set
1 e Dl (where each element from sets X and I is in D). An
accumulator consists of the following ppT algorithms:

(1) (pp, D) « Acc.Setup(17): Takes security parameter A, returns

the public parameters pp and D of the accumulated set. A trusted
entity may use a secret trapdoor to generate pp. The trapdoor
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is then destroyed by the setup. In the rest of the document, we
assume that pp = (pp, D).

(2) Ax < Acc.Commity, (X = {x1,...,x)x|}): Takesset X € DIXI,
outputs the accumulator digest Ax.

(3) Ay «— Acc.Addpp(Ax, X, I): Addsset I € DL TnX =0,to
the accumulator and returns the new digest A%, .

(4) A’X « Acc.Dely, (Ax, X, I): Removes set I, I C X, from the

accumulator and returns the new accumulator value, As(.

(5) m; « Acc.MemProve,, (X, I): Generates a membership proof
pp P P
forsetI,I C X.
(6) {0,1} « Acc.MemVerifyPP (Ax, I, 77): Returns 1 if the member-

ship proof 7y, for the set I, I C X, is valid against the accumulator
digest, Ax.
(7) 71 < Acc.NonMemProvep, (X, I): Generates non-membership

proof for the set I, I N X = 0, disjoint from the accumulated set.
(8) {0,1} « Acc.NonMemVerify,, (Ax, I, 701 ): Returns 1 if the non-
membership proof 77, of the set I, I N X = 0, is valid against the
accumulator digest, Ax.
©9) np « Acc.Agg/\/\emPp (Ax, I {m,- -, m}): Combines individ-

ual membership proofs {7, - - -, 7y} into a single aggregated
proof.

(10) 71 « Acc.AggNonMempp (Ax, I {71, -+ -, 71 }): Combines in-
dividual non-membership proofs {71, -+, 7|y} into a single
aggregated proof.

The following algorithms update a (non-)membership proof of a
single element after changes to the accumulated set.

(11) n’y — Acc.l\/\emProofUdenAddpID (Ax, X, y, 7y, I): Updates the

membership proof 7, of element y on addition of set I (y ¢
I, X = X UI) to the accumulator.

(12) 7r'y — Acc.MemProofUdenDeIPP (AX,AB(,X, I, y, my): Updates
the membership proof 7, of element y on deletion of set I,
X = X \ I, from the accumulator.

(13) ﬁ'y — Acc.NonMemProofUdenAddpp(AX,X, y,ﬁy,I):Updates
the non-membership proof 77, of element y disjoint from set X
on addition of set I (y ¢ I, X = X U I) to the accumulator.

(14) E'y — Acc.NonMemProofUdenDelpp (Ax, A%, X, I, y, 7y): Up-

dates the non-membership proof 77, of an element y disjoint from
set X on deletion of set I (X = X \ I) from the accumulator.

3.2 Correctness and soundness

The basic security property for accumulators is soundness (some-
times called undeniability [33]) which states that an adversary can-
not construct an accumulator A and a set I for which both 7; and
71 are simultaneously valid. Below we state strong soundness (also
found in [10]), which allows the adversary to create the accumulator
without revealing the accumulated set X to the challenger.

Definition 3.2 (Soundness). For any ppT adversary A, it holds:

pp < Acc.Setup(lA)

(AL 7, 7) < A(pp)
Acc.MemVerifypp(A, L) =1A
Acc.NonMemVerifypp(A, L7y =1

Pr = negl(1)

Since no trapdoor is needed for algorithms Acc.Add,p, Acc.Delpp,
Acc.MemProve,,, Acc.NonMemProvep,, A can adaptively update
the accumulator and construct honest proofs during the game be-
fore coming up with the accumulator value A and proofs 7y, 7.
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We formally define correctness of (non-)membership proofs, the
correctness of aggregation, and present the accumulator soundness
proof under a weak definition in the extended version of our paper.
This weak soundness definition assumes that the accumulator value
is honestly generated for the set X. Our construction is secure under
this weak definition of soundness using the -SBDH assumption.
The weak soundness definition is useful if one wants to avoid the
Uber assumption [7] (under which our protocols satisfy strong
soundness).

3.3 Accumulator based on bilinear-maps

In this subsection, we review the standard accumulator based on
bilinear-pairing (BP) introduced by Nguyen [38] and improved by
[24, 40]. Here, we present the classic BP construction that operates
on individual proofs. In §4 and §5 we show how to batch and ag-
gregate proofs in the BP setting, and in §6 we present a technique
to efficiently update non-membership proofs.

Let X be the accumulator set and X(s) = [ ex (s + x) be the
accumulator polynomial.
pp — Acc.Setup(11): Let bp = (p, Gy, Gz, G, e, g1, g2) be the out-
put of BilGen(1%). Assume that s is a trapdoor randomly sampled
from Z;,. The public parameters are pp = (bp, {gfi,ggi |o<i<
t}, D' = Zp) where ¢ is the maximum capacity of the accumulator.
Ax « Acc.Commity, (X = {x1,...,xx|}): The accumulator di-

gest of the set X = {x1, -+ ,xp},is Ax = gi((S)

nomial X (s) = [Tyex (s +x).

Ag( — Acc.Addpp (Ax, X, I): A set of elements I, I N X = 0, can
be added to the accumulator and the digest can be updated as:
A = gpxeXuI(s+x) _ AnxiGI(Seri).

X X
A’ « Acc.Delyp (Ax, X, I): Asetof elements I C X canbe deleted

from the accumulator and the digest can be updated as: A%, =

[Txex\1(s+x) Txjer (s+xi)
9, =Ay .
7y < Acc.MemProve,, (X, y): The proof of membership of an el-

, where the poly-

nl S+x .
! xex\{y} )) where X is the

ement y can be computed as 7, = g
accumulated set.
{0,1} « Acc.MemVerify,, (Ax, y, ry): The membership proof of

an element y € X in the accumulator can be verified by performing

the following pairing check: e(y, g5 g5) = e(Ax. g2).

7Ty = (a, glﬁ(s>) — Acc.NonMemProve, (X, y): The non-memb-

ership proof of {y} N X = 0 involves computing the Bézout co-
efficients a(s) and f(s) s.t. a(s) - X(s) + f(s) - (s+y) = 1. As
the monomial (s + y) is of degree one, the polynomial a(s) is
in fact a constant! Thus, the 7, = (a, glﬁ(s)) € (Zp,Gy) is the
non-membership proof of element y.

{0,1} « Acc.NonMemVeriflep (Ax, y, Ty): The non-membership

proof can be verified by checking e(Ax, g5 ) - e(gf(s>,g§gzy) =

e(g1,92), where 7, = (Uf,gg(S)).

ﬂ; — Acc.MemProofUdenAddPP (Ax, X, y, my, I): The member-

ship proof of an element 7, can be updated on addition of set I, to
[Mzer(s+2)
v .

the accumulated set, X = X U I, by computing, ng/ =
Z,

When I = {z}, 7, = Ax - 7, Y is the updated proof.
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fr’y — Acc.MemProofUdenDelIDp (AX,A;(,X, I, y, my): The mem-

bership proof 7, can be updated on deletion of set I from the ac-

1
cumulated set, X = X \ I, by computing, f[’y = 7ryn”€’(s+z) . When

1
I={z},m, = (%)?y is the updated proof.

Non-membership in BP accumulator. There are two ways to
prove non-membership in the BP acccumulator: (1) based on the
PRT [4, 24] and (2) based on GCD [40]. The two methods are equiv-
alent, in that they both require O(|X]) field operations. In this work,
we focus on the GCD-based method because it allows for efficient
batching and aggregation as we show in §4.2 and §5.2. Additionally,
we present a new algorithm to update individual non-membership
proofs §6.

BP accumulator soundness. The soundness of the BP construc-
tion relies on the t-sBDH assumption.

4 BATCHING BP ACCUMULATOR PROOFS

4.1 Membership

Recall that the membership proof of a single element y € X is

[Txex\y (stx)
1

be verified by checking e(ry, gé”y)) = e(Ax, g2), where Ay is the
digest of the accumulator.

defined as 7 = g and the membership proof of y can

Batch proof. A batch membership proof is a single succinct proof
for a set of elements in the accumulator. A batch proof contains
a polynomial in the exponent that includes every element in the
accumulator except the monomials terms that correspond to values
in the set I.

71 < Acc.MemProve, (X, I): A batch membership proof for set I € X

[lx;ex\r(s+xi)
is computed as follows: 7y = g, X EX\T

{0,1} « AccAMemVerifypp (Ax, I, 1 ): The batch proof can be verified

Hxiel (s+2x;)

by checking e(y, g, ) =e(Ax, g2).

Asymptotics. The batch membership proof for I consists only of
one element in G (as opposed to |I|- G elements, if proved individ-
ually). Verifying a batch proof takes O(|I| log? |I]) field operations

to compute the coefficients of polynomial I(s) = [],er(s + x;) us-

ing FFT, one |I|-sized multi-exponentiation in Gy to compute ggs)

and 2 pairings. However, verifying |I| individual proofs requires |I|
individual exponentiations (cannot use fast multi-exponentiations),
and 2|I| pairings.

4.2 Non-membership

A non-membership proof of an element y ¢ X leverages the fact
that ged(X(s), (s +y)) = 1. Thus the Bézout coefficients « and f(s)
satisfy: aX (s) + f(s)(s +y) = 1. We generalize this observation to
prove the non-membership of set IN X = 0.

Batch proof. We define a batch non-membership proof as a single
succinct proof for a set of elements disjoint from the accumulator.
Observe that there are no common roots between polynomials X (s)
and I(s) = [1y,er(s + yi), therefore ged(X(s), I(s)) = 1. Moreover,
the Bézout coefficients a(s) and f(s) of X(s), I(s) are non-constant
polynomials.
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7 < Acc.NonMemProve,, (X, I): A batch non-membership proof for

aset], whereINX = 0,is 7y = (gg(s),glﬂ(s)) € (Gy,Gy) such that
a(s) - X(s) +(s) - [lyer(s+yi) = 1.
{0,1} « Acc.NonMemVerifypp (Ax, I, 7r): The batch proof can be ver-

B(s) Iyer(s+yi

. . )
ified by checking e(Ax,g2)) - e(g?™, g, ) = e(g1,92),

where 77 = (gg“(s),glﬁ(s)).

Asymptotics. The batch non-membership proof consists of only
one element from G; and one element from G,. Verifying a batch
proof takes O(|I| log2 |I|) field operations to compute the coeffi-
cients of polynomial I(s) using FFT, one |I|-sized multi-expone-
ntiation in Gy to compute gé(s) and 2 pairings. However, verifying
|I| individual proofs requires |I| individual exponentiations (cannot
use fast multi-exponentiations) and 2|I| pairings. If e(g1, g2) is not
precomputed, then batch verification and individual verification
requires 3 pairings and 2|I| + 1 pairings, respectively.

4.3 Soundness of batching

THEOREM 4.1. Batch membership and non-membership proofs
71, 71, are sound, by Definition 3.2, under the adaptive Uber assump-
tion in the AGM.

Proor. Deferred to the extended version of our paper. O

5 AGGREGATION

5.1 Membership

The BP accumulator based on Nguyen et al. resembles the KZG poly-
nomial commitments [29, 38]. As demonstrated in prior works [14,
25, 47], KZG polynomial commitments can be aggregated using the
PFD [53]. We use these techniques to aggregate proofs in the BP
accumulator.

T — Acc,AggMempp(AX,I, {my, -+ ,7r|1|}): Let I C X be the set

of elements to be aggregated, X(s) = [ ex(s + x) be the accu-
mulator polynomial of X, I(s) = []y,er(s + xi) be the accumulator
polynomial of I, and X; (s) = [Txex\ {x;} (s +x). The goal is to com-
pute the polynomial Y(s) = [1,ex\7(s+x:), which excludes all the
monomials that correspond to values in the set I. Using PFD [53]:

1 1 1
YO =X 705 =X D) ptern = 2 T )
Thus, the aggregated proof, 7 = gly(s) = [lyer ﬂl.ci, where ¢; =

ﬁ, I’ is the first derivative of I w.r.t s, and 7; is the individual

membership proof of element i.

Correctness and soundness. We can see that as long as each
individual 7;’s are correct, 7y satisfies aggregation correctness. Note
that Thm. 4.1, is sufficient to argue the soundness of aggregation
(Definition 3.2) since the resulting proof after aggregation is a batch
proof and thus can be verified by running MemVerify.

Asymptotics. In a field with sufficiently many roots of unity, FFT
based polynomial interpolation and multi-point evaluation tech-
niques can be used to compute the polynomial I(s) and evaluate
I’(s) at all x;’s in O(]I] log? |1]) field operations. Asymptotically, it
takes O(|I] log? |1|) operations in Zy (to compute all the c;’s) and |I|
sized multi-exponentiation in G; to compute the aggregated proof.
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The complexity of verifying an aggregated proof is the same
as verifying a batch proof. Note that verification requires a single
multi-exponentiation of size |I| in G to compute go!(*). However,
using the PoE protocol, we can outsource the exponentiation cost
to an untrusted prover. We discuss this optimization in §8.

5.2 Non-membership

In this section, we give an algorithm to combine multiple individual
non-membership proofs into a single non-membership proof.

T — Acc.AggNonMempp(AX, L{my,--- ’EII\ }): Let I be a set of

elements disjoint from the accumulated set X, 7; = («;, gf i(s)) €
Zp x Gy be the non-membership proof of the element y; € I, X(s) =
[Ixex (s +x) be the accumulator polynomial, I(s) = [1,,er(s + yi)

I(s)
(s+yi) "
Observe that ged(Y1(s), Y2(s), . . ., Y|y (s)) = 1. By generalization
of Bézout’s identity for polynomials, 3 polynomials c¢;(s), s.t.:

be the accumulator polynomial of I, and Y;(s) =

||
Z ci(s) - Yi(s) = ged(Y1(s), Ya(s),.... Yjp(s)) = 1 (1)

i=1

LEMMA 5.1. The Bézout coefficient polynomials, c;(s), of Eq. 1 are
non-zero constants.

ProorF. Deferred to the extended version of our paper. ]

To compute the non-membership proof of I, we need to compute
polynomials «(s) and f(s) such that:

a(s) - X(s)+B(s) - [ [ (s+y0) = ged(X(s), [ [ s+ =1

yi€l yi€l
Recall that each individual non-membership proof satisfies:
ai - X(s) + Pi(s) - (s +y;) = 1, where deg(a;) =0

Multiplying by ¢;-Y;(s): aic; Yi(s)X (s)+cifi (s) (s+y:i) Yi(s) = ¢;Yi(s)
= a;c;Yi(s)X(s) + cifi(s)I(s) = c;Yi(s)
Summing overi = 1to |I|: X1 aieiYi(s)X (s)+ 2!, ciffi(s)I(s) =

I
Lll ci - Yi(s)

sing Bq 11 311, ae(9)) - X(6)+ £ o)) 169 = 1
Therefore,

|| 1]

als) = ) ic;Yi(s) Bs) =D cbils) ()
i=1

i=1
Thus the non-membership of set Iis 77 = (g2%(5), g1 #(5))

Correctness and soundness. We can see that as long as each
individual 7;’s are correct, 71 satisfies aggregation correctness. The
algorithm AggNonMem always outputs 7 because terms ¢; do
not depend on trapdoor s (Lemma 5.1), therefore exponentiation
by c; is feasible. We remark that Thm. 4.1, is sufficient to argue
the soundness of aggregation (Definition 3.2) since the resulting
proof after aggregation is a batch proof and thus can be verified by
running NonMemVerify.

Asymptotics. The task of computing the aggregated proof can
be divided into: (1) task of computing the Bézout coefficients c;’s,
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Scheme RSA BP
Domain Prime Z,
Setup(17) o) 0(t) - (G1+G)

commt OMXD-C gt ix)) 2,
raen Gllegl = oilegt ) 2,
Hemerty O C i) 2
MemVerifyPoE %((1|;|.)(.31; 03217;' 110(; |+1|1)q2%p
pasnonmen iogih = oUIT ogln -2,
NonMemVerify o(lI) -G (Z)IE: l“;ﬁo(gll)ll-)@%;
NonMemVerifyPoE OO((1|;|‘)(.}1{: OS(IP;; llozé |+I|1)Giz£p

Table 1: Set X denotes the entire accumulated set and I € X. Let O(Y) -
G denotes one large exponentiation to the product of Y elements or Y
exponentiations. All exponentiations in BP can be sped up by a logarithmic
factor using multi-exponentiations.

(2) task of computing the coefficients of each Y;(s), and (3) task of
computing (g2%(5), g1#(5)).

First, the task of computing the Bézout coefficients in Eq. 1 takes
O(|I|log? |I]) field operations. Second, the task of computing all
Y;’s take O(|I|% log |I]) field operations. This is because computing
each Y;(s) costs O(|I|log|I|) field operations. Third, the task of
computing gzZ'f:'l @i€iYi(s) and glzliill ¢iBi(s) requires a single multi-
exponentiation of size |I| in G, and Gy, respectively. Thus, in total,
it takes O(|I| log |I|) field operations and multi-exponentiations of
size O(|I]) in G, Gy to compute the aggregated non-membership
proof from individual proofs.

The complexity of verifying an aggregated proof is the same
as verifying a batch proof. Note that verification requires a single
multi-exponentiation of size |I| in G to compute go! ). However,
using the PoE protocol, we can outsource the exponentiation cost
to an untrusted prover. We discuss this optimization in §8.

6 NON-MEMBERSHIP PROOF UPDATES

In this section, we describe a new protocol that allows to efficiently
update a GCD-based non-membership proof for the BP accumula-
tor after changes (additions/deletions) to the accumulated set. Let
y¢Xandzwy = (a,glﬁ(s)) €Zp X Gy st.aX(s)+f(s)(s+y) = 1.
ﬁ’y — Acc.Nonl\/\emProofUdenAddPp (Ax, X, y, 7y, I = {z}):Re-

call that,
aX(s) +B(s)(s+y) =1 ®3)

Since y # z, by Bézout’s Identity,

u(s+z)+o(s+y) =1, where u,0 € Z, (4)

Goal is to find @’ and f’(s) s.t.,
a’ X' (s)+ B (s)(s +y) =1, where X' (s) = X(s)(s+z) (5)
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Multiplying Eq. 3 by u(s + z): uaX(s)(s +z) +uf(s)(s +z)(s +y) =
u(s +2).
Using Eq. 4:

uaX(s)(s+z)+uf(s)(s+2)(s+y)=1-o(s+y)
o)X’ (s)+ (0 +uf(s)(s+2))(s+y) =1

From Eq. 5 we have: ¢’ = ua and ' (s) = v + uf(s)(s + z)

However, it is not possible to compute glﬁ'(s) without the coef-
ficients of (s) because individual proofs only contain ¢?). Thus,
we simplify §’(s)’ = v+uf(s)(s+z), replace u(s+z) as 1 —o(s+y)
fromEq. 4: f/(s) =0+ B(s)(1 —ov(s+y)) =0+ B(s) —vB(s)(s +y)
=0(1-B(s)(s+y)) + B(s). Replace 1 — B(s)(s +y) as aX(s) from
Eq. 3: §/(s) = vaX(s) + B(s).

Thus, ¢’ = ua, ' (s) = vaX(s) + f(s) and E’y = (a’,glﬁl(s)) =
(ua, Ax " - g1

To compute the updated non-membership proof, ﬁ; =(a, glﬁ’ )y,
we calculate constants u, v in Eq. 4 by running the extended Eu-
clidean algorithm for degree one polynomials, which takes only
O(1) operations. We can compute the constant a’ with one mul-
tiplication operation in Z. Similarly, we can compute glﬂ/ () =
((Ax)*")? - glﬁ (5) with one multiplication operation in Z,, one
exponentiation operation in G1 by Z, and one addition in G;.

E'y — Acc.NonMemProofUdenDelpp(AX,A;{,X,I ={z},y,7y):

Recall that, aX (s)+f(s)(s+y) = 1. Since y # z, by Bézout’s Identity,

u(s+z)+o(s+y) =1, where u,0 € Z, 6)
Goal is to find &’ and ' (s) s.t.,
a'X'(s) + B (s)(s +y) = 1, where X' (s) = (i{isi) 7)

aX($s)+P(s)(s+y)=1=aX'(s)(s+2)+f(s)(s+y) =1

1-o(s+y) . 1-o(s+y)
Replace (s+2) as # from Eq. 6: aX’(s)(#) +B(s)(s+

y) =1=§X'(s) + (ﬂ(S) - %X'(S))(Hy) =1

Thus, from Eq. 7, ' = &, f'(s) = p(s) — va’X’(s) and E'y =

, B(s)
- 9

=522

To compute the updated non-membership proof, ﬁ; = (o, glﬁ "(s)),
we calculate constants u,v in Eq. 6 by running the extended Eu-
clidean algorithm for degree one polynomials, which takes only
O(1) operations. We can compute the constant ¢’ with one inver-
sion operation and one multiplication operation in Z,,. Similarly,

’ B(s)

we can compute glﬁ () = g;‘T with one multiplication operation

%
in Zp, one inversion operation, one exponentiation operation in Gq

by Zp, and one addition operation in Gj.

7 ZK BATCH PROOFS

We now show how our batch (non-)membership proofs in BP accu-
mulators can be made zero-knowledge. We consider the following
setting: a set X = {x1,...,x,} of elements is accumulated, and a
prover holds witnesses for a subset I € X, where |I| = d. We want
to prove that I € X (or I N X = 0) while hiding the set I itself.
Additionally, we want to be able to reveal just the size of I or in

Shravan Srinivasan, loanna Karantaidou, Foteini Baldimtsi, & Charalampos Papamanthou

other words that it includes “at least d elements”. This is important
since typically a batch proof does not hide the number of batched el-
ements and this is useful in identity systems, sanctions/embargoed
lists, e-cash, etc. At the same time, we want to maintain the benefits
of batch proofs: (1) the verifier cost should be constant for both
membership and non-membership proofs, and (2) the size of the
ZK batch proof should remain sublinear.

In the ZK setting, the verifier does not hold the set I or the
proof 77 (or 7rg) in order to run the verification algorithm. Instead,
the prover has to prove in ZK that the pairing equations in the
verification algorithm hold. The prover’s witness is the set I, the
randomness r used in the commitment to I, a proof of membership
q7 or a proof of non-membership 7z;. The inputs known to the
verifier are the public parameters pp, a commitment to the subset
Cr, and the accumulator value Ax.

More specifically, the prover (that knows the polynomial I(x)
and the commitment randomness r) has to compute ZK proofs for
the following relations:

® Rmem (pp, Cr, Ax; m1, ) knowledge of 77 such that membership
verification holds and knowledge of randomness r

® Rnonmem (pp; C1. Ax; 71, ) knowledge of 7 such that non-me-
mbership verification holds and knowledge of randomness r

o If revealing the size, Ryegcheck (PP, Cr. d; I, ) proves that the set
size |I| = d and the set corresponds to Cr. A proof for this relation
is analyzed in the following tasks:

- Proving that I(x) = ]_[;fl:1 (x+x;) = x4+ f(x), where deg(f) <

d — 1 using a hiding commitment Cy,

- Proving well-formedness of Cy in relation to Cr.

The commitment Cy allows the prover to later open all elements
in I (if needed) by revealing r. In the following paragraphs, we
explain in details how these proofs are constructed.

Notation. Let pp be the following public parameters:
® 91,h1,8,81,82 € Gy and g2, h, b, b1, b2 € Gy
o g =[91.g5.....q 1 € G g5 = [g2.45...
o a= g9 5] € GLt

We view a polynomial I(x) as equivalent to its coefficients that

form a vector, therefore for the rest of the paper, we overload the

Pedersen VC input with both vectors and polynomials.

st t+1
~592 ] € Gz

7.1 Proving membership (Rmem)

The high level idea of the initial proof is the following: Rmem.init
essentially proves that the verification equation holds for Crh;"
and proves knowledge of r.

®R o (pp,Cr € Gy, Ax € Gy;m1 € Gy, €Zp) :
mem.init =1 c; = gt A e(nr, Cr) - e ha) " = e(Ax, g2)

However, it still does not hide the witness 7;. Using techniques
from RingCT [43], Rmem.init can be transformed into Rmem, which
proves the above statement in ZK. Specifically, it adds a proof that
Rmem.init verifies for 739~ ™ and proves knowledge of 71, where
71,2 is the blinded version of the batch proof 7.
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(pp,Cr € Gy, Ax € Gi;m1 € Gy, 1,711,712 € Zp)
Cr= h;gg(s) NS =Tir A& = or A

mLy =987 Ay = gt A

=e(g,C)™ - e(g, hz) ™01 - e(mrz, ha)"

Rmem is instantiated with a generalized version of Schnorr’s
protocol for knowledge of DL as r, 77 are scalars.

Rmem =
e(r12.Cr)
e(Ax.92)

Protocol for relation Rmem. The interactive version of the pro-
tocol is as follows:

e Prover
- Picks 7y, 7y « Z,
- Computes 71 = glrlgfz and 77, = 7g™
= Picks 1y, ey Trys 78,575, € Zp
- Sends:

* TT1,15 7T1,2

e “rsy -,

* Ry = 91 lgrrz’ Ry = ”I,lrrgl lg %

* Ry =e(8,Cp) ™ e(g, hy) "Pre(myz. hy)"
Verifier sends ¢ « Zj

Prover sends:

- s, =rr+cr
= Sg =Tg +CT1, Sgy =Ty +CT2

- S5 =TS + 651, S8, =18, + 052

e Verifier checks:
St
- R = ”I_,lcgl 1g72
=S5 —s
- R =7'L'IS,’lg1 19755
,C _
- R (%)C =e(g,Cr)* e(8, hy) %1 e(mr, ha)*r

Correctness, soundness, and ZK. We defer the security argu-
ments to the extended version of our paper.

Asymptotics. The instantiation of Rmem consists of 5 group ele-
ments and 5 field elements, and has constant prover and verifier.

7.2 Proving non-membership (Rnonmem)

For non-membership, Rmem.init is replaced by

7(@,@ € Gz,AX € G];
_ (A,B) € Gy xG1,r €Zp) :
Rnonmem.init = Cr= h;g;(s) A
e(Ax,A) - e(B,Cr) - e(B,h) ™" = e(g1.92)
Similarly, Rnonmem.init Still does not hide the witness 77. Thus, us-
ing techniques from RingCT [43], Rnonmem.init can be transformed
into Rnonmem, wWhich proves the above statement in ZK.

(pp, Cr € Gz,AX € Gl; (Z,E) € Gz X Gl,
T, 71,73, T4 € Zp) :
Cr= h;gg(s) AS3=13r NSy = 14r A
Ay = AhT A
By =g;°3™ A By = Bg® A
e(Ax.Az)-e(BaCp) _ e(Ax,H)™ -e(g,Cr)™-
elg1.92) T e(8,hy)7% - e(By, hy)"

Rnonmem =

The rest of the protocol remains the same. We defer the security
arguments to the extended version of our paper.

Protocol for relation R,onmem- The interactive version of the
protocol is as follows:
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e Prover
- Picks 71,73, 74 «$Zp
- Computes
% Ay = AT
* By =g,°g™, By = Bg™
= PickS Fp, o)y Togs gy 755 7, <SS Zp
- Sends:
% Ay, B, By
% Ry =g,°8"™, Ryz = (By)7 g 067"
* Ry =e(Ax.H)"™ - €(8,Cr)"™ - e(g, h2) "% - e(By, hy)"™
e Verifier sends ¢ < Z,,
e Prover sends:
— Sp=rptcr, Sy =ry +eTy
— Spy =Tpy +CT3,Sg, =gy +CTy
= S8y =T, + €03, 85, =15, + ¢4
e Verifier checks:
- Rp1 = (B1) ¢g1°Bg°™
- Rpp = (By)%rg %g %

- Ry (S eBCl e _ oAy )on1e(g,Cr)*n e, y) -

e(By, hy)*r

7.3 Proving degree bound (Ryegcheck)

We now want to prove in ZK the following statement: The prover
knows at least d elements. So far, the verifier only knows that the
verification algorithm holds for some commitment Cy. In order to
be convinced that Cy is a commitment to a set I = {x1,...,x4}, the
verifier has to prove knowledge of a polynomial I(x) of degree d.
It is implied that as long as I(x) is a polynomial, it is well-formed
as a product of d monomials (x + x;) (I(x) is part of the accu-
mulator exponent (membership) or coprime to the accumulator
exponent(non-membership)). We define the following relation:

(pp.Cr € Ga,d € Zp;1 € Zp, I C Zp) : }

R = o
degcheck { Cr= hggé(“) Al =d

For proving the above statement with existing protocols (that
prove maximum instead of minimum polynomial degree), we use
the following idea: a correct computation of the polynomial I(x)
that corresponds to elements in the set I with |I| = d, results to the
following polynomial:

d
I(x) = l_[(x+xi) =x%tay x4 ax+ag
i=1

Let f(x) = ad_lxd_l + -+ +aix + ag, Thus, I(x) = x4 + f(x).

In order to prove that the degree of I(x) is at least d it suffices
to show that deg(f(x)) < d — 1. This implies that there is no term
of f that eliminates x?. Therefore, the degree of polynomial I is at
least d.

Proving that deg(f)< d —1. In order to prove a polynomial’s max-
imum degree, we follow the technique used in Marlin [22]. Instead
of publishing parameters of degree-specific size, we transform the
proof to use the accumulator’s parameters of size t and we shift the
polynomial such that it has degree ¢ instead of d.

Informally: polynomial f(x) gets multiplied with a random poly-
nomial of degree t — (d — 1) (the sparse polynomial ¢ - x*~(4=1)
where c is a random scalar would suffice). This is what we call a shift

and can be proven to be computed correctly with the use of pairings.



CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Using knowledge assumptions [28] (and commitment to the same
polynomial multiplied with a) the prover shows knowledge of f.In
other words, the prover was able to construct the result polynomial
using public parameters (that consist of generators raised to powers
of s up to t), therefore the degree of f does not exceed d — 1.

Protocol for Ryegcheck- The interactive version of the protocol is
as follows:

e Prover
- Computes: f(x) as I(x) = Hidzl(x +x;) = x4 + f(x), where
deg(f) <d -1

- Sends Cr = %
9;

o Verifier
- Sends: ¢ € Zy,

e Prover

— Computes: f(x) - c

- Sends: C = g W= prest ™ ¢ g, ca e g,
e Verifier checks:

- e(g1,Cr) = (g1, Cp) - e(gr, h**)

- e(91.C) = e(g&" ™" Cp). e(91,C%) = (g, C)

xt—d+1 and r - Cxt—d+1

Correctness, soundness, and ZK. We defer the security argu-
ments to the extended version of our paper.

Asymptotics. The protocol has O(d) prover cost that comes from
multiplying f(x) with the polynomial of degree t — (d — 1) and
computing its commitment C. It can be made non-interactive using
the Fiat-Shamir transformation. The proof size is constant (the
prover has to send over constant sized commitments Cy, Cf, C,C%a
commitment to polynomial I(x), to polynomial f(x), to polynomial
F(x)-c-xt=(@=1 and to polynomial a- f (x)-c-x!~ (d-1) respectively)
and verification cost is also constant (7 pairings).

8 PROOF OF EXPONENTIATION

We present the Proof-of-Exponentiation (PoE) protocol in the kno-
wn-order group setting. Informally, the prover can convince the
verifier that the exponentiation of a group element by the evalu-
ation of a known polynomial at a specific point is correct. That
is, given a tuple, (Ay, Aw, V(x)) € (G, G,Zp[x]), the prover can

convince the verifier that Ay = Al‘;(s), with a constant sized proof

requiring constant number of pairing checks. Given the coefficients
of polynomial V(s), naively, computing gws) would require as
many exponentiations as deg(V (s)). However, with PoE, the veri-
fier has to just perform cheaper polynomial division and constant
pairing computation instead of performing linear number of group
exponentiations.

Since naively verifying batch (non-)membership proofs require
a multi-exponentiation of size |I|, we can delegate the expensive
exponentiations to the prover using the PoE protocol. Note that
the PoE protocol is of independent interest and can be used as a
building block in other constructions.

For ease of exposition, we present the protocol (Fig. 1) using
symmetric pairings. However, the protocol can be instantiated using
asymmetric pairings.

R | ((Au,Aw € G V(x) € Zp[x]); L) :
PoE = { Aw =AY eG }
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pp «— PoE.Setup(11):

1. (p.G,Gr,e,g) « BilGen(1%)
2. s <—$Z;‘7

3. pp = ((p,9,G,Gr,e), {g° | 0<i<t})

Protocol PoE for Rpog:

Params: pp < PoE.Setup(1%)
Inputs: (Ay, Aw € G,V (x) € Zp[x])

Claim: Aw = A]®) € G

1. Verifier sends £ < Z,,
2. Prover computes:
q(x),rst.V(x)=q(x)  (x+¢)+r
Q1 = g7 using pp
Q; = g4 (1+8) ysing pp
3. Prover sends Q;, Q to Verifier.
4. Verifier computes: r s.t. 7 = V(x) mod (x +¢)
Accepts if: e(Q1,g*?)) 2 e(Q2,9) A
?
e(Au, Q2) - e(Au.g") = e(Aw.,g)
Figure 1: PoE protocol. We use Fiat-Shamir transformation to make this
protocol into non-interactive. For the ease of exposition we present the

construction in the symmetric pairing setting. However, we remark that
our implementation uses asymmetric paring.

We present the interactive version of the protocol for the symmetric
pairing in Fig. 1, which can be made non-interactive using Fiat-
Shamir transformation. The soundness of Rpgf is defined similar
to its RSA counterparts as defined in [51] and [10]. We defer the
proof of soundness of our PoE protocol to the extended version of
our paper.

9 EVALUATION

In this section, we experimentally compare the aggregation oper-
ations in the RSA [10] and BP setting. We implement RSA accu-
mulator using C++17, GNU Multiple Precision Arithmetic library
6.2.1 [52], and OpenSSL 3.0.2 [45]. We choose two 1024-bits prime
numbers at random and compute the product to obtain a 2048 RSA
modulus (using OpenSSL [45]). We implement ? the BP accumula-
tor using Golang bindings of the mcl library [36, 46]. Specifically,
we use BLS12-381, a pairing-friendly elliptic curve. A single group
element G and a field element F in the RSA setting, by the virtue of
the choice of parameters, are 256 and 32 Bytes, respectively. In the
elliptic curve group, a single compressed Gy, G2, Gt group element
requires 48, 96, 576 Bytes, respectively. Moreover, an element in
Zp requires 32 Bytes. A single exponentiation in the RSA group G
by an exponent at most 256-bits takes 449 ys on an average. How-
ever, a single exponentiation in the elliptic curve source groups
take G and G takes 106 ys and 250 s, respectively. As BLS12-381
curve contains numerous roots of unity, we implement FFT based
polynomial algorithms to support fast polynomial operations in
go-mcl [46].

Our implementation is single threaded and all our experiments
where performed on an Intel Core i7-4770 CPU @ 3.40GHz with 8
cores and 32 GiB of RAM. Unless stated otherwise, we perform 3
runs of each experiment and report the average.

2Qur code is available at: https:/github.com/accumulators-agg/accumulators
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Batch size
sch. 2° 11 213 215 217
RSA 033 131 5.25 20.99 83.95
BP 0 0 0 0 0

Operation

Domain mapping (s)

RSA 052 209 838 3355 13437
BP 0.05 024 112 5.17 24.28
RSA 0.04 0.17 0.8 3.66 16.49
BP 0 0.01  0.18 2.51 38.35

Commit (s)

AggMem (min)

RSA 052 21 8.38 3354 134.37
BP 0.11 046 2.0 8.65 38.14
RSA 0.04 019 086 3.87 17.33
BP 0 0.02 0.2 2.58 39.12

MemVerify (s)

AggMemPoE (min)

RSA 033 132 532 214 86.16
BP  0.03 0.16 0.77 3.8 18.62
RSA 0.05 025 116 53 239
BP 0.1 154 2454 N/A N/A

MemVerifyPoE (s)

AggNonMem (min)

RSA 072 287 1149 4598 184.12
BP 011 046 2.0 8.65 38.14
RSA 0.07 03 1.37 6.14 27.24
BP 0.1 155 2458 N/A N/A

NonMemVerify (s)

AggNonMemPoE (min)

RSA 034 134 533 2141 86.17

NonMemVerifyPoE (s)  'pb' 003 016 077 38 1862

Table 2: Accumulator batching operation costs for different batch sizes. In
the first column, (s) denotes seconds and (min) minutes. The costs for RSA
operations include the computations required to map to the prime domain.
N/A stands for very large costs which are not interesting to compute.

9.1 Aggregation

In Table 1, we present the asymptotic costs for various operations
in the BP setting, and in Table 2 we present our corresponding
evaluation results.

Public parameters. Both the RSA and the BP accumulators require
atrusted setup phase to generate the public parameters. Classgroups
based accumulator constructions [13] do not require trusted setup in
the unknown-order group setting, but they are too slow in practice.
The public parameters in the RSA setting is just the RSA modulus
and the group generator. However, in the BP setting, the public
parameter consists of n - G; + n - Gy elements, where n is the
maximum size of the accumulated set®. For n = 217, the public
parameters occupies 18 MiB. With PoE, it is sufficient to store only
constant number of values (g1, g5, g2, g5) from the public parameter
by the verifier. Recall that g1, g2 are the group generators of G; and
Gg, respectively.

Domain mapping. To add values from an arbitrary domain D to
the accumulator set, each element has to be mapped to a value in
the specific accumulator domain 9’. Since the RSA accumulator re-
quires a prime domain, we implement the standard “hash to prime"
algorithm [9, 10], where the hash operation is successively applied
on the input until the hash function returns a prime value. We use
Blake2s hash implementation in OpenSSL [45] to convert a value
from arbitrary domain to Prime domain and GMP’s Miller-Rabin’s

3Rather than relying on a trusted entity, it is possible to use an MPC based setup
ceremony to generate public parameters. We can adopt approaches from real-world
MPC ceremonies of Zcash and AZTEC protocol which have successfully generated
SNARK parameters for circuit sizes 22! and 2%7, respectively [12][50].
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primality testing (15 rounds). For the BP setting, as discussed in
§3.3, the specific domain is Z,. In our implementation we use the
BLS12-381 curve for which the group order is around 256-bits [11].
Thus, we can accumulate any arbitrary string of size up to 256-bits
without the need of any mapping.

In our experiments, we consider the accumulation of arbitrary
256-bit strings. In Table 2, we report the cost mapping these ar-
bitrary strings to the accumulator domain. Mapping an arbitrary
string to the prime domain takes 640 to 894 s for 15 to 50 rounds of
Miller-Rabin primality testing. Before performing an accumulator
operation, all elements have to be converted to the accumulator
domain. Thus, we include the cost of mapping to the accumulator
domain for all operations in Table 1.

Discussion. We now briefly discuss what could go wrong in a uni-
versal accumulator if we don’t include the mapping process during
verification.

Consider the two most popular Hpime approaches [9, 10]* for
mapping a non-prime element x to a prime y: (1) perform repetitive
hashing H(H(...H(x))) = y until a primality test indicates that
the output is a prime, then outputs x and r where r is the number
of hashing rounds required, (2) perform repetitive hashing of the
value (x||r), where r is a random nonce, until H(x||r) = yis a
prime. In both cases, when a prover wishes to add element x to
the RSA accumulator, it first calculates the mapping y and stores
r. The element y is accumulated. When they wish to prove (non-
)membership, they provide r as a witness along with the proof to
decrease verification costs. However, if a malicious prover can find
two numbers of hashing rounds ry, rp for the same element x, that
correspond to two elements yi,y2 in D’, then if say y; was the
accumulated value (for x), the malicious prover could use y3 to
argue non-membership for x.

In order to avoid such attacks in universal accumulators®, before
verifying any (non-)membership proof, all verifiers need to check
that the given prime mapping y is the first one that corresponds
to the arbitrary element x and thus need to run all the repetitive
steps the prover does. If the proof is a batch proof for |I| elements,
the verifiers need to repeat the process |I| times individually for
each element. The same holds for updates (addition or deletions)
to ensure primality since they might be initiated by an untrusted
entity.

Commit. To commit to a set I in the RSA setting, we first com-
pute the product of the elements in the set. Then, we perform
modular exponentiation of this large product of size O(A - |I])-bits.
However, for BP accumulators, we first compute the coefficient of
the accumulator polynomial using the subproduct algorithm and
fast polynomial multiplication. Then, we perform a single multi-
exponentiation of size |I|. Observe that from Table 2, even after
subtracting the domain mapping costs from the Commit, BP ac-
cumulators are faster! For a set size of 21°, it takes around 12.56
seconds to perform Commit, in the RSA setting, whereas it takes
just 5.17 seconds in the BP setting.

4 A recent work [39], attempts to optimize the “hash to prime” approach, by using
Pocklington primality certificates in order to reduce the cost of primality testing on
the side of the verifier. However, it still does not guarantee a deterministic mapping.
5If the accumulator does not support non-membership, then this attack does not apply.
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Operation RSA BP
(Bytes) (Bytes)

Digest 256 48

Mem. proof 256 48

Non-mem. proof 288 80

Agg. mem. proof (Naive) 256 48

Agg. non-mem. proof (Naive) 3.85" MiB 144" Bytes

Agg. mem. proof (PoE) 512 192
Agg. non-mem. proof (PoE) 1312 336
PoE 256 144 or 96
PoKE 544 X

Table 3: Sizes of accumulator digest and proofs in bytes. Asterisk(*) denotes
a batch size of 217.

Membership aggregation. We implement the membership proof
aggregation algorithm from Boneh et al. to aggregate a set of mem-
bership proofs in RSA accumulators [10]. Aggregating a pair of
membership proofs involves computing Shamir’s trick, which re-
quires computing the Bézout coefficients and performing two ex-
ponentiations. However, aggregating membership proofs in BP
accumulators, involves O(|I|log? |I]) field operations and one |I|-
sized multi-exponentiation (Table 1). Thus, we observe that the
prover’s cost to aggregate is lower for the BP accumulator for set
sizes up to |I| = 21%. Beyond these set sizes, the field operations in
BP dominates aggregation cost. It is not very common for a prover
to hold (or wish to aggregate) more than 2'° proofs. Thus, for most
applications BP should be preferable.

We also implement PoE from Boneh et al. [10] and from §8 to
optimize the verification of the aggregated proof in RSA and BP
accumulator, respectively. Since the prover overhead in comput-
ing the aggregated proof is dominated by field operations in both
RSA and BP accumulators, the additional exponentiations over-
head incurred by a PoE enabled prover is limited. We observe this
in our experiments as the prover engaging PoE additional incurs
only around 12.7 and 4.2 seconds for RSA and BP accumulators,
respectively, for 21% values (Table 2).

We observe that verifying batch proofs (without PoE) in BP
accumulator is 3.5X to 4.7X faster than RSA accumulators. This
is because the multi-exponentiations in elliptic curve group G is
faster than a single large exponentiation in the RSA group G. In
the PoE enabled setting, we observe that BP verification is 4.6X to
11X faster than RSA. In addition to the domain mapping costs, we
also include the overhead to compute the Fiat-Shamir coins in our
experiments.

Non-membership aggregation. The prover’s cost to aggregate
non-membership proofs is better for RSA regardless of the use of
PoE. This is due to BP’s O(|I|? log |I|) field operations that comes
from constructing the Y;(s) terms (§5.2).

In comparison with RSA, verifying batch non-membership proofs
in BP is at least 4.6x faster in any case. Observe that verifying a
batch non-membership is computationally similar to verifying a
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Batch size

Operation 2° 211 213 21

Pedersen 008 031 124 498
Commitment (s)

Prover Rimem 2.97 ms
Verifier Rmem 3.66 ms
Proof size Rimem 0.91 KiB
Prover Rnonmem 4.65 ms
Verifier Rnonmem 5.18 ms
Proof size Rnonmem 1.03 KiB

Prover Ryegcheck ()  0.17  0.64 257 11.29

Verifier Ryegcheck 4.49 ms

Proof size Ryegcheck 0.29 KiB

Table 4: Single-threaded microbenchmarks for our ZK constructions.

batch membership proof in the BP setting, regardless of the us-
age of PoE (Table 1). Thus, we observe similar performance num-
bers for NonMemVerify and NonMemVerifyPoE when compared
to MemVerify and MemVerifyPoE, respectively, in the BP setting.

Storage and proof sizes. In Table 3, we present the storage over-
head of proofs in both RSA and BP setting. For a similar level of
security, an RSA group element G is of size 256 bytes as opposed to
an elliptic curve element that is of size 48 Bytes for G; and 96 Bytes
for G;. The accumulator value and the batch membership proof con-
sist of one group element in both constructions. Non-membership
consists of one group element and one integer for RSA and two
group elements in the BP setting. The integer in RSA batch non-
membership proof grows linear in the batch size. The PoE proof
adds to the proof size one group element in the RSA. However, in
the BP setting PoE adds an overhead of either (Gq, G1) or (Gq, Gg)
depending on whether prover computes a proof for gg(s) or gi(s),
respectively. The RSA non-membership proof can be made succinct
using PoE and PoKE [10]. We note that in BP, non-membership
proofs do not need PoKE as the proofs are already constant sized.
Thus, we observe that membership and non-membership proofs in
BP accumulators are 2.5X to 5x smaller and 3.5X smaller than the
RSA accumulators, respectively.

9.2 Zero-knowledge batch proofs
We microbenchmark our proposed ZK batch proofs in Table 4.

Public parameters. The constructions for Rmem and Rnonmems
require the prover and the verifier to store additional generators
for Pedersen commitment. However for Ryegcheck Since we rely
on t-PKE assumption, the prover needs to additionally store 3n - G,
elements (36 MiB). Whereas, the verifier needs to store only 2n - G
elements (24 MiB). When n = 2!7, generating additional 3n - G
parameter takes around 98 seconds using a single thread.

Prover overhead. To commit to coefficients of a polynomial using
Pedersen commitment, we use the values g;l and an independent
group generator. Using multi-exponentiation, it takes 4.98 seconds
to commit to a batch of size 2. Recall that, given a commitment
to the subset I, prover incurs constant overhead to generate a ZK
proof for Rmem and Rnonmem regardless of the batch size. Thus,
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to prove Rmem and Rnonmem. it takes 2.97 and 4.65 milliseconds,
respectively. To prove a lower bound on the degree of I(s), the
prover needs to compute Pedersen commitments on I(s) with and
without ¢-PKE.

Verification time and proof size. The proof of Rmem is (4 - G; +
Gt +5-Zp) and the proof of Rnonmem is (3-G1 + G2 +G7 +6-Zp).
With a 64-bit integer to denote the degree and three elements in Gy,
a prover can prove a lower bound on the degree of a polynomial.
All the proofs in our scheme can be verified with a constant number
of exponentiations and pairing operations.

9.3 Comparison with HARiSA [18]

In this subsection, we argue that our approach to ZK batch proofs
of membership can be at least 16x faster than the current state-
of-the-art approaches to ZK batch membership proofs in the RSA
setting for a reasonable choice of batch size. We also report the
performance of our ZK batch proof of non-membership in Fig. 2.
HARISA does not support non-membership.

Experimental setup. We fix the maximum size of the set to 217
elements and measure the performance of computing the zero-
knowledge proof of batch (non-)membership while revealing the
size of the batched subset. Moreover, we consider an experimen-
tal setup where the prover must do maximal work. That is, we
assume that the prover: (1) has access only to the individual (non-
)membership witness but not the batch membership witness, (2)
does not have access to the commitment to the batched subset,
and (3) has access to the accumulator digest and public parameters.
Thus, the prover incurs the cost of: (1) computing the commitment
to set I, (2) aggregating the individual (non-)membership witnesses
to obtain batch witness, (3) proving the relation Rmem or Rnonmems
and (4) proving the relation Ryegcheck for d = |I].

Baseline measure. We compare the performance of our scheme
against results of HARISA [18] by Campanelli et al., which builds a
succinct batch proof of membership while preserving the privacy
of the batched elements. Their work combines proof of knowledge
of exponent (PoKE) along with CP-SNARK for integer arithmetic
relations and bound checks to prove batch membership. They im-
plement their construction using LegoGroth16 in C++. Similar to
our experiments, they require the prover to compute the batch
witness using individual witnesses and their experiments are single
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P
P4
— ,’
) P
210t S s
= /’
=3 Ctin
5 -
o
o
N —_’//
T T T T
4 6 8 10

Batch size (log, scale)
Figure 2: We extrapolate the proving costs using the numbers reported
in HARISA [18]. Note that the results in the RSA setting does include the
Hash-to-prime costs.
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Scheme Setup  Verifier Proof size
HARISA [18] Mem. Trusted 63 ms 1.14 KiB
. Mem. 7.94 ms 1.2 KiB
This work Non-Mem. Trusted 9.41ms 1.32KiB

Table 5: Verification overhead and proof size.

threaded. Also, recall that in our experiments we reveal the size of
the subset I, which is currently not implemented in HARiSA [18].

Proving time. HARISA reports a prover time of 2.86 and 9.02 sec-
onds for a batch of size 16 and 64, respectively. Recall that their im-
plementation uses LegoGroth16 proof system, thus the prover time
is dominated by large FFTs and exponentiations. The performance
numbers reported by HARISA uses Amazon EC2 r5.8xlarge [18,
Figure 4], which we extrapolate for various batch sizes in Fig. 2.
However, in Fig. 2, the performance of our scheme is measured
on an Intel Core i7-4770 CPU@ 3.40GHz. We observe that for a
batch size of 16, our approach takes merely 0.18 seconds, whereas
HARISA takes 2.86 seconds, thus resulting in 16X speed up. Clearly,
our performance is still an order of magnitude faster even when
benchmarked on a much slower machine. Thus, we argue that our
order of magnitude performance gain will carry over even when
we benchmark our scheme and HARISA on the same machine.

To the best of our knowledge, there are no known sub-linear
proof sized privacy preserving batch non-membership proofs in the
RSA setting without generic arguments such as SNARKs. However,
SNARKSs based approaches are too slow in practice. Thus, we report
the performance of our non-membership scheme in the context of
membership scheme due to lack of appropriate baseline.

Verification time and proof size. Our approach has a comparable
proof size and superior verification speed. We report this in Table 5.
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