
Crowd Verifiable Zero-Knowledge
and End-to-End Verifiable Multiparty

Computation

Foteini Baldimtsi1, Aggelos Kiayias2,3, Thomas Zacharias2(B),
and Bingsheng Zhang4,5

1 George Mason University, Fairfax, USA
foteini@gmu.edu

2 The University of Edinburgh, Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk

3 IOHK, Hong Kong, China
4 Zhejiang University, Hangzhou, China

bingsheng@zju.edu.cn
5 Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies,

Hangzhou, China

Abstract. Auditing a secure multiparty computation (MPC) protocol
entails the validation of the protocol transcript by a third party that is
otherwise untrusted. In this work, we introduce the concept of end-to-end
verifiable MPC (VMPC), that requires the validation to provide a cor-
rectness guarantee even in the setting that all servers, trusted setup prim-
itives and all the client systems utilized by the input-providing users of
the MPC protocol are subverted by an adversary. To instantiate VMPC,
we introduce a new concept in the setting of zero-knowlegde protocols
that we term crowd verifiable zero-knowledge (CVZK). A CVZK proto-
col enables a prover to convince a set of verifiers about a certain state-
ment, even though each one individually contributes a small amount of
entropy for verification and some of them are adversarially controlled.
Given CVZK, we present a VMPC protocol that is based on discrete-
logarithm related assumptions. At the high level of adversity that VMPC
is meant to withstand, it is infeasible to ensure perfect correctness, thus
we investigate the classes of functions and verifiability relations that are
feasible in our framework, and present a number of possible applications
the underlying functions of which can be implemented via VMPC.

Keywords: Multi-party computation · Zero-knowledge · Privacy ·
Verifiability

F. Baldimtsi—Supported by NSF grant 1717067.
A. Kiayias and T. Zacharias—Supported by Horizon 2020 project #780477 (PRIV-
iLEDGE).
B. Zhang—Supported by the Leading Innovative and Entrepreneur Team Introduction
Program of Zhejiang (Grant No. 2018R01005) and Zhejiang Key R&D Plan (Grant
No. 2019C03133).

c© International Association for Cryptologic Research 2020
S. Moriai and H. Wang (Eds.): ASIACRYPT 2020, LNCS 12493, pp. 717–748, 2020.
https://doi.org/10.1007/978-3-030-64840-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64840-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-64840-4_24

718 F. Baldimtsi et al.

1 Introduction

Over the last 30 years, secure multiparty computation (MPC) has transi-
tioned from theoretical feasibility results [32,57,58] to real-world implementa-
tions [12,24,26,27,43,55] that can be used for a number of different security
critical operations including auctions [12], e-voting [1,23,41], and privacy pre-
serving statistics [13,48]. An important paradigm for MPC that captures a large
number of applications is the client-server model [6,25,30,33,38,49] where par-
ticipants of the system are distinguished between clients and servers, with the
clients contributing input for the computation and receiving the output, while
the servers, operating in an oblivious fashion, are processing the data given by
the clients.

The servers performing the MPC protocol collectively ensure the privacy
preservation of the execution, up to the information that is leaked by the output
itself. There do exist protocols that achieve this level of privacy provided that
there exists at least one server that is not subverted by the adversary. The typical
execution of such protocols involves the clients encoding their input suitably for
processing by the servers (e.g., by performing secret-sharing [35]) and receiving
the encoded output which they reconstruct to produce the final result. While the
level of privacy achieved by such protocols is adequate for their intended appli-
cations and their performance has improved over time (e.g., protocols such as
SPDZ [27] and [26,39] achieve very good performance for real world applications
by utilizing an offline/online approach [5]), there are still crucial considerations
for their deployment in the real-world especially if the outcome of the MPC
protocol has important committing and actionable consequences (such as e.g.,
in e-voting, auctions and other protocols).

To address this consideration, Baum, Damg̊ard and Orlandi [4] asked whether
it is feasible to construct efficient auditable MPC protocols. In auditable MPC,
an external observer who is given access to the protocol transcript, can verify
that the protocol was executed correctly even if all the servers (but not client
devices) were subverted by the adversary. The authors of [4] observe that this
is theoretically feasible if a common reference string (CRS) is available to the
participants and provide an efficient instantiation of such protocol by suitably
amending the SPDZ protocol [27]. While the above constitutes a good step
towards addressing real world considerations of deploying MPC protocols, there
are serious issues that remain from the perspective of auditability. Specifically,
the work of [4] does not provide any guarantees about the validity of the output
in case, (i) the CRS is subverted, or (ii) the users’ client devices get corrupted.

Verification of the correctness of the result by any party, even if all servers
are corrupt (but not client devices), has also been studied by Schoenmakers and
Veeningen [56] in the context of universally verifiable MPC. The security anal-
ysis in [56] is in the random oracle model and still, the case of corrupted client
devices is not considered. Moreover, achieving universally verifiable (or publicly
auditable) MPC in the standard model is stated as an open problem.

Unfortunately, the threat of malicious CRS and client byzantine behavior
cannot be dismissed: in fact, it has been extensively studied in the context of

CVZK and End-to-End Verifiable Multiparty Computation 719

e-voting systems, which are a very compelling use-case for MPC, and frequently
invoked as one of the important considerations for real-world deployment. Specif-
ically, the issue of malicious clients has been studied in the end-to-end verifiabil-
ity model for e-voting, e.g., [44] while the issue of removing setup assumptions
such as the CRS or random oracles has been also recently considered [40,41].

The fact that the concept of end-to-end verifiability has been so far thor-
oughly examined in the e-voting area comes not as surprise, since elections is
a prominent example where auditing the correctness of the execution is a top
integrity requirement. Nonetheless, transparency in terms of end-to-end verifica-
tion can be a highly desirable feature in several other scenarios, such as auctions,
demographic statistics, financial analysis, or profile matching where the (human)
users contributing their inputs may have a keen interest in auditing the correct-
ness of the computation (e.g., highest bid, unemployment rate, average salary,
order book matching in trading). From a mathematical aspect, it appears that
several other use-cases of MPC evaluation functions besides tallying that fall
into the scope of end-to-end verification have not been examined.

To capture these considerations and instead of pursuing tailored-made stud-
ies for each use-case, in this work, we take a step forward and propose a unified
treatment of the problem of end-to-end verifiability in MPC under a “human-
client-server” setting. In particular, we separate human users from their client
devices (e.g., smartphones) in the spirit of the “ceremony” concept [29,42] of
voting protocols. While client devices can be thought of as stateful, probabilis-
tic, interactive Turing machines, we model human users to be limited in two
ways: (a) humans are bad sources of randomness; formally, the randomness of
a user can be adversarially guessed with non-negligible probability, i.e. its min-
entropy is up to logarithmic to the security parameter, and (b) humans cannot
perform complicated calculations; i.e. humans’ computational complexity is lin-
ear in the security parameter (i.e., the minimum for reading the input). Given
this modeling we ask:

Is it possible to construct auditable MPC protocols, in the sense that every-
one who has access to the transcript can verify that the output is correct,
even if all servers, client devices and setup assumptions (e.g. a common
reference string) are subverted by an adversary?

We answer this question by introducing the concept of end-to-end verifiable
multiparty computation (VMPC) and presenting both feasibility and infeasibility
results for different classes of functions. Some of the most promising applications
of VMPC include e-voting, privacy preserving statistics and supervised learning
of classifiers over private data.

1.1 Technical Overview and Contributions

VMPC Model. The security property of VMPC is modeled in the universal
composability (UC) framework [15], aiming to unifying two lines of research
on secure computing: end-to-end verifiable e-voting (which typically separates

720 F. Baldimtsi et al.

humans from their devices in security analysis) and client-server (auditable)
MPC. More specifically, we define the VMPC ideal functionality as Ff,R

vmpc(P),
where P is a set of players, including users, client devices, servers and a veri-
fier; f is the MPC function to be evaluated, and R is a relation that is used
to measure the distance between the returned VMPC output and the correct
(true) computation result. As will be explained later, when the VMPC output
is verified, it is guaranteed that the output is not “far” from the truth.

The Distinction Between Users and Clients. In order to capture “end-to-end
verifiability”, we have to make a distinction between users and clients: the users
are the humans with limited computation and entropy that interact with their
client devices (e.g., smartphones or laptops) to provide input to the MPC. To
accommodate this, our ideal functionality acknowledges these two roles and for
this reason it departs from the previous formulation of auditable MPC [4]. A
critical challenge in VMPC is the fact that the result should be verifiable even
if all clients and servers are corrupted!

The Role of the Verifier. VMPC departs from the conventional UC definition
of MPC since there should be a special entity, the verifier, that verifies the
correctness of the output. The concept of the verifier in our modeling is an
abstraction only. The verifier is invoked only for auditing and trusted only for
verifiability, not privacy. It can be any device, organization, or computer system
that the user trusts to do the audit. Moreover, it is straightforward to extend
the model to involve multiple verifiers as discussed in Sect. 5 and hence only for
simplicity we choose to model just a single entity. We note that the human user
cannot perform auditing herself due to the fact that it requires cryptographic
computations. As in e-voting, verification is delegatable, i.e., the verifier obtains
users’ individual audit data in an out-of-band manner.

EUC with a Super-Polynomial Helper. The astute readers may notice that a UC
realization of the VMPC primitive in a setting where there is no trusted setup
such as a CRS is infeasible. Indeed, it is well known [15] that non-trivial MPC
functionalities cannot be UC-realized without a trusted setup. To go around
these impossibility results and still provide a composable construction, we uti-
lize the extended UC model with a helper H, (H-EUC security) [17]. This model,
which can been seen as an adaptation of the super-polynomial simulation con-
cept [54] in the UC setting, enables one to provide standard model constructions
that are composable and at the same time real world secure, using a “complexity
leveraging” argument that requires subexponential security for the underlying
cryptographic primitives. In particular, in the setting of H-EUC security, trans-
lating a real world attack to an ideal world attack requires a super-polynomial
computation. More precisely, a polynomial-time operation that invokes a super-
polynomial helper program H. It follows that if the distance of the real world
from the ideal is bounded by the distinguishing advantage of some underlying
cryptographic distributions, assuming subexponential indistinguishability is suf-
ficient to infer the security for the primitive.

CVZK and End-to-End Verifiable Multiparty Computation 721

System Architecture. We assume there exists a consistent and public bulletin
board(BB) (modeled as the global functionality GBB) that can be accessed by all
the VMPC players except human users, i.e., by the client devices, the servers
and the verifier. In addition, we assume there exists an authenticated channel
(modeled as the functionality Fauth) between the human users and the verifier.
Besides, we assume there exists a secure channel (modeled as the functionality
Fsc) between the human users and their local client devices. A VMPC scheme
consists of four sub-protocols: Initialize (setup phase among servers), Input (run
by servers, users-clients), Compute (executed by the servers) and Verify (exe-
cuted by the verifier and users). According to the e-voting and pre-processing
MPC approach [11,26,27,52], we consider minimal user interaction - the users
independently interact with the system once in order to submit their inputs.
This limitation is challenging from a protocol design perspective.

The Breadth of VMPC Feasibility. We explore the class of functions that
can be realized by VMPC, since in our setting, contrary to general MPC results,
it is infeasible to compute any function with perfect correctness. To see this
with a simple example, consider some function f that outputs the XOR of the
input bits. It is easy to see that each user has too little entropy to challenge
the set of malicious clients and servers about the proper encoding of her private
input. However, even if a single input bit is incorrectly encoded by the user’s
client (which can be undetected with non-negligible probability) the output XOR
value can be flipped. To accommodate for this natural deficiency, our VMPC
functionality enforces a relation R between the reported output and the correct
output. It is clear that depending on the function f , a different relation R may
be achievable. We capture this interplay between correctness and the function to
be computed by introducing the notion of a spreading relation R for a function
f : X → Y . Informally, given a certain metric over the input space, a spreading
relation over the range of f , satisfies that whenever x, x′ are close w.r.t. the
metric, the images of x, x′ are related. A typical case of a spreading relation can
emerge when f is a Lipschitz function for a given metric. Based on the above,
we show that one cannot hope to compute a function f with a relation over the
range of f that is more “refined” than a spreading relation.

Building Blocks. VMPC is a complex primitive and we introduce novel building
blocks to facilitate it. ZK proofs cannot be directly used for VMPC since we
require a 3-round public-coin protocol to comply with our minimal interaction
setting and this is infeasible, cf. [31,37], while we cannot utilize a subversion-
sound NIZK either, cf. [7], since in this case, we can at best obtain witness
indistinguishability which is insufficient for proving the simulation-based privacy
needed for VMPC.

Crowd Verifiable Zero-Knowledge (CVZK). To overcome these issues we intro-
duce a new cryptographic primitive that we call crowd verifiable zero-knowledge
which may also be of independent interest. In CVZK, a single prover tries
to convince a set of n verifiers (a “crowd”) of the validity of a certain state-
ment. Although the notion of multi-verifier zero-knowledge already exists in the

722 F. Baldimtsi et al.

literature, e.g. [14,47], the focus of CVZK is different. Namely, the challenge for
CVZK is that each human verifier is restricted to contribute up to a logarithmic
number of random bits and hence, if, say all but one verifiers are corrupted,
there would be insufficient entropy available in order to achieve a low soundness
error. Thus, the only way to go forward for the verifiers is to assume the relative
honesty of the crowd, i.e., there is a sufficient number of them acting honestly
and introduce enough randomness in the system so that the soundness error can
be small. The notion of CVZK is critical towards realizing VMPC, since in the
absence of reliable client systems, the users have no obvious way of challenging
the system’s operation; users, being humans, are assumed to be bad sources of
entropy that cannot contribute individually a sufficient number of random bits
to provide a sufficiently low soundness error.

Coalescence Functions and CVZK Instantiation. We introduce coalescence func-
tions (Sect. 3.2) to typify the randomness extraction primitive that is at the core
of our CVZK construction. In CVZK, it is not straightforward how to use the
random bits that honest verifiers contribute. The reason is that the adversary,
who is in control of the prover and a number of verifiers, may attempt to use
the malicious verifiers’ coins to “cancel” the entropy of the honest verifiers and
assist the malicious prover to convince them of a wrong statement. Coalescence
relates to collective coin flipping [8] and randomness condensers [28]. In partic-
ular, a coalescence function is a deterministic function that tries to make good
use of the entropy of its input. Specifically, a coalescence function takes as an
input a non-oblivious symbol fixing source and produces a series of blocks, one
of which is guaranteed to be of high entropy; these blocks will be subsequently
used in conjunction to form the challenge implementing CVZK. We construct
coalescence functions using a one-round collective coin flipping protocol and the
(strongly) resilient function defined in [50]. Then, we present a compiler that
takes a fully input delayed Σ-protocol and leads to a CVZK construction that
performs a parallel proof w.r.t. each block produced by the coalescence func-
tion. Our CVZK construction is secure for any number of corrupted users up to
O(nc/ log3 n), for some constant c < 1 and a set of n users.

VMPC Construction. Our VMPC construction is based on CVZK. It uses an
offline / online approach (a.k.a. pre-processing mode) for computing the output
(proposed by Beaver [5] and utilized numerous times [4,27]). In a nutshell, our
construction follows the paradigm of SPDZ [27] and BDO [4]. Namely, the data
are shared and committed on the BB. The underlying secret sharing scheme
and the commitment scheme have compatible linearly homomorphic properties;
therefore, the auditor can check the correctness of the protocol execution by
performing the same operations over the committed data. In addition, to achieve
crowd verifiability, all the ZK proofs need to be transformed to CVZK – (i) in
the pre-processing phase, the servers post the first move of the CVZK on the BB;
(ii) in the input phase, the (human) users collaboratively generate the challenge
coins of the CVZK; (iii) in the output phase, the servers post the protocol output
together with the third move of the CVZK, which completes the CVZK proofs.

CVZK and End-to-End Verifiable Multiparty Computation 723

We prove indistinguishability between real and ideal world for our construc-
tion under adaptive onewayness [53] of the discrete-logarithm function and the
decisional Diffie-Hellman assumption. We infer that, by utilizing sub-exponential
versions of those assumptions, our protocol realizes the ideal description of
VMPC, in the H-EUC model, for any (symmetric) function f with correctness
up to a spreading relation R for f .

We note that an alternative but sub-optimal approach to VMPC would be
to add the Benaloh challenge mechanism [9,10], that has been proposed in the
context of e-voting to mitigate corrupted client devices, to the BDO protocol [4].
However, the resulting VMPC protocol would still require a trusted setup, e.g.,
CRS or Random Oracle (RO), and therefore it would fall short of our objective to
realize VMPC in the plain model. Moreover, the Benaloh challenge mechanism
requires the client to have a second trusted device that is capable of performing
a cryptographic computation prior to submitting her input to the VMPC proto-
col and being able to communicate with it in an authenticated manner. Instead,
the only requirement in our VMPC protocol is to have authenticated access to
a verifier in the final step of the protocol.

Applications. As already mentioned, a main motivation for this work is the
apparent connection of end-to-end verifiability to several practical MPC instan-
tiations for real-world scenarios. Thus, we conclude by discussing possible appli-
cations of VMPC and examine how their underlying function can be combined
with suitable spreading relations and implemented. We provide some interesting
examples: (i) E-voting functions: where the final election tally aggregates the
votes provided by the voters, (ii) privacy-preserving statistics: where the final
outcome is a statistic that is calculated over uni-dimensional data, (iii) privacy-
preserving processing of multi-dimensional data: where functions that correlate
across different dimensions are calculated, (iv) supervised learning of classifiers:
where the outcome is a model that results from training on private data.

2 Preliminaries

Notation. By λ we denote the security parameter and by negl(·) the property
that a function is negligible in some parameter. We write poly(x) to denote that
a value is polynomial in x, PPT to denote probabilistic polynomial time, and [n]
as the abbreviation of the set { 1, . . . , n }. Hmin(D) denotes the min entropy of a
distribution D and Un denotes the uniform distribution over {0, 1}n. By x

$← S,
we denote that x is sampled uniformly at random from set S, and by X ∼ D
that the random variable X follows the distribution D.

Σ-Protocols. Let RL be polynomial-time-decidable witness relation for anNP-
language L. A Σ-protocol is a 3-move public coin protocol between a prover,
Σ.Prv, and a verifier, Σ.V , where the goal of the prover, having a witness w,
is to convince the verifier that some statement x is in language L. We split the
prover Σ.Prv into two algorithms (Σ.Prv1,Σ.Prv2). A Σ-protocol for (x,w) ∈ RL
consists of the following PPT algorithms:

724 F. Baldimtsi et al.

• Σ.Prv1(x,w): on input x ∈ L and w s.t. (x,w) ∈ RL, it outputs the first
message of the protocol, a, and a state stP ∈ { 0, 1 }∗.

• Σ.Prv2(stP , e): after receiving the challenge e ∈ { 0, 1 }λ from Σ.V and on
input the state stP , it outputs the prover’s response z.

• Σ.Verify(x, a, e, z): on input a transcript (x, a, e, z), it outputs b ∈ { 0, 1 }. A
transcript is called accepting if Σ.Verify(x, a, e, z) = 1.

We care about the following properties: (i) completeness, (ii) special soundness,
and (iii) special honest verifier zero-knowledge (sHVZK), i.e., if the challenge e
is known in advance, then there is a PPT simulator Σ.Sim that simulates the
transcript on input (x, e). In addition, we allow completeness of a Σ-protocol to
be non-perfect, i.e. have a negligible error, and sHVZK to be computational.

One-Round Collective Coin Flipping and Resilient Functions. The core
of our CVZK construction is similar to a one-round collective coin flipping
(1RCCF) process: (1) each player generates and broadcasts a coin c within the
same round, (2) a uniformly random string is produced (with high probability).
The adversary can see the honest players’ coins first and then decide the cor-
rupted players’ coins. The 1RCCF notion was introduced in [8] and is closely
related to the notion of resilient functions which we recall below.
Definition 1 (Resilient function). Let f : {0, 1}m −→ {0, 1} be a Boolean
function on variables x1, . . . , xm. The influence of a set S ⊆ {x1, . . . , xm}
on f , denoted by IS(f), is defined as the probability that f is undeter-
mined after fixing the variables outside S uniformly at random. Let Iq(f) =
minS⊆{x1,...,xm},|S|≤q IS(f). We say that f is (q, ε)-resilient if Iq(f) ≤ ε. In
addition, for 0 < τ < 1, we say f is τ -strongly resilient if for all 1 ≤ q ≤ n,
Iq(f) ≤ τ · q.
We use the (Θ(log2 m/m))-strongly resilient function defined in [50] (i.e., any
coalition of q bits has influence at most Θ(q · log2 m/m)) which has a bias
1/2 ± 1/10. We note that it has been shown that for any Boolean function
on mO(1) bits, even one bit can have influence Ω(logm/mO(1)) [36]. Hence, it is
not possible to get a single bit string with ε = m−Ω(1).

Publicly Samplable Adaptive One-Way Functions. Adaptive one-way
functions (adaptive OWFs, or AOWFs for short) were formally introduced by
Pandey et al. [53]. In a nutshell, a family of AOWFs is indexed by a tag,
tag ∈ { 0, 1 }λ, such that for any tag, it is hard for any PPT adversary to invert
ftag(·) for randomly sampled images, even when given access to the inversion
oracle of ftag′(·) for any other tag′ (= tag. Here, we define a variant of AOWFs
where the adversary is provided a publicly sampled image as inversion challenge.

Definition 2. Let F =
{
{ftag : Xtag −→ Ytag}tag∈{0,1}λ

}
λ∈N be an AOWF fam-

ily. We say that F is publicly samplable adaptive one-way (PS-AOWF) if:
(1) There is an efficient deterministic image-mapping algorithm IM(·, ·) such

that for every tag ∈ {0, 1}λ, it holds that

Pr
[
ω ← Uλ : IM(tag,ω) ∈ Ytag

]
= 1 − negl(λ) .

CVZK and End-to-End Verifiable Multiparty Computation 725

(2) Let O(tag, ·, ·) denote the inversion oracle (as in [53]) that, on input tag′

and y outputs f−1
tag′(y) if tag′ (= tag, |tag′| = |tag|, and ⊥ otherwise. Then, for

every PPT adversary A and every tag ∈ {0, 1}λ, it holds that

Pr
[
ω ← Uλ : AO(tag,·,·)(tag,ω

)
= f−1

tag

(
IM(tag,ω)

)]
= negl(λ) .

For notation simplicity, in the rest of the paper we omit indexing by λ ∈ N
and simply write F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ .

The main difference between PS-AOWFs and AOWFs, as used in [53], is
public samplability : even if A is given the random coins, ω, used for the image
mapping algorithm IM(·, ·), it can only invert the OWF with negligible prob-
ability. In the full version of this paper [2], we provide an instantiation of a
PS-AOWF based on the hardness of discrete logarithm problem (DLP) in the
generic group model.

Externalized UC with Global Helper. Universal Composability (UC) is a
widely accepted simulation-based model to analyze protocol security. In the UC
framework, all the ideal functionalities are “subroutine respectful” in the sense
that each protocol execution session has its own copy of the functionalities,
which only interact with the single protocol session. This subroutine respecting
feature does not always naturally reflect the real world scenarios; for instance,
we typically want the trusted setup (e.g., CRS or PKI) to be deployed once
and then used in multiple protocols. To handle global setups the generalized UC
(GUC) framework was introduced [16]. However, as noted in the introduction,
given that in this work we want to avoid the use of a trusted setup (beyond a
consistent bulletin board), while still providing a composable construction, we
revert to the extended UC model with super-polynomial time helpers, denoted
by H-EUC [17]. In this model both the simulator and the adversary can access
a (externalized super-polynomial time) global helper functionality H.

3 CVZK and Coalescence Functions

A crowd verifiable zero-knowledge (CVZK) argument for a language L ∈ NP
with a witness relation RL is an interactive proof between a PPT prover, that
consists of a pair of algorithms CVZK.P = (CVZK.Prv1,CVZK.Prv2), and a col-
lection of PPT verifiers (CVZK.V1, . . . ,CVZK.Vn). The private input of the
prover is some witness w s.t. (x,w) ∈ RL, where x is a public statement. In
a CVZK argument execution, the interaction is in three moves as follows:

(1) The prover CVZK.Prv1(x,w) outputs the statement x and a string a to
all n verifiers and outputs a state stP .
(2) For (∈ [n], each verifier CVZK.V#(x, a) sends a challenge c# to the prover
and keeps a private state st# (e.g., the coins of V#). Note that CVZK.V# gets as
input only (x, a), and computes her challenge independently from the other
verifiers.
(3) After receiving c# for all (= {1, . . . , n}, CVZK.Prv2(x,w, a, 〈c1, . . . ,
cn〉, stP) outputs its response, z.

726 F. Baldimtsi et al.

Additionally, there is a verification algorithm CVZK.Verify that takes as input
the execution transcript 〈x, a, 〈c#〉#∈[n], z〉 and optionally, a state st#, (∈ [n] (if
run by CVZK.V#), and outputs 0/1.

As discussed in the introduction, CVZK is particularly interesting when each
verifier contributes limited (human-level) randomness individually, yet the ran-
domness of all verifiers (seen as a crowd) provides enough entropy to support
the protocol’s soundness. This unique feature of CVZK will be in the core of the
security analysis of our VMPC construction (Sect. 7). Nonetheless, from a mere
definitional aspect, the verifiers need not to be limited, so for generality, we pose
no restrictions on the entropy of their individual challenges in our definition.

3.1 CVZK Definition

We consider an adversary that statically corrupts up to a ratio of the verifier
crowd. Let Icorr be the set of indices of corrupted verifiers.

Definition 3. Let n be a positive integer, 0 ≤ t1, t2, t3 ≤ n be pos-
itive values and ε1(·), ε2(·) be real functions. A tuple of PPT algo-
rithms 〈(CVZK.Prv1,CVZK.Prv2), (CVZK.V1, . . . ,CVZK.Vn), CVZK.Verify〉 is
a (t1, t2, t3, ε1, ε2)-crowd-verifiable zero-knowledge argument of membership
(CVZK-AoM) for a language L ∈ NP, if the following properties are satisfied:

(i). (t1, ε1)-Crowd-Verifiable Completeness: For every x ∈ L ∩
{0, 1}poly(λ), w ∈ RL(x), every PPT adversary A and every Icorr ⊆ [n] such
that |Icorr| ≤ t1, the probability that the following experiment returns 1 is less
or equal to ε1(λ).

ExptCVCompl
(t1,A,Icorr)

(1λ, x, w)

1. CVZK.Prv1(x,w) outputs the message a and state stP ;
2. For ! ∈ [n] \ Icorr, run CVZK.V"(x, a) → (c", st");
3. A

(
x, a, 〈c"〉"∈[n]\Icorr

)
outputs 〈c′

1, . . . , c
′
n〉;

4. CVZK.Prv2(x,w, a, 〈c′
1, . . . , c

′
n〉, stP) outputs response z;

5. If (∀! ∈ [n] \ Icorr : c
′
" = c") AND

(
(CVZK.Verify(x, a, 〈c′

1, . . . , c
′
n〉, z) = 0) OR

(∃! ∈ [n] \ Icorr : CVZK.Verify(x, a, 〈c′
1, . . . , c

′
n〉, z, st") = 0)

)

then return 1; else return 0;

(ii). (t2, ε2)-Crowd-Verifiable Soundness: For every x ∈ {0, 1}poly(λ) \L,
every PPT adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t2, the
probability that the following experiment returns 1 is less or equal to ε2(λ).

ExptCVSound(t2,A,Icorr)
(1λ, x)

1. A(x, Icorr) outputs a message a;
2. For ! ∈ [n] \ Icorr, run CVZK.V"(x, a) → (c", st");
3. A

(
x, a, 〈c"〉"∈[n]\Icorr

)
outputs 〈c′

1, . . . , c
′
n〉 and response z;

4. If (∀! ∈ [n] \ Icorr : c
′
" = c") AND (CVZK.Verify(x, a, 〈c′

1, . . . , c
′
n〉, z) = 1) AND

(∀! ∈ [n] \ Icorr : CVZK.Verify(x, a, 〈c′
1, . . . , c

′
n〉, z, st") = 1)

then return 1 else return 0;

CVZK and End-to-End Verifiable Multiparty Computation 727

(iii). t3-Crowd-Verifiable Zero-Knowledge: For every x ∈ L ∩
{0, 1}poly(λ), w ∈ RL(x), every PPT adversary A and every Icorr ⊆
[n] such that |Icorr| ≤ t3, there is a PPT simulator CVZK.Sim =
(CVZK.Sim1,CVZK.Sim2) such that the outputs of the following two exper-
iments are computationally indistinguishable.

ExptCVZK(Ideal,t3,A,Icorr)
(1λ, x)

1. CVZK.Sim1(x,Icorr) outputs a, stSim,

and 〈c"〉"∈[n]\Icorr
;

2. A
(
x, a, 〈c"〉"∈[n]\Icorr

)
outputs 〈c′

1, . . . , c
′
n〉;

3. CVZK.Sim2(x, a, 〈c′
1, . . . , c

′
n〉, stSim)

outputs z;

4. b ← A(x, z);

5. If (∀" ∈ [n] \ Icorr : c′
" = c"),

then return b; else return ⊥ ;

ExptCVZK(Real,t3,A,Icorr)
(1λ, x, w)

1. CVZK.Prv1(x,w) outputs a and state stP ;

2. For " ∈ [n] \ Icorr, run

CVZK.V"(x, a) → (c", st");
3. A

(
x, a, 〈c"〉"∈[n]\Icorr

)
outputs 〈c′

1, . . . , c
′
n〉;

4. CVZK.Prv2(x,w, a, 〈c′
1, . . . , c

′
n〉, stP) outputs z;

5. b ← A(x, z);

6. If (∀" ∈ [n] \ Icorr : c′
" = c"),

then return b; else return ⊥ ;

Analogously, we can also define a CVZK argument of knowledge as follows.
We say that 〈(CVZK.Prv1, CVZK.Prv2), (CVZK.V1, . . . , CVZK.Vn), CVZK.Verify〉
is a (t1, t2, t3, ε1)-crowd-verifiable zero-knowledge argument of knowledge
(CVZK-AoK), if it satisfies (t1, ε1)-Completeness and t3-Crowd-Verifiable Zero-
Knowledge as previously, and the following property:

t2-Crowd-Verifiable Validity: There exists a PPT extractor CVZK.Ext such
that for every x ∈ {0, 1}poly(λ), every PPT adversary A and every Icorr ⊆ [n]
such that |Icorr| ≤ t2, the following holds: if there is a non-negligible function
α(·) such that

Pr
[
ExptCVSound(t2,A,Icorr)(1

λ, x) = 1
]

≥ α(λ) ,

then there is a non-negligible function β(·) such that

Pr[w∗ ← CVZK.ExtA(x, Icorr) : (x,w∗) ∈ RL] ≥ β(λ) .

Remark 1 (Relativized CVZK security). Definition 3 specifies CVZK security
against a PPT adversary A and a PPT simulator CVZK.Sim. Note that the
notions of crowd-verifiable completeness, soundness, validity, and zero-knowledge
can be extended so that they hold even when A, and maybe CVZK.Sim, has also
access to a (potentially super-polynomial) oracle H.

3.2 Coalescence Functions

We introduce the notion of a coalescence function, which will be a core compo-
nent of our CVZK construction (cf. Sect. 4). In particular, coalescence functions
will be the key for exploiting the CVZK verifiers’ randomness in the presence
of an adversary (a malicious prover) that aims to “cancel” the entropy of the
honest verifiers. Given the verifiers’ coins, a coalescence function will produce a
collection of (challenge) strings such that at least one of the strings has sufficient
entropy to support CVZK soundness. At a high level, a function F achieves coa-
lescence, if when provided as input an n-dimensional vector that is (i) sampled
from a distribution Dλ, and (ii) adversarially tampered at up to t-out-of-n vector
components, it outputs a sequence of m k-bit strings so that with overwhelming

728 F. Baldimtsi et al.

probability, at least one of the m strings is statistically close to uniformly ran-
dom. Our definition of F postulates the existence of “good” events G1, . . .Gm,
defined over the input distribution, where conditional to Gi being true, the corre-
sponding output string is statistically close to uniform. Coalescence is achieved
if the probability that such a “good” event occurs is overwhelming.

Definition 4. Let n, k,m be polynomial in λ and In = (in(1), . . . , in(n))
be an n-dimensional vector sampled according to the distribution ensem-
ble {Dλ}λ so that the support of Dλ is Ωλ. Let F : Ωλ −→
({0, 1}k)m be a function. For any adversary A, any t ≤ n, and any
Icorr ⊆ [n] such that |Icorr| ≤ t, we define the following experiment:
ExptCoal(t,A,Icorr)

(1λ)

1. Set In = (in(1), . . . , in(n)) ← Dλ;
2. A

(
〈in(")〉"∈Icorr

)
outputs In′ = (in′(1), . . . , in′(n)) s.t. ∀! ∈ [n] \ Icorr : in

′(") = in(");
3. Return (d1, . . . , dm) ← F (In′);

We say that the function F : Ωλ → ({0, 1}k)m is a (k,m, t)-coalescence
function w.r.t. Dλ, if there exist events G1, . . .Gm over Ωλ such that the following
two conditions hold:

(1) Pr[∧m
i=1¬Gi] = negl(λ), and

(2) for every adversary A and every Icorr ⊆ [n] such that |Icorr| ≤ t, it holds
that for all i ∈ [m], the random variable (di|Gi) is statistically negl(λ)-close
to Uk, where (d1, . . . , dm) ← ExptCoal(t,A,Icorr)(1

λ). Note that (X|A) denotes the
random variable X conditional on the event A.

Furthermore, we require that a (k,m, t)-coalescence function F w.r.t. Dλ sat-
isfies the following two additional properties:

Completeness: the output of F on inputs sampled from Dλ, denoted by F (Dλ),
is statistically negl(λ)-close to the uniform distribution (Uk)m over ({0, 1}k)m.

Efficient Samplability: there exists a PPT algorithm Sample(·) such that the
following two conditions hold:
(a) Pr

[
In ← Sample

(d1,...,dm)←(Uk)m
(d1, . . . , dm) : F (In) = (d1, . . . , dm)

]
= 1 − negl(λ).

(b) The distribution Sample
(
(Uk)m

)
is statistically negl(λ)-close to Dλ.

In Sect. 4.1, we present an implementation of a coalescence function w.r.t. Un

based on 1RCCF.

4 CVZK Construction

In this section, we show how to compile any Σ-protocol into a 3-move CVZK
protocol. Our CVZK construction is a compiler that utilizes an explicit instan-
tiation of a coalescence function from 1RCCF and a special class of protocols
where both the prover and the simulator operate in an “input-delayed” manner,

CVZK and End-to-End Verifiable Multiparty Computation 729

i.e., they do not need to know the statement in the first move. Our CVZK proto-
col will be a basic tool for the construction of our VMPC scheme (cf. Sect. 7). As
noted in the introduction, the security of the VMPC scheme is in the extended
UC model (EUC), where both the simulator and the adversary have access to
a (externalized super-polynomial time) global helper functionality H, denoted
as H-EUC security. Therefore, the CVZK protocol must also be secure against
PPT adversaries with oracle access to some helper.

4.1 Coalescence Functions from 1RCCF

As mentioned in Sect. 2, it is not possible to produce a single random string via
collective coin flipping and hope it has exponentially small statistical distance
from a uniformly random string. Nevertheless, we show that it is possible to
produce several random strings such that with overwhelming probability one of
them is close to uniformly random, as dictated by the coalescence property.

Description. Let n = λγ for a constant γ > 1 and assume λ log λ divides n. Let
fres denote the (Θ(log2 m/m))-strongly resilient function over m bits proposed
in [50]. We define the instantiation of the coalescence function F : {0, 1}n −→
(
{0, 1}

λ
log2 λ

)log λ as follows:
Step 1. On input C := (c1, . . . , cn), F partitions the n-bit input C

into λ log λ blocks B1, . . . , Bλ log λ, with n
λ log λ bits each. Namely Bj :=(

c (j−1)n
λ log λ +1

, . . . , c jn
λ log λ

)
, where j ∈ [λ log λ].

Step 2. Then, F groups every λ blocks together, resulting to log λ
groups, denoted as G1, . . . , Glog λ. Namely, Gi :=

(
B(i−1)λ+1, . . . , Biλ

)
, where

i ∈ [log λ]. Within each group Gi, we apply the resilient function fres on
each block B(i−1)λ+k, k ∈ [λ], to output 1 bit; hence, for each group
Gi, by sequentially running fres we obtain a λ-bit string (bi,1, . . . , bi,λ) ←(
fres(B(i−1)λ+1), . . . , fres(Biλ)

)
, and log λ strings in total for all the groups Gi,

i ∈ [log λ].
Step 3. The resilient function fres in [50] has a bias 1

10 . Therefore, even if the
input Gi is random, the output bits (bi,1, . . . , bi,λ) are not a random sequence
of λ log λ bits due to this bias. In order to make the output of F balanced (i.e.,
unbiased), for each group Gi, i ∈ [log λ], we execute the following process: on
input (bi,1, . . . , bi,λ), we perform a sequential (von Neumann) rejection sampling
over pairs of bits until an unbiased string di := (di,1, . . . , di, λ

log2 λ
) is produced,

with λ
log2 λ bits length as described below:

1. Set two indices j ← 1 and k ← 1;
2. While

(
(j < λ) ∧ (k < λ

log2λ)
)
:

– If bi,j (= bi,j+1, then set di,k ← bi,j and k ← k + 1;
– Set j ← j + 2;

3. If k = λ
log2λ , then return di := (di,1, . . . , di, λ

log2 λ
);

4. else return di := (bi,1, . . . , bi, λ
log2 λ

);

730 F. Baldimtsi et al.

Finally, we define the output of F (C) as the sequence (d1, . . . , dlog λ).
Security. The security of F (·) is stated below and is proved in the full version
of this paper [2].

Theorem 1. Let γ > 1 be a constant and n = λγ . Then, the function F :

{0, 1}n −→
(
{0, 1}

λ
log2 λ

)log λ described in Sect. 4.1 is a
(

λ
log2 λ , log λ, n

1− 1
γ

log3 n

)
-

coalescence function w.r.t. uniform distribution Un that satisfies completeness
and efficient samplability.

By Theorem 1, for n = λγ , if the adversary can corrupt up to n
1− 1

γ

log3 n verifiers,
then on input the n verifiers’ coins, F outputs log λ strings of λ

log2 λ bits, such
that with probability 1− negl(λ), at least one of the log λ strings is statistically
close to uniformly random.

4.2 A Helper Family for AOWF Inversion

Let F = {ftag : Xtag −→ Ytag}tag∈{0,1}λ be a (publicly samplable) AOWF family.
In Fig. 1, we define the associated helper family H = {HS}S⊂{0,1}λ (we omit
indexing by λ ∈ N for simplicity). Here, S refers to the subset of tags of entities
controlled by an adversary. Namely, the adversary can only ask for preimages
that are consistent with its corruption extent.

Fig. 1. The helper family H = {HS}S⊂{0,1}λ w.r.t. F = {ftag}tag∈{0,1}λ .

4.3 Fully Input-Delayed Σ-Protocols

In our CVZK construction, we utilize a special class of Σ-protocols where both
the prover and the simulator do not need to know the proof statement in the
first move. Such “input-delayed” protocols (at least for the prover side) have
been studied in the literature (e.g., [19,20,34,46]). To stress the input-delayed
property for both prover and simulator, we name these protocols fully input-
delayed and provide their definition below.

Definition 5. Let Σ.Π := (Σ.Prv1,Σ.Prv2,Σ.Verify) be a Σ-protocol for a lan-
guage L ∈ NP. We say that Σ.Π is fully input-delayed if for every x ∈ L, it
satisfies the following two properties:

(1) Input-delayed proving: Σ.Prv1 takes as input only the length of x, |x|.
(2) Input-delayed simulation: there exists an sHVZK simulator Σ.Sim :=
(Σ.Sim1,Σ.Sim2) s.t. Σ.Sim1 takes as input only |x| and the challenge c.

CVZK and End-to-End Verifiable Multiparty Computation 731

As we will see in Sect. 4.4, CVZK can be built upon any fully input-delayed pro-
tocol (in a black-box manner) for a suitable “one-way” language that is secure
against helper-aided PPT adversaries. Here, for generality, we propose an instan-
tiation of such a protocol from the fully input-delayed proof for the Hamiltonian
Cycle problem of Lapidot and Shamir (LS) [46]. By the LS protocol, we know
that there exists a fully input-delayed Σ-protocol for every NP language. In the
full version of this paper [2], we recall the LS protocol and show that it is secure
against helper-aided PPT adversaries, when built upon a commitment scheme
that is also secure against PPT adversaries with access to the same helper. In
addition, we propose an instantiation of such a commitment scheme based on
ElGamal, assuming an “adaptive” variant of the DDH problem in the spirit of
AOWFs [53].

4.4 Generic CVZK Compiler

We present a generic CVZK compiler for any Σ-protocol Σ.Π =
(Σ.Prv1,Σ.Prv2,Σ.Verify) for an NP language L and (x,w) ∈ RL. Let F =
{ftag : Xtag −→ Ytag}tag∈{0,1}λ/log2 λ be a PS-AOWF family (cf. Definition 2),
and tag# be the identity of the verifier CVZK.V# for (∈ [n]. Let |tag1| = · · · =
|tagn|. For each (∈ [n], our compiler utilizes a fully input-delayed Σ-protocol
InD.Π := (InD.Prv1, InD.Prv2, InD.Verify) for the language L∗

tag"
defined as:

L∗
tag"

=
{
β ∈ Ytag"

∣∣ ∃α ∈ Xtag"
: ftag"

(α) = β
}
. (1)

For simplicity, we say that InD.Π is for the family
{
L∗
tag"

}
#∈[n]

, without referring
specifically to the family member.
Description. In terms of architecture, our CVZK compiler is in the spirit of
disjunctive proofs [20,22]: the prover must show that either (i) knows a witness
w for x ∈ L or (ii) can invert a hard instance of the PS-AOWF ftag. However,
several adaptations are required so that validity and ZK are preserved in the
CVZK setting where multiple (individually weak) verifiers are present. First,
the challenge C provided by the n verifiers is given as input to the coalescence
function F (·) defined in Sect. 4.1 which outputs log λ strings (d1, . . . , dlogλ), each

λ
log2 λ bits long. In addition, the compiler maintains a fixed disjunctive mode so
that the prover always (i) proves the knowledge of w for x ∈ L and (ii) simulates
the knowledge of a collection of inversions to hard instances.

To prove the knowledge of w for x ∈ L, the prover executes log λ parallel
runs of the compiled Σ-protocol Σ.Π for (x,w) ∈ RL, where the challenge in
the i-th run is the XOR operation of the i-th block of n

log λ verifiers’ bits from
C and some randomness provided by the prover in the first move. To simulate
the inversions to hard instances, our compiler exploits the fully input-delayed
property of InD.Π. In particular, it runs n · log λ parallel simulations of InD.Π
where the ((, j)-th run, ((, j) ∈ [n]×[log λ], is for a hard instance (statement) x∗

#,j
associated with the identity tag# of CVZK.V#. The statement x∗

#,j is created later
on in the third move of the protocol by running the image-mapping algorithm

732 F. Baldimtsi et al.

of F on input tag# and the j-th string output by F (C), dj . The latter is feasible
because the first move of the input-delayed simulator InD.Sim is executed obliv-
iously to the statement.

By the coalescence property of F (·), the output F (C) preserves enough

entropy, so that any malicious CVZK prover corrupting less than n
1− 1

γ

log3 n veri-
fiers is forced to be challenged on the knowledge of (i) w for x ∈ L or (ii) an
inversion of a hard instance, in at least one of the corresponding parallel execu-
tions. Thus, by the adaptive one-way property of F, the (potentially malicious)
prover must simulate the knowledge of all inversions and indeed prove the knowl-
edge of w for x ∈ L, so CVZK validity is guaranteed.

The ZK property of our compiler relies on the sHVZK properties of Σ.Π
and InD.Π, yet we remark that the CVZK simulation must be straight-line (no
rewindings) so that our construction can be deployed in the H-EUC setting of
our VMPC scheme. For this reason, we do “complexity leveraging” along the
lines of super-polynomial simulation introduced in [54], by allowing our simu-
lator to have access to members of the helper family H defined in Fig. 1. Our
CVZK compiler is presented in detail in Fig. 2.

Security. To prove the security of our CVZK generic compiler we use a simula-
tor pair (CVZK.Sim1,CVZK.Sim2), where CVZK.Sim2 is given oracle access to a
member of the super-polynomial helper family H = {HS}S⊂{0,1}λ/ log2 λ defined
in Fig. 1. We state our CVZK security theorem below and prove it in the full
version of this paper [2].

Theorem 2. Let Σ.Π = (Σ.Prv1,Σ.Prv2,Σ.Verify) be a Σ-protocol for some
language L ∈ NP where the challenge is chosen uniformly at random. Let F =
{ftag : Xtag −→ Ytag}tag∈{0,1}λ/ log2 λ be a PS-AOWF family (cf. Definition 2),
and let H = {HS}S⊂{0,1}λ/ log2 λ be the associated helper family defined in Fig. 1.
Let InD.Π := (InD.Prv1, InD.Prv2, InD.Verify) be a fully input-delayed Σ-protocol
for the language family

{
L∗
tag"

}
#∈[n]

defined in Eq.(1).
Let γ > 1 be a constant and n = λγ . Let CVZK.Π be the CVZK compiler for the
language L with n verifiers described in Fig. 2 over Σ.Π, InD.Π and F. Then,
against any adversary A, it holds that:

(1) If the image-mapping algorithm IM(·, ·) of F has error ε(·)1, Σ.Π has
completeness error δ(·) and InD.Π has perfect completeness, then for every

t1 ≤ n
1− 1

γ

log2 n , CVZK.Π satisfies (t1, ε1)-crowd verifiable completeness, where
ε1(λ) := δ(λ) log λ + n log λε(λ)2Θ(log2 n) + negl(λ).

(2) If Σ.Π and InD.Π are special sound, then for every t2 ≤ n
1− 1

γ

log3 n , there
is a negligible function ε2(·) s.t. CVZK.Π satisfies (t2, ε2)-crowd verifiable
soundness and t2-crowd verifiable validity.
(3). Let t3 ≤ n and consider any subset of indices of corrupted verifiers
Icorr ⊆ [n] s.t. |Icorr| ≤ t3. Let A be PPT with access to a helper HS from H,

1 The PS-AOWF family instantiated in [2] has perfect samplability, i.e. ε(λ) = 0.

CVZK and End-to-End Verifiable Multiparty Computation 733

Fig. 2. The generic CVZK compiler CVZK.Π.

where (i) {tag#}#∈Icorr ⊆ S and (ii) {tag#}#∈[n]\Icorr
∩S = ∅. If Σ.Π and InD.Π

are sHVZK against PPT distinguishers with access to HS, then there is a PPT
simulator pair

(
CVZK.Sim1, CVZK.Sim

HS
2

)
s.t. CVZK.Π is t3-crowd-verifiable

zero-knowledge against PPT distinguishers with access to HS.

5 End-to-End Verifiable MPC

We introduce end-to-end verifiable multiparty computation (VMPC), which as
we show in Sect. 7, can be realized with the use of CVZK. A VMPC scheme
encompasses the interaction among sets of users, clients and servers, so that the

734 F. Baldimtsi et al.

correct computation of some fixed function f of the users’ private inputs can be
verified, while their privacy is preserved. End-to-end verifiability suggests that
even when all servers and all users’ clients are corrupted, verification is still
possible (although, obviously, in an all-malicious setting, privacy is violated).
Furthermore, a user’s audit data do not leak information about her private input
so the verification mechanism may be delegated to an external verifier.

5.1 VMPC Syntax

Let U = {U1, . . . , Un } be a set of n users where every user has an associated
client C = {C1, . . . , Cn }. Let S = {S1, . . . , Sk } be a set of k servers. All clients
and servers run in polynomial time. Every server has write permission to a con-
sistent bulletin board (BB) to which all parties have read access. Each user U#

receives her private input x# from some set X (which includes a special sym-
bol “abstain”) and is associated with a client C# for engaging in the VMPC
execution. In addition, there exists an efficient verifier V responsible for audit-
ing procedures. The evaluation function associated with the VMPC scheme is
denoted by f : Xn −→ Y , where Xn is the set of vectors of length n, the coor-
dinates of which are elements in X, and Y is the range set. All parameters and
set sizes n, k are polynomial in the security parameter λ.

Note that we consider the concept of a single verifier that audits the VMPC
execution on behalf of the users, in the spirit of delegatable receipt-free verifi-
cation that is established in e-voting literature (e.g. [18,41,51]). Alternatively,
we could involve multiple verifiers, e.g. one for each user, and require that all
or a threshold of them verify successfully. This approach does not essentially
affect the design and security analysis of a VMPC scheme, as (i) individual ver-
ifiability is captured in our description via the delegatable verification carried
out by the single verifier and (ii) a threshold of collective user randomness is
anyway needed. Which of the two directions is preferable, is mostly a matter of
deployment and depends on the real world scenario where the VMPC is used.

Separating Users from Their Client Devices. The distinction between the
user and her associated client is crucial for the analysis of VMPC security where
end-to-end verifiability is preserved in an all-malicious setting, i.e., where the
honest users are against a severe adversarial environment that controls the entire
VMPC execution by corrupting all servers and all clients. In this setting, each
user is an entity with limited “human level” power, unable of performing complex
cryptographic operations which are outsourced to her associated client. A secure
VMPC scheme should be designed in a way that withstands such attacks, based
on the engagement of the honest users in the execution.

VMPC security relies on the internal randomness that each user generates
during her interaction with the system. By r# we denote the randomness gener-
ated by the user U# and κ# is the min-entropy of r#. Let κ := min{κ# | (∈ [n]}
be the min-entropy of all users’ randomness, that we call the user min-entropy
of a VMPC scheme. Given that we view U# as a “human entity”, the values of κ
are small and insufficient for secure implementation of cryptographic primitives.
Namely, each individual user contributes randomness that can be guessed by an

CVZK and End-to-End Verifiable Multiparty Computation 735

adversary with non-negligible probability. Formally, it should hold κ = O(logλ),
i.e. 2−κ is a non-negligible value and hence insufficient for any cryptographic
operation. From a computational point of view, users cannot perform compli-
cated calculations and their computational complexity is linear in λ (i.e., the
minimum for reading the input).

Protocols. A VMPC scheme consists of the following protocols:

– Initialize (executed among the servers). At the end of the protocol each
server Si posts a public value Paramsi in the BB and maintains private state
sti. By Params = {Paramsi, i ∈ [k]} we denote the execution’s public param-
eters.

– Input (executed among the servers and the users along with their associated
clients). We restrict the interaction in the simple setting where the users
engage in the Input protocol without interacting with each other. Specifically,
each user U#, provides her input x# to her client C# (e.g., smartphone or
desktop PC) which in turn interacts with the servers. By her interaction with
C#, the user U# obtains some string α# that will be used as individual audit
data.

– Compute (executed among the servers). At the end of the protocol, the
servers post an output value y and the public audit data τ on the BB. Then,
everyone may obtain the output y from the BB.

– Verify (executed by the verifier V and the users). In particular, V requests
the individual audit data α# from each user U# and reads y, τ from the BB.
Subsequently it provides each user U# with a pair (y, v), where v ∈ {0, 1}
denotes the verification success or failure.

Remark 2. The Initialize protocol can operate as a setup service that is run
ahead of time and is used for multiple executions, while the Input protocol
represents the online interaction between a user, her client and the servers.

5.2 Security Framework

We define a functionality that captures the two fundamental properties that
every VMPC should achieve: (i) standard MPC security and (ii) end-to-end ver-
ifiability. Our model for VMPC is in the spirit of H-EUC security [17], which
allows for the preservation of the said properties under arbitrary protocol com-
positions. Thus, VMPC security refers to indistinguishability between an ideal
and a real world setting by any environment that schedules the execution. In our
definition we assume the functionality of a Bulletin Board GBB (with consistent
write/read operations) and a functionality Fsc that models a Secure Channel
between each user and her client (we recall GBB and Fsc in the full version [2]).

Ideal World Setting. We formally describe the ideal VMPC functionality
Ff,R

vmpc(P) that is defined w.r.t. to an evaluation function f : Xn −→ Y and
a binary relation R ⊆ Img[f] × Img[f] over the image of f . The functionality
Ff,R

vmpc(P) operates with the parties in P = U ∪ C ∪ S ∪ {V }, which include the
users U = {U1, . . . , Un } along with their associated clients C = {C1, . . . , Cn },
the servers S = {S1, . . . , Sk }, and the verifier V .

736 F. Baldimtsi et al.

The relation R determines the level of security offered by Ff,R
vmpc(P) in terms of

adversarial manipulation of the output computed value. E.g., if R is the equality
relation { (y, y) | y ∈ Y }, then no deviation from the actual intended evaluation
will be permitted by the Ff,R

vmpc(P). Finally, the environment Z provides the par-
ties with their inputs and determines a subset Lcorr ⊂ P of statically corrupted
parties. Along the lines of the H-EUC model, we consider an externalized global
helper functionality H in both the ideal and real world. The helper H can inter-
act with parties in P and the environment Z. Namely, Z sends Lcorr to H at the
beginning or the execution. In this work, we allow H to run in super-polynomial
time w.r.t. the security parameter λ. At a high level, Ff,R

vmpc(P) interacts with
the ideal adversary Sim as follows:

– At the Initialize phase, it waits for the servers and clients to be ready for
the VMPC execution.

– At the Input phase, it receives the user’s inputs. It leaks the input of U# to
the adversary only if (i) all servers are corrupted or (ii) the client C# of U#

is corrupted. If neither (i) nor (ii) holds, then Ff,R
vmpc(P) only reveals whether

U# abstained from the execution.
– At the Compute phase, upon receiving all user’s inputs denoted as vector

x ∈ Xn, it computes the output value y = f(x).
– At the Verify phase, upon receiving a verification request from V (which is a

dummy party here), the functionality is responsible for playing the role of an
“ideal verifier” for every user U#. On the other hand, Sim sends to Ff,R

vmpc(P) an
adversarial (hence, not necessarily meaningful) output value ỹ for the VMPC
execution for U#. Then, Ff,R

vmpc(P)’s verification verdict w.r.t. U# will depend
on the interaction with Sim and potentially the relation of y, ỹ w.r.t. R. We
stress that Ff,R

vmpc(P) will consider ỹ only if (a) all servers are corrupted, or (b)
an honest user’s client is corrupted2. If this is not the case, then it will always
send the actual computed value y to U# and its verification verdict will not
depend on R, which is in line with the standard notion of MPC correctness.
The functionality Ff,R

vmpc(P) is presented in Fig. 3.

Real World Setting. In the real world setting, all the entities specified in
the set P are involved in an execution of a VMPC scheme Π = (Initialize,
Input,Compute,Verify) in the presence of functionalities GBB and Fsc. As
in the ideal world, the environment Z provides the inputs and determines the
corruption subset Lcorr ⊂ P. Z will also send Lcorr to H at the beginning of the
execution. During Initialize, the servers interact with the users’ clients. During
the Input protocol, every honest user U# engages by providing her private input
x# via C# and obtaining her individual audit data α#. The execution is run in the
presence of a PPT adversary A that observes the network traffic and corrupts
the parties specified in Lcorr.

2 In case an honest user’s client is corrupted, an “input replacement” attack can take
place which makes it impossible to deliver (the true output) y to the user.

CVZK and End-to-End Verifiable Multiparty Computation 737

VMPC Definition. As in the H-EUC framework [17], we consider an environ-
ment Z that provides inputs to all parties, interacts with helper H and schedules
the execution. In the ideal world setting, Z outputs the bit EXEC

Ff,R
vmpc(P)

Sim,Z,H (λ), and

in the real world the bit EXECP,ΠGBB,Fsc

A,Z,H (λ). Security is defined as follows:

Definition 6. Let f : Xn −→ Y be an evaluation function and R ⊆ Img[f] ×
Img[f] be a binary relation. Let H be a helper functionality. We say that a VMPC
scheme ΠGBB,Fsc operating with the parties in P, H-EUC realizes Ff,R

vmpc(P) with
error ε, if for every PPT adversary A there is an ideal PPT simulator Sim such
that for every PPT environment Z, it holds that

∣∣∣Pr
[
EXEC

Ff,R
vmpc(P)

Sim,Z,H (λ) = 1
]
− Pr

[
EXECP,ΠGBB,Fsc

A,Z,H (λ) = 1
]∣∣∣ < ε .

Strength of Our VMPC Security Model. Based on the description of Ff,R
vmpc,

the private input x# of an honest user U# is leaked if her client C# is corrupted, or
if all servers are malicious, so in our VMPC model, the honest users’ clients and
at least one server must be non-corrupted for privacy. For integrity, we require
that the verifier remains honest, while GBB captures the notion of a consistent and
public bulletin board. We informally argue that these requirements are essential
for VMPC feasibility, at least for meaningful cases of functions and relations.
Clearly, since the users communicate with the servers only via their clients, the
user has to provide her input to the client which has to be trusted for privacy.
Besides, if the adversary can corrupt all the servers, then it can completely run
the Compute protocol and along with the environment, schedule the evaluation
of f that, in general, may leak information on individual inputs that Sim cannot
infer just by receiving the evaluation of f on the entire input vector.

Furthermore, if the real world verifier is malicious, then it can provide arbi-
trary verdicts regardless of the “verification rules” imposed by R, which rules
are respected by Ff,R

vmpc(P) in the ideal world (the same would hold even we con-
sidered multiple verifiers per user). Finally, in case of no consistent BB, since the
communication between parties is not assumed authenticated, an adversary can
disconnect the parties separating them into disjoint groups, and provide partial
and mutually inconsistent views of the VMPC execution per group. For more
details, we refer to Barak et al. [3] and the full version of this paper [2], where we
discuss the strength of our model w.r.t. the server, client, and verifier corruption.

6 Spreading Relations

In this section, we study the characteristics that a function f : Xn −→ Y must
have w.r.t. some relation R ⊆ Img[f]× Img[f] to be realized by a VMPC scheme.
Recall that in our setting, all entities capable of performing cryptographic oper-
ations might be corrupted and only a subset of users is honest. This requirement
poses limitations not present in other security models (e.g. [4]), where auditable/
verifiable MPC is feasible for a large class of functions (arithmetic circuits) given

738 F. Baldimtsi et al.

Fig. 3. The ideal VMPC functionality Ff,R
vmpc(P).

(i) the existence of a trusted randomness source or a random oracle or (ii) the
fact that both the honest user and her client are considered as one non-corrupted
entity. As a consequence, for some evaluation function f and binary relation R,
if VMPC realization is feasible, then this is due to the nature of the users’

CVZK and End-to-End Verifiable Multiparty Computation 739

engagement in the VMPC execution. Namely, we consider that the users inter-
act using some randomness that implies a level of unpredictability in the eyes of
the attacker that prevents end-to-end verifiability (as determined by relation R)
or secrecy from being breached. Naturally, this engagement results in a security
error that strongly depends on (i) the number of honest users whose inputs are
attacked by the adversary and (ii) the user min entropy κ. On the contrary, it
is plausible that if an adversary controlling the entire execution can guess all
the users’ coins, then this execution is left defenseless against the adversary’s
attacks. As mentioned in Sect. 5, the possible values for κ remain at a “human
level”, in the sense that the randomness r# of U# can be guessed with good prob-
ability. Typically, we assume that 2−κ is non-negligible in the security parameter
λ by setting κ = O(logλ).

We view the sets Xn and Y as metric spaces equipped with metrics dXn

and dY respectively. For the domain Xn, we select the metric that provides an
estimation of the number of honest users that have been attacked, i.e. their inputs
are modified by the real world adversary. So, we fix dXn as the metric Dcrn that
counts the number of vector elements that two inputs x = (x1, . . . , xn),x′ =
(x′

1, . . . , x
′
n) differ. Formally, Dcrn(x,x′) =

∣∣ { (∈ [n] | x# (= x′
}

∣∣ .
We examine feasibility of realizing Ff,R

vmpc w.r.t. f,R according to the following
reasoning: assuming that cryptographic security holds, then an adversarial input
that has some distance δ w.r.t. Dcrn from the honest inputs cannot cause a
significant divergence y′ from the actual evaluation y = f(x). Here, divergence is
interpreted as the case where y, y′ are not in some fixed relation R. For instance,
if divergence means that the deviation from the actual evaluation is no more
than δ, this can be expressed as y, y′ not being in the bounded distance relation
Rδ defined as follows:

Rδ := {(z, z′) ∈ Y × Y | dY (z, z′) ≤ δ} . (2)

An interesting class of evaluation functions that can be realized in an VMPC
manner w.r.t. Rδ are the ones that satisfy some relaxed isometric property, thus
inherently preventing evaluation from “large” deviation blow ups when the dis-
tance between honest and adversarial inputs is bounded, as specified by Eq. (2)
for some positive value δ. One noticeable example are the Lipschitz functions;
namely, for some L > 0, if the evaluation function f : Xn −→ Y is L-Lipschitz,
then for every x,x′ ∈ Xn it holds that dY

(
f(x), f(x′)

)
≤ L · Dcrn

(
x,x′).

Thus, in the case of an L-Liptshitz function f and bounded distance relation
Rδ, the following condition holds:

∀x,x′ ∈ Xn : Dcrn(x,x′) ≤ δ/L ⇒ Rδ

(
f(x), f(x′)

)
.

In general, the above condition implies that the ideal functionality Ff,R
vmpc(P)

will accept a simulation when the adversarial value y′ can be derived by an input
vector that is no more than δ-far from the actual users’ inputs. This interesting
property fits perfectly with our intuition of VMPC realization and captures
Lipschitz functions and bounded distance relations as special case. Based on the
above, we introduce the notion of spreading relations as follows.

740 F. Baldimtsi et al.

Definition 7 (Spreading relation). Let (Xn,Dcrn) and (Y,dY) be metric
spaces, f : Xn −→ Y be a function and δ be a non-negative real value. We
say that R ⊆ Img[f] × Img[f] is a δ-spreading relation over Img[f], if for every
x,x′ ∈ Xn it holds that

Dcrn(x,x′) ≤ δ ⇒ R
(
f(x), f(x′)

)
.

The Breadth of VMPC Feasibility. Given Definition 7, we formally explore
the boundaries of VMPC feasibility given some fixed values κ, δ. Intuitively, we
show that if f is symmetric3, then VMPC realization with a small (typically
negl(δ)) error is infeasible when R is not a δ-spreading relation over Img[f], or if
the users engage in the VMPC execution in a “deterministic way” (i.e., κ = 0).
A detailed discussion and a proof sketch can be found in the full version of this
paper [2].

Theorem 3. Let f : Xn −→ Y be a symmetric function, R ⊆ Img[f] × Img[f]
be a binary relation and κ, δ be non-negative values, where δ ≤ n

2 . Then, one of
the following two conditions holds:

(1) R is a δ-spreading relation over Img[f].
(2) For every VMPC scheme ΠGBB,Fsc with parties in P = {U1, . . . , Un} ∪

{C1, . . . , Cn}∪ {S1, . . . , Sk}∪ {V } and user min entropy κ, and every helper H,
there is a negligible function ε and a non-negligible function γ such that ΠGBB,Fsc

does not H-EUC realize Ff,R
vmpc(P) with error less than min{2−κδ − ε(λ), γ(λ)}.

7 Constructing VMPC from CVZK

A number of efficient practical MPC protocols [11,26,27,52] have been proposed
in the pre-processing model. Such protocols consist of two phases: offline and
online. During the offline phase, the MPC parties jointly compute authenticated
correlated randomness, which typically is independent of the parties’ inputs.
During the online phase, the correlated randomness is consumed to securely
evaluate the MPC function over the parties’ inputs. Our VMPC construction
follows the same paradigm as [4]. Our main challenge is to transform a publicly
audible MPC to a VMPC without a trusted setup.

Our construction utilizes a number of tools that are presented in the full ver-
sion of this paper [2]: (i) a perfectly binding homomorphic commitment that is
secure against helper-aided PPT adversaries, (ii) a dual-mode homomorphic com-
mitment DC, which allows for two ways to choose the commitment key s.t. the
commitment is either perfectly binding or equivocal, (iii) a Σ-protocol for Beaver
triples, and (iv) CVZK proofs that derive from compiling straight-line simulat-
able ZK proofs for NP languages via our CVZK construction from Sect. 4. Note
that plain ZK does not comply with the VMPC corruption model, as all servers
and clients can be corrupted and each user has limited entropy. Additionally, our

3 f(x1, . . . , xn) is symmetric iff it is unchanged by any permutation of its variables.

CVZK and End-to-End Verifiable Multiparty Computation 741

protocol utilizes a secure channel functionality Fsc between human users U# and
their local clients C#; and an authenticated channel functionality Fauth between
human users U# and verifier V . Both channels can be instantiated from physical
world, such as isolated rooms and trusted mailing service. To provide intuition,
we first present a construction for the single-server setting.

Single-Server VMPC. As a warm-up, we present the simpler case of a single
MPC server S. In this setting, no privacy can be guaranteed when S is corrupted,
yet end-to-end verifiability should remain, since the property should hold even if
all servers are corrupted. For simplicity, by using CVZK to prove a statement,
we mean that the prover (server) runs CVZK.Prv1 to generate the first move
of the CVZK proof and posts it on BB (formalized as GBB in [2]) during the
Initialize phase. Each user then acts as a CVZK verifier to generate and post
a coin on the BB at Input phase. The prover uses CVZK.Prv2 to complete the
proof by posting the third move of the CVZK proof to the BB at the Compute
phase. At Verify, anyone can check the CVZK transcripts posted on the BB.

– At the Initialize phase, S first generates a perfectly binding commitment
key of the dual-mode homomorphic commitment as ck ← DC.Gen(1λ) which
posts on the BB and shows that ck is a binding key using CVZK. Then, S
generates and commits to two random numbers r(0)# , r(1)# ∈ Zp to the BB
for each user U#, (∈ [n]. Denote the corresponding commitments as c(0)#

and c(1)# . Furthermore, S generates sufficiently many random Beaver triples
(depending on the multiplication gates of the circuit to be evaluated), i.e.,
triples (a, b, c) ∈ (Zp)3 such that c = a · b, and then commits the triples to
the BB by showing their correctness using the CVZK compiled from the Σ-
protocol for Beaver triples. For each user U#, (∈ [n], S sends r(0)# and r(1)# to
her client C#.

– At the Input phase, C# sends (displays) r(0)# and r(1)# to U#. Assume U#’s
input is x#. U# randomly picks b#← { 0, 1 } and computes δ# = x# − r(b")

#
4.

Then, U# sends (b#, δ#) to C#, which in turn posts (U#, δ#, b#) to the BB, where
U# is the user ID. Finally, U# obtains (b#, δ#, r

(1−b")
) as her individual audit

data α#.
– At the Compute phase, S fetches posted messages from the BB. For (∈ [n],
S sets c# ← c(b")

· DC.Comck(δ#;0) and opens c(1−b")
to the BB (note that

c# commits to x#). S follows the arithmetic circuit to evaluate f(x1, . . . , xn)
using (c1, . . . , cn) as the input commitments. Specifically, (i) for addition gate
z = x + y, S uses homomorphic property to set the commitment of z as
DC.Comck(x) · DC.Comck(y); (ii) for multiplication gate z = x · y, S needs to
consume a pre-committed random Beaver triple. Denote the commitments of
x and y as X and Y , respectively and the triple commitments as (A,B,C)

4 Note that this step requires the “human” user to perform some linear operation
in Zp. If we want to avoid any type of computation in the user side (apart from
coin-flipping), then the client can also send a pre-computed lookup table for all δ"

(assuming that the user input space is polynomial).

742 F. Baldimtsi et al.

which commit to a, b, c s.t. a · b = c. Then, S opens the commitment X/A as
α and Y/B as β to the BB. It then sets the commitment of z as C ·Bα ·Aβ ·
DC.Comck(α · β). By homomorphic property, it is easy to see that z = x · y.
Finally, S opens the commitments corresponding to the output gate(s) of the
arithmetic circuit as the final result.

– At the Verify phase, V requests and receives the individual audit data
{α#}#∈[n] from each user U#, (∈ [n], via Fauth. First, V parses α# =
(b#, δ#, r

(1−b")
), for (∈ [n]. Next, V fetches all the transcript from the BB,

and it executes the following steps: (1) it checks that the posted b# on the BB
match the ones in α#; (2) it verifies that the openings of all the commitments
are valid; (3) it verifies that all the CVZK proofs are valid; (4) it re-computes
the arithmetic circuit using the commitments and openings posted on the BB
to verify the computation correctness. If all checks are successful, V sets the
verification bit v := 1, else it sets v := 0. Finally, it sends the opening of the
result commitment (i.e., f(x1, . . . , xn)) along with v to every user U#, (∈ [n].

Security Analysis. We provide an informal discussion on the security of the
single-server construction in terms of privacy and end-to-end verifiability.

Privacy. The single-server VMPC construction preserves user U#’s privacy when
the server S and C# are honest. In particular, since the underlying commitment
scheme is computationally hiding under the adaptively secure DDH assumption
(cf. [2] for a definition), all the posted commitments to values X/A and Y/B leak
no information (up to a negl(λ) error) about the users’ inputs to a PPT adversary
with access to the helper. Furthermore, while computing the multiplication gates,
the openings have uniform distribution, as the plaintext is masked by a random
group element.

End-to-End Verifiability. Let f be an evaluation function and R be a δ-spreading
relation over Img[f] (cf. Definition 7), where δ ≥ 0 is an integer. We informally
discuss how the single-server VMPC protocol achieves end-to-end verifiability
w.r.t. R, with error that is negligible in λ and δ. Assume that the adversary A
corrupts the MPC server, all users’ clients and no more than n1− 1

γ /log3 n users.
First, we note that if A additionally corrupts the verifier V , we can construct
a simple simulator that engages with A by playing the role of honest users
and simply forwards the malicious response of V to Ff,R

vmpc(P) along with the
adversarial tally y′.

For the more interesting case where V is honest, we list the types of attacks
that A may launch below:

– Commitment attack: A attempts to open some commitment c of a message m,
to a value m′ (= m. By the perfect binding property of ElGamal commitment,
this attack has zero success probability.

– Soundness attack: A attempts to convince the verifier of an invalid CVZK
proof. By the

(
n1− 1

γ /log3 n, negl(λ)
)
-crowd-verifiable soundness of our

CVZK compiler (cf. Theorem 2), A has negl(λ) probability of success in such
an attack.

CVZK and End-to-End Verifiable Multiparty Computation 743

– Client attack: by corrupting the client C# of U#, A provides U# with a pair of
random values (r̂(0)# , r̂(1)#), where one component r̂(b

∗)
is different than r(b

∗)
#

in the pair (r(0)# , r(1)#) committed to BB. Hence, if A∗ guesses the coin of U#

correctly (i.e. b∗ = b#), then it can perform the VMPC execution by replacing
U#’s input x# with input x∗

= x# +
(
r̂(b

∗)
− r(b

∗)
#

)
without being detected.

Given that U# flips a fair coin, this attack has 1/2 success probability.

This list of attacks is complete; if none of the above attacks happen, then
by the properties of the secret sharing scheme, A can not tamper the VMPC
computation on the consistent BB without being detected.

Leaving aside the negl(λ) cryptographic error inserted by combinations of
commitment and soundness attacks, the adversary’s effectiveness relies on the
scale of client attacks that it can execute. If it performs more than δ client
attacks, then by the description of client attacks, V will detect and reject with
at least 1 − 2−δ probability. So, with at least 1 − 2−δ probability, a simulator
playing the role of the (honest) verifier will also send a reject message (ṽ = 0)
for every honest user to Ff,R

vmpc(P) and indistinguishability is preserved.
On the other hand, if A performs less than δ client attacks, then the actual

input x and the adversarial one x′ are δ-close w.r.t. Dcrn(·, ·). Since the relation
R is δ-spreading, we have that

(
f(x), f(x′)

)
∈ R holds. So, when the simulator

plays the role of the (honest) verifier that accepts, it sends an accept message
(ṽ = 1) for every honest user to Ff,R

vmpc(P) which in turn will also accept (since(
f(x), f(x′)

)
∈ R holds). Besides, Ff,R

vmpc(P) will reject whenever the simulator
sends a reject message, hence, indistinguishability is again preserved.

We conclude that the single-server VMPC scheme achieves end-to-end veri-
fiability with overall error 2−δ + negl(λ).

Extension to Multi-server VMPC. The single-server VMPC can be natu-
rally extended to a multi-server version by secret-sharing the server’s state. The
protocol is similar to BDO [4] and SPDZ [26,27]. However, all the underlying ZK
proofs need to be compiled in CVZK. More specifically, we define an offline func-
tionality FV.Offline to generate shared random Beaver triples and shared random
values. The main differences between our FV.Offline and the ones used in SPDZ and
its variants are (i) The MAC is removed from all the shares, and (ii) FV.Offline has
to be crowd verifiable. Due to space limitations, we provide the formal descrip-
tion of FV.Offline and its realization in the H-EUC model in the full version of this
paper [2]. Moreover, in [2], we formally present the multi-server VMPC scheme
ΠGBB,Fsc,Fauth,FV.Offline

online in the {GBB,Fsc,Fauth,FV.Offline}-hybrid model along with a
proof sketch of the following theorem.

Theorem 4. Let ΠGBB,Fsc,Fauth,FV.Offline

online be our VMPC scheme with n users. Let
γ > 1 be a constant such that n = λγ . Let f : Xn −→ Y be a symmet-
ric function and R ⊆ Img[f] × Img[f] be a δ-spreading relation over Img[f].
The scheme ΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes Ff,R
vmpc(P) in the {GBB,Fsc,Fauth,

FV.Offline}-hybrid model with error 2−δ+negl(λ) under the adaptive DDH assump-

tion, against any PPT environment Z that statically corrupts at most n
1− 1

γ

log3 n

744 F. Baldimtsi et al.

users, assuming the underlying CVZK is (n, negl(λ))-crowd verifiable complete,(
n
1− 1

γ

log3 n , negl(λ)
)
-crowd verifiable sound, and n-crowd verifiable zero-knowledge.

Remark 3. When δ = ω(log λ), then ΠGBB,Fsc,Fauth,FV.Offline

online H-EUC realizes
Ff,R

vmpc(P).

8 Applications of VMPC

Examples of interesting VMPC application scenarios may refer to e-voting, as
well as any type of privacy-preserving data processing where for transparency
reasons, it is important to provide evidence of the integrity of the outcome, e.g.,
demographic statistics or financial analysis. In our modeling, the most appealing
cases - in terms of usability by a user with “human level” limitations - are the
ones where the error is small for the lowest possible entropy, e.g. users contribute
only 1 bit. Hence, for simplicity we set κ = 1. Following the reasoning in Sect. 6
and by Theorem 3, when κ = 1, a VMPC application can be feasible when it is
w.r.t. to δ-spreading relations and with an error expected to be negl(δ) (ignoring
the negl(λ) cryptographic error). In general, we can calibrate the security error
by designing VMPC schemes that support sufficiently large values of κ. We
present a selection of interesting VMPC applications below.

e-Voting. The security analysis of several e-voting systems (e.g. [21,41,45]) is
based on the claim that “assuming cryptographic security, by attacking one voter
you change one vote, thus you add at most one to the total tally deviation”. This
claim can be seen as a special case of VMPC security for an evaluation (tally)
function which is 1-Lipschitz and tally deviation is naturally captured by Rδ

defined in Eq. (2). Thus, if the voters contribute min entropy of 1 bit, then we
expect that e-voting security holds with error negl(δ).

Privacy-Preserving Statistics. Let X = [a, b] be a range of integer values,
Y = [a, b] and f :=

∑n
"=1 x"

n be the average of all users’ inputs. E.g., [a, b] could be
the number of unemployed adults or dependent members in a family, the range
of the employees’ salary in a company, or the household power consumption in
a city measured by smart meters. If we set dY to the absolute value | · |, then f
is a b−a

n -Lipschitz function for Dcrn and | · |, so for user min entropy of 1 bit, we
expect that (f,Rδ) can be realized with error negl(δn

b−a). This also generalizes to
other aggregate statistics such as calculating higher moments over the data set.

Privacy-Preserving Processing of Multidimensional Data (Profile
Matching). A useful generalization of the privacy-preserving statistics case is
when performing processing on multidimensional data collected from multiple
sources. A simple two-dimensional example illustrating this follows. Let X1,X2

be two domains of attributes and X := X1×X2, i.e. each input x# is an attribute
pair (x#,1, x#,2). Let Y = [n], P1, P2 be predicates over X1,X2 respectively and
let f :=

∑n
#=1 P1(x#,1)·P2(x#,2) be the function that counts the number of inputs

CVZK and End-to-End Verifiable Multiparty Computation 745

that satisfy both P1, P2. E.g., X1 could be the set of dates and X2 be the loca-
tions, fragmented in area units. Then, f could count the number of people that
are in a specific place and have their birthday. If we set dY to | · |, then f is a
1-Lipschitz function for Dcrn and | · |. (f,Rδ) can be realized with error negl(δ).

Supervised Learning of (binary) Classifiers. In many use cases, func-
tions that operate as classifiers are being “trained” via a machine learning
algorithm (e.g. Perceptron) on input a vector of training data. Here, we view
the users’ inputs as training data that are vectors of dimension m, i.e. x# =
(x#,1, . . . , x#,m) ∈ [a1, b1] × · · · × [am, bm], where [ai, bi], i ∈ [m] are intervals.
The evaluation function f outputs a hyperplane HP (x) := {w · z | z ∈ Rm}
that defines the decision’s 0/1 output. If the adversary changes x with some
x′ s.t. Dcrn(x,x′) ≤ δ, then the adversarially computed hyperplane HP (x′) :=
{w′ ·z | z ∈ Rm} must be close to HP (x), otherwise the attack is detected. This
could be expressed by having w,w′ be δ close w.r.t. the Euclidean distance.
Assume now that for a set of new data points z1, . . . , zt we set the relation as
“R

(
HP (x),HP (x′)

)
⇔ ∀j ∈ [t] the classifier makes the same decision for zj”.

Then, clearly R is a spreading relation w.r.t. to f , suggesting that the func-
tionality of calculating classifier is resilient against attacks on less than δ of the
training data.

References

1. Alwen, J., Ostrovsky, R., Zhou, H.-S., Zikas, V.: Incoercible multi-party computa-
tion and universally composable receipt-free voting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 763–780. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 37

2. Baldimtsi, F., Kiayias, A., Zacharias, T., Zhang, B.: Crowd verifiable zero-
knowledge and end-to-end verifiable multiparty computation. IACR Cryptology
ePrint Archive 2020:711 (2020)

3. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 22

4. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 11

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

6. Beaver, D.: Commodity-based cryptography (extended abstract). In: STOC (1997)
7. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in

the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 26

8. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and minima
of Banzhaf values. In: FOCS (1985)

9. Benaloh, J.: Simple verifiable elections. In: USENIX EVT. USENIX Association
(2006)

https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/978-3-319-10879-7_11
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26

746 F. Baldimtsi et al.

10. Benaloh, J.: Ballot casting assurance via voter-initiated poll station auditing. In:
EVT (2007)

11. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

12. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

13. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

14. Burmester, M., Desmedt, Y.: Broadcast interactive proofs. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 81–95. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 7

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

17. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS (2010)

18. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. In: IEEE S&P
(2004)

19. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-
Composition of sigma-protocols. In: TCC (2016)

20. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/Offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 3

21. Cortier, V., Galindo, D., Küsters, R., Mueller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. IEEE Security & Privacy (2016)

22. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

23. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

24. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54970-4 10

25. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

26. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/3-540-46416-6_7
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/3-540-69053-0_9
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-642-40203-6_1

CVZK and End-to-End Verifiable Multiparty Computation 747

27. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

28. Dodis, Y., Ristenpart, T., Vadhan, S.P.: Randomness condensers for efficiently
samplable, seed-dependent sources. In: TCC (2012)

29. Ellison, C.: Ceremony design and analysis. IACR ePrint, Report 2007/399 (2007)
30. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended

abstract). In: STOC (1994)
31. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-

knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78372-7 1

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

33. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

34. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party compu-
tation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 14

35. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

36. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions
(extended abstract). In: FOCS (1988)

37. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 8

38. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. In: CCS (2012)

39. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: CCS (2016)

40. Kiayias, A., Zacharias, T., Zhang, B.: DEMOS-2: scalable E2E verifiable elections
without random oracles. In: CCS (2015)

41. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46803-6 16

42. Kiayias, A., Zacharias, T., Zhang, B.: Ceremonies for end-to-end verifiable elec-
tions. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 305–334. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-662-54388-7 11

43. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX (2012)

44. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS (2010)

45. Küsters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting
systems. IEEE Security & Privacy (2012)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-319-78372-7_1
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-54388-7_11

748 F. Baldimtsi et al.

46. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

47. Lepinski, M., Micali, S., Shelat, A.: Fair-zero knowledge. In: Kilian, J. (ed.) TCC
2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30576-7 14

48. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. IACR ePrint 2008/197 (2008)

49. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

50. Meka, R.: Explicit resilient functions matching Ajtai-Linial. In: SODA (2017)
51. Neff, C.A.: Practical high certainty intent verification for encrypted votes. Inc.

whitepaper, Votehere (2004)
52. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-

cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

53. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

54. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 10

55. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

56. Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation
from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 1

57. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)
58. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS

(1986)

https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-540-30576-7_14
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-319-28166-7_1

	Crowd Verifiable Zero-Knowledge and End-to-End Verifiable Multiparty Computation
	1 Introduction
	1.1 Technical Overview and Contributions

	2 Preliminaries
	3 CVZK and Coalescence Functions
	3.1 CVZK Definition
	3.2 Coalescence Functions

	4 CVZK Construction
	4.1 Coalescence Functions from 1RCCF
	4.2 A Helper Family for AOWF Inversion
	4.3 Fully Input-Delayed -Protocols
	4.4 Generic CVZK Compiler

	5 End-to-End Verifiable MPC
	5.1 VMPC Syntax
	5.2 Security Framework

	6 Spreading Relations
	7 Constructing VMPC from CVZK
	8 Applications of VMPC
	References

