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Abstract. In this work we present MiniLedger, a distributed payment
system which not only guarantees the privacy of transactions, but also
offers built-in functionalities for various types of audits by any external
authority. MiniLedger is the first private and auditable payment sys-
tem with storage costs independent of the number of transactions. To
achieve such a storage improvement, we introduce pruning functionali-
ties for the transaction history while maintaining integrity and auditing.
We provide formal security definitions and a number of extensions for
various auditing levels. Our evaluation results show that MiniLedger is
practical in terms of storage requiring as low as 70 KB per participant
for 128 bits of security, and depending on the implementation choices,
can prune 1 million transactions in less than a second.

1 Introduction

One of the main issues with distributed ledger-based (or else blockchain) pay-
ment schemes (e.g. Bitcoin) is the lack of privacy. All transaction information -
including transacting parties’ public keys and associated values - are perma-
nently recorded on the public blockchain/ledger, and using side-channel infor-
mation these keys can be clustered and eventually linked to real identities [5,30].
A number of solutions have been suggested to solve the privacy issues of dis-
tributed ledgers by hiding both the transaction graph and its associated assets
and amounts [7,14,19,39], however, while privacy is a fundamental right, the
need for auditing mechanisms is required to ensure compliance with laws and
regulation [1,24] as done in traditional payment systems via auditing compa-
nies (i.e. Deloitte, KPMG). Constructing payment schemes that satisfy both
privacy and auditability at the same time, is a rather challenging problem since
these properties are often conflicting. The challenge becomes even harder when
one takes efficiency and scalability into account. In particular, one of the most
common approaches to solve the scalability issue, that of pruning old/unneeded
transactions from the ledger, directly hurts auditability, as an auditor cannot
possibly audit data that no longer exists in the ledger.
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While a number of solutions for accountable and private distributed payments
have been proposed in the literature, they either rely on the existence of trusted
authorities or do not scale for large number of participants and transactions.

Our Contributions. We present MiniLedger: the first space efficient, dis-
tributed private payment system that allows an authorized set of participants
to transact with each other, while also allowing for a wide set of auditing by
consent operations by any third party auditor. We provide formal, game based
definitions (in full version [15]) and a construction that relies upon a number
of cryptographic primitives: a consensus protocol, semi-homomorphic encryp-
tion, compact set representation techniques (cryptographic accumulators) and
non-interactive zero-knowledge proofs (NIZKs).

At a high level, MiniLedger consists of n Banks transacting with each other
through a common transaction history, or else a ledger L which is maintained
by a consensus mechanism (orthogonal to our work). The ledger is modeled
as a two-dimensional table with n columns, one for each participating Bank,
and rows representing transactions. Whenever Bank Bj wishes to send funds of
value v to another Bk, it creates a n-sized vector containing (semi)homomorphic
encryptions and NIZK proofs which is appended in L. Bj encrypts the value that
is sent to each participating Bank in the system using each receiving Bank’s
public key, i.e. the encrypted values would be v for Bk, −v for Bj and 0 for
any other Bank. These encryptions provide privacy in MiniLedger since they
hide values as well as the sender and recipient of each transaction, while still
allowing all participating Banks to decrypt the value that corresponds to them
and to compute their total assets at any point. This overcomes the need for
any out-of-band communication between Banks which created security issues in
previous works (ref. Sect. 4.2). Finally, the included ZK proofs guarantee that
transactions are valid without revealing any information.

MiniLedger provides auditability by consent. Any third party auditor with
access to L can ask audit queries to a Bank and verify the responses based on
the public information on L. The simplest audit is to learn the value of a cell
in L, i.e. the exact amount of funds a Bank received/sent at any point. This
basic audit can be used to derive more complex audit types as we discuss in
Appendix A, such as transaction history, account balance, spending limit etc.,
without disclosing more information to the auditor than needed.

Space Efficiency. The main innovation of MiniLedger lies in the maintenance
and storage of L. In previous auditable schemes (such as zkLedger [34]) the
full L needs to be stored at any time and by all participants. The challenge
in MiniLedger design was compacting the ledger while maintaining security
and a wide set of auditing functionalities. MiniLedger employs a smart type
of transaction pruning: participating Banks can prune their own transaction
history by computing a provable, compact representation of their previously
posted history and broadcast the resulting digest to the consensus layer. Once
consensus participants agree to a pruning operation (i.e. verify the digest as a
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valid representation of the Bank’s history), that history can be erased from L
and thus by all system participants (except the pruning Bank itself which always
need to store its own transaction history locally). Auditing is still possible since
a compact digest of transaction information is always stored in L and the Bank
under audit can prove that the revealed values correctly correspond to the digest.
As a result, the size of L inMiniLedger can be nearly constant (i.e. independent
of the number of transactions that ever happened).

Our compact transaction history representation can lead to multiple addi-
tional benefits (besides obviously reduced storage requirements). First, a com-
pact L makes addition of new system participants (i.e. Banks) much more effi-
cient (typically, new parties need to download the whole L requiring large band-
width and waiting time). Then, although the structure of L does not allow
for a very large number of participating Banks n (as the computation cost of
a single transaction is linear in n), the compactness of L allows augmenting
MiniLedger with more fine-grained types of auditing and enabling audits in a
client level (instead of a Bank level). We present MiniLedger+, an extension
that serves a much larger user base in Appendix A.

Finally, we implement a prototype of the transaction layer of MiniLedger
and evaluate its performance in terms of transaction costs, pruning costs and size
of L which we estimate to be as low as 70KB of storage for each Bank. We show
that transaction computation cost, for a system with 100 Banks, takes about 4
sec, while transaction auditing is less than 5 ms, independent of the number of
Banks. Transaction computation costs increase linearly to the number of Banks
(as in zkLedger) but by optimizing the underlying ZK proofs we achieve some
small constant improvement. Although the linear transaction computation cost
might still seem high, we note that using our MiniLedger+ extension, a small
number of Banks can serve a very large user base. We perform experiments on
two different types of pruning instantiations, one using Merkle trees [31] and one
using batch RSA accumulators [8]. Both result in pruning measurements that
are independent of the number of participating Banks. Our experiments show
that we can prune 1 million transactions in less than a second using Merkle
trees and in about 2 h using the RSA accumulator, and can perform audits in
milliseconds in the same transaction set.

Related Work. We present an non-exhaustive overview of related works.

Anonymous Distributed Payment Systems. Zcash [7], is a permissionless proto-
col hiding both transacting parties and transaction amounts using zero knowl-
edge proofs. Other notable systems are CryptoNote and the Monero cryptocur-
rency [39], based on decoy transaction inputs and ring signatures to provide
privacy of transactions within small anonymity sets, and Quisquis [19] which
provides similar anonymity level to Monero but allows for a more compact sized
ledger. Zether [10] is a smart contract based payment system which only hides
transaction amounts. Mimblewimble [20] uses Confidential Transactions [28] to
hide transaction values in homomorphic commitments, and prunes intermedi-
ate values from the blockchain after being spent (which might be insecure in
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Table 1. Confidential payment schemes comparison. By !S we denote set anonymity,
!T auditing through a TP and !K through “view keys” (which reveal all private
information of an account). By O: permissionless and C: permissioned we refer to the
set of parties that participate in the payment scheme and not the underlying consensus.

Record Anon Audit Perm Prune

Zcash [7,22] UTXO ! !T O "

Monero [26,39] TXO !S !K O "

Quisquis [19] Hybrid !S " O !

MW [20] UTXO " " O !

Solidus [14] Accnt !S " C "

zkLedger [34] Accnt ! ! C "

PGC [17] Accnt " ! O "

Zether [10] Accnt Option " O "

MiniLedger Accnt ! ! C !

other UTXO systems such as Bitcoin), improving its scalability. In the permis-
sioned setting, Solidus [14] allows for confidential transactions in public ledgers,
employing Oblivious RAM techniques to hide access patterns in publicly verifi-
able encrypted Bank memory blocks. This approach enables users to transact in
the system anonymously using Banks as intermediaries.

Adding Auditability/Accountability. A number of Zcash extensions [22,25,32]
proposed the addition of auxiliary information to coins to be used exclusively
by a designated, trusted authority for accountability purposes. While this allows
for a number of accountability functionalities, it suffers from centralization of
auditing power. Additionally, all such works inherit the underlying limitations
of Zcash such as the need for trusted setup and strong computational assump-
tions. Traceable Monero [26] attempts to add accountability features on top of
Monero. In a similar idea to Zerocash, a designated “tracing” authority can
link anonymous transactions with the same spending party and learn the ori-
gin or destination of a transaction. The tracing authority’s role can again be
distributed among several authorities to prevent single point of failure and dis-
tribute trust. PRCash [41] aims to achieve accountability for transaction volume
over time. A regulation authority (can be distributed using threshold encryp-
tion) issues anonymous credentials to the system’s transacting users. If trans-
action volume in a period exceeds a spending limit, the user can voluntarily
deanonymize himself to the authority to continue transacting. PRCash however
only focuses on this specific audit type. zkLedger presented a unique architecture
for implementing various interactive audit types in a permissioned setting, but its
linear-growing storage requirements in terms of transactions make it unpractical
for real deployment. Additionally, it assumes transaction values are communi-
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cated out-of-band, creating an attack vector that could prevent participants from
answering audits(further discussed in our full version [15]).

In Table 1 we summarize properties of private payment schemes and refer the
reader to [16] for a systematization of knowledge on auditable and accountable
distributed payment systems.

Prunable and Stateless Blockchains. Given the append-only immutability prop-
erty for most ledgers, the concern for ever-growing storage requirements in
blockchains was stated even in the original Bitcoin whitepaper [33], which con-
sidered pruning old transaction information without affecting the core system’s
properties. Ethereum [40], being an account-based system, supports explicit sup-
port of “old state” pruning as a default option, and defers to “archival” nodes for
any history queries. Coda (Mina) [9] is a prominent example of a stateless (suc-
cinct) blockchain, which only needs to store the most recent state with recursive
verifiability using SNARKs. Accumulators and vector commitments have also
been proposed to maintain a stateless blockchain [8,18]. All such approaches
however might negatively impact auditability and are therefore not directly
applicable in our setting.

2 Preliminaries

By λ we denote the security parameter and by z ← Z the uniformly at random
selection of an element z from space Z. By (pk , sk) we denote a public-private
key pair and by [xi]yi=1 a list of elements (x1, x2, ..., xy). By x ‖ y we denote
concatenation of bit strings x and y. We denote a matrix M with m rows and n
columns as Mmn and a i−th row and j-th column cell in the matrix as (i, j).

ElGamal Encryption Variant. MiniLedger uses a variant of ElGamal encryp-
tion (called “twisted ElGamal” (TEG) [17]). Compared to standard ElGamal, it
requires an additional group generator (denoted by h below) in the public param-
eters pp, which makes it possible to homomorphically add ciphertexts c2 and c′

2

generated for different public keys pk and pk ′ and intentionally leak information
on the relation of encrypted messages m and m′ as we discuss below.

TEG is secure against chosen plaintext attacks and works as follows:
• pp ← SetupTEG(1λ): Outputs pp = (G, g, h, p) where g, h are generators of
cyclic group G of prime order p.

• (pk , sk) ← GenTEG(pp): Outputs sk ← Zp, pk = hsk .
• (c1, c2) ← EncTEG(pk ,m): Sample r ← Zp, compute c1 = pkr, c2 = gmhr

and output C = (c1, c2)
• m ← DecTEG(sk , (c1, c2): Compute gm = c2/c

(1/sk )
1 and recover m from a

look-up table (assuming that the message space is relatively small).

TEG encryption is additively homomorphic: EncTEG(pk ,m1)EncTEG(pk ,m2) =
EncTEG(pk ,m1 + m2). Also if (c1, c2) ← EncTEG(pk ,m) and (c′

1, c
′
2) ←

EncTEG(pk ′,m′), then c2c′
2 contains an encryption of m + m′. This implies if

c2c′
2 = 1, then any external observer can deduce that m = −m′ (for properly

chosen r, r′).
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Commitment Schemes. We use Pedersen commitments [36] which are additively
homomorphic and allow efficient zero-knowledge proofs, are perfectly hiding and
computationally binding and consist of the following algorithms:
(a) ComGen(1λ) outputs pp = (G, g, h, p) where g, h are generators of cyclic
group G of prime order p, (b) Com(pp,m, r) for a message m ∈ [1...p] and
randomness r ∈ [1...p], outputs a commitment cm = gmhr, (c) Open(pp, cm,m, r)
with verifier given commitment cm and opening (m, r) returns verification bit b.

Zero-Knowledge Proofs. A zero-knowledge (ZK) proof is a two-party protocol
between a prover P , holding some private data (or else witness) w for a public
instance x, and a verifier V . The goal of P is to convince V that some property
of w is true i.e. R(x,w) = 1, for an NP-relation R, without V learning anything
more. In MiniLedger we use non-interactive ZK proofs (NIZKs) and OR and
AND compositions of them The types of ZK proofs used in MiniLedger are:

1. ZK proof on the opening of a commitment: Using Camenisch-Stadler nota-
tion [12] (used throughout the paper): ZKP : {(w, r) : X = gwhr mod
n}(X, g, h, n) where (X, g, h, n) are the public statements given as common
input to both parties, and (w, r) is the secret witness.

2. ZK proof of knowledge of discrete log: ZKP : {(x) : X = gx mod n}(X, g, n).
3. ZK proof of equality of discrete logs: ZKP : {(x, r, r′) : X = gxhr mod n, Y =

gxhr′
mod n}(X,Y, g, h, n).

4. ZK range proof that a committed value v lies within a specific interval (a, b):
ZKP : {(v, r) : X = gvhr mod n ∧ v ∈ (a, b)}(X, g, h, n). Such proofs can
also be used to show that the value v is positive or does not overflow some
modulo operation. Known range proof constructions include [11,29,37].

Cryptographic Accumulators. Accumulators allow the succinct and binding rep-
resentation of a set of elements S and support constant-size proofs of (non)
membership on S. We focus on additive accumulators where elements can be
added over time to S and to positive accumulators which allow for efficient
proofs of membership. We consider trapdoorless accumulators in order to pre-
vent the need for a trusted party that holds a trapdoor and could potentially
create fake (non)membership proofs. Finally we require the accumulator to be
deterministic, i.e. always produce the same representation given a specific set.
An accumulator typically consists of the following algorithms [6]:

• (pp,D0) ← AccSetup(λacc) generates the public parameters and instantiates
the accumulator initial state D0.

• Add(Dt, x) := (Dt+1, upmsg) adds x to accumulator Dt, which outputs Dt+1

and upmsg which enables witness holders to update their witnesses.
• MemWitCreate(Dt, x, St) := wt

x Creates a membership proof wt
x for x where

St is the set of elements accumulated in Dt. NonMemWitCreate creates the
equivalent non-membership proof ut

x.
• MemWitUp(Dt, wt

x, x, upmsg) := wt+1
x Updates membership proof wt

x for x
after an element is added to the accumulator. NonMemWitUp is the equivalent
algorithm for non-membership.
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• VerMem(Dt, x, wt
x) := {0, 1} Verifies membership proof wt

x of x in Dt.

The basic security property of accumulators is soundness which states that
for every element not in the accumulator it is infeasible to prove membership.

We utilize two types of accumulators: (a) the additive, universal RSA accu-
mulator [8] and (b) additive, positive Merkle Trees [31]. We note that RSA
accumulator can become trapdoorless if a trusted party (or an MPC protocol) is
used to compute the primes for the modulo n, or a public RSA challenge num-
ber (i.e. from RSA Labs) is adopted. We also note that we will apply batching
techniques in element additions and membership proofs [8]. In Sect. 5 we discuss
the trade-offs between the two options for different implementation scenarios.

Consensus. A consensus protocol (denoted by CN) allows a set, SCN, of dis-
tributed parties to reach agreement in the presence of faults. For MiniLedger
we assume that the agreement is in regards to data posted on a ledger L and
participation in the consensus protocol can be either permissioned (i.e. only
authenticated parties have write access in the ledger) or permissionless. Consen-
sus protocols that maintain such a fault-tolerant ledger and their details (e.g.
participation credentials, incentives, sybil attack prevention etc.) are out of the
scope of this paper and can be done using standard techniques [4,13]. For our
construction, we assume a consensus protocol: Conscus(x, L) := L′ which allows
all system participants given some input value x and ledger state L, to agree on
a new ledger L′. We assume that consistency and liveness [21] are satisfied.

3 MINILEDGER Model

B1

s us nes no
C

State

Ledger

sroti du
A

B2

1

2

4 3

5
StateUsrDB UsrDB

Fig. 1. MiniLedger overview. State: Bank’s private database. Usr DB: optional private database
for Bank’s clients. Banks read Ledger to create/prune transactions (1), forward output to Consensus
(2), which verifies/updates the Ledger (3). Auditor reads Ledger (4) and interacts with Banks to
audit transactions (5).

We consider the following system participants: a Trusted Party TP, a set of
consensus participants SCN, a static set of n Banks with IDs defined by [Bj ]nj=1

(known to everyone) and an arbitrary number of Auditors A. Each Bank has
a key pair [(pkj , skj)]nj=1 and an initial asset value [vj ]nj=1. Banks maintain an
internal state [stj ]nj=1. We denote transactions by txi where i represents the
transaction’s index. We store transactions in a public ledger L maintained by
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a consensus layer CN and stored by all banks. We summarize the role of each
participant in MiniLedger and provide the architecture overview in Fig. 1:

• TP is a trusted entity which runs an one-time setup to instantiate the system
public parameters and verifies the initial assets of each Bank. TP could be
replaced by an MPC protocol (i.e. [23]) executed by the Banks.

• Banks generate transactions tx that transfer some of their assets to one or
more other Banks, while hiding the value and the transacting parties. Transac-
tions are sent to the consensus layer CN (via an anonymous communications
protocol, i.e. Tor) and if valid are appended on L. Banks can prune their
transaction history on L and “replace” it by a digest D. The pruning Bank
needs to send D to CN (incentives for the Bank to perform the pruning oper-
ation are orthogonal to our construction) and is responsible to keep a copy of
the pruned transactions in its private database “State” (failing to do so can
lead to audit failures). If D is valid, CN participants update L by deleting the
pruned transactions and replacing them by D.

• Auditors by observing the ledger, can audit the Banks at any point for any
set of transactions through interactive protocols. Auditors should be able to
audit the value of a single transaction or a subset of transactions, whether
these transactions are still in L or have been pruned.

Assumptions. We focus on the transaction layer and consider issues with
underlying consensus and network layers and their mitigations orthogonal to this
work. Specifically, we assume the fundamental consensus properties, as defined
in Sect. 2, always hold. On network level, we assume a malicious Bank cannot
block another Bank’s view (Eclipse attacks) and transactions are sent to all
Banks using anonymous communication channels to preserve anonymity of the
sending and the receiving Bank(s). We do not require out-of-band communica-
tion between Banks. For simplicity, we assume the set of participating Banks
is static but is easy to extend our system to dynamically add/remove Banks.
We also assume the Random Oracle model to convert our ZK proofs to non-
interactive.

Security Goals. MiniLedger should satisfy the following properties (formally
defined in a game-based fashion in the full version [15]). Theft prevention and
balance: When a Bank spends, we require that a) it authorized the transaction,
b) its balance decreases by the appropriate amount and c) it cannot spend more
than its total assets. Secure pruning: Ledger pruning outputs a digest that a) is
only created by the respective Bank, b) contains the correct transactions in the
correct order, and c) does not contain bogus transactions. Ledger correctness:
The ledger only accepts valid transactions and pruning operations. Correct and
Sound Auditability: An honest Bank following the protocol can always answer
audits correctly and convince an Auditor, while an Auditor always rejects false
claims from a malicious Bank. Privacy: The ledger hides both the identities of
transacting parties and values of transactions from any external observer (except
auditors who learn specific information during the auditing protocol).
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4 MINILEDGER Construction

Overview. We consider n Banks that transact with each other in an anonymous
and auditable way by posting data in a common ledger L (a two-dimensional
table with n columns, one for each participating Bank, and a number of rows
which represent transactions). The ledger is maintained by consensus partici-
pants, who verify every submitted transaction, and is stored by all Banks. The
Banks could be running consensus themselves, or outsource this operation to
any external set of consensus parties.

For each txi, the sending Bank (i.e. the transaction creator) creates a whole
row in L which includes twisted ElGamal encryptions Cij = (c1, c2) that hide
the transferred value vij that corresponds to each cell (i, j). For instance, if we
assume that there’s only one receiving Bank in a transaction, the sending Bank
would compute an encryption of −v for its own cell, an encryption of v for the
receiver cell, and a number of encryptions of 0 for the rest of the cells. This
makes the transmitted values indistinguishable to any external observer due to
ElGamal IND-CPA security. Additionally, the sending Bank accompanies each
encryption with a NIZK proof π to prevent dishonest Bank behavior as discussed
in details below. This specific ledger structure allows an external auditor to audit
for a value sent/received by a Bank at any given point, with the Bank replying
with a value v and a ZK proof πAud for its claim. This basic audit protocol can
be extended to more complex queries (such as total assets held by a Bank or if
a transaction exceeds a set limit) as we explain in Appendix A.

A straightforward implementation of such a transaction table, as done in
zkLedger, leads to a ledger L that grows linearly to the number of posted trans-
actions. This makes schemes like zkLedger hard to adopt in practice, since every
single participant would have to store a table of size n times the total num-
ber of transactions that have ever occurred. Besides storage costs, the overall
computational performance would also degrade even more over time.

Reducing Storage Costs. The main idea for MiniLedger, is that each Bank
Bj periodically initiates a pruning operation, which prunes all transactions in
its corresponding column on L. When a Bank performs a pruning operation,
it publishes a digest D containing the pruned transactions and the consensus
layer verifies that D is indeed a valid digest (i.e. contains the transactions to
be pruned). Note Bj is still responsible for maintaining a private copy of all
its pruned transactions, however, there are great storage savings for the public
version of the ledger L which everyone in the system has to maintain. We note
that the cost of a pruning operation depends on the number of transactions to
be pruned but is independent of the number of participating Banks n.

When Bj is audited for a pruned transaction value vij , it would have to
present the needed data to the auditor by recovering it from its private copy
of its transaction history, and prove to the auditor that this data is contained
in D and it had been posted on the specific row i (to maintain ordering). We
implement this pruning operation using cryptographic accumulators to achieve
a short, constant size representation of D.



416 P. Chatzigiannis and F. Baldimtsi

4.1 Our Construction

For our construction we assume the following building blocks: the variant of
the ElGamal encryption (SetupTEG,GenTEG,EncTEG, DecTEG), an EU-CMA
signature scheme (SignGen,Sign,SVrfy), an additive, positive cryptographic accu-
mulator (AccSetup,Add, MemWitCreate, MemWitUp,VerMem), the Pedersen
commitment scheme (ComGen, Com,Open), a consensus protocol Conscus and a
NIZK proof system. The phases of MiniLedger work as follows:

Setup: Setup can be executed with the help of a trusted third party or via an
MPC protocol amongst Banks.

1. SysSetup{TP(1λ) ↔ [Bj(vj)]nj=1}. This interactive protocol is executed
between TP and a set of n Banks. TP verifies the initial asset value vj
for each Bank and generates the public parameters for the accumulator by
running AccSetup(), the key parameters of the ElGamal variant encryption
scheme by executing SetupTEG() (which are also used for the Pedersen com-
mitment scheme), the consensus protocol parameters by running TPCSetup,
and the joined set of parameters denoted as pp is sent to all Banks. Each
Bank generates an ElGamal key pair (pkBj , skBj) through GenTEG() and sends
pkBj to TP. Finally, TP encrypts the initial values of each Bank by running
C0j = (c(0j)1 , c(0j)2 ) ← EncTEG(pkBj , vj)1. Then, it initializes a “running value
total” which starts as Q0j = C0j and will hold the encryption of the total
assets of each Bank at any point. The vector [Q0j , C0j ]nj=1 consists of the
“genesis” state of the ledger L along with the system parameters pp contain-
ing the key parameters and all Bank public keys. At any point, the ledger L
is agreed by the consensus participants and we assume that all Banks store
it. pp and L are default inputs everywhere below.

Transaction Creation

2. txi ← CreateTx(skBk , [vij , ]nj=1). This algorithm is run by Bank Bk wish-
ing to transmit some (or all) of its assets to other Banks in L. For each
Bj in L (including itself), Bk executes Cij ← EncTEG(pkBj , vij) and com-
putes Qij → Q(i−1)j · Cij . In order to prove balance, similarly to [34], Bk

should pick randomness values for the ElGamal variant encryptions such that∑n
j=1 rij = 0. Then, the sending Bank Bk generates a NIZK πij ∀j ∈ (1, ..n)

which proves the following (the exact description of πij can be found in the
full version [15]):
Proof of Assets: Shows that either a) Bj is receiving some value (vij ≥ 0), or
b) Bj is spending no more than its total assets (

∑i
k=1 vkj ≥ 0) and within

the valid range after transaction execution, while proving knowledge of its
secret key skj showing it authorized the transfer. In both cases, an auxiliary

1 To simplify notation, from now on we will drop the superscripts from the two parts
of Elgamal ciphertext, i.e., we will simply write C0j = (c1, c2).
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commitment cmij is used which commits to either vij or
∑i

k=1 vkj , so the
proof includes a single range proof for the commitment value to reduce com-
putational costs, as the range proof is the most computationally expensive
part of π.
Proof of Consistency: Ensures consistency for the encryption randomness r
in c1 and c2 in both cases of the previous sub-proof, which guarantees correct
decryption by Bank k.
The transaction txi = [Cik, cmik,πik, Qik]nk=1 is sent to consensus layer CN.

3. VerifyTx(txi) := bi. Verify all ZK proofs [πj ]nj=1, check that
∏n

j=1 c
(ij)
2 = 1

(proof of balance) and that Qij = Q(i−1)j · Cij . On successful verification
output 1, else output ⊥.

Transaction Pruning

4. (Dβj , st′j ,σj) ← Prune(stj) This algorithm is executed by Bj when it wishes
to prune its transaction history of depth q = β − α and “compact” it to an
accumulator digest Dβj , where α is the latest digest and β is a currently
posted row number (usually a Bank will prune everything between its last
pruning and the latest transaction that appeared in L). It parses Cij from
each txij . It fetches its previous digest Dαj (if α = 1, sets D → Dαj as the
initial accumulator value where A is defined from pp). Then ∀Cij , i ∈ [α,β]
it consecutively runs accumulator addition Add(D(i−1)j , (i ‖ Cij)) (note the
inclusion of index i which preserves ordering of pruned transactions in Dj).
Finally it stores all transaction encryptions [i, Cij ]βi=α to its local memory,
updates stj to st′j , computes σj ← Sign(Dβj) and sends Dβj ,σj to CN. Note
that Dβj does not include proofs π, and pruning breaks proofs of balance in
rows for all Banks. Still “breaking” these old proofs is not an issue, as they
have already been verified.

5. PruneVrfy(Dβj ,σj) := bj On receipt of Dβj , locally executes Prune() for the
same transaction set to compute D′

βj . If D
′
βj = Dβj (given the accumulator

is deterministic) outputs 1, else outputs ⊥.
We note that after a successful pruning operation (i.e. one that is agreed upon
in consensus layer), all system participants that store L can delete all existing
data in cells (i, j)∀i < β and just store Dβj along with the latest Qβj .

Consensus Protocol: This is handled in the consensus layer CN with its details
orthogonal to our scheme. Similar to typical blockchain consensus, participants
will only update L with a new tx or D if this is valid according to the corre-
sponding vefirication algorithms (i.e. in Bitcoin, consensus participants validate
transactions before posting them in L).

6. Conscus(tx or D) := L′. Runs the consensus protocol among SCN to update
the ledger with a new tx or pruning digest D after checking their validity. If
consensus participants come to an agreement, L is updated to a new state L′.
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Auditing: Our auditing protocols below include a basic audit for a value v (that
has either been pruned or not) and a set’s sum of such values (which might be all
past transactions, thus auditing Bank’s total assets). These audits are interactive
and require the Bank’s consent.MiniLedger can support additional audit types
and/or non-interactive audits as we discuss in Appendix A.

7. Audit{A(Cij) ↔ Bj(skj)} is an interactive protocol between an auditor A
and a Bank Bj . In this basic audit, A audits Bj for the value vij of a spe-
cific transaction txij (that has not been pruned from L so far), encrypted
as Cij on the ledger L. Bj first decrypts the encrypted transaction through
DecTEG() and sends vij to A, as well as a NIZK πAud : {(skj) : c2/gvij =
(c1)1/skj }(c1, c2, vij , pkj , g, h). Then A accepts the audit for vij if πAud suc-
cessfully verifies.

8. AuditSum{A([Cij ]βi=α) ↔ Bj(skj)} is an interactive protocol between an
auditor A and a Bank Bj . Here A audits Bj for the sum of the values∑β

k=α vkj for transactions txαj up to txβj (that have not been pruned from
L so far). This protocol is a generalization of the Audit{} protocol outlined
above, (with Audit{} having as inputs (

∏β
i=α Cij) and

∏
denoting direct

product for ciphertexts c1, c2), because of ElGamal variant additive homo-
morphism. Note that although in this protocol the transactions are assumed
to be consecutive for simplicity, its functionality is identical if the transac-
tions are “isolated”. Also if indices α = 1 and β equals to the most recent
transaction index (and no pruning has happened in the system), the audit
is performed on the Bank’s total assets.

9. AudPruned{A([(i, j)]γi=α, [Cij ]βi=γ) ↔ Bj(skj)} is an interactive protocol
between an auditor A and a Bank Bj , where transactions [txij ]γi=α have been
pruned from L (and thus the auditor only knows their indices and nothing
else), and transactions [txij ]βi=γ which are still public in L (i.e. not pruned)
and thus the auditor still sees their encryptions. This protocol generalizes
AuditSum{}. It allows the auditor to audit Bj for: (a) specific transactions
(pruned or not) and, (b) sums of assets (pruned or not). For case (a), besides
auditing a transaction with index in [γ, . . . ,β] which is still in L, the audi-
tor can also audit Bj for a specific transaction that has been pruned from
L (i.e. ask: “Which was the value of the i-th transaction?”). The Bank
would respond with the corresponding Cij and depending on the underly-
ing accumulator used, Bj would also provide a proof that Cij is a member
of its pruned history Dj with index i. For case (b), an auditor can audit
the total (or a range of) assets of Bj no matter what transaction informa-
tion of Bj remains on L. Auditing total assets works as follows: Bj fetches
the stored transaction encryptions [Cij ]γi=α from its local memory stj , com-
putes [wij ]γi=α ← MemWitCreate(Dj , [Cij ]γi=α, stj). Then A reads Dj from L
and executes VerMem(Dj , (i ‖ Cij), wij)∀i ∈ (α, γ), outputting [bij ]γi=α. For
every i, if bij == 1 it executes the Audit{} protocol with Cij as input.

10. AudTotal{A(Qij) ↔ Bj(skj)} is equivalent to Audit{} for auditing Bj ’s total
assets

∑m
i=1 vij instead of a single vij .
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Table 2. MiniLedger architecture and pruning.

(a) Ledger state before pruning, assuming B1

had pruned before at tx10.

B1 ... Bn

tx1
. . .
tx9

D9,1, Q9,1 ...

tx10
C10,1 = (c1 = pk1

r10,1 , c2 = gv10,1hr10,1)

π10,1, cm10,1, Q10,1

...

tx11
C11,1 = (c1 = pk1r11,1 , c2 = gv11,1hr11,1)

π11,1, cm11,1, Q11,1

...

(b) Ledger state after B1 prunes at tx12. Digest
D11,1 represents C10,1, C11,1 and ciphertexts
that were represented in D9,1.

B1 ... Bn

tx1
. . .
tx11

D11,1, Q11,1 ...

tx12
C12,1 = (c1 = pk1

r12,1 , c2 = gv12,1hr12,1)

π12,1, cm12,1, Q12,1

...

MiniLedger architecture is shown in Table 2. We informally discuss its secu-
rity in Appendix A and we provide a rigorous analysis in [15].

4.2 Discussion and Comparisons

Although MiniLedger architecture resembles zkLedger [34], there exist crucial
differences that make MiniLedger superior both in terms of efficiency and secu-
rity. We give an overview below, and a thorough analysis in the full version [15].

Storage. As already discussed, MiniLedger by leveraging consensus properties
applies a pruning strategy which achieves O(n) storage requirements for L, com-
pared to O(mn) for zkLedger (where m is the total number of transactions ever
happened, and is a monotonically increasing value).

Security. MiniLedger does not require any out-of-band communication, as all
needed information is communicated through the ledger using encryptions. On
the other hand, zkLedger assumes if a Bank is actually receiving some value in a
transaction, it should be notified by the sending Bank and also learn the associ-
ated value (which was hidden in the commitment) through an out-of-band chan-
nel. zkLedger however, does not require receiving Banks to be directly informed
on the randomness (i.e. commitment cmij is never opened), since they can still
answer the audits correctly using the audit tokens, provided that it knows its
total assets precisely. This assumption is very strong and can potentially lead
to attacks, such as the “unknown value” attack where a malicious sending Bank
informs the receiving Bank on a wrong value (or does not inform it at all),
which then prevents the receiving Bank from answering audits or even partic-
ipate in the system. More importantly, with transaction values communicated
out-of-bank, the randomness could be included with them as well. This would
make the system trivial and defeat the purpose of most of its architecture, as the
ledger would consist of just Pedersen commitments and proofs of assets. In this
version the above attack would not work assuming all Banks are always online
and verify the openings in real time, which is also a very strong assumption.
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Computation. MiniLedger optimizes ZK proof computation over zkLedger
by combining disjunctive proof of assets and proof of consistency into a sin-
gle proof, giving an efficiency gain of roughly 10% in space and computation.
Additionally, while zkLedger’s computation performance degrades over time (as
the monotonically-increasing ledger requires more operations to construct trans-
actions), MiniLedger achieves steady optimal performance.

On Setup Parameters. We argue that even with the use of a TP, the trust level
is rather low. The parameters of ElGamal are just random generators (similar to
Pedersen commitments in zkLedger) and for certain accumulator instantiations
(such as Merkle trees) there is no trapdoor behind the parameter generation.
Finally, the consensus setup essentially consists of choosing trapdoorless param-
eters (i.e. block specifics etc.) and the set of participating parties. Thus, the
only trust placed in TP is to pick a valid set of participants – something that
all participants can check, exactly as in zkLedger. In comparison to zkLedger
(given that ElGamal parameters are the same as Pedersen commitment param-
eters), the only additional setup is that of the accumulator which as discussed,
for certain instantiations can be completely trapdoorless.

5 Evaluation

We implement a prototype of the transaction layer of MiniLedger in Python
over the secp256k1 elliptic curve. We use the zksk library [27] for the ZK and
implement range proofs using the Schoenmakers’ Multi-Base Decomposition
method [38]2. The measurements were performed on Ubuntu 18.04 - i5-8500
3.0GHz CPU - 16GB RAM using a single thread3.

Accumulator Instantiation
A critical implementation choice is how to instantiate the accumulator needed
for the pruning operations. For efficiency reasons, we require schemes with con-
stant size public parameters and no upper bound on the number of accumulated
(i.e. pruned) elements. We only consider schemes that have at most sublinear
computation and communication complexity (in the number of pruned elements)
for opening/proving a single transaction to the auditor and where the auditor’s
verification cost is also at most sublinear.

We first consider Merkle trees [31]. Assuming a Bank prunes q transactions,
the Merkle root providesO(1) representation in terms of storage withO(1) public
parameters. Opening and verification complexity of Merkle proofs for a single
transaction audit involves O(logq) hashing operations. However although hashes
are relatively cheap operations, the over-linear verification complexity might be

2 By using twisted ElGamal [17], MiniLedger is fully-compatible with Bulletproofs
[11] which can further reduce its concrete storage requirements.

3 A basic implementation of MiniLedger is available at https://github.com/
PanosChtz/Miniledger.

https://github.com/PanosChtz/Miniledger
https://github.com/PanosChtz/Miniledger
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Fig. 2. Transaction creation, verification and auditing costs.

a concern when auditing a series of transactions. Finally, it should be noted that
Merkle trees only support membership proofs.

We then consider the batch-RSA accumulator [8]. Given that all RSA accu-
mulators can only accumulate primes p, we use a deterministic prime mapping
hash function (as in [8]) to accumulate arbitrary inputs. The batch-RSA accu-
mulator has O(1) storage for its digest with O(1) public parameters as well.
Proving membership for a single element p in the standard RSA accumulator,
requires the prover computing a witness w equal to the primes’ product in the
accumulator without p (an O(q) operation as shown in Fig. 4), and the verifier
checking that (gw)p = A where A is the current state of the accumulator. There-
fore, batch-RSA achieves same complexity O(q) for a set of elements (p1, ..., p%) as
when proving membership of a single element (while Merkle Trees have O('logq)
complexity). Consequently, the basic pruning operations Prune() and PruneVrfy()
are about two orders of magnitude more expensive compared to Merkle trees as
we show in Fig. 3. However they are efficient when auditing large amounts of
transactions especially if auditing the total sum. Then, batching allows for neg-
ligible computation costs for the proving Bank, and negligible audit verification
cost for a single transaction. Thus, choice between Merkle trees and batch-RSA
accumulators ultimately relies on the use-case requirements.

For our batch-RSA implementation, we use the SHA-256 hash function and
the Miller - Rabin primality test for hashing to prime numbers, and we use an
RSA-3072 modulo to maintain the same level of security [35]. We decouple the
witness computation cost from the proof of membership cost for the Bank, as
the Bank might elect to pre-compute the witnesses before its audit (assuming
however that it does not prune again until the audit, since that would require the
witnesses to be recomputed again). Note the auditor needs to run the hashing
to prime mapping function again for all audited values (i.e. the auditor cannot
rely on the “honesty” of a Bank presenting pre-computed prime numbers for its
pruned transactions). For Merkle trees, we use SHA-256 as well.
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Transaction Creation, Verification and Auditing. Every MiniLedger
transaction includes an ElGamal ciphertext C, a commitment cm, a NIZK π
and a running total Q for each Bank. Naturally, this results in linearly-increasing
computation costs in terms of number of Banks as shown in Fig. 2 for both trans-
action creation and verification. Storing the running total Q leads to constant
transaction creation and verification computational costs (for fixed number of
Banks), making total assets auditing much more efficient. In contrast, zkLedger’s
growing ledger size also implies linearly-increasing NIZK verification costs, as
the verifier would need to compute the product of all transaction elements for
each Bank. The transaction creation and verification costs are 53 ms and 49 ms
respectively (for a single cell in L), roughly comparable with [34].

Auditing any single value on the ledger takes about 4 ms as shown in Fig. 2.
This is the cost for the complete auditing protocol, namely the decryption and
proving cost for the Bank and the verification cost for the Auditor. In contrast to
[34], the auditing cost is constant without being impacted either by the number
of Banks or the number of past transactions.

Transaction Pruning. We evaluate the computation requirements of the prun-
ing operation which involves executing Prune() and PruneVrfy() to create the
digest Dj . Our results in Fig. 3 show it is possible to prune and verify about
1 million transactions in less than a second using Merkle trees and in about
2 h using RSA accumulator. Note prime number multiplication costs dominate
the total costs (which also include hashing to primes and an exponentiation)
when the pruning depth becomes large. We also stress that these computation
requirements are independent of the number of Banks n in the system.
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For transaction auditing in AudPruned{} interactive protocol, auditing open-
ing and verification costs are shown in Figs. 5 and 6 respectively. As previously
discussed, we do not include the RSA accumulator’s witness creation costs (which
can be pre-computed) and are shown in Fig. 4.

For auditing sums of values (i.e. “batch” auditing), the associated costs for
opening and verifying a 100K transaction digest are shown in Figs. 7 and 8
respectively, with x-axis representing the number of audited transactions. Note
that for auditing 105 transactions (i.e. the whole sum), RSA accumulator opening
is significantly cheaper compared to Merkle trees, as the audited Bank would
only need to retrieve the respective transactions from its local memory (which
implies nearly O(1) cost) and send them to the auditor (who would in turn need
to recompute all primes and perform the exponentiation of their product).

Based on our evaluation results and the discussion above, the choice between
Merkle tree and batch RSA accumulator depends on use-case. Merkle trees fit a
system expected to incorporate sparse audits on individual transactions, while
RSA accumulator is preferred on deployments with frequent auditing on many
transactions at a time (e.g. sums of assets or value thresholds over a time period).

Storage Costs. The storage cost for L has a 64n-byte lower bound for the
ElGamal variant encryptions (which represent the running total Q), plus the
needed storage for each digest D and the system’s pp, assuming all n Banks
have pruned their transaction history and the ledger is made of a single row.
Concretely, in our implementation each transaction’s communication and storage
cost is 68 KB per Bank (actual memory footprint), which includes the ElGamal
variant encryption, the auxiliary commitment, the NIZK and the running total.
A MiniLedger instantiation including the necessary public parameters, one
transaction and a digest requires only 70 KB of storage per Bank.

Network and Consensus Costs. MiniLedger design focuses in the trans-
action layer. The consensus layer, which can be instantiated by any consensus
protocol that satisfies the basic properties of consistency and liveness, is orthog-
onal to our work and providing a full implementation including a consensus
layer is out of scope (note previous works [17,19,34,41] take a similar evaluation
approach and do not include consensus measurements). Still for showcasing an
implementation scenario, we discuss below how MiniLedger could be imple-
mented using Hyperledger Fabric and also provide some rough cost estimations.

Table 3. Consensus costs

Banks Peers Tx/s Network
10 80 21 LAN

100 4 2 WAN

For simplicity and efficiency, we con-
sider Banks only acting as “clients”, out-
sourcing ledger storage and consensus oper-
ations to an arbitrary number of “peer” and
“orderer” nodes respectively. These num-
bers are entirely dependent on the use-case
and does not affect MiniLedger perfor-
mance or scalability. This separation between Banks and consensus participants
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is quite natural (e.g. Diem [2], uses similar approach i.e. decoupled permis-
sioned consensus and provider-intermediated transactions [3]). Given Hyper-
ledger requires at least 0.5 s to complete a full consensus operation with 4 peers
and 256-bit ECDSA [4], we derive conservative estimations of the expected trans-
action throughput, shown in Table 3. These estimations are more than sufficient
for intra-Bank transactions in a deployed system (inMiniLedger+, any number
of client-to-client transactions can be aggregated in a single MiniLedger trans-
action). Note although permissioned consensus generally seems more fitting to
MiniLedger, permissionless consensus could also be utilized when implemented
on top of an smart contract.

6 Conclusion

We present MiniLedger, the first private and auditable payment system with
storage independent to the number of transactions. MiniLedger utilizes exist-
ing cryptographic tools and innovates on the meticulous design of optimized ZK
proofs to tackle important scalability issues in auditable, private payments. We
achieve huge storage savings compared to previous works that store information
for each transaction ever happened. Using our pruning techniques, the overall
MiniLedger size can be impressively compacted to 70KB per Bank, no matter
how many transactions have ever occurred. Note that our storage and computa-
tion costs could be further improved, e.g. by using Bulletproofs [11] (instead of
Schoenmakers multi-base decomposition [38]), more efficient programming lan-
guages (e.g. Rust) and libraries, or by utilizing CPU parallelization. However, as
in related systems [2,34] our goal is not to support “thousands” of Banks, but
an arbitrary number of clients as discussed in Appendix A which does not affect
the computation/storage costs in the public ledger. MiniLedger can currently
serve a small consortium of Banks (e.g. the world’s Central Banks) with an arbi-
trary number of clients, or build a hierarchy of a large number of Banks and
clients in accordance with MiniLedger+. Evaluating MiniLedger in such a
large scale or achieving its properties in a permissionless setting are interesting
directions for future work.

A MINILEDGER Security and Extensions

A.1 MINILEDGER security

We achieve the security of MiniLedger construction as follows: Theft preven-
tion and balance: relies on NIZK soundness of π (e.g. prevent a cheating prover
to make false claims such as knowledge of sk or v in range) and consensus consis-
tency. Secure pruning: relies on accumulator soundness (e.g. prevent accepting a
digest not representing the exact set of pruned transactions) and consensus con-
sistency. Ledger correctness: relies on consensus consistency. Correct and Sound
auditability: relies on NIZK soundness (e.g. preventing convincing an auditor
for a false claim), accumulator soundness and consensus consistency. Privacy:
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relies on IND-CPA security of ElGamal variant, Pedersen commitment hiding
and NIZK zero-knowledgeness (e.g. prevent distinguishing information on the
ledger or leaking private information during transaction creation).

A.2 Adding Clients for Fine-grained Auditing (MINILEDGER+)

At a high level, each Bank Bj maintains a private ledger of clients LBj (denoted
as “UsrDB” in Fig. 1), independent of the public ledger L. For each client m, Bj

stores its transactions in encrypted format. For a Bs client to transfer value v to
a Br client, she creates a transaction that includes encryptions of the recipient
client’s pk , the receiver’s Bank Br and v, as well as appropriate NIZKs to prove
consistency with the protocol, which is recorded on the private ledger LBs . Then
Bs constructs a transaction on L that transfers v to Br, which in turn decrypts
the information and allocates v to its recipient client. MiniLedger+ preserves
anonymity while enabling fine-grained auditing at a client level, including checks
that Banks allocated the funds correctly. It also has minimal overhead compared
to MiniLedger while still maintaining a ledger of constant size. We provide a
detailed description and analysis in the full version [15].

A.3 Additional Types of Audits

As shown in Sect. 4.1, MiniLedger basic audit functionality Audit{} is on the
value vij of specific transaction txij . Several more audit types can be constructed
which reduce to that basic audit. We discuss some of those below, and provide
more details for audit extensions in the full version [15]. Note these audits can
still be executed for pruned data.

Full Transaction Audit: For an auditor to learn the full details of a transac-
tion (sender, receiver and values), they would have to audit the entire row (i.e.
perform n audits on vij ∀j).

Statistical Audits: Audits such as average or standard deviation are sup-
ported by utilizing “bit flags” to disregard zero-value transactions, proved for
correctness in zero knowledge.

Value or Transactions Exceeding Limit: Utilizing appropriate range proofs,
an auditor can learn if a sent or received value exceeds some limit t. Multiple
range proofs can show a Bank has not exceeded the limit over a time period.

Transaction Recipient: The goal of this audit type is for a sending Bank
to prove the recipients for one of its transactions. While a Bank doesn’t know
(and therefore cannot prove) where a received value came from (unless learning
it out-of-band as in zkLedger), for outbound transactions the Bank can keep an
additional record of its transaction recipients in its local memory. As an example,
for proving in txi that the Bank really sent vij to Bj , it could send this claim to
the auditor who in turn would simply then audit Bj to verify this claim.
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Client Audits: Audits in a client level (e.g. statistical audits or transaction
limits) can be performed similar to the respective audits in a Bank level, how-
ever the auditor needs first to learn and verify the Bank’s private ledger LB as
discussed above. From that point, the auditor can perform all audits in a client
level in a similar fashion to the respective audits in a Bank level. For instance,
to learn if some MiniLedger+ client exceeded a value transaction threshold
within a time period or over a number of transactions, this audit can be exe-
cuted by selecting the client’s transactions from the Bank’s private table that
happened within this period by their id’s. The audit would then be on the sum
of the values represented by the product of the respective ciphertexts, and the
client would produce a range proof for that ciphertext product as above. and
select those with the appropriate timestamp. A special useful audit would be
to learn if a MiniLedger+ client has sent assets to some specific client pk or
not. The transactions would need to be augmented with an additive universal
accumulator, with each sender adding the end client recipient’s pk to the accu-
mulator, while also providing its Bank a ZK proof of adding the correct public
key. During an audit, the client would have to prove membership (or non mem-
bership) to the auditor. An important note is that the receiving client does not
directly learn the original sender of a specific transaction in-band, which implies
the above approach cannot work for a client to prove if he has received (or not)
assets from another client.

Non-interactive Audits: The audit proof πAud described in Sect. 4 is interac-
tive and require the Bank’s consent. While can treat a Bank’s refusal to coop-
erate as a failed audit, we could still enable non-interactive audits by includ-
ing an encryption of πAud and its statement for each transaction cell under a
pre-determined trusted auditor’s public key (which preserves privacy). Our full
version [15] provides more details.
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